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Abstract

Watanabe, Sawai and Takahashi [9] proposed an approximation method of the expected

state for homogeneous Markov chains, named as pseudo expectation. It is based on sim-

ple probabilistic recurrence formulas. The aim of this work is to give a bound on the

approximation error of the pseudo expectation.

Two bounding techniques are explained. Both are given as recurrence formulas.

The first one uses statistical properties of the process. It requires at least a bound on

the 2nd moment, e.g. the variance.

The second one, the so called linearisation error, which captures the non-linearity of

the process, is expressed in terms of the function f used to iteratively calculate the pseudo

expectation.

The use of these techniques is demonstrated by an example, giving an explicit error

formula (in closed form) for the considered process.
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Chapter 1

Introduction

Markov chains or Markov processes have numerous applications in almost all fields of

engineering. Very often, one is interested in the average behavior of a Markov process

over time. The study of Markov processes is an established area, and for analyzing them,

various techniques have been developed. But if its state space is huge, conventional

techniques for analyzing the average behavior of the Markov process are in most cases

not useful due to their computational complexity.

In some situations, the process follows a simple rule, though this does not necessarily

mean that the state space is small. For analyzing some of such a kind of Markov processes,

which often can be seen as a model of a randomized algorithm, Watanabe (see, e.g., [9])

has proposed to use a simple probabilistic recurrence formula — a pseudo expectation.

Watanabe, Sawai, and Takahashi [9] showed, through computer experiments, that this

pseudo expectation approximates well some Markov process for analyzing the behavior of

some randomized algorithm. Later stochastic properties of this pseudo expectation have

been investigated by Takahashi and Niikura [8]. Unfortunately, though, no theoretical re-

sult has been shown to bound the difference between the real and the pseudo expectation,

although some investigations have been reported recently ( [6], [7]).

The goal of this thesis is to estimate and bound the error of the pseudo expectation.

For this goal, we propose two approaches.

(1) Stochastic Approach:

We consider the distribution of states at each step. We assume/ estimate a certain

concentration around the pseudo expectation, thereby deriving an error bound.

(2) Mechanical Approach:

We estimate the approximation error by investigating the function used to define

the pseudo expectation.

For each of these approaches, we propose methods for analyzing the approximation

error. Using these methods, we indeed obtain ”reasonable” bounds for a simple example.

1



1.1 A simple example

In order to illustrate our goal concretely, we introduce here a simple Markov process -

1-dimensional process.

1. Player A and B have An ≥ 0 and Bn ≥ 0 balls at time n respectively.

2. If A (B) wins, A (B) gives min{d,An} (min{d,Bn}) balls to B (A).

3. The probability of the event A wins depends on An. Let N be the total number of

balls. Then

prob(An) =
w · An

w · An + Bn

This process will be used throughout this thesis as a basic example. More details are

given in section 2.4.

The rule for this process is very simple. Nevertheless, it does not mean that the state

space is small. In fact, the size of the state space, N in this example, could be very

large, which makes the analysis hard. For example, the size of the transition matrix is

N2. Because of this it is not so easy to compute the real expectation E[Xn]. (Note: Even

if the transition matrix is large, since it is sparse, one may be able to use some clever

algorithm to compute E[Xn]. But it seems hard to reduce the computational complexity

significantly more than O(n ·N).)

1.2 Motivation: Analysis of randomized algorithms

Simple Markov processes (as the one shown above in 1.1) can be seen as a model of

randomized algorithms on random instances. In fact, Watanabe ([9] and [7]) proposed to

use Markov processes to analyze the performance/properties of randomized algorithms.

In order to illustrate this approach and give a motivation for our investigation, we give

one example:

Consider the following variation of 3-SAT, one of the famous NP-complete problems.

Definition 1.2.1. (Random 3-SAT (5 Occurrence) Problem) An instance is a Boolean

formula F on n Boolean variables of the 3-conjunctive normal form. That is, F is of the

form

F = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci consists of 3 literals. (A literal is a variable or its negation.) Assume

that every variable appears 5 times in the formula.

2



The obvious task is to find one satisfying assignment for F (if it exists). In a random

scenario F is given uniformly at random from all possible 3-CNF formulas (see definition

1.2.1).

We then consider the following simple randomized local search algorithm:

LocalSearch3SAT(input F);

begin

a ← (0,...,0);

repeat the following MAXS times {

if (F(a) = 1) output a and halt;

for each variable xi, compute its penalty(∗) peni;

n0 ← number of penalty 0 variables;

n1 ← number of penalty 1 variables;

. . .

n5 ← number of penalty 5 variables;

select xi with

prob. = Wi/(W1 ∗ n1 + ... + W5 ∗ n5);

flip the assignment for xi;

}

output ”fail” and halt;

end

(*) peni = the number of unsatisfied clauses (under the current assignment) having the
variable xi.

It would be more standard to select a variable to flip from those with the highest penalty.
But by choosing W0 = 0, W1 < W2 < · · · < W5, the algorithm executes almost the same way as
the standard one.

Now let us approximate the behavior of the algorithm by using a simple Markov process. A
state is a tuple of six numbers (n0, n1, ..., n5), which expresses the number of variables of each
penalty. Thus, we have n0 + n1 + · · · + n5 = n. As in the algorithm, we select, at each step,
k, 0 ≤ k ≤ 5, with probability p(k) = Wk · nk/T , where T = W0n0 + W1n1 + · · · + W5n5.
Suppose that k = 4 is selected. Then we need to decrement n4 by one, and increment n1 by
one, simulating the flip of some variable xi with penalty 4. Some more updates are necessary
because there are some variables whose penalty is changed by flipping xi (and clauses having xi

get satisfied/unsatisfied). There are exactly 10 = 2× 5 such variables (assuming no repetition).
In the algorithm, those 10 variables are fixed from F . But for the Markov process approximation,

3



we select these 10 variables randomly (more precisely, randomly proportional to (n0, ..., n5)). The
one step transition of our Markov process is determined in this way. (Here we omit writing down
all the details.)

Of course, this Markov process is just an approximation of the real execution, one may
expect that it is close to the real one, in particular, if the time bound MAXS is not so large
and not so many variables are flipped more than once during the execution. Thus, we may hope
that some of the characteristics of random executions of the algorithm on random instances can
be investigated by using this Markov process.

For analyzing the behavior of the algorithm, we would like to see, for example, how n0

increases on average. Our pseudo expectation can be useful for such an analysis. Note that the
state space is O(n5), which is quite large even for small n. Therefore, the conventional Markov
chain analysis is hard to use. On the other hand, we can estimate the expected value of n0 at
t-th step by

En0 [n
(t)
0 ] ≈ (fn0)

t−1( (n(0)
0 , ..., n

(0)
5 ) ),

where
−→
f is a function for computing the average state change at each step, f t−1

n0
(· · · ) is the first

component of the state obtained from the initial state (n(0)
0 , ..., n

(0)
5 ) by applying

−→
f for t − 1

times. Furthermore, by studying (fn0)
t (e.g., computing its first derivative), we can investigate

how n0 grows on average. This is the advantage of using the pseudo average.

4



1.3 Summary of results

The goal of this thesis is to estimate and bound the error of pseudo expectations. For this goal,
we obtained the following main results.

Two general bounding techniques are explained. Both are given as recurrence formulas.
The first one, given in chapter 4, uses statistical properties of the Markov chain, e.g. requires

at least a bound on the 2nd moment of the stochastic process.

The second one, the so called linearisation error, which captures the non-linearity of the
process, is expressed in terms of the function f , which is used to iteratively calculate the pseudo
expectation.

Apart from that a technique for computing a lower and upper bound for the convergence
speed of the pseudo expectation is given (see section 3.1). For the considered example process,
a tight bound for the steady state error has been obtained (see section 3.2).

5



Chapter 2

Preliminaries

Some definitions needed for the technical discussion done in the following chapters are given.
First of all, some notations used in this thesis are explained in section 2.1. The definitions

of Markov chains in 1 and 2 dimensions are stated in section 2.2.1 and 2.2.2.
Besides, the notation of the pseudo expectation is explained in more detail - again in 1 and

2 dimensions (section 2.3.1 and 2.3.2 respectively).
Finally, a concrete example of a one dimensional stochastic process is given in section 2.4

and illustrated by some numerical instances in 2.4.1.

2.1 Notation

To allow a fast and smooth way of reading, as few non-standard abbreviations and new definitions
as possible were used.

The interval [c, d] is defined for both c > d and d ≤ c. In case c > d, just set [c, d] := [d, c].
The interval ]c, d[ stands for [c, d], but the points c and d are excluded from the interval.

In the expression

(A,B)T =

(
A

B

)
the letter T denotes the transpose.

(A,B) = (X, Y )⇔ A = X and B = Y

6



2.2 General Model of the process

Only homogeneous Markov chains with discrete time, finite state space and fixed inital state
are considered. For a short definition of these terms for one dimension see section 2.2.1 or for a
more detailed description Norris [1]. Section 2.2.2 gives the definitions in 2 dimensions.

2.2.1 1 Dimension

The construction of a Markov chain requires two basic ingredients, namely a transition matrix
and an initial distribution. To begin with, consider the definition of the transition matrix.
Assume a finite set S = {1, . . . ,m} of states. Assign to each pair (i, j) ∈ S2 of states a real
number pij such that the properties

pij ≥ 0 ∀(i, j) ∈ S2∑
j∈S

pij = 1 ∀i ∈ S

are satisfied and define the transition matrix P by

P =


p11 p12 . . . p1m

p21 p22 . . . p2m

...
...

. . .
...

pm1 pm2 . . . pmm


Definition 2.2.1. (Markov chain) The sequence of random variables(Xn)n∈N0 with Xi ∈ S is
called a homogeneous Markov chain with discrete time and inital state X0, state space S, and
transition matrix P , if for every n ∈ N0 the condition

prob[Xn+1 = j|X0 = i0, . . . , Xn = in] = prob[Xn+1 = j|Xn = in] = pinj

is satisfied for all (i0, . . . , in, j) ∈ Sn+2, for which

prob[X0 = i0, . . . , Xn = in] > 0

The first identity in definition (2.2.1), which is also called “Markov property”, defines the
“memory” or “order” of the chain. In this case, the order equals one since the transition
probabilities are entirely determined by the preceding state. The restriction to order-one chains
is no serious limitation since processes with arbitrary finite memory s can be interpreted as
order-one Markov chains on the product space Ss. The second identity in the above definition
is called homogeneity condition. It assures that the transition probabilities do not vary with the
time n.

7



2.2.2 2 Dimensions

The concepts are the same as for the 1 dimensional case, thus only the definition is given.

Definition 2.2.2. (Markov Chain) The sequence of random variables (An, Bn) with n ∈ N0 and
(An, Bn) ∈ SA × SB is called a homogeneous Markov chain with discrete time and inital state
(A0, B0), state space S = SA × SB, and transition matrix P , if for every n ∈ N0 the condition

prob[(An+1, Bn+1) = j|(A0, B0) = i0, . . . , (An, Bn) = in]

= prob[(An+1, Bn+1) = j|(An, Bn) = in] = pinj

is satisfied for all (i0, . . . , in, j) ∈ Sn+2, for which prob[(A0, B0) = i0, . . . , (An, Bn) = in] > 0.

8



2.3 Pseudo expectation

The notion of the pseudo expectation (and some basic properties of it) as well as the error
between the real and the pseudo expectation are concretized in 1 (see 2.3.1) and 2 dimensions
(see 2.3.2).

2.3.1 1 Variable

Given a Markov chain as defined in (2.2.1) and let f be a function such that

E[Xn+1|Xn] = f(Xn), a.s. (2.3.1)

then the pseudo expectation fn is just the iterated application of f for the constant inital state
X0, e.g. f(f(. . . f︸ ︷︷ ︸

n−times

(X0) . . .)).

The steady state expectation is approximated by the fix point of the function f . More
precisely, if 0 ≤ f ′(x) < 1 for all x ∈ IS , where

IS := [min
s

S, max
s

S]

then f is contract and has only one fix point bf , given by the solution of the equation:

f(bf ) = bf (2.3.2)

This statement is well-known in literature (see 3.1.1).

The error of the approximation is simply given by

err(n, a) := E[Xn|X0 = a]− fn(a) (2.3.3)

Note that, the error after the first step is zero due to the definition of f (2.3.1).

If f is linear
E[Xn+1] = E[E[Xn+1|Xn]] = E[f(Xn)] = f(E[Xn])

and therefore for all n:
E[Xn] = fn(X0) (2.3.4)

But for a non-linear f in general E[Xn] 6= fn(X0).

2.3.2 2 Variables

The definition of the pseudo expectation for a Markov chain as defined in (2.2.2) is a straight
forward extension of the case, where the pseudo expectation depends on 1 variable.

In higher dimensions the expectation becomes a vector of functions e.g.

−→
E [A,B] = (EA[A,B], EB[A,B])T

9



Let
−→
f = (fA(A,B), fB(A,B))T be a function such that

−→
f (Ai, Bi) =

−→
E [Ai+1, Bi+1|Ai, Bi] (2.3.5)

then the pseudo expectation
−→
fn is given by:

−→
fn(A,B) = (fn

A(A,B), fn
B(A,B))T

with fn
A defined as

fn
A(A,B) = fn−1

A (f(A,B)T )

fn
B is analogous.

Define the interval ISA
as [minx∈SA

x,maxx∈SA
x] and ISB

analogously and also

IS := ISA
× ISB

Again, the steady state expectation is approximated by the fix point of the function
−→
f .

More precisely, if 0 ≤ ∂f(a,b)
∂a < 1 and 0 ≤ ∂f(a,b)

∂b < 1 for all (a, b) ∈ ISA
× ISB

, then
−→
f is

contract and has only one fix point
−→
bf = (bf

A, bf
B)T , given by the solution of the equation:

−→
f (
−→
bf

T ) =
−→
bf (2.3.6)

This statement is well-known in literature (see 3.1.1).

The error −→err(n, a, b) = (errA(n, a, b), errB(n, a, b))T of the approximation is simply given
by

−→err(n, a, b) :=
−→
E [An, Bn|(A0, B0) = (a, b)]−

−→
fn(a, b) (2.3.7)

As for the one dimensional case, the error after the first step is zero due to definition (see
2.3.5).

If the function fA and fB are linear then the approximation is exact (for a proof see (4.3.1)).

10



2.4 Example process

To illustrate the techniques for the error analysis, the following game is used throughout the
document:

1. Player A and B have An ≥ 0 and Bn ≥ 0 balls at time n respectively.

2. If A (B) wins, A (B) gives min{d, An} (min{d,Bn}) balls to B (A). (Let the total number
of balls N divided by d be an integer).

For the rest of the document d is implicitly assumed to be 1, if it is omitted.

3. The probability of the event A wins depends on An. Then

∀n, An + Bn = N (2.4.1)

Let prob(An) and prob(Bn) be the probability of the event A wins and B wins respec-
tively. Then

∀n,prob(An) + prob(Bn) = 1

E
[(

An+1

Bn+1

)∣∣∣∣
(

An

Bn

)]
=

(
An

Bn

)
+ d ·

(
−prob(An) + prob(Bn)
prob(An)− prob(Bn)

)

The winning probability for An is given by

prob(An) =
w ·An

w ·An + Bn

= 1− w ·An

(w − 1) ·An + N
due to (2.4.1)

and for Bn by

prob(Bn) =
Bn

w ·An + Bn

where the weight w is a positive constant such that 1 < w < N
2·d . Due to (2.4.1) and because of

the linearity of expectation we have

∀n, E[An] + E[Bn] = N

For that reason, it is sufficient to consider E[An] to obtain the state of the game. The function
f becomes:

f(An) = E[An+1|An]]

= d · (prob(Bn)− prob(An))

= d · (1− 2 · w ·An

(w − 1) ·An + N
)

Remarks:

11



1. For w = 1 the function f is linear in An:

f(An) = (1− 2 · d
N

) ·An + d

Thus the approximation is correct due to (2.3.4).

2. The range 0 < w < 1 is symmetric in the sense that Bn instead of An is weighted by
w̃ = 1

w ∈]1,∞[, e.g. the probabilities of A and B wins are given by:

prob(An) =
w ·An

w ·An + Bn
=

An

w̃ ·Bn + An

prob(Bn) =
Bn

w ·An + Bn
=

w̃ ·Bn

An + w̃ ·Bn

For the considered interval of w, the function f is contract, e.g. 0 ≤ f ′(x) < 1 for any
x ∈ [0, N ]. Besides, the first derivative f ′ and the second f ′′ are also continuous for x ∈ [0, N ]
as can be seen below:

f ′(x) = d · (1− 2 · w ·N
(N + (w − 1) · x)2

) < 1 (2.4.2)

and
f ′′(x) =

4 · d · w · (w − 1) ·N
(N + (w − 1) · x)3

Since f is contract the fix point bf can be calculated using (2.3.2):

f(bf ) = bf

⇔ bf =
N

w + 1
(2.4.3)

2.4.1 Illustration

To get a better feeling of the behavior of the error and the process, some numerical instances
and figures are discussed for the example process.

Numerical results are given for the error, the variance of the process and the behavior of the
probability distribution over time. This is done for different weights and starting states. The
number of balls N is fixed to 40, since for big N and big number n of steps the computations
take too long. (In each step 2 matrixes have to be multiplied, which gives a running time of
O(N2.376 · n)).

To begin with the case A0 = N = 40 for w = 2 and w = 10 is considered. The pseudo and
real expectation are quite close (figure 2.1 below). By looking at figure 2.2, it can be seen that
the error has a maximum. The same also holds for the variance (see figure 2.3). To capture
this non-monotone behavior, especially bound the maximum tightly, can be regarded as the
”ultimate” goal.

The figures 2.4 and 2.5 for the probability distribution reveal that the maximum probability
as a function of n, e.g. maxa∈[0,N ] prob(An) has a minimum for some n, which is roughly ≈ N .
Besides for a fixed step n the probabilities decay very fast when moving away from the most
likely state.

12



Figure 2.1: Pseudo and real expectation for A0 = N

Figure 2.2: Error for A0 = N
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Figure 2.3: Variance for A0 = N

Figure 2.4: Probability distribution of states for A0 = N and w = 2
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Figure 2.5: Probability distribution of states for A0 = N and w = 10
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For the sake of completeness, the same plots but for A0 = 0 and w ∈ {2, 10} are also shown
(figure 2.6, 2.7 and 2.8). For this case the maxima for the error and the variance seem to be
very small or non-existent.

Figure 2.6: Pseudo and real expectation for A0 = 0

16



Figure 2.7: Error for A0 = 0

Figure 2.8: Variance for A0 = 0

17



Chapter 3

Some properties of the pseudo

expectation

In this chapter several characteristics of the pseudo expectation in 1 variable are derived. But
apart from the convergence speed of the pseudo expectation in section 3.1, these properties
(namely ”steady state distribution and error for steady state” in 3.2, ”relation between the
state with maximum probability and the fix point” in 3.3) are more or less specific for the
considered example (defined in 2.4).

3.1 Bound on the convergence speed of the pseudo

expectation

Two general techniques are applied to the example (see section 2.4). Using the Banach fix point
theorem 3.1.1 will give a first bound on the convergence speed of the pseudo expectation. Later
on, it will be improved (section 3.1.2), using integrals.

In fact, the number of steps until the distance to the fix point is less than 1 is investigated,
since it takes ∞ many steps to actually reach the fix point.

3.1.1 Application of Banach fix point theorem

The Banach fixed point theorem 3.1.1 is well known in literature. It also gives a bound on
the speed of convergence for a contraction mapping such as the function f defining the pseudo
expectation.

Theorem 3.1.1. (Banach Fixed Point theorem) Let X be a non-empty complete metric space.
Let G : X → X be a contraction mapping on X , i.e, there exists a real number q < 1 such
that ‖G(x) − G(y)‖ ≤ q‖x − y‖ for all x, y ∈ X . Then the map G admits one and only
one fixed point x̃ ∈ X (this means G(x̃) = x̃ ). Furthermore, this fixed point can be found
as follows: start with an arbitrary element x(0) (and define a sequence by xn = G(x(n−1)) for
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n = 1, 2, 3, . . . This sequence converges, and its limit is x̃. The following inequality describes the
speed of convergence:

‖x̃− x(n))‖ ≤ qn

1− q
‖x(1) − x(0)‖

(For a proof, see for instance, Agarwal [5])

Lemma 3.1.2. Let A0, A1, . . . , An be a Markov process as defined in section 2.4 and also N
2 >

w > 1, then for the pseudo expectation with fix point bf holds:
If A0 > bf then after

n =
w ·N

2
· ln(

w ·N
2

)

steps and if A0 ≤ bf then after

n =
2 ·N

w
· ln(

2 ·N
w

)

steps
|fn(A0)− bf | ≤ 1

Proof. Applying theorem 3.1.1 for the case f i(A0) ∈ [bf , N ], yields for q:

q ≤ max
∈[bf ,N ]

f ′(x)

= f ′(N)

= 1− 2
w ·N

(3.1.1)

Since at most one ball can be taken per step, the difference between any two steps is at
most 1. In particular for the starting state and the state after the first step holds:

‖x(1) − x(0)‖ ≤ 1

Using this and the previous inequality (3.1.1) for q for n = w·N
2 · ln(w·N

2 ) steps gives:

qn

1− q
‖x(1) − x(0)‖ ≤

(1− 2
w·N )

w·N
2
·ln(w·N

2
)

2
w·N

≤ e− ln(w·N
2

)

2
w·N

≤ 1

For f i(A0) ∈ [0, bf ], the constant q can be bound in the same way:
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q ≤ max
∈[0,bf ]

f ′(x)

= f ′(bf )

= 1− 2 · w ·N
(N + (w − 1) · N

w+1)2

= 1− 2 · w
N · (1 + w−1

w+1)2

= 1− (w + 1)2

2 · w ·N
≥ 1− w

2 ·N
(3.1.2)

The difference between two steps is - as before - bounded by 1:

‖x(1) − x(0)‖ ≤ 1

Combining that with the inequality (3.1.2) for n = 2·N
w · ln(2·N

w ) steps yields:

qn

1− q
‖x(1) − x(0)‖ ≤

(1− w
2·N )

2·N
w
·ln( 2·N

w
)

w
2·N

≤ e− ln( 2·N
w

)

w
2·N

≤ 1

Thus, lemma 3.1.2 is proven.

3.1.2 Improved bound

Next, a different technique is used to bound the number of steps to get close to the fix point.
The idea is to consider the number of steps, which are needed to get from state a to a± 1 and
then sum over all a from the starting point to the fix point ±1. This technique requires apart
from the continuity of f that |f(a) − a| decreases monotonically, when a gets closer to the fix
point.

Theorem 3.1.3. Let A0, A1, . . . , An be a Markov process as defined in 2.4 and also N
2 > w > 1,

then for the pseudo expectation with fix point bf holds:
If A0 < bf then after

n =
2 ·N

w
· ln(

N

w
)

steps and if A0 ≥ bf then after

n =
2 ·N

w
· (ln(N) +

w

2
)

steps
|fn(A0)− bf | ≤ 1
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Proof. Consider a ∈ [bf , N ] first.
Denote the number of steps to go from state a to a± 1 by sta±1. Then for sta±1 must hold:

fsta±1(a) ≤ a± 1

Since f(a)− a decreases with decreasing a for a ∈ [bf , N ], it follows

sta−1 ≤
1

f(a− 1)− (a− 1)

(For more details, see also the remark 3.1.1) Thus the total number of steps sttot to get from N

to bf + 1 becomes

sttot =
N∑

a=bf+2

sta−1

≤
N∑

a=bf+2

1
f(a− 1)− (a− 1)

≤
∫ N−1

a=bf+1

1
f(a)− a

Since f(a)− a decreases with decreasing a for a ∈]bf , N ]

≤
∫ N−1

a=bf+1

1
1− 2·w·a

N+(w−1)·a

≤
∫ N

a=bf+1

N + (w − 1) · a
N − (w + 1) · a

≤ N ·
∫ N

a=bf+1

1
N − (w + 1) · a

· da + (w − 1) ·
∫ N

a=bf+1

a

N − (w + 1) · a
· da (3.1.3)

The integrals can easily be solved by substituting u = N − (w + 1) · a:

a =
N − u

w + 1

and
du

da
= −(w + 1)

Thus ∫ N

a=bf+1

1
N − (w + 1) · a

· da =
−1

w + 1

∫ −w·N

u=−(w+1)

1
u
· du

=
1

w + 1
· ln(

w ·N
w + 1

)

≥ ln(N)
w

and also
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∫ N

a=bf+1

a

N − (w + 1) · a
· da =

−1
w + 1

·
∫ −w·N

u=−(w+1)

N−u
w+1

u
· du

=
−1

(w + 1)2
·
∫ −w·N

u=−(w+1)
(
N

u
− 1) · du

=
1

(w + 1)2
·
(

N · ln(N) + w ·N − (w + 1)
)

≤ N · ln(N)
w2

+
N

w

Plugging the results for the integrals in the previous formula (3.1.3) gives:

sttot ≤ N ·
∫ N

a=bf+1

1
N − (w + 1) · a

· da + (w − 1) ·
∫ N

a=bf+1

a

N − (w + 1) · a
· da

≤ N · ln(N)
w

+ (w − 1)·
(

N · ln(N)
w2

+
N

w

)
≤ 2 ·N

w
· (ln(N) +

w

2
)

The case a ∈ [0, bf ] is treated in the same fashion.
The basic calculations will be given:

sttot =
bf−2∑
a=0

sta+1

≤
bf−2∑
a=0

1
f(a + 1)− (a + 1)

≤
∫ bf−1

a=1

1
f(a)− a

Since f(a)− a decreases with increasing a for a ∈ [0, bf [

≤
∫ bf−1

a=0

1
1− 2·w·a

N+(w−1)·a

≤ N ·
∫ bf−1

a=0

1
N − (w + 1) · a

· da

+(w − 1) ·
∫ bf−1

a=0

a

N − (w + 1) · a
· da (3.1.4)

Again the integrals can be solved by the same substitution and will be bounded as follows:

∫ bf−1

a=0

1
N − (w + 1) · a

· da =
−1

w + 1

∫ w+1

u=N

1
u
· du

=
1

w + 1
ln(

N

w + 1
)

≥
ln(N

w )
w
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and also

∫ bf−1

a=0

a

N − (w + 1) · a
· da =

−1
w + 1

·
∫ −w·N

u=−(w+1)

N−u
w+1

u
· du

=
−1

(w + 1)2
·
∫ w+1

u=N
(
N

u
− 1) · du

≤ 1
(w + 1)2

·
(

N · ln(
N

w
) + w + 1−N

)
≤

N · ln(N
w )

w2

Analogously, plugging these results for the integrals in the previous formula (3.1.4) gives:

sttot ≤ N ·
∫ bf−1

a=0

1
N − (w + 1) · a

· da + (w − 1) ·
∫ bf−1

a=0

a

N − (w + 1) · a
· da

≤ N ·
ln(N

w )
w

+ (w − 1) ·
N · ln(N

w )
w2

≤ 2 ·N
w
· ln(

N

w
)

This completes the proof of theorem 3.1.3.

Remark 3.1.1. A lower bound can also be calculated by considering 1
|f−1(a)−a| instead of 1

|f(a)−a| .
This can best be seen by looking at figure 3.1. In this figure area II AII , meaning the area in
the rectangle, gives the true number of steps needed to get from a to f(a), which is obviously 1:

AII =
1

|f(a)− a|
· |f(a)− a| = 1

The hatched area shows the error for the upper bound e.g. the difference between the integral∫ f(a)
x=a

1
|f(x)−x| and the correct value AII :∫ f(a)

x=a

1
|f(x)− x|

dx−AII

The doted area gives the error for the newly introduced lower bound, e.g. the difference
between the integral

∫ f(a)
x=a

1
|f−1(x)−x| and the correct value AII .∫ f(a)

x=a

1
|f−1(x)− x|

· dx−AII =
∫ a

y=f−1(a)

1
|f(y)− y|

· f ′(y) · dy −AII

where the substitution of x = f(y) and consequently dx
dy = f ′(y) leads to the second expression.

Thus a lower bound for the total number of steps to get from N to bf ± 1 can be obtained.
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Theorem 3.1.4. Let A0, A1, . . . , An be a Markov process as defined in 2.4 and also N
2 > w > 1,

then for the pseudo expectation with fix point bf holds:
If A0 < bf then after at least

n =
N

2 · w
· 2 · ln(

w ·N
3 · (w + 1)

)− ln(
N

w
) w ≥ 3

steps and if A0 ≥ bf then after at least

n =
N

2 · w
·
(

w − 1 + ln(
N

4
)
)
− 3

2
− ln(1 +

N

w
)

steps
|fn(A0)− bf | ≤ 1

Proof. Again the case A0 ≥ bf will be investigated first.
As for the upper bound, denote the number of steps to go from state a to a ± 1 by sta±1.

Then for sta±1 to be a lower bound must hold:

fsta±1(a) ≥ a± 1

Due to the monotone behavior of f this can be written as: (see also beginning of this section
together with 3.1)

sta−1 ≥
∫ a−1

x=a

1
|f−1(x)− x|

dx

Thus the total number of steps sttot to get from N to bf + 1 becomes

sttot ≥
∫ bf+2

x=N

1
|f−1(x)− x|

dx

=
∫ f−1(bf+2)

y=f−1(N)

1
|f(y)− y|

· f ′(y)dy

≥
∫ bf+3

y=N

1
|f(y)− y|

· f ′(y)dy

=
∫ bf+3

y=N

1
|f(y)− y|

dy +
∫ bf+3

y=N

1
|f(y)− y|

· (f ′(y)− 1)dy

=
∫ bf+3

y=N

N + (w − 1) · y
N − (w + 1) · y

dy

−
∫ bf+3

y=N

N + (w − 1) · y
N − (w + 1) · y

· 2 · w ·N
(N + (w − 1) · y)2

dy

=
∫ bf+3

y=N

N + (w − 1) · y
N − (w + 1) · y

dy

−
∫ bf+3

y=N

2 · w ·N
(N − (w + 1) · y) · (N + (w − 1) · y)

dy (3.1.5)

The first integral in 3.1.5 is almost the same as before in 3.1.3 apart from the integration
limits.
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Using the same technique (namely substitution) again, we have:

sttot ≥
w ·N ·

(
w − 1 + ln( w·N

3·(w+1))
)
− 3 · (w2 − 1)

(w + 1)2

+ ln
(

3 · (w + 1)2

2 · w ·N + 3 · (w2 − 1)

)
≥ N

2 · w
·
(

w − 1 + ln(
N

4
)
)
− 3

2
− ln(1 +

N

w
) w ≥ 3 (3.1.6)

The case where the starting state A0 ≤ bf is analyzed in the same manner:

sttot ≥
∫ bf−2

x=0

1
|f−1(x)− x|

dx

=
∫ f−1(bf−2)

y=f−1(0)

1
|f(y)− y|

· f ′(y)dy

≥
∫ bf−3

y=0

1
|f(y)− y|

· f ′(y)dy

Thus we get:

sttot ≥
w ·N ·

(
2 · ln( w·N

3·(w+1))− 1
)

+ N + 3 · (w2 − 1)

(w + 1)2

+ ln
(

3 · (w + 1)2

2 · w ·N − 3 · (w2 − 1)

)
≥ N

2 · w
· 2 · ln(

w ·N
3 · (w + 1)

)− ln(
N

w
) w ≥ 3 (3.1.7)

To obtain a tighter bound, one could use a function c(a) which satisfies the condition:

c(a) ·
∫ f(a)

x=a

1
|f(x)− x|

dx = 1

and then calculate the number of steps from d to e by

sttotap =
∫ e

x=d
|c(x) · 1

f(x)− x
|dx

which gives
sttot − 1 < sttotap < sttot + 1

Since the integrals for the example are not so easy to handle, this approach is not demon-
strated.
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Figure 3.1: Pseudo and real expectation for A0 = N
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3.2 Steady state distribution

This chapter consists of some general remarks about the steady state distribution in section
3.2.1 and a deduction of it for the example process in 3.2.2 (and moreover an error bound for
the steady state is given).

3.2.1 General

In general the steady state distribution ps of a Markov chain with transition matrix P has to
satisfy the following condition:

P · ps = ps (3.2.1)

For ps to be a distribution, it must hold that
N∑

j=0

ps(A = j) = 1 (3.2.2)

∀j ∈ [0, N ] ps(A = j) ≥ 0 (3.2.3)

For any application, where the number of states is a parameter t (e.g. our example process
described in section 2.4), these conditions give a system of linear equations, where the number
of equations also depends on this parameter and (usually) cannot be easily solved without the
knowledge of t.

Remark: As an alternative to looking at linear equations, in some cases an eigenvalue
analysis of P might be preferable (for details see Mehdi [3], p.100 and following).

Obviously, once the steady state distribution is obtained, the expectation can be calculated.
The error for the steady state is then just the difference between the fix point bf and the true
expectation.

3.2.2 Example

For the considered example (see section 2.4), in general the expectation of the process does
not converge to a single value, but changes between two converging series. Note that given
the process is in some state i, then in the next state the probability of this state will always
be 0, since the Markov process leaves this state with probability 1. Mathematically speaking,
prob(Bn = i) > 0⇒ prob(Bn+1 = i) = 0. The Markov process has period 2. For that reason,
the limit of Pn, where P denotes the transition matrix, does not exist.

But if one looks at the Markov process at steps with an even and odd number separately and
considers limn→∞ prob(P 2·n) and respectively limn→∞ prob(P 2·n+1), then these limits exist.

Theorem 3.2.1. Let A0, A1, . . . , An be a Markov process as defined in section 2.4, let N = N0 ·d
with N0 ∈ N , let A0 also be a multiple of d and denote prob(An) as the probability distribution
of the state at step n, then the steady state distribution ps is

ps(A = j) =

{
1
2

wN0−i−1·(N0+i·(w−1))

N0·(1+w)N0−1 ·
(
N0

i

)
if j = i · d, i ∈ N

0 otherwise
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and furthermore

lim
n→∞

prob(A2n = j) =

{
2 · ps(A = j) if A0 even

0 otherwise
(3.2.4)

lim
n→∞

prob(A2n+1 = j) =

{
2 · ps(A = j) if A0 odd

0 otherwise

Remarks:

1. For w = 1 the steady state distribution becomes the binomial distribution:

ps(A = j) =
(

N

j

)
· 2−N (3.2.5)

2. Since the proof given below, is more or less just a verification of the conditions (e.g. 3.2.1,
3.2.2 and 3.2.3), required for ps to hold, the following question remains: How can one
deduce such a formula? In fact it was obtained by considering several examples with fixed
number of states (e.g. balls N) and solving the linear system given by the previously
mentioned conditions.

Proof. At first, it will be shown that ps(A = j), which is assumed to be written as a row vector,
is indeed the steady state distribution of the transition matrix P . More precisely, ps satisfies
the conditions for being a steady state distribution (3.2.1, 3.2.2 and 3.2.3).

In general the transition matrix P looks like:

P =



p0,d

. . . 0
pd,0

. . .
. . . 0 . . .

. . . pN−d,N

. . .

0 pN,N−d


The steady state equations (3.2.1) expressed in terms of ps(A = i) become:

ps(A = i) =



ps(A = d) · prob(A = 0|A = d) if i = 0
ps(A = N − d) · prob(A = N |A = N − d) if i = N

ps(A = i− d) · prob(A = i|A = i− d)
+ps(A = i + d) · prob(A = i|A = i + d) if 0 < i < N and i

d ∈ N0

0 otherwise

To begin with, look at the first equation for i = 0. Evaluating the right hand side using the
expression for ps with i = d and the transition probability from i = d to i = 0 and for the left
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hand side ps with i = 0, yields equality between the two sides:

wN0−1 ·N0

N0 · (1 + w)N0−1
=

w

N0 + w − 1
· w

N0−2 · (N0 + w − 1)
N0 · (1 + w)N0−1

·N0

⇔ 1 = 1

Similarly for i = N , one obtains:

w−1 · (N0 + N0 · (w − 1))
N0 · (1 + w)N0−1

=
1

w · (N0 − 1) + 1
· (N0 + (N0 − 1) · (w − 1))

N0 · (1 + w)N0−1
·N0

⇔ 1
N0 · (1 + w)N0−1

=
1

N0 · (1 + w)N0−1

In case 0 < i · d < N with i ∈ N0, the equation are of the form (already multiplied by
(1 + w)N0−1):

1
2

wN0−i−1 · (N0 + i · (w − 1))
N0

·
(

N0

i

)
=

w · (i + 1)
w · (i + 1) + N − i− 1

· 1
2

wN0−i−2 · (N0 + (i + 1) · (w − 1))
N0

·
(

N0

i + 1

)
+

N − i + 1
w · (i− 1) + N − i + 1

· 1
2

wN0−i · (N0 + (i− 1) · (w − 1))
N0

·
(

N0

i− 1

)
The right hand side can be transformed into the left hand side:

w · (i + 1)
w · (i + 1) + N0 − i− 1

· 1
2

wN0−i−2 · (N0 + (i + 1) · (w − 1))
N0

·
(

N0

i + 1

)
+

N0 − i + 1
w · (i− 1) + N0 − i + 1

· 1
2

wN0−i · (N0 + (i− 1) · (w − 1))
N0

·
(

N0

i− 1

)
=

1
2

wN0−i−1

N0
·
(

(i + 1) · (N0 + (i + 1) · (w − 1))
w · (i + 1) + N0 − i− 1

·
(

N0

i + 1

)
+

(N − i + 1) · (w · (N0 + (i− 1) · (w − 1)))
w · (i− 1) + N0 − i + 1

·
(

N0

i− 1

))
=

1
2

wN0−i−1

N0
·
(

N0

i

)
·
(

N0 + (i + 1) · (w − 1)
w · (i + 1) + N0 − i− 1

· (N0 − i)

+
w · i · (N0 + (i− 1) · (w − 1))

(w · (i− 1) + N0 − i + 1)

)
=

1
2

wN0−i−1

N0
·
(

N0

i

)
·
(

(N0 − i) + w · i
)

=
1
2

wN0−i−1 · (N0 + i · (w − 1))
N0

·
(

N0

i

)
Next it will be shown that ps is a distribution. The first condition (3.2.3) that all probabil-

ities are at least 0 follows directly from the definition of ps. It remains to verify that the sum
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over all probabilities equals 1 (3.2.2):

N∑
j=0

ps(A = j) =
N0∑
i=0

1
2

wN0−i−1 · (N0 + i · (w − 1))
N0 · (1 + w)N0−1

·
(

N0

i

)

=
1

2 ·N0 · (1 + w)N0−1
·
(

N0

w
·

N0∑
i=0

wN0−i ·
(

N0

i

)
︸ ︷︷ ︸

(1+w)N0

+
w − 1

w
·

N0∑
i=0

wN0−i · i ·
(

N0

i

)
︸ ︷︷ ︸

(1+w)N0−1·N0

)

=
1

2 · w · (1 + w)N0−1
·
(

(1 + w)N0 + (w − 1) · (1 + w)N0−1

)
=

(w + 1) + (w − 1)
2 · w

= 1

(A good reference for handling binomial coefficients is Zeilberger [4].)

Thus the last step, is to show that 3.2.4 holds. Intuitively this holds since the sum of the
steady state distribution for odd and even states equals 1

2 for each case (the calculations are
omitted). Thus normalization gives the factor 2 occuring in 3.2.4.

More formally, this can be derived in the following way: The Markov chain is irreducible
and positive recurrent, since the state space is finite and all states communicate. Using Theorem
VIII (p.107, Berger [2]), with r(x, y) = (x − y) mod (2 · d) justifies (3.2.4) and concludes the
last step of the proof of theorem (3.2.1).

Error for steady state

First the steady state expectation is obtained (lemma 3.2.2) and then the steady state error is
calculated (see 3.2.3).

Lemma 3.2.2. Let A0, A1, . . . , An be a Markov process as defined in section 2.4, let N = N0 · d
with N0 ∈ N , then the expectation of the process E[An] for large n (n→∞) is bounded by∣∣∣∣ lim

n→∞
E[An]− d · (2 ·N0 + w − 1)

2 · (w + 1)

∣∣∣∣ ≤ d

2

Proof. Since the expectation might oscillate between two values, first the arithmetic mean of
the oscillating expectation is calculated :
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lim
k→∞

E[Ak] + E[Ak+1]
2

=
N∑

i=0

ps(A = i) · i

=
N0∑
i=0

1
2

wN0−i−1 · (N0 + i · (w − 1))
N0 · (1 + w)N0−1

·
(

N0

i

)
· i · d

=
1

2 ·N0 · (1 + w)N0−1
·
(

N0

w
·

N0∑
i=0

wN0−i · i ·
(

N0

i

)
︸ ︷︷ ︸

(1+w)N0−1·N0

+
w − 1

w
·

N0∑
i=0

wN0−i · i2 ·
(

N0

i

)
︸ ︷︷ ︸
(1+w)N0−2·N0·(N0+w))

)

=
d

2 · w
·
(

N0 +
w − 1
w + 1

· (N0 + w)
)

=
d · (2 ·N0 + w − 1)

2 · (w + 1)
(3.2.6)

The limit of the maximum difference between the oscillating expectations limk→∞ |E[Ak]−
E[Ak+1]| is less or equal to d, which will be shown next. Assume N0 odd:

lim
k→∞

∣∣∣∣E[Ak]− E[Ak+1]
∣∣∣∣

= lim
k→∞

∣∣∣∣ b
N0
2
c∑

i=0

(prob(Ak = 2 · i) · 2 · i− prob(Ak+1 = 2 · i + 1) · (2 · i + 1))
∣∣∣∣

= lim
k→∞

∣∣∣∣ b
N0
2
c∑

i=0

(
prob(Ak = 2 · i) · 2 · i− prob(Ak = 2 · i) · E[Ak+1|Ak = 2 · i]︸ ︷︷ ︸

f(2·i)

)∣∣∣∣
= lim

k→∞

( bN0
2
c∑

i=0

(prob(Ak = 2 · i) · |2 · i− f(2 · i)|︸ ︷︷ ︸
≤d

)
)
≤ d (3.2.7)

where |2 · i − f(2 · i)| ≤ d, since in expectation at most d balls are taken or given to B in one
step.

For N0 even, the derivation is almost the same, only the sum needs to be changed slightly:

lim
k→∞

( N0
2∑

i=1

(prob(Ak = 2 · i− 1)(2 · i− 1)− prob(Ak+1 = 2 · i) · 2 · i)
)

Obviously, for the arithmetic mean ab := a+b
2 of two numbers a, b with |a − b| = c holds

that:
|a− ab| = |a− b|

2
≤ c

2
(3.2.8)
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and also
|b− ab| = |b− a|

2
≤ c

2
(3.2.9)

Using the previous inequalities ((3.2.8) and (3.2.9)) together with the bound on the mean
(3.2.6) for the oscillating expectations and the maximum difference between the expectation
between two steps (3.2.7) completes the proof of lemma 3.2.2.

Next the steady state error, e.g. the difference between the real and pseudo expectation
after ”infinitely” many steps, is calculated. It turns out to be independent of the number of
balls N and the weight w, which is rather surprising. More precisely, the error is less than d,
e.g. 1, if only one ball is moved per step.

Corollary 3.2.3. Let A0, A1, . . . , An be a Markov process as defined in section 2.4, let N = N0 ·d
with N0 ∈ N , then the error errs for the steady state can be bounded by:

errs < d

Proof. Using lemma 3.2.2 and the expression for the fix point (2.4.3) gives

errs ≤ max
a∈[0,N ]

lim
n→∞

err(n, a)

= max
a∈[0,N ]

lim
n→∞

(
E[An|A0 = a]− fn(a)

)
≤ d

2
+ |d · (2 ·N0 + w − 1)

2 · (w + 1)
− N

w + 1
|

≤ d

2
+ |d ·N0

w + 1
+

d · (w − 1))
2 · (w + 1)

− N

w + 1
|

≤ d
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3.3 Relation between state with maximum probabil-

ity and fix point

It seems almost trivial that for a highly concentrated process the expected and the most likely
state are close for any time step n.

Experiments have shown that for the considered example (see 2.4) the pseudo expectation
and the most likely state almost coincide. But only for the steady state this could be confirmed
analytically. In fact, it could be shown that the most likely state and the fix point are equal,
given that the fix point is an integer e.g. an element of the finite state space.

Lemma 3.3.1. Let A0, A1, . . . , An be a Markov process as defined in section 2.4 and let the fix
point bf = N

1+w be an integer and let 2
N < w < N

2 , then the probability of the state bf is the
maximum steady state probability:

arg max
i∈[0,N ]

ps(A = i) =
N

1 + w

Intuitively, this holds due to lemma 3.3.2, which says that it is more likely to move towards
the fix point than away from it, and the fact that the loop probabilities are 0 for all states.

Let ζb
a be a random variable, which denotes the number of visits of state a before the chain

AT , AT+1, . . . hits b conditioned on AT = a.

ζb
a :=

∞∑
j=T

prob(Aj = a and AT+k 6= b (∀j > k ≥ 0) | AT = a)

Proof. The goal is to show that ps(A = bf ) ≥ ps(A = i) ∀i.
Equivalently, it will be proven that:

E[ζi
bf

] > E[ζbf

i ] (3.3.1)

Or in words: The expected number of visits of bf given the chain starts from the fix point bf

before the state i is visited is at least the expected number of visits of i given the chain starts
from state i before the fix point is hit.

Next we show that indeed

(3.3.1)⇒ ps(A = bf ) ≥ ps(A = i)

Since the transition matrix P is irreducible and has an invariant distribution (theorem 3.2.1),
all states are positive recurrent (theorem 1.7.7, Norris [1]), meaning that it only takes finite time
to go from any state to any other. So the hitting time of every state is finite. Therefore (3.3.1)
intuitively suggests that in the long run bf will be visited more often than i, independent of the
starting state A0.

Let the random variable T a
b be the first passage time of b given that the chain starts from

a. Assume, A0 = i0, where i0 is an arbitrary state ∈ [0, N ]. Using the strong Markov property
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(theorem 1.4.2, Norris [1]) for the chain A0, A1, . . . conditional on A
T

i0
bf

= bf , the process will

start afresh after time T i0
bf

from bf independent of its past A0, A1, . . . , AT
i0
bf
−1

. Until bf is hit for

the first time (starting from i0), at most E[ζbf

i ] are made to i, since

E[Visits of i before bf is hit|A0 = i0] = E[ζbf

i ] · prob(i hit before i0|A0 = i0)︸ ︷︷ ︸
≤1

Using the strong Markov property again for the chain An0 , An0+1, . . . with n0 = T i0
bf

, the

process will start afresh from bf after n0 + T
bf

i steps from i and finally, after another random
time T i

bf
the process will start again from bf and the loop is complete. Within the first loop,

starting and ending in i or bf (depending on the starting state i0), in expectation bf will be hit
more often, if

E[ζi
bf

]− E[ζbf

i ] > 0

That is to say (3.3.1) holds. Looking at the long term behavior, meaning at infinitely many
cycles, we obtain that

lim
n→∞

(E[Visits of bf within n steps] − E[Visits of i within n steps])

= lim
k→∞

k · (E[ζi
bf

]− E[ζbf

i ]) − E[Visits of i before bf is hit|A0 = i]

≥ lim
k→∞

k · (E[ζi
bf

]− E[ζbf

i ]) − E[ζbf

i ] =∞⇔ (3.3.1)

Using the ergodic theorem 1.10.2 together with theorem 1.7.7 (see Norris [1]), the steady
state probability of a state j of the Markov chain is given by

ps(A = j) = lim
n→∞

Visits of j within n steps
n

This yields that (3.3.1)⇒ ps(A = bf ) ≥ ps(A = i).

In order to show (3.3.1) the next lemma is useful. It says that the transition probability
towards the fix point is greater than going further away from it.

Lemma 3.3.2. Let A0, A1, . . . , An be a Markov process as defined in section 2.4 and let the fix
point bf be an integer and let 2

N < w < N
2 , then for the probability of the state bf holds:

prob(An+1 = bf + i + 1|An = bf + i) ≤ prob(An+1 = bf + i− 1|An = bf + i)

prob(An+1 = bf − i + 1|An = bf − i) ≥ prob(An+1 = bf − i− 1|An = bf − i)

where 0 ≤ i ≤ N and i = k · d with k ∈ N0.

Proof. The proof will be done by straight forward calculation using the definition of the transi-
tion probability function for each case in the lemma.

The transition probability from the fix point (e.g. i = 0) is independent of the direction:

prob(An+1 = bf ± 1|An = bf ) =
1
2
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The likelihood of getting closer to the fix point, if the number of balls of B is bf + i (i > 0),
is bigger than 1

2 .

prob(An+1 = bf + i− 1|An = bf + i) =
w ·N0 + w2 · (i + 1) + w · (i + 1)
2 · w ·N0 + w2 · (i + 1)− ·(i + 1)

>
1
2

Thus moving away from the fix point is < 1
2 .

To come closer to the fix point, if the number of balls is bf − i (i > 0) is greater than 1
2 , too.

prob(An+1 = bf − i + 1|An = bf − i) =
w ·N0 + (i− 1)− w · (i− 1)

2 · w ·N0 + (i− 1)− w2 · (i− 1)
>

1
2

Thus going further away is < 1
2 .

This concludes the enumeration of all cases and verifies lemma 3.3.2.

Now (3.3.1) will be proven.
Assume bf > i for the following statements. Then

E[ζbf

i ] = E[Transitions from bf to bf − 1 until i is hit|A0 = bf ] · E[ζbf−1
bf

] (3.3.2)

In this formula E[ζbf−1
bf

] gives the number of times, bf is visited before the chain moves one
step in the direction of i or in other words: before it does a transition from bf to bf − 1.

The other term

E[Transitions from bf to bf − 1 until i is hit|A0 = bf ]

gives the number of times the chain moves back and forth between bf and bf − 1 plus 1 (for the
last transition from bf to bf − 1) without hitting i.

So due to the strong Markov property (see theorem 1.4.2, Norris [1]) for every transition
from bf to bf − 1 (at least 1 takes place before hitting i) in expectation bf is visited E[ζbf−1

bf
]

times.

Substituting (3.3.2) and the analogue for E[ζi
bf

] into (3.3.1) gives

E[ζi
bf

] > E[ζbf

i ]

⇔

E[Transitions from bf to bf − 1 until i is hit|A0 = bf ] · E[ζbf−1
bf

]

> E[Transitions from i to i + 1 until bf is hit|A0 = i] · E[ζi+1
i ] (3.3.3)

Comparing the corresponding terms is the last part of the proof.

Let us consider E[ζbf−1
bf

] first. With prob(An+1 = bf + 1|An = bf ) the process goes to
bf + 1. (Observe that there always exist states bf ± 1 because bf = N

1+w must be an integer and
0 < w < ∞). Since the Markov chain is positive recurrent, the process will certainly return to
bf in finite time before i is hit (Recall that bf > i is assumed).
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The number of visits to other states than bf is not of any interest and also the number of
steps it takes to do them. Accordingly, it is appropriate to consider a Markov chain Cn instead,
which transition matrix is defined by the graph of the chain An with all states greater than bf

removed:
prob(Cn+1 = bf + 1|Cn = bf ) = 0

and the loop probability of bf equal to

prob(Cn+1 = bf |Cn = bf ) = prob(An+1 = bf + 1|An = bf )

For Cn the expectation of ζ
bf−1
bf

is

E[ζbf−1
bf

] =
∞∑

n=0

prob(Cn+1 = bf |Cn = bf )n =
∞∑

n=0

prob(An+1 = bf + 1|An = bf )n

which is the same as the expectation of ζ
bf−1
bf

for An.

Analogously, E[ζi+1
i ] =

∑∞
n=0 prob(An−1 = i− 1|An = i)n.

Using lemma (3.3.2) gives that

prob(Cn+1 = i− 1|Cn = i) < prob(Cn+1 = bf + 1|Cn = bf )

and therefore

E[ζbf−1
bf

] > E[ζi+1
i ] (3.3.4)

Before comparing the second term of (3.3.3), the following definition and lemma is required:
The probability to return to a state a within two steps by visiting a + 1 is

prob(cycle hit a + 1) := prob(Cn+2 = a and Cn+1 = a + 1|Cn = a)

= prob(Cn+1 = a + 1|Cn = a) · prob(Cn+2 = a|Cn+1 = a + 1)

Lemma 3.3.3. For a ∈ [bf , N − 1]

prob(cycle hit a) > prob(cycle hit a + 1)

and for a ∈ [0, bf − 1]
prob(cycle hit a) < prob(cycle hit a + 1)

Proof. The case a ∈ [bf , N − 1] is investigated first. By elementary calculation for a = bf it
follows for w ∈] 2

N , N
2 [ that

prob(cycle hit bf ) − prob(cycle hit bf + 1) =
1
2
· w · (w3 + 3 w2 + 3 w + 1)
(w2 + w ·N − 1) · (w2 + 2 w ·N − 1)

> 0

⇒ prob(cycle hit bf ) > prob(cycle hit bf + 1)
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Due to this and the fact that prob(cycle hit a) is a continuous function for a ∈ [bf , N − 1],
it follows that if

∃a with prob(cycle hit a) < prob(cycle hit a + 1)

then there must also

∃a with prob(cycle hit a) = prob(cycle hit a + 1)

Solving the equation for a gives:

w · (a + 1)(N − a)
((w − 1) · a + N) · (N + (a + 1) · w − (a + 1))

=
w · (a + 2)(N − (a + 1))

((w − 1) · (a + 1) + N) · (N + (a + 2) · w − (a + 2))

⇔ a =
N · w − 2 · w

1 + w
< bf ⇒ a /∈ [bf , N − 1]

For that reason there exists no such a and the claim follows. For a ∈ [0, bf − 1] the proof is
analogous.

The next statement is needed for the final step of the proof, where

E[Transitions from bf to bf − 1 before i or bf + 1 is hit|A0 = bf ]

is expressed in terms of cycle probabilities.

Lemma 3.3.4. For numbers cj (j ∈ [0, D]) with cj > cj+1 holds that
c0(1 + c1(1 + c2(1 + ..(1 + cD)))) > cD(1 + cD−1(1 + cD−2(1 + ..(1 + c0))))

Proof. The lemma follows from a simple expansion of both sides and comparing each term:

c0(1 + c1(1 + c2(1 + ..(1 + cD)))) > cD(1 + cD(1 + cD−1(1 + ..(1 + c0))))

⇔ c0 + c0c1 + c0c1c2 + . . . +
D∏

j=0

cj > cD + cDcD−1 + cDcD−1cD−2 + . . . +
D∏

j=0

cj

Now the second terms of (3.3.3) are compared. More precisely:

E[Transitions from bf to bf − 1 until i is hit|A0 = bf ]

≥ E[Transitions from i to i + 1 until bf is hit|A0 = i]

⇔
∞∑

n1+n2+...+nbf−i−1=bf−i−1, nj≥1

(1 + prob(cycle hit bf )n1) · (1 + prob(cycle hit bf − 1)n2) ·

(1 + ...(1 + prob(cycle hit i + 2)nbf−i−1)))

≥
∞∑

n1+n2+...+nbf−i−1=bf−i−1, nj≥1

(1 + prob(cycle hit i + 1)n1) · (1 + prob(cycle hit i + 2)n2) ·

(1 + ...(1 + prob(cycle hit bf − 1)nbf−i−1)))
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This follows by definition of the expectation. (One might also find the formula with the expanded
product given in the proof of lemma 3.3.4 more instructive.)

Observe that both sums have the same number of summands and in both the same cycle
probabilities occur, but in the opposite order (apart from the first term prob(cycle hit i + 1)
and prob(cycle hit bf )). Once again, the individual terms are examined. Due to lemma 3.3.3

prob(cycle hit i + 1) ≤ prob(cycle hit bf )

Applying lemma 3.3.4 for all common summands D = bf−i−1, c0 = cD = 1, cj = prob(cycle hit j+
i + 1) shows that

(1 + prob(cycle hit bf − 1)n2) · (1 + ...(1 + prob(cycle hit i + 2)nbf−i−1)))

> (1 + prob(cycle hit i + 2)n2) · (1 + ...(1 + prob(cycle hit bf − 1)nbf−i−1))

The case for i < bf is analogous.

Finally, this shows (3.3.3) and (3.3.1) which concludes the proof of lemma 3.3.1, that the
probability is maximum at the fix point.
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Chapter 4

Recurrence Formula For Error Of

Pseudo Expectation

In the current chapter a recurrence formula for the error is stated for the pseudo expectation
depending on one and two variables (section 4.1 and 4.3). Unfortunately, it depends on the
second moment e.g. on the variance for the pseudo expectation in one dimension. This is a
serious drawback and might make it hard to use. An example application is only given in one
dimension (see section 4.2).

4.1 1 Dimension

A recurrence formula for the error is given, which can be directly applied for almost any kind of
f . As stated before, since the error bound depends on the variance at step n, which is usually
not known, but might be bounded, the application is in general not straight forward.

Theorem 4.1.1. Let S0, S1, . . . , Sn be a Markov process as defined in 2.2.1 and let its state
space S be a subset of R, where prob(S0 = k) = 1 for an arbitrary k ∈ S. Let the function f for
the pseudo expectation (2.3.1) be such that it and its derivatives up to order 2 are continuous
on IS, then

err(n + 1, S0) = f ′(fn(S0)) · err(n, S0) +
f ′′(cn)

2
· (var(Sn) + err(n, S0)2)

where cn ∈ IS and fn(S0) denotes the iterated application of f .

Remark

1. If the function f is linear, then f ′′ = 0 and the approximation is exact.

2. In case of a deterministic process (∀n var(Sn) = 0), there is also no error.

Proof. As a first step E[Sn] is expressed in terms of f and the probability distribution of the
random variable Sn.
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E[Sn] =
∑
i∈S

prob(Sn = i) · i

=
∑
i∈S

prob(Sn−1 = i) · E[Sn|Sn−1 = i]

=
∑
i∈S

prob(Sn−1 = i) · f(i)

Next we use the Taylor expansion of the function f at point fn−1(S0) up to order 1. In
order to do this, f must be continuous on IS as well as its first derivative and the 2nd derivative
has to exist on IS . The Taylor expansion becomes:

f(x) = f(fn−1(S0))︸ ︷︷ ︸
fn(S0)

+f ′(fn−1(S0)) · (x− fn−1(S0)) +
f ′′(cx

n−1)
2

· (x− fn−1(S0))2 (4.1.1)

where x ∈ IS and cx
n−1 denotes a constant in the interval [S0,x].

Using the previous Taylor expansion (4.1.1) and the obvious fact that all probabilities of all
states add up to 1 (

∑
i∈S prob(Sn−1 = i) = 1), the expectation of Sn becomes:

E[Sn] =
∑
i∈S

prob(Sn−1 = i) · f(i)

=
∑
i∈S

prob(Sn−1 = i)·
(

fn(S0) + f ′(fn−1(S0)) · (i− fn−1(S0)) +

f ′′(ci
n−1)
2

· (i− fn−1(S0))2
)

=
∑
i∈S

prob(Sn−1 = i) · fn(S0) +
∑
i∈S

prob(Sn−1 = i) · f ′(fn−1(S0)) · (i− fn−1(S0))

+
∑
i∈S

prob(Sn−1 = i) ·
f ′′(ci

n−1)
2

· (i− fn−1(S0))2

= fn(S0) ·
∑
i∈S

prob(Sn−1 = i)

+f ′(fn−1(S0))·
(∑

i∈S

prob(Sn−1 = i) · i−
∑
i∈S

prob(Sn−1 = i) · fn−1(S0)
)

+
∑
i∈S

prob(Sn−1 = i) ·
f ′′(ci

n−1)
2

· (i− fn−1(S0))2

= fn(S0) + f ′(fn−1(S0))·
(

E[Sn−1]− fn−1(S0)
)

+
∑
i∈S

prob(Sn−1 = i) ·
f ′′(ci

n−1)
2

· (i− fn−1(S0))2 (4.1.2)

The analysis of the last term
∑

i∈S prob(Sn−1 = i) · f ′′(ci
n−1)

2 · (i− fn−1(S0))2 requires some
prerequisites.
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Lemma 4.1.2. Let d(i) and n(j) be two sequences of non-negative numbers and ∀i ∈ [1, d0] let
d(i) ∈ [a, b], then there exists d ∈ [a, b] such that

d0∑
i=1

d(i) · n(i) = d ·
d0∑
i=1

n(i)

.

Proof. In case
∑d0

i=1 n(i) = 0, d can be any number in [a, b]. If not, then one can define the
function p as p : i 7→ n(i)∑d0

j=1 n(j)
. Obviously p(i) ≥ 0 and

∑d0
i=1 p(i) = 1. So p is a probability

distribution and d =
∑d0

i=1 d(i) ·p(i) is simply the expectation, which exists and is always within
[a, b].

Since f ′′ is continuous on IS , there exist for all f ′′0 ∈ [minj f ′′(cj
n−1),maxj f ′′(cj

n−1)] an
x ∈ [minj cj

n−1,maxj cj
n−1], such that f ′′(x) = f ′′0 . Therefore Lemma 4.1.2 can be applied with

d(i) = f ′′(ci
n−1) and n(i) = 1

2 · prob(Sn−1 = i) · (i− fn−1(S0))2 which yields that there exists a
cn−1 such that ∑

i∈S prob(Sn−1 = i) · f ′′(ci
n−1)

2 · (i− fn−1(S0))2

= f ′′(cn−1)
2 ·

∑
i∈S prob(Sn−1 = i) · (i− fn−1(S0))2

= f ′′(cn−1)
2 ·

∑
i∈S prob(Sn−1 = i)·

(
i− E[Sn−1] + err(n− 1, S0)

)2

= f ′′(cn−1)
2 ·

[∑
i∈S

prob(Sn−1 = i)·
(

i− E[Sn−1]
)

︸ ︷︷ ︸
E[(Sn−1−E[Sn−1])2]=var(Sn−1)

−
∑
i∈S

prob(Sn−1 = i) · 2 · err(n− 1, S0) · E[Sn−1])︸ ︷︷ ︸
2·err(n−1,S0)·E[Sn−1])

+
∑
i∈S

prob(Sn−1 = i) · 2 · i · err(n− 1, S0)︸ ︷︷ ︸
2·err(n−1,S0)·E[Sn−1])

+
∑
i∈S

prob(Sn−1 = i) · err(n− 1, S0)2︸ ︷︷ ︸
err(n−1,S0)2

]

= f ′′(cn−1)
2 ·

(
var(Sn−1) + err(n− 1, S0)2

)
(4.1.3)

Combining (4.1.3) and (4.1.2) gives:

E[Sn] = fn(S0) + f ′(fn−1(S0)) · err(n− 1, S0) +
f ′′(cn−1)

2
·
(

var(Sn−1) + err(n− 1, S0)2
)

which completes the proof.
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4.2 Example

In this section the previous recurrence formula for the error 4.1.1 is applied to the example
process (defined in 2.4).

Since the terms in the recurrence formula depend on n, their maximum over all steps is
used. Thus the coefficients become constant and the fix point of the recurrence equation can be
calculated. Unfortunately, for the variance, a maximum could only be conjectured. Moreover,
since the maximum is taken, the modified recurrence formula only converges for small w, say
N < 16

w6 (See remark (4.2.1)).

The missing element to turn the conjecture into a theorem is to show that var(Sn) ≤ N
4 ,

where N
4 is the variance of a random variable X, which is distributed binomial(n, p) with n = N

and p = 1
2 . Intuitively, this is reasonable since for w = 1 the bound is exact (e.g. var(n)

grows with n up to N
4 . It was previously shown (see remark after 3.2.1), that the steady state

distribution becomes the binomial distribution for w = 1).
The example process becomes more concentrated for bigger w and it is obvious that the

variance becomes smaller. But a proof is still outstanding. For any value of w bigger than 1,
experiments have shown, that the variance has a maximum, which is less than the conjectured
bound of N

4 (see figures 2.3 and 2.8).

Since the variance gets smaller the more concentrated the process is, e.g. with decreasing
w, N

4 is a bad bound for small w as can be seen be looking at the rough bounds stated in the
remark section (e.g. expression (4.2.10) and (4.2.10)).

Conjecture 4.2.1. Given the stochastic process defined in 2.4. Let N > 2 and 1 < w < N
4 and

let

errm :=
1− f ′m −

√
(f ′m − 1)2 − 4 f ′′m

2varm

2f ′′m

then if errm is a real number and

0 ≤ f ′m + f ′′m · x < 1 x ∈ [0, errm] (4.2.1)

it follows that
max

n
err(n, A0) ≤ errm

where
f ′m := max{f ′(A0), f ′(bf )}

f ′′m := max
x∈{A0,bf}

4 · (w − 1)
((w − 1) · x + N)2

|

varm :=
N

4

To begin with, it will be shown that f ′m and f ′′m are indeed the maximum coefficients.
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Let’s consider f ′m. The next statement gives an interval for the possible values for the first
derivative:

max
x∈[c,d]

f ′(x) ∈ {f ′(c), f ′(d)} (4.2.2)

For the non-linear case (w 6= 1) the second derivative is always non-zero in the interval [0,N]:

f ′′(x) =
4 · w · (w − 1) ·N
(N + (w − 1) · x)3

If 1 < w < N
4 , f ′′ > 0. This implies that f ′ is strictly monotone increasing. Because of this

property of f ′′, f ′ has neither its maximum nor minimum inside the interval, but instead on the
boundary, which shows (4.2.2).

Additionally, the first derivative is always within ]0, 1
2 [, since ∀N > 0, 1 < w < N

4

1
2

< f ′(x) = 1− 2 · w ·N
(N + (w − 1) · x)2

< 1 (4.2.3)

Since 0 < f ′ < 1 the limit limn→∞ fn(A0) converges to a fix point bf and the convergence
is monotone, meaning that for a start point A0 less than the fix point bf holds ∀n ≥ 0:

fn+1(A0) > fn(A0)

and for A0 > bf

fn+1(A0) < fn(A0)

It also follows that the iteration fn(A0) always stays within the starting point and the fix point
bf :

max
n

fn(A0) ∈ {A0, bf} (4.2.4)

Due to the claim (4.2.2), that f ′ takes its maximum on the boundary and the monotone
convergence of fn, the coefficient for err(n, A0) is bounded by

max
n

f ′(fn(A0)) = max{f ′(A0), f ′(bf )} =: f ′m

Now a bound for f ′′m will be calculated. Recall that f ′′(cn) is an expectation

f ′′(cn) =
N∑

i=0

f ′′(ci
n) · pi

where pi (0 ≤ i ≤ N) is a distribution. For that reason f ′′(cn) < maxi∈[0,N ],n∈[0,∞] f
′′(ci

n).
Solving the Taylor expansion (4.1.1) of f(i) given by

f(i) = f(a) + f ′(a) · (i− a) +
f ′′(ci

n)
2
· (i− a)2

where a = fn−1(A0) for the second derivative gives

f ′′(ci
n) = 2 · f(i)− f (a) + f ′(a)(a− i)

(i− a)2

=
4 · (w − 1) w ·N

((w − 1) · i + N) ((w − 1) · a + N)2
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For i = 0 the previous expression becomes maximum:

max
i

f ′′(ci
n) =

4 · w · (w − 1)
((w − 1) · a + N)2

The second derivative f ′′(ci
n) also decreases with a. The maximum for a is maxn fn(A0) =

maxa∈{A0,bf} a (see (4.2.4)). For that reason

max
i,a

f ′′(ci
n) = max

a∈{A0,bf}

4 · (w − 1)
((w − 1) · a + N)2

This proofs the claim for f ′′m.

Taking a closer look at each of the terms of the bound given by theorem 4.1.1 reveals that:
For w > 1,

err(n + 1, A0) = f ′(fn(A0))︸ ︷︷ ︸
∈[f ′(A0),f ′(bf )]

·err(n, A0) +
f ′′(cn)

2︸ ︷︷ ︸
>0

·(var(An)︸ ︷︷ ︸
>0

+ err(n, A0)2︸ ︷︷ ︸
≥0

)

︸ ︷︷ ︸
>0

(4.2.5)

The error bound is defined as errb(1) = errb(0) = 0 and

errb(n + 1) := f ′m · errb(n) +
f ′′m
2
· (varm + errb(n)2) (4.2.6)

Since the coefficients in (4.2.5) have no sign change and the signs for the terms containing
err(n, A0) are equal, the maximum coefficients can be taken to bound the error: errb(n) ≥
err(n, A0).

The iteration errb(n) might not converge. In that case the fix point equation errb(n + 1) =
errb(n) has two solutions with an imaginary part, but if it does converge the fix point equation
has the real solution(s):

errbf± =
1− f ′m ±

√
(f ′m − 1)2 − 4 f ′′m

2varm

2 · f ′′m

Both solutions are feasible in the sense that errbf± > 0, since f ′′m > 0 and

0 > 1− f ′m︸ ︷︷ ︸
∈]0,1[, see (4.2.3)

±
√√√√(f ′m − 1)2 − 4 f ′′m

2
varm︸ ︷︷ ︸

<(1−f ′m)2

Finally, errb(n) converges towards errbf−, since the first derivative of errb(n + 1) (4.2.6)
has to be within ]0, 1[ in the interval [0, errbf−], e.g. condition (4.2.1) has to be satisfied.

Remark 4.2.1.
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1. To get a better understanding, when the iteration converges in terms of N and w, the two
extreme cases A0 = 0 and A0 = N are considered. By looking at the definition of f ′m and
f ′′m it is not hard to see that the error of one of the two cases gives the maximum possible
error for any starting state A0 ∈ [0, N ]. Furthermore, if the bound exists (e.g. errm in
conjecture 4.2.1 is a real number and 4.2.1 is satisfied) for A0 = 0 and A0 = N , it exists
for any A0 ∈ [0, N ], too.

The bound for A0 = N becomes a function of w and N . In this case 1−f ′m = 1−f ′(N) =
2

w·N and for bf the second derivative f ′′m = (w+1)3·(w−1)
2·w2·N2 is maximized. So the fix point

equals:

errbf− =
2

w·N −
√

( 2
w·N )2 − 4 · ( (w+1)3·(w−1)

2·w2·N2 )2 · N
4

2 · (w+1)3·(w−1)
2·w2·N2

=
4 · w ·N −

√
16 · w2 ·N2 − (w + 1)6 · (w − 1)2 ·N
2 · (w + 1)3 · (w − 1)

The iteration converges if the root is a real number:

0 < 16 · w2 ·N2 − (w + 1)6 · (w − 1)2 ·N

⇐ w <
6
√

N − 1

Similarly for A0 = 0 the bound is maximized for 1 − f ′m = 1 − f ′(bf ) = (w+1)2

2·w·N and
f ′′m = 4·w·(w−1)

N2 is maximized for 0. So the bound for the error becomes:

errbf− =
(w+1)2

2·w·N −
√

( (w+1)2

2·w·N )2 − 4 · (4·w·(w−1)
N2 )2 · N

4

2 · 4·w·(w−1)
N2

=
2 · (w + 1)2 ·N −

√
(w + 1)4 − 64·w4·(w−1)2

N

16 · w2 · (w − 1)

But in this case the number of balls N has only to be approximately w−2:

0 < (w + 1)4 − 64 · w4 · (w − 1)
N

(4.2.7)

⇐ 64 · (w − 1)2 < N (4.2.8)

⇐ w <

√
N

8
(4.2.9)

For illustration some plots showing the error for fixed N and variable weight w for the
extreme cases with A0 = N and A0 = 0 are given (see figure 4.3 and 4.1). Besides it is
also shown in figure that the condition 4.2.1 is satisfied for the considered range of w (see
figure 4.4 and 4.2).
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Figure 4.1: Error bound for N = 100000 and A0 = N

Figure 4.2: Condition 4.2.1 < 1 for A0 = N , N = 100000
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Figure 4.3: Error bound for N = 1000 and A0 = 0

Figure 4.4: Condition (4.2.1) < 1 for A0 = 0, N = 1000
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2. A rough bound looks as follows: For A0 ≤ bf and N = wk with k ≥ 6, we have:

1− f ′m = 1− f ′(N) = 2 · w−1−k

and

f ′′m =
(w + 1)3 · (w − 1)

2 · w2·(1+k)

errbf+ =
2 · w−1−k +

√
4 · w2·(−1−k) − 4 · ( (w+1)3·(w−1)

2·w2·(1+k) )2 · wk

4

2 · (w+1)3·(w−1)

2·w2·(1+k)

≈ 4 · w1+k +
√

16 · w2·(1+k) − w8 · wk

2 · w4

= 4 · wk−3 (4.2.10)

For A0 > bf and N = wk with k ≥ 2

1− f ′m = 1− f ′(bf ) =
(w + 1)2

2 · wk+1

and
f ′′m = 4 · w1−2·k · (w − 1)

So the bound for the error becomes:

errbf+ =
(w+1)2

2·wk+1 +
√

( (w+1)2

2·wk+1 )2 − 4 · (4 · w1−2·k · (w − 1))2 · wk

4

2 · 4 · w1−2·k · (w − 1)

≈
w1−k

2 +
√

(w2·(1−k)

4 − 16 · w4·(1−k) · wk

8 · w2·(1−k)

=
wk−1 +

√
w2·(k−1) − 64 · wk

16

=
wk−1

8
(4.2.11)
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4.3 2 Dimensions

Theorem 4.3.1 is a direct extension of theorem 4.1.1.

Theorem 4.3.1. Let (A,B)0 = (a, b), (A,B)1, . . . , (A,B)n be a Markov process given by defini-
tion 2.2.2 and

−→
f be a function as stated in 2.3.2. Let fA and fB be such that they and all of

their partial derivatives up to order 2 are continuous on ISA
× ISB

, then

errA(n, a, b) =
∂fA

∂A
(
−→
f n−1(a, b)) · errA(n− 1, a, b)

+
∂fA

∂B
(
−→
f n−1(a, b)) · errB(n− 1, a, b)

+
1
2
· ∂

2fA

∂B2
(c(n− 1)(A,dB), c(n− 1)(B,dB))·

(
var(Bn−1) + errB(n− 1, a, b)2

)
+

1
2
· ∂

2fA

∂A2
(c(n− 1)(A,dA), c(n− 1)(B,dA))·

(
var(An−1) + errA(n− 1, a, b)2

)
+

∂2fA

∂A∂B
(c(n− 1)(A,dAB), c(n− 1)(B,dAB)) ·(

cov[An−1, Bn−1] + errA(n− 1, a, b) · errB(n− 1, a, b)
)

where c(n− 1)(A,dA), c(n− 1)(A,dB) and c(n− 1)(A,dAB) denote constants in the interval ISA
and

in the same way c(n− 1)(B,dA), c(n− 1)(B,dB) and c(n− 1)(B,dAB) are constants in the interval
ISB

.

Remark 4.3.1.

1. The formula for errB(An, Bn) is symmetric, e.g. switching the indexes of err and f from
A to B or the other way, results in a formula of the same type.

2. If the function fA is linear in its arguments, then the partial derivatives ∂2fA
∂A∂B = 0,∂

2fA

∂B2 = 0
and ∂2fA

∂A2 = 0 and therefore the approximation is exact for A. The same holds for fB and
B.

3. In case of a deterministic process (∀n var(An) = 0, var(Bn) = 0 and cov[An, Bn]) = 0,
there is also no error.

Since theorem 4.3.1 is a straight forward extension of the 1 dimensional case (e.g. theorem
4.1.1), the proof also follows the ideas for one dimension.

The derivation of the formula for the error of An errA(An, Bn) and the error of Bn errB(An, Bn)
is exactly the same. Thus only the proof for errA(An, Bn) will be given.

Proof. As a first step EA[An, Bn] is expressed in terms of fA and the joint probability distribution
of the random variables An and Bn.
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EA[An, Bn] =
∑

(i,j)∈S

prob((An, Bn) = (i, j)) · i

=
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · EA[An, Bn|An−1, Bn−1]

=
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · fA(An−1, Bn−1)]

Next we use the Taylor expansion of the function fA at point
−→
f n−1(a, b) up to order 1. In

order to do this, fA must be continuous on ISA
× ISB

as well as its first partial derivatives and
the 2nd order partial derivatives have to exist on ISA

× ISB
. The Taylor expansion becomes:

fA(x, y) = fA(
−→
f n−1(a, b))︸ ︷︷ ︸

fn
A(a,b), due to definition, see 2.3.2

(4.3.1)

+
∂fA

∂A
(
−→
f n−1(a, b)) · (x− fn−1

A (a, b))

+
∂fA

∂B
(
−→
f n−1(a, b)) · (y − fn−1

B (a, b))

+
1
2
· ∂

2fA

∂A2
(c(n− 1)A, c(n− 1)B) · (x− fn−1

A (a, b))2

+
1
2
· ∂

2fA

∂B2
(c(n− 1)A, c(n− 1)B) · (y − fn−1

B (a, b))2

+
∂2fA

∂A∂B
(c(n− 1)A, c(n− 1)B) · (x− fn−1

A (a, b)) · (y − fn−1
B (a, b))

where x ∈ ISA
, y ∈ ISB

and c(n − 1)A, c(n − 1)B denote constants in the interval [A0,x] and
[B0,y].

Using the previous Taylor expansion (4.3.1) and the obvious fact that the probabilities of
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all states add up to 1 (
∑

i,j∈S prob((An, Bn) = (i, j)) = 1), the expectation of An becomes:

EA[An, Bn] =
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · fA(An−1, Bn−1)]

=
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j))·
(

fn
A(a, b)

+
∂fA

∂A
(
−→
f n−1(a, b)) · (i− fn−1

A (a, b))

+
∂fA

∂B
(
−→
f n−1(a, b)) · (j − fn−1

B (a, b))

+
1
2
· ∂

2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (i− fn−1

A (a, b))2

+
1
2
· ∂

2fA

∂B2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (j − fn−1

B (a, b))2

+
∂2fA

∂A∂B
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) ·

(i− fn−1
A (a, b)) · (j − fn−1

B (a, b))
)

= fn
A(a, b)

+
∂fA

∂A
(
−→
f n−1(a, b)) · (EA[(An−1, Bn−1)]− fn−1

A (a, b))︸ ︷︷ ︸
errA(n−1,a,b)

+
∂fA

∂B
(
−→
f n−1(a, b)) · (EB[(An−1, Bn−1)]− fn−1

B (a, b))︸ ︷︷ ︸
errB(n−1,a,b)

+
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) ·

(
1
2
· ∂

2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (i− fn−1

A (a, b))2

+
1
2
· ∂

2fA

∂B2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (j − fn−1

B (a, b))2

+
∂2fA

∂A∂B
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) ·

(i− fn−1
A (a, b)) · (j − fn−1

B (a, b))
)

(4.3.2)

In the above formula c(n−1, (i, j)) denotes a constant, which depends on the step n−1 and
the state (i, j) ∈ S. Next this constant will be replaced for each term (e.g. the ones containing
∂2fA
∂A∂B ,∂2fA

∂A2 and ∂2fA

∂B2 ) by another one, which is independent of the state (i, j).
To do so, some prerequisites are required.

Lemma 4.3.2. Let d(i, j) and n(k, l) be two sequences of non-negative numbers and ∀(i, j) ∈ S

let d(i, j) ∈ [a, b], then there exists d ∈ [a, b] such that∑
(i,j)∈S

d(i, j) · n(i, j) = d ·
∑

(i,j)∈S

n(i, j)

.
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Proof. In case
∑

(i,j)∈S n(i, j) = 0, d can be any number in [a, b]. If not, then one can define the

function p as p : (i, j) 7→ n(i,j))∑
(k,l)∈S n(k,l) . Obviously p(i, j) ≥ 0 and

∑
(i,j)∈S p(i, j) = 1. So p is a

probability distribution and d =
∑

(i,j)∈S d(i, j) · p(i, j) is simply the expectation, which exists
and is always within [a, b].

Lemma 4.3.2 will now be applied. This can be done since all partial derivatives are continu-
ous on the considered interval. The details will only be given for ∂2fA

∂A2 . Because of its continuity,
there exist for any n and all

f ′′0 ∈ [min
(i,j)

∂2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B),

max
(i,j)

∂2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B)]

an
x ∈ [min

(i,j)
c(n− 1, (i, j))A,max

(i,j)
c(n− 1, (i, j))A]

and a
y ∈ [min

(i,j)
c(n− 1, (i, j))B,max

(i,j)
c(n− 1, (i, j))B]

such that ∂2fA

∂A2 (x, y) = f ′′0 where (i, j) ∈ S.

For that reason Lemma 4.3.2 can be applied with

d(i, j) =
∂2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B)

and
n(i, j) =

1
2
· prob((An−1, Bn−1) = (i, j)) · (i− fn−1

A (a, b))2

which yields that there exists a pair (c(n− 1)(A,dA), c(n− 1)(B,dA)) such that

∑
(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · 1
2
·

∂2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (i− fn−1

A (a, b))2

=
1
2
· ∂

2fA

∂A2
(c(n− 1)(A,dA), c(n− 1)(B,dA)) ·∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− fn−1
A (a, b))2

In the above formula c(n− 1)(B,dA) is a constant, which depends on step n− 1. The symbol
dA should indicate, that this constant is related to the term containing ∂2fA

∂A2 .
To further simplify the remaining expression, remember that the error was defined as

errA(A,B) := EA[A,B]− fA(A,B).
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∑
(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · 1
2
·

∂2fA

∂A2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (i− fn−1

A (a, b))2

=
1
2
· ∂

2fA

∂A2
(c(n− 1)(A,dA), c(n− 1)(B,dA)) ·∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− EA[An−1, Bn−1] + errA(n− 1, a, b))2

=
1
2
· ∂

2fA

∂A2
(c(n− 1)(A,dA), c(n− 1)(B,dA)) ·( ∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− EA[An−1, Bn−1])2

+
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− EA[An−1, Bn−1]) · errA(n− 1, a, b)

+
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · errA(n− 1, a, b)2
)

=
1
2
· ∂

2fA

∂A2
(c(n− 1)(A,dA), c(n− 1)(B,dA))·

(
var(An−1) + errA(n− 1, a, b)2

)
(4.3.3)

The derivation for the term in (4.3.2) containing ∂2fA

∂B2 is completely analogous. Therefore
only the result is given:

∑
(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · 1
2
·

∂2fA

∂B2
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (i− fn−1

A (a, b))2

=
1
2
· ∂

2fA

∂B2
(c(n− 1)(A,dB), c(n− 1)(B,dB)) ·∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− fn−1
A (a, b))2 (4.3.4)

Next the term in (4.3.2) containing ∂2fA
∂A∂B is examined.
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∑
(i,j)∈S

prob((An−1, Bn−1) = (i, j)) ·

∂2fA

∂A∂B
(c(n− 1, (i, j))A, c(n− 1, (i, j))B) · (i− fn−1

A (a, b)) · (j − fn−1
B (a, b))

=
∂2fA

∂A∂B
(c(n− 1)(A,dAB, c(n− 1)(B,dAB))

·
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− fn−1
A (a, b)) · (j − fn−1

B (a, b))

=
∂2fA

∂A∂B
(c(n− 1)(A,dAB, c(n− 1)(B,dAB))

·
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) ·

(i− EA[An−1, Bn−1] + errA(n− 1, a, b)) · (j − EB[An−1, Bn−1] + errB(n− 1, a, b))

=
∂2fA

∂A∂B
(c(n− 1)(A,dAB, c(n− 1)(B,dAB)) ·( ∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · (i− EA[An−1, Bn−1]) · (j − EB[An−1, Bn−1])

+
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j))·
(

(i− EA[An−1, Bn−1]) · errB(n− 1, a, b)

+(j − EB[An−1, Bn−1]) · errA(n− 1, a, b)
)

+
∑

(i,j)∈S

prob((An−1, Bn−1) = (i, j)) · errB(n− 1, a, b) · errA(n− 1, a, b)

=
∂2fA

∂A∂B
(c(n− 1)(A,dAB, c(n− 1)(B,dAB)) ·(

cov[An−1, Bn−1] + errA(n− 1, a, b) · errB(n− 1, a, b)
)

(4.3.5)

Plugging the results for the partial derivatives (4.3.3),(4.3.4) and (4.3.5) into (4.3.2) and
using the definition of the error completes the proof.
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Chapter 5

Linearisation error

This chapter includes a technique to bound the error of the pseudo expectation in one and two
dimensions (see section 5.1 and 5.3). It is applied to an example process in section 5.2. The
technique is independent of the probability distribution of the states and uses only the properties
of the function f , used to calculated the pseudo expectation.

5.1 Error bound in 1 dimension

In this section a new concept for expressing the error is introduced. The linearisation error
dL(n, a) for step n and state a is defined as:

dL(n, a) := (
∑
x∈S

prob(A1 = x|A0 = a) · fn(x))− fn+1(a)

Since the pseudo expectation is correct for linear functions f , the error depends only on the
non-linear part of the function fn. The Taylor expansion of fn at f(a) can be written as:

fn(x) = fn(f(a))︸ ︷︷ ︸
fn+1(a)

+(fn)′(f(a))·
(

x− f(a)
)

+
(fn)′′(c)

2
·
(

x− f(a)
)2

(5.1.1)

where c is a constant in [x, f(a)]. In order to do this (fn)′ must be continuous and (fn)′′ must
exist in the interval [x, f(a)]. As will be deduced later, the 1st derivative of fn can be expressed
as a product of f ′(f i(x)) where f i(x) ∈ IS (see 5.1.3), therefore it is enough to show that f ′ is
continuous on IS . The 2nd derivative of fn can as well be expressed in terms of products and
sums of f ′(fn(x)) and f ′′(fn(x)) (see 5.1.5) which implies that the Taylor expansion is possible,
if f ′′(x) exists for x ∈ IS .

Remark:
Of course, a Taylor expansion of a higher (or lower) order can be considered as well (given that
f fulfills the requirements to do so). A lower order expansion was considered in section 5.2.2.
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Theorem 5.1.1. Let A0, A1, . . . , An be a Markov process as defined in 2.2.1, and let f ′ be
continuous on S and let f ′′ exist on S then for the linearisation error dL(n, a), it holds that

dL(n, a) ≤
∑
x∈S

prob(A1 = x|A0 = a) · (f
n)′′(cx)

2
·
(

x− f(a)
)2

where cx denotes a constant in [x,f(a)].

Proof. Using the Taylor expansion (5.1.1) in the definition of dL(n, a) yields:

dL(n, a) =
∑
x∈S

prob(A1 = x|A0 = a)·
(

fn+1(a) + (fn)′(f(a))·
(

x− f(a)
)

+
(fn)′′(cx)

2
·
(

x− f(a)
)2)

− fn+1(a)

=
∑
x∈S

prob(A1 = x|A0 = a) · fn+1(a)︸ ︷︷ ︸
fn+1(a)

+(fn)′(f(a)) ·
∑
x∈S

prob(A1 = x|A0 = a) · (x− f(a))︸ ︷︷ ︸
=0

+

∑
x∈S

prob(A1 = x|A0 = a) · (f
n)′′(cx)

2
·
(

x− f(a)
)2

− fn+1(a)

=
∑
x∈S

prob(A1 = x|A0 = a) · (f
n)′′(cx)

2
·
(

x− f(a)
)2

Besides, the error of the pseudo expectation can be expressed as a sum of linearisation
errors:

Lemma 5.1.2. Let A0, A1, . . . , An be a Markov process as defined in section 2.2.1, then for the
error of the pseudo expectation holds:

err(n) ≤
n−1∑
i=2

max
a∈S

dL(i, a)

Proof.

err(n + 1, a) = E[An+1|A0 = a]− fn+1(a)

= (
∑
x∈S

prob(A1 = x|A0 = a) ·E[An|A1 = x])− fn+1(a)

= (
∑
x∈S

prob(A1 = x|A0 = a) · (E[An|A1 = x]− fn(x))

+(
∑
x∈S

prob(A1 = x|A0 = a) · fn(x)− fn+1(a))

=
∑
x∈S

prob(A1 = x|A0 = a) · err(n, x) + dL(n, a) (5.1.2)
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The recursive evaluation becomes quickly computationally infeasible for growing n and
Markov chains, where a large number of states has more than one transition.

For the example process, described in section 2.4 holds that, each state (apart from 0 and
N) has two transitions, thus to calculate a bound for the nth step requires O(2n) given that
dL(n, a) is in O(1).

Apart from that, it is hard to obtain a closed form for (5.1.2) in general. Because of this,
expression (5.1.2) is further bounded:

err(n + 1) ≤ max
b∈S

err(n, b) + dL(n, a)

=
n∑

i=2

max
b∈S

dL(i, b)

Observe that the error for the first step is 0 since the function f is defined as f(An) := E[An+1|An]
(see 2.3.1). In mathematical notation: err(1, a) = 0. Thus the summation starts from 2.

Besides, note that the error bound is now independent of the starting state and moreover
of the probability distribution for An.

Corollary 5.1.3. Let A0, A1, . . . , An be a Markov process as defined in section 2.2.1, then for
the error of the pseudo expectation holds:

err(n + 1) ≤
n∑

i=2

max
b∈S

∑
x∈S

prob(A1 = x|A0 = b) · (f
i)′′(cb

x)
2

·
(

x− f(b)
)2

where cb
x denotes a constant in [x, f(b)].

Remark 5.1.1.
In total there are n · |S| constants).

As a next step, the second derivative (fn)′′ is expressed in terms of sums and products
of f ′ and f ′′ depending on f i(x). This might be useful, since non-recursive expressions of the
derivatives of fn become complicated even for small n. This also holds for the function fn itself,
but in some cases it might be easier to deal with fn than with its derivatives. For an example,
see section 5.2.

Primarily, a recurrence and explicit formula in terms of f i for computing the first derivative
of fn is given. For n ≥ 1 it is true that:

(fn(x))′ = (f(fn−1(x)))′

= f ′(fn−1(x)) · (f(fn−2(x)))′

= f ′(fn−1(x)) · (f(fn−2(x)))′

=
n−1∏
i=0

f ′(f i(x)) (5.1.3)

57



The product for
∏−1

i=0 f ′(f i(x)) is defined as 1. Because the derivative of (f0)(x) := x is 1
as well, the formula in product form is valid for n ≥ 0.

Next the second derivative of fn for n ≥ 0 will be investigated. For n equals 0, the second
derivative is 0:

(f0(x))′′ = (x)′′ = 0

(fn(x))′′ can also be computed recursively using expression (5.1.3) for (fn)′:

(fn(x))′′ =
(

f ′(fn−1(x)) · fn−1(x)′
)′

= f ′′(fn−1(x)) · (fn−1(x)′)2 + f ′(fn−1(x)) · fn−1(x)′′

= f ′(fn−1(x)) · fn−1(x)′′ + f ′′(fn−1(x)) · (
n−1∏
i=0

f ′(f i(x)))2

= f ′(fn−1(x)) · fn−1(x)′′ + f ′′(fn−1(x)) ·
n−1∏
i=0

f ′(f i(x))2 (5.1.4)

This can also be expressed non-recursively in a straight forward fashion, which can easily
be seen by substituting (fn)′′ by (5.1.4) and replacing again (fn−1)′′ in the result by (5.1.4) and
so on.
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(fn(x))′′ = f ′(fn−1(x)) · fn−1(x)′′ + f ′′(fn−1(x)) ·
n−1∏
i=0

f ′(f i(x))2

= f ′(fn−1(x))·
(

f ′(fn−2(x)) · fn−2(x)′′ + f ′′(fn−2(x)) ·
n−2∏
i=0

f ′(f i(x))2
)

+f ′′(fn−1(x)) ·
n−1∏
i=0

f ′(f i(x))2

= f ′(fn−1(x)) · f ′(fn−2(x)) · fn−2(x)′′

+f ′(fn−1(x)) · f ′′(fn−2(x)) ·
n−2∏
i=0

f ′(f i(x))2

+f ′′(fn−1(x)) ·
n−1∏
i=0

f ′(f i(x))2

= f ′(fn−1(x)) · f ′(fn−2(x)) · f ′(fn−3(x)) · fn−3(x)′′

+f ′(fn−1(x)) · f ′(fn−2(x)) · f ′′(fn−3(x)) ·
n−3∏
i=0

f ′(f i(x))2

+f ′(fn−1(x)) · f ′′(fn−2(x)) ·
n−2∏
i=0

f ′(f i(x))2

+f ′′(fn−1(x)) ·
n−1∏
i=0

f ′(f i(x))2

=
n−1∑
i=0

( n−1∏
k=i+1

f ′(fk(x)) · f ′′(f i(x)) ·
i∏

j=0

f ′(f j(x))2
)

=
n−1∏
k=0

f ′(fk(x))·
( n−1∑

i=0

f ′′(f i(x)) ·
i∏

j=0

f ′(f j(x))
)

(5.1.5)

59



5.2 Bound for example

Now the technique presented in the previous section 5.1 is applied to the example process defined
in 2.4. First (in section 5.2.1) the Taylor expansion of f up to order 1, e.g. involving expressions
up to the second derivative is used. In 5.2.2 this bound is improved by avoiding the second
derivative.

5.2.1 Using 2nd derivative

Theorem 5.2.1. Let A0, A1, . . . , An be a Markov process as defined in 2.4, then for the error
of the pseudo expectation holds:

err(n) ≤ 8 +
1
16

(w − 1) · (w + 1)3

In essence, theorem 5.2.1 is an application of the technique presented in the previous section
5.1, where the error can be bounded by a sum of second derivatives (fn)′′. These can be written
in terms of sums and products of f ′ and f ′′ (see 5.1.5). This expression for (fn)′′ will be upper
bounded to prove theorem 5.2.1.

Due to definition the linearisation error dL(n, a) for step n at state a is

dL(n, a) = prob(An+1 = a− 1|An = a) · fn(a− 1)

+prob(An+1 = a + 1|An = a) · fn(a + 1)− fn+1(a)

Thus for the example, graphically speaking, the linearisation error dL(n, a) equals the distance
between the function fn and a straight line between the two points fn(a− 1) and fn(a + 1) for
the argument f(a) (see figure 5.1).

Before stating the proof of 5.2.1 some prerequisites are derived.

Corollary 5.2.2. Let A0, A1, . . . , An be a Markov process as defined in 2.2.1, then for the error
of the pseudo expectation holds:

err(n) ≤
n−1∑
i=1

max
a∈[1,N−1]

dL(i, a)

Proof. Essentially, this follows from theorem 5.1.2. Only a small detail namely the range of
states is not the continuous interval between the minimum and maximum state of the state space
S = 0, 1, . . . , N , e.g. [0, N ], but instead [1, N − 1]. For the linearisation error for a ∈ {0, N}

holds:

dL(n, 0) = prob(An+1 = −1|An = 0)︸ ︷︷ ︸
=0

·fn(−1) + prob(An+1 = 1|An = 0)︸ ︷︷ ︸
=1

·fn(1)− fn+1(0)︸ ︷︷ ︸
fn(1)

= dL(n− 1, 1)
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Figure 5.1: Linearisation error for example

and analogously
dL(n, N) = dL(n− 1, N − 1)

In other words, if the state a lies on the boundary the linearisation error for the first step is
0.

Lemma 5.2.3. Let A0, A1, . . . , An be a Markov process as in 2.4, then for the linearisation
error dL(n, a) holds that

dL(n, a) ≤ max
x∈[0,N ]

(fn)′′(x)
2

Proof. The results basically follows from theorem 5.1.1. Only some details need to be derived.

Recall that

f(a) := a− prob(An+1 = a− 1|An = a) + prob(An+1 = a + 1|An = a)

and
prob(An+1 = a− 1|An = a) + prob(An+1 = a + 1|An = a) = 1

Because of this,

(a− 1)− f(a) = (a− prob(An+1 = a− 1|An = a)− prob(An+1 = a + 1|An = a))

−(a− prob(An+1 = a− 1|An = a) + prob(An+1 = a + 1|An = a))

= −2 · prob(An+1 = a + 1|An = a) (5.2.1)
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and in the same way

(a + 1)− f(a) = (a + prob(An+1 = a− 1|An = a) + prob(An+1 = a + 1|An = a))

−(a− prob(An+1 = a− 1|An = a) + prob(An+1 = a + 1|An = a))

= 2 · prob(An+1 = a− 1|An = a) (5.2.2)

The first derivative f ′ and the second f ′′ are obviously continuous for x ∈ [0, N ] as shown
in 2.4.

Thus theorem 5.1.1 can be applied. (5.2.1) and (5.2.2) will also be used:

dL(n, a) =
∑
x∈S

prob(A1 = x|A0 = a) · (f
n)′′(cx)

2
·
(

x− f(a)
)2

= prob(An+1 = a− 1|An = a)·
(

(fn)′′(c−1)
2

·
(

a− 1− f(a)
)2)

+prob(An+1 = a + 1|An = a)·
(

(fn)′′(c+1)
2

·
(

a + 1− f(a)
)2)

= prob(An+1 = a− 1|An = a)·
(

(fn)′′(c−1)
2

· 2 · prob(An+1 = a + 1|An = a)2
)

+prob(An+1 = a + 1|An = a)·
(

(fn)′′(c+1)
2

· 2 · prob(An+1 = a− 1|An = a)2
)

= 2 · prob(An+1 = a− 1|An = a) · prob(An+1 = a + 1|An = a) ·(
(fn)′′(c−1) · prob(An+1 = a + 1|An = a)

+(fn)′′(c+1) · prob(An+1 = a− 1|An = a)
)

The constants c+1 and c−1 are undetermined values in the interval [f(a), a + 1] and [a− 1, f(a)]
respectively.

As maximum 1 ball is moved per step a− 1 ≤ f(a) ≤ a + 1 and also 0 ≤ a− 1 < a + 1 ≤ N ,
a constant cm ∈ [0, N ] can be chosen such that

(fn)′′(c−1) ≤ (fn)′′(cm) and also (fn)′′(c+1) ≤ (fn)′′(cm)

This allows to bound dL(n, a) and to write it in a simpler way:

dL(n, a) = 2 · prob(An+1 = a− 1|An = a) · prob(An+1 = a + 1|An = a) ·(
(fn)′′(c−1) · prob(An+1 = a + 1|An = a)

+(fn)′′(c+1) · prob(An+1 = a− 1|An = a)
)

≤ 2 · prob(An+1 = a− 1|An = a) · prob(An+1 = a + 1|An = a)︸ ︷︷ ︸
≤ 1

4

· max
cm∈[0,N ]

(fn)′′(cm)

≤ max
cm∈[0,N ]

(fn)′′(cm)
2

This completes the proof of lemma 5.2.3.
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Finally, the proof of theorem 5.2.1 will be pointed out.

Proof. Note that maxx∈[0,N ](fn(x))′′ can be bounded as follows:

max
x∈[0,N ]

(fn)′′(x) = max{ max
x∈[0,bf ]

(fn)′′(x), max
x∈[bf ,N ]

(fn)′′(x)}

≤ max
x∈[0,bf ]

(fn)′′(x) + max
x∈[bf ,N ]

(fn)′′(x) (5.2.3)

Also observe that for any j ∈ N0

f j(x) ∈ [0, bf ] for x ∈ [0, bf ]

and
f j(x) ∈ [bf , N ] for x ∈ [bf , N ]

since 0 ≤ f ′(x) < 1 as shown in 2.4. Thus for an arbitrary function g, e.g. f ′ and f ′′, and for
x ∈ [a, b], where either [a, b] = [0, bf ] or [a, b] = [bf , N ] holds that

max
k∈N0

g(fk(x)) = max
c∈[a,b]

g(c) (5.2.4)

This allows to select the maximum independent of step k.

Using the previous observation and the non recursive formula (5.1.5) for the interval [a, b] ∈
{[0, bf ], [bf , N ]} allows to obtain a bound for (fn)′′(x) with x ∈ [a, b] without any sums and
products, which limits depends on n.

max
x∈[a,b]

(fn)′′(x) = max
x∈[a,b]

n−1∏
k=0

f ′(fk(x))·
( n−1∑

i=0

f ′′(f i(x)) ·
i∏

j=0

f ′(f j(x))
)

≤ max
c1,c2∈[a,b]

n−1∏
k=0

f ′(c1)·
( n−1∑

i=0

f ′′(c2) ·
i∏

j=0

f ′(c1)
)

=
n−1∏
k=0

f ′(b)·
( n−1∑

i=0

f ′′(a) ·
i∏

j=0

f ′(b)
)

(5.2.5)

= f ′′(a) · f ′(b)n·
( n−1∑

i=0

f ′(b)i

)
=

f ′′(a) · f ′(b)n · (f ′(b)n − 1)
f ′(b)− 1

(5.2.6)

In order to show step (5.2.5) of this deduction, the first and second derivative are analyzed:

max
x∈[a,b]

f ′′(x) = max
x∈[a,b]

4 · w · (w − 1) ·N
(N + (w − 1) · x)3

The maximum depends on whether w < 1 or w > 1. As stated in the conditions for theorem
(5.2.1) to be true, only the case w > 1 is considered. This gives the biggest f ′′ for the smallest
value in the considered interval.
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For f ′(f i(x)) the same advisements are valid. But by looking at

f ′(x) = 1− 2 · w ·N
(N + (w − 1) · x)2

it can be seen that the maximum is reached for the maximum possible value for x.
Next

∑∞
n=1 maxan∈[0,N ](fn)′′(an) will be examined. When doing this, the bound (5.2.6) for

maxx∈[a,b](fn)′′(x), where x ∈ [a, b] is used as well as (5.2.3).

∞∑
n=1

max
an∈[0,N ]

(fn)′′(an) ≤
∞∑

n=1

(
max

x∈[0,bf ]
(fn)′′(x) + max

x∈[bf ,N ]
(fn)′′(x)

)

=
∞∑

n=1

(
f ′′(0) · f ′(bf )n · (f ′(bf )n − 1)

f ′(bf )− 1

+
f ′′(bf ) · f ′(N)n · (f ′(N)n − 1)

f ′(N)− 1

)
=

∞∑
n=1

(
f ′′(0) · f ′(bf )n · (f ′(bf )n − 1)

f ′(bf )− 1

)
(5.2.7)

+
∞∑

n=1

(
f ′′(bf ) · f ′(N)n · (f ′(N)n − 1)

f ′(N)− 1

)
Next a closed formula for an expression of the form (5.2.7) is stated.
Let 0 ≤ c1 < 1 and let c2 be an arbitrary positive constant then

∞∑
n=1

(
c2 · cn

1 · (cn
1 − 1)

c1 − 1

)
=

c2

c1 − 1
·
∞∑

n=0

(
c2·n+1
1 − cn

1

)
=

c2

c1 − 1
·
(

c1

1− c2
1

− 1
1− c1

)
=

c2

(c1 − 1) · (1− c1)
·
(

c1

1 + c1
− 1
)

=
c2

(1− c1)2 · (1 + c1)︸ ︷︷ ︸
>1

≤ c2

(1− c1)2
(5.2.8)

The previous formula can be applied to our problem, since N
2 > w > 1 and therefore

0 < f ′ < 1.
Using it for the first case, meaning A0 ≤ bf and therefore a = f ′(bf ) and b = f ′′(0), where

f ′(
N

w + 1
) = 1− 2 · w ·N

(N + (w − 1) · N
w+1)2

= 1− 2 · w
N · (1 + w−1

w+1)2

= 1− (w + 1)2

2 · w ·N
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and

f ′′(0) =
4 · w · (w − 1)

N2

yields:

f ′′(0)
(f ′(bf )− 1)2

=
4·w·(w−1)

N2

( (w+1)2

2·w·N )2

=
16 · w3 · (w − 1)

(w + 1)4
< 16 (5.2.9)

This result is quite surprising, since the error is less than a constant for any N and 1 < w <
N
2 .

Using (5.2.8) for the second case (A0 ≥ bf ) implying a = f ′(N) and b = f ′′(bf ), where

f ′(N) = 1− 2
w ·N

and

f ′′(
N

w + 1
) =

(w − 1) · (w + 1)3

2 · (w ·N)2

gives

f ′′(bf )
(f ′(N)− 1)2

=
(w−1)·(w+1)3

2·(w·N)2

( 2
w·N )2

=
1
8
(w − 1) · (w + 1)3 (5.2.10)

This result is much worse, since it depends on w and for w > 4
√

N it becomes bigger than
the trivial bound,e.g. err(n) ≤ N .

Adding the bounds for (A0 ≥ bf ) and (A0 < bf ) gives due to (5.2.7):

∞∑
n=1

max
an∈[0,N ]

(fn)′′(an) ≤
∞∑

n=1

(
f ′′(0) · f ′(bf )n · (f ′(bf )n+1 − 1)

f ′(bf )− 1

)

+
∞∑

n=1

(
f ′′(bf ) · f ′(N)n · (f ′(N)n+1 − 1)

f ′(N)− 1

)
= 16 +

1
8
(w − 1) · (w + 1)3
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Combining this with both corollary 5.2.2 and lemma 5.2.3:

err(n) ≤
∞∑
i=1

max
ai∈[0,N ]

dL(i, ai)

≤ 1
2
·
∞∑
i=1

max
ai∈[0,N ]

(f i)′′(ai)

≤ 1
2
·
∞∑
i=1

max
ai∈[0,bf ]

(f i)′′(x) +
1
2
·
∞∑
i=1

max
ai∈[bf ,N ]

(f i)′′(x) due to ref (5.2.3)

≤ 8 +
1
16
· (w − 1) · (w + 1)3

This concludes the proof of theorem 5.2.1.

5.2.2 Using 1st derivative

Theorem 5.2.4. Let A0, A1, . . . , An be a Markov process as defined in 2.4, then for the error
of the pseudo expectation holds:

err(n) ≤ 21 · w + 132

Remark 5.2.1.
Experiments have indicated that the bound must be in O(w). Thus it seems that O(w) is the
best one can hope for, when the probability distribution of the states is ignored.

Proof. In essence, theorem 5.2.1 is an application of the technique presented in the previous
section 5.1, where the Taylor expansion is only done up to the first derivative:

fn(x) = fn(f(a))︸ ︷︷ ︸
fn+1(a)

+(fn)′(c)·
(

x− f(a)
)

(5.2.11)

The constant c is in [x, f(a)]. In order to do the expansion (fn)′ must exist for the interval
[x, f(a)]. As was deduced earlier (see 5.1.3), the 1st derivative of fn can be expressed as a
product of f ′(f i(x)) where f i(x) ∈ IS , therefore it is enough to show that f ′ exists on IS , which
is the case for the example process (see (2.4.2)).

Thus analogously as for the 2nd derivative dL(n, a) we have:

Lemma 5.2.5. Let A0, A1, . . . , An be a Markov process as defined in 2.4, and let f ′ exist on S

then for the linearisation error dL(n, a), it holds that

dL(n, a) ≤
∑
x∈S

prob(A1 = x|A0 = a) · (fn)′(cx) · (x− f(a))

where cx denotes a constant in [x,f(a)].
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Proof. Using the Taylor expansion (5.2.11) in the definition of dL(n, a) yields:

dL(n, a) =
∑
x∈S

prob(A1 = x|A0 = a)·
(

fn+1(a) + (fn)′(cx)·
(

x− f(a)
)
− fn+1(a)

=
∑
x∈S

prob(A1 = x|A0 = a) · fn+1(a)︸ ︷︷ ︸
fn+1(a)

+
∑
x∈S

prob(A1 = x|A0 = a) · (fn)′(cx) · (x− f(a))− fn+1(a)

Applying lemma 5.2.5 and for the difference a ± 1 − f(a) (see (5.2.1) and (5.2.2)) to the
example process given in section 2.4 yields:

dL(n, a) =
∑
x∈S

prob(A1 = x|A0 = a) · (fn)′(cx) · (x− f(a))

= prob(An+1 = a− 1|An = a)·
(

(fn)′(c−1)·
(

a− 1− f(a)
))

+prob(An+1 = a + 1|An = a)·
(

(fn)′(c+1)·
(

a + 1− f(a)
))

(5.2.12)

= −prob(An+1 = a− 1|An = a)·
(

(fn)′(c−1) · 2 · prob(An+1 = a + 1|An = a)
)

+prob(An+1 = a + 1|An = a)·
(

(fn)′(c+1) · 2 · prob(An+1 = a− 1|An = a)
)

≤ 2 ·prob(An+1 = a− 1|An = a) · prob(An+1 = a + 1|An = a)︸ ︷︷ ︸
≥ 1

4

·

((fn)′(a + 1)− (fn)′(a− 1))

≤ 1
2
· ((fn)′(a + 1)− (fn)′(a− 1)) (5.2.13)

Using c+1 = a + 1 and c−1 = a− 1 to get an upper bound is doable due to the monotonicity of
f ′ (see (2.4.2)) and the recurrence formula for (fn)′ (see (5.1.3).

Substituting the recurrence formula for (fn)′ gives:

(fn)′(x + 1)− (fn)′(x− 1) (5.2.14)

= f ′(fn−1(x + 1)) ·
n−2∏
i=0

f ′(f i(x + 1))− f ′(fn−1(x− 1)) ·
n−2∏
i=0

f ′(f i(x− 1))

= f ′(fn−1(x + 1))·
( n−2∏

i=0

f ′(f i(x + 1))−
n−2∏
i=0

f ′(f i(x− 1))
)

+
(

f ′(fn−1(x + 1))− f ′(fn−1(x− 1))
)
·

n−2∏
i=0

f ′(f i(x− 1))

=
n−1∑
j=0

( n−2∏
i=j+1

f ′(f i(x + 1))
)
·
(

f ′(f j(x + 1))− f ′(f j(x− 1))
)
·

j−1∏
k=0

f ′(fk(x− 1))
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As a next step, several stages for f i(x− 1) are considered. Let the parameter R be greater
than the fix point, e.g. R > bf . Let 0 ≤ h1 ≤ . . . ≤ hK , where K = w − 2. Then the stages for
f i(x− 1) become:

i = 0 ∼ h1 − 1 (w − 1) ·R < f i(x− 1) ≤ w ·R (≤ N − 1)
i = h1 ∼ h2 − 1 (w − 2) ·R < f i(x− 1) ≤ (w − 1) ·R
i = h2 ∼ h3 − 1 (w − 3) ·R < f i(x− 1) ≤ (w − 2) ·R

...
...

i = hK−1 ∼ hK − 1 cK ·R < f i(x− 1) ≤ (cK + 1) ·R
i = hK ∼ h− 1 0 ≤ f i(x− 1) ≤ cK ·R.

Note that if x− 1 ≤ c ·R for some integer c < w, then it follows h1 = h2 = · · · = hw−c = 0.
Similarly if c · R < fn−1(x − 1) ≤ (c + 1) · R for some integer c ≥ 2, then we would have
hW−c+1 = · · · = hK = n. Thus, these definitions are valid for all x − 1 and n. For each k,
0 ≤ k ≤ K, let ck = w − k and let sk = hk+1 − hk be the length of each stage.

Next observe that

f ′(f i(x + 1))− f ′(f i(x− 1))

=
(

1− 2 · w ·N
(N + (w − 1) · f i(x + 1))2

)
)
−
(

1− 2 · w ·N
(N + (w − 1) · f i(x− 1))2

)
)

=
2 · w ·N · (w − 1) · (f i(x + 1)− f i(x− 1))·

(
(w − 1) · (f i(x + 1) + f i(x− 1)) + 2 ·N

)
(N + (w − 1) · f i(x− 1))2 · (N + (w − 1) · f i(x + 1))2

≤ 4 · w ·N · (w − 1) · (f i(x + 1)− f i(x− 1))
(N + (w − 1) · f i(x− 1))3

≤ 8 · w2 ·N
(N + (w − 1) · f i(x− 1))3

Consider any i ∈ {hk, ..., hk+1 − 1} such that (ck − 1) · R < f i(x− 1) ≤ ck · R holds with some

ck ≥ 3. Then it follows, using the definition of R

f ′(f i(x + 1)) = 1− 2 · w ·N
(N + (w − 1) · f i(x + 1))2

≤ 1− 2 · w ·N
(N + (w − 1) · (ck ·R + 2))2

≤ 1− 2
R · (ck + 1 + 2

R)2

≤ 1− 2
R · (ck + 3)2

The last bound holds because R ≥ bf > 1, since the weight by definition(see section 2.4) must
be s.t. 1 ≤ w ≤ N

2 .

Later, it will be needed that (Recall ck ≥ 2).

max
k

1
1− 2

R·(ck+3)2

≤ 25
23
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and

f ′(f i(x + 1))− f ′(f i(x− 1)) ≤ 8 · w2 ·N
(N + (w − 1) · f i(x− 1))3

≤ 8 · w2 ·N
(N + (w − 1) · (ck − 1) ·R)3

≤ 8
R2 · (ck − 1)3

For any i such that 0 < f i(x− 1) ≤ 2 ·R, we have the same bounds as above with ck = 2.
Using the last few inequalities a partial sum (for one stage) in (5.2.14) can be bounded as

follows:

hk+1−1∑
j=hk

( n−2∏
i=j+1

f ′(f i(x + 1))
)
·
(

f ′(f j(x + 1))− f ′(f j(x− 1))
)
·

j−1∏
k=0

f ′(fk(x− 1))

≤ 8
R2 · (ck − 1)3

·
hk+1−1∑
j=hk

n−2∏
i=j+1

f ′(f i(x + 1)) ·
j−1∏
k=0

f ′(fk(x− 1))

≤ 8
R2 · (ck − 1)3

·
hk+1−1∑
j=hk

n−2∏
i=0,i6=j

f ′(f i(x + 1))

≤
(

max
k

1
1− 2

R·(ck+3)2

)
· 8
R2 · (ck − 1)3

·
hk+1−1∑
j=hk

K∏
k=0

(
1− 2

R · (ck + 3)2

)sk

≤ 9 · sk

R2 · (ck − 1)3
·

K∏
k=0

(
1− 2

R · (ck + 3)2

)sk

Note that for any h, the previous expression depends only on the choice of s0, ..., sK and R

and not on x.

Corollary 5.2.6. For any x, 0 ≤ x ≤ N , and for any t ≥ 0, we have

f t(x) ≥ 2 ·R =⇒ f t+1(x) < f t(x)− 1
3
.

Proof. For every x ∈ [N, 2 · bf ] at least 1
3 of a ball is taken per step.

f(x)− x = 1− 2 · w · x
N + (w − 1) · x

This expression is minimal for the smallest possible value of x ∈ [2 · bf , N ]

f(
2 ·N
w + 1

)− 2 ·N
w + 1

= 1−
2 · w · 2·N

w+1

N + (w − 1) · 2·N
w+1

≤ 1−
4 ·N · w

w+1

3 ·N
≤ −1

3
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We know from corollary 5.2.6 that each sk is at most 3 ·R (except for sk). Thus, it follows:

f ′(f i(x + 1))− f ′(f i(x− 1)) ≤
K∑

k=0

9 · sk

R2 · (ck − 1)3
·

K∏
k=0

(
1− 2

R · (ck + 3)2

)sk

≤
K−1∑
k=0

9 · 3 ·R
R2 · (ck − 1)3

·
K∏

k=0

(
1− 2

R · (ck + 3)2

)sk

+
9 · sK

R2 · (cK − 1)3
·

K∏
k=0

(
1− 2

R · (ck + 3)2

)sk

≤
(

23
25

)sK

·
K−1∑
k=0

27
R · (ck − 1)3

+
(

23
25

)sK

· 9 · sk

R2 · 8

≤
(

23
25

)sK

·
K−1∑
k=0

27
R · (ck − 1)3

+
(

23
25

)sK

· 9 · sk

R2 · 8

≤
(

23
25

)sK

· 7
R

+
(

23
25

)sK

· 9 · sk

R2 · 8

where s = h − 3 · R · w, since sK ≥ h − 3 · R · (w − 2) ≥ h − 3 · R · w. The last bound follows
from 2−3 + 3−3 + · · · < 1

4 .

Noting that s · (23
25)s is increasing for s < 11.5 · R and decreasing for s ≥ 11.5. Therefore,

we further have

f ′(fn(x+1))−f ′(fn(x−1)) ≤
(

23
25

)s

· 7
R

+
9
8
·



n · (23
25)n

R2
, if n < 11.5 ·R,

11.5R(23
25)11.5R

R2
, if 11.5R ≤ h < 3R(w − 2) + 11.5R, and

t(23
25)t

R2
, if 3R(w − 2) + 11.5R ≤ h (t = h− 3wR)

Finally the sum of the linearisation error over all time steps (and thus the error (see theorem
5.2.2)) is bounded by:

err(n) ≤ 1
2
·
∞∑
i=0

max
x∈[1,N−1]

f ′(f i(x + 1))− f ′(f i(x− 1))

≤ 1
2
·
( 3·R·w−1∑

h=0

7
R

+
∞∑

s=0

(
23
25

)sK

· 7
R

+
9 · (3 ·R · (w − 2)− 1) · 11.5 ·R

8 ·R2
·
(

23
25

)11.5·R

+
∞∑

t=0

(
23
25

)t

· 9 · t
8 ·R2

)
≤ 1

2
·
(

21 · w + 88 +
9
8
· R · (3 ·R · w)

R2
+

9
8
· (3 · 11.5 · e−11.5/12.5)︸ ︷︷ ︸

<16

·w + 176
)

≤ 21 · w + 132
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This concludes the proof of theorem 5.2.4
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5.3 Error bound in 2 dimensions

The two dimensional case turns out to be (not surprisingly) a straight forward extension of the
one dimensional bound of section 5.1.

The linearisation error
−→
dL(n, a, b) for step n and state a is defined as:

−→
dL(n, a, b) = (dLA(n, a, b), dLB(n, a, b))T

with

dLA(n, a, b) := (
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) · fn
A(x, y))− fn+1

A (a, b)

and dLB(n, a, b) defined in the same manner. For the rest of the chapter only dLA(n, a, b) will
be considered, since dLB(n, a, b) can be deduced in exactly the same way.

Since the pseudo expectation is correct for linear functions
−→
f (for a proof see (4.3.1), the

error depends only on the non-linear part of the function fn. The Taylor expansion of
−→
f n at

−→
f (a, b) can be written as:

fn
A(x, y) = fn

A(
−→
f (a, b))︸ ︷︷ ︸

fn+1
A (a,b), due to definition, see 2.3.2

(5.3.1)

+
∂fn

A

∂A
(
−→
f (a, b)) · (x− fA(a, b))

+
∂fn

A

∂B
(
−→
f (a, b)) · (y − fB(a, b)) + R(x,y),(a,b)

The remainder R(x,y),(a,b) of the Taylor expansion is defined as:

R(x,y),(a,b) :=
1
2
·
∂2fn

A

∂A2
(c(fA(a,b),x), c(fB(a,b),y)) · (x− fA(a, b)2

+
1
2
·
∂2fn

A

∂B2
(c(fA(a,b),x), c(fB(a,b),y)) · (y − fB(a, b)2

+
∂2fn

A

∂A∂B
(c(fA(a,b),x), c(fB(a,b),y)) · (x− fA(a, b)) · (y − fB(a, b))

The constants c(fA(a,b),x) and c(fB(a,b),y) are undetermined values in the interval [fA(a, b), x] and
[fB(a, b), y] respectively.

In order to perform the Taylor expansion, fn
A and fn

B must be continuous on ISA
and ISB

respectively and as well as their first partial derivatives and the 2nd order partial derivatives
have to exist in this interval. As will be deduced later, all partial derivatives (of 1st and 2nd
order) of fn

A and fn
B can be expressed as a product of partial derivatives of fA and fB. Therefore

it is enough to show that the first order partial derivatives are continuous and the 2nd order
partial derivatives exist on the considered interval.

Remark 5.3.1.
Of course, a Taylor expansion of a higher (or lower) order can be considered as well (given that
fA and fB fulfill the requirements to do so).
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Theorem 5.3.1. Let (A0, B0), (A1, B1), . . . , (An, Bn) be a Markov process as defined in 2.2.2,
and let f ′ be continuous on S and let f ′′ exist on S then for the linearisation error dLA(n, a, b)
holds that

dLA(n, a, b) ≤
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) ·R(x,y),(a,b)

Proof. Using the Taylor expansion (5.3.1) in the definition of dL(n, a, b) yields:

dLA(n, a, b) = (
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) · fn
A(x, y))− fn+1

A (a, b)

=
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b))·
(

fn+1
A (a, b)

+
∂fn

A

∂A
(
−→
f (a, b)) · (x− fA(a, b)) +

∂fn
A

∂B
(
−→
f (a, b)) · (y − fB(a, b))

+R(x,y),(a,b)

)
− fA

n+1(a, b)

=
∂fn

A

∂A
(
−→
f (a, b)) ·∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) · (x− fA(a, b))

︸ ︷︷ ︸
=0

+
∂fn

A

∂B
(
−→
f (a, b)) ·∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) · (y − fB(a, b))

︸ ︷︷ ︸
=0

+
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) ·R(x,y),(a,b)

=
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) ·R(x,y),(a,b)

Lemma 5.3.2. Let (A0, B0), (A1, B1), . . . , (An, Bn) be a Markov process as defined in 2.2.2 then
for the linearisation error dLA(n, a, b) holds

errA(n, a, b) ≤
n−1∑
t=1

max
(x,y)∈S

dLA(t, x, y)
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Proof.

errA(n + 1, a, b) = EA[An+1, Bn+1|(A0, B0) = (a, b)]− fn+1
A (a, b)

= (
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) ·EA[An, Bn|(A1, B1) = (x, y)])− fn+1
A (a, b)

= (
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) ·EA[An, Bn|(A1, B1) = (x, y)]− fn
A(x, y))

+(
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) · fn
A(x, y))− fn+1

A (a, b)

= (
∑

(x,y)∈S

prob((A1, B1) = (x, y)|(A0, B0) = (a, b)) · errA(n, x, y) + dLA(n, a, b)

≤ max
(x,y)∈S

errA(n, x, y) + dLA(n, a, b)

≤
n∑

t=2

max
(x,y)∈S

dLA(t− 1, x, y) (5.3.2)

Observe that the error for the first step is 0 due to definition of fA (see (2.3.5)). For that reason
the summation starts from 2.

Next a recurrence formula for computing the first order partial derivative ∂fn
A(a,b)
∂A is given.

For n ≥ 1 it is true that:

∂fn
A(a, b)
∂A

=
∂fA(fn−1(a, b))

∂A

=
∂fA

∂A
(fn−1(a, b)) ·

∂fn−1
A (a, b)

∂A
+

∂fA

∂B
(fn−1(a, b)) ·

∂fn−1
B (a, b)

∂A

and in the same way for ∂fn
B(a,b)
∂A :

∂fn
B(a, b)
∂A

=
∂fA(fn−1(a, b))

∂B

=
∂fB

∂A
(fn−1(a, b)) ·

∂fn−1
A (a, b)
∂B

+
∂fB

∂B
(fn−1(a, b)) ·

∂fn−1
B (a, b)
∂B

The other first order partial derivatives follow the same pattern.

Next a recurrence formula for computing the second order partial derivative ∂2fn
B(a,b)

∂A2 is
given. For n ≥ 1 it is true that:

∂2fn
B(a, b)
∂A2

=
∂

(
∂fB
∂A (fn−1(a, b)) · ∂fn−1

A (a,b)
∂B + ∂fB

∂B (fn−1(a, b)) · ∂fn−1
B (a,b)

∂B

)
∂A

=
∂fB

∂A
(fn−1(a, b)) ·

∂2fn−1
A (a, b)
∂A2

+
∂fB

∂B
(fn−1(a, b)) ·

∂2fn−1
B (a, b)
∂A2

+
∂2fB

∂A2
(fn−1(a, b))·

(
∂fn−1

A (a, b)
∂A

)2

+
∂2fB

∂B2
(fn−1(a, b))·

(
∂fn−1

B (a, b)
∂A

)2

+2 ·
∂fn−1

A (a, b)
∂A

·
∂fn−1

B (a, b)
∂B

∂fB

∂A∂B
(fn−1(a, b))

Recurrence formulas for the remaining partial derivatives can be obtained in the same way.
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