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Abstract

This paper studies Dropout Graph Neural Networks (DropGNNs), a new approach
that aims to overcome the limitations of standard GNN frameworks. In DropGNNss,
we execute multiple runs of a GNN on the input graph, with some of the nodes
randomly and independently dropped in each of these runs. Then, we combine
the results of these runs to obtain the final result. We prove that DropGNNs can
distinguish various graph neighborhoods that cannot be separated by message
passing GNNs. We derive theoretical bounds for the number of runs required to
ensure a reliable distribution of dropouts, and we prove several properties regarding
the expressive capabilities and limits of DropGNNs. We experimentally validate
our theoretical findings on expressiveness. Furthermore, we show that DropGNN's
perform competitively on established GNN benchmarks.

1 Introduction

Neural networks have been successful in handling various forms of data. Since some of the world’s
most interesting data is represented by graphs, Graph Neural Networks (GNNs) have achieved
state-of-the-art performance in various fields such as quantum chemistry, physics, or social networks
[125 275 [18]]. On the other hand, GNNs are also known to have severe limitations and are sometimes
unable to recognize even simple graph structures.

In this paper, we present a new approach to increase the expressiveness of GNNs, called Dropout
Graph Neural Networks (DropGNNs). Our main idea is to execute not one but multiple different runs
of the GNN. We then aggregate the results from these different runs into a final result.

In each of these runs, we remove (“drop out”) each node in the graph with a small probability
p. As such, the different runs of an episode will allow us to not only observe the actual extended
neighborhood of a node for some number of layers d, but rather to observe various slightly perturbed
versions of this d-hop neighborhood. We emphasize that this notion of dropouts is very different
from the popular dropout regularization method; in particular, DropGNNs remove nodes during both
training and testing, since their goal is to observe a similar distribution of dropout patterns during
training and testing.

This dropout technique increases the expressive power of our GNNs dramatically: even when two
distinct d-hop neighborhoods cannot be distinguished by a standard GNN, their dropout variants (with
a few nodes removed) are already separable by GNNs in most cases. Thus by learning to identify the
dropout patterns where the two d-hop neighborhoods differ, DropGNNs can also distinguish a wide
variety of cases that are beyond the theoretical limits of standard GNNs.

Our contributions. We begin by showing several example graphs that are not distinguishable in

the regular GNN setting but can be easily separated by DropGNNs. We then analyze the theoretical
properties of DropGNNs in detail. We first show that executing O(+y) different runs is often already
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sufficient to ensure that we observe a reasonable distribution of dropouts in a neighborhood of size ~.
We then discuss the theoretical capabilities and limitations of DropGNNSs in general, as well as the
limits of the dropout approach when combined with specific aggregation methods.

We validate our theoretical findings on established problems that are impossible to solve for standard
GNNs. We find that DropGNNs clearly outperform the competition on these datasets. We further
show that DropGNNs have a competitive performance on several established graph benchmarks,
and they provide particularly impressive results in applications where the graph structure is really a
crucial factor.

2 Related Work

GNNss apply deep learning to graph-structured data [30]. In GNNSs, every node has an embedding
that is shared over multiple iterations with its neighbors. This way nodes can gather their neighbors’
features. In recent years, many different models have been proposed to realize how the information
between nodes is shared [35]. Some approaches take inspiration from convolution [23; 8} [13], others
from graph spectra [[18 5], others from attention [33], and others extend previous ideas of established
concepts such as skip connections [36].

Principally, GNNs are limited in their expressiveness by the Weisfeiler-Lehman test (WL-test) [37], a
heuristic to the graph isomorphism problem. The work of [37] proposes a new architecture, Graph
Isomoprhism Networks (GIN), that is proven to be exactly as powerful as the WL-test. However, even
GINs cannot distinguish certain different graphs, namely those that the WL-test cannot distinguish.
This finding [[11] motivated more expressive GNN architectures. These improvements follow two
main paths.

The first approach augments the features of nodes or edges by additional information to make nodes
with similar neighborhoods distinguishable. Several kinds of information have been used: inspired
from distributed computing are port numbers on edges [28]], unique IDs for nodes [20]], or random
features on nodes [29; [1]]. Another idea is to use angles between edges [[19] from chemistry (where
edges correspond to electron bonds).

However, all of these approaches have some shortcomings. For ports and angles, there are some
simple example graphs that still cannot be distinguished with these extensions [11]]. Adding IDs or
random features helps during training, but the learned models do not generalize: GNNs often tend to
overfit to the specific random values in the training set, and as such, they produce weaker results on
unseen test graphs that received different random values. In contrast to this, DropGNNs observe a
similar distribution of embeddings during training and testing, and hence they also generalize well to
test set graphs.

The second approach exploits the fact that running the WL-test on tuples, triples, or generally k-
tuples keeps increasing its expressiveness. Thus a GNN operating on tuples of nodes has higher
expressiveness than a standard GNN [22} 21]]. However, the downside of this approach is that even
building a second-order graph blows up the graph quadratically. The computational cost quickly
becomes a problem that needs to be to addressed, for example with sampling [22]]. Furthermore,
second-order graph creation is a global operation of the graph that destroys the local semantics
induced by the edges. In contrast to this, DropGNN can reason about graphs beyond the WL-test with
only a small overhead (through run repetition), while also keeping the local graph structure intact.

Our work is also somewhat similar to the randomized smoothing approach [7], which has also been
extended to GNNs recently [4]. This approach also conducts multiple runs on slightly perturbed
variants of the data. However, in randomized smoothing, the different embeddings are combined
in a smoothing operation (e.g. majority voting), which specifically aims to get rid of the atypical
perturbed variants in order to increase robustness. In contrast to this, the main idea of DropGNNs is
exactly to find and identify these perturbed special cases which are notably different from the original
neighborhood, since these allow us to distinguish graphs that otherwise seem identical.

Finally, we note that removing nodes is a common tool for regularization in deep neural networks,
which has also seen use in GNNs [26} [9]. However, as mentioned before, this is a different dropout
concept where nodes are only removed during training to reduce the co-dependence of nodes.



Figure 1: Illustration of 4 possible dropout combinations from an example 2-hop neighborhood
around u: a O-dropout, two different 1-dropouts and a 2-dropout.

3 DropGNN

3.1 About GNNs

Almost all GNN architectures [335185137;18; 1355 13} 36]] follow the message passing framework [12;3]].
Every node starts with an embedding given by its initial features. One round of message passing has
three steps. In the first MESSAGE step, nodes create a message based on their embedding and send
this message to all neighbors. Second, nodes AGGREGATE all messages they receive. Third, every
node UPDATEs its embedding based on its old embedding and the aggregated messages. One such
round corresponds to one GNN layer. Usually, a GNN performs d rounds of message passing for
some small constant d. Thus, the node’s embedding in a GNN reflects its features and the information
within its d-hop neighborhood. Finally, a READOUT method translates these final embeddings into
predictions. Usually, MESSAGE, AGGREGATE, UPDATE and READOUT are functions with learnable
parameters, for instance linear layers with activation functions.

This GNN paradigm is closely related to the WL-test for a pair of graphs, which is an iterative color
refinement procedure. In rounds 1, ..., d, each node looks at its own color and the multiset of colors of
its direct neighbors, and uses a hash function to select a new color based on this information. As such,
if the WL-test cannot distinguish two graphs, then a standard GNN cannot distinguish them either:
intuitively, the nodes in these graphs receive the same messages and create the same embedding in
each round, and thus they always arrive at the same final result.

3.2 Idea and motivation

The main idea of DropGNN:Ss is to execute multiple independent runs of the GNN during both training
and testing. In each run, every node of the GNN is removed with probability p, independently from
all other nodes. If a node v is removed during a run, then v does not send or receive any messages
to/from its neighbors and does not affect the remaining nodes in any way. Essentially, the GNN
behaves as if v (and its incident edges) were not present in the graph in the specific run, and no
embedding is computed for v in this run (see Figure|l|for an illustration).

Over the course of multiple runs, dropouts allow us to not only observe the d-hop neighborhood
around any node u, but also several slightly perturbed variants of this d-hop neighborhood. In the
different runs, the embedding computed for u might also slightly vary, depending on which node(s) are
missing from its d-hop neighborhood in a specific run. This increases the expressive power of GNNs
significantly: even when two different d-hop neighborhoods cannot be distinguished by standard
GNNs, the neighborhood variants observed when removing some of the nodes are usually still
remarkably different. In Section 3.4} we discuss multiple examples for this improved expressiveness.

Our randomized approach means that in different runs, we will have different nodes dropping out of
the GNN. As such, the GNN is only guaranteed to produce the same node embeddings in two runs if
we have exactly the same subset of nodes dropping out. Given the d-hop neighborhood of a node u,
we will refer to a specific subset of nodes dropping out as a dropout combination, or more concretely
as a k-dropout in case the subset has size k.

In order to analyze the d-hop neighborhood of u, the reasonable strategy is to use a relatively small
dropout probability p: this ensures that in each run, only a few nodes are removed (or none at all), and



thus the GNN will operate on a d-hop neighborhood that is similar to the original neighborhood of .
As a result, 1-dropouts will be frequent, while for a larger k, observing a k-dropout will be unlikely.

To reduce the effect of randomization on the final outcome, we have to execute multiple independent
runs of our GNN; we denote this number of runs by r. For a successful application of the dropout
idea, we have to select r large enough to ensure that the set of observed dropout combinations is
already reasonably close to the actual probability distribution of dropouts. In practice, this will not be
feasible for k-dropouts with large k that occur very rarely, but we can already ensure for a reasonably
small r that e.g. the frequency of each 1-dropout is relatively close to its expected value.

3.3 Run aggregation

Recall that standard GNNss first compute a final embedding for each node through d layers, and then
they use a READOUT method to transform this into a prediction. In DropGNNs, we also need to
introduce an extra phase between these two steps, called run aggregation.

In particular, we execute r independent runs of the d-layer GNN (with different dropouts), which
altogether produces r distinct final embeddings for a node u. Hence we also need an extra step to
merge these r distinct embeddings into a single final embedding of u, which then acts as the input
for the READOUT function. This run aggregation method has to transform a multiset of embeddings
into a single embedding; furthermore, it has to be a permutation-invariant function (similarly to
neighborhood aggregation), since the ordering of different runs carries no meaning.

We note that simply applying a popular permutation-invariant function for run aggregation, such as
sum or max, is often not expressive enough to extract sufficient information from the distribution of
runs. Instead, one natural solution is to first apply a transformation on each node embedding, and
only execute sum aggregation afterward. For example, a simple transformation z — o (Wz + b),
where o denotes a basic non-linearity such as a sigmoid or step function, is already sufficient for
almost all of our examples and theoretical results in the paper.

3.4 Motivational examples

We discuss several examples to demonstrate how DropGNNs are more expressive than standard
GNNSs. We only outline the intuitive ideas behind the behavior of the DropGNNs here; however, in
Appendix |Al we also describe the concrete functions that can separate each pair of graphs.

Example 1. Figure[2alshows a fundamental example of two different graphs that cannot be distin-
guished by the 1-WL test, consisting of cycles of different length. This example is known to be hard
for extended GNNs variants: the two cases cannot even be distinguished if we also use port numbers
or angles between the edges [[L1].

The simplest solution here is to consider a GNN with d = 2 layers; this already provides a very
different distribution of dropouts in the two graphs. For example, the 8-cycle has 2 distinct 1-dropouts
where u retains both of its direct neighbors, but it only has 1 neighbor at distance 2; such a situation
is not possible in the 4-cycle at all. Alternatively, the 4-cycle has a 1-dropout case with probability
p- (1 —p)? where u has 2 direct neighbors, but no distance 2 neighbors at all; this only happens for a
2-dropout in the 8-cycle, i.e. with a probability of only p? - (1 — p)2. With appropriate weights, a
GNN can learn to recognize these situations, and thus distinguish the two cases.

Example 2. Figure [2b|shows another example of two graphs that cannot be separated by a WL
test; note that node features simply correspond to the degrees of the nodes. From an algorithmic
perspective, it is not hard to distinguish the two graphs from specific 1-dropout cases. Let v and
v denote the two gray nodes in the graphs, and consider the process from u’s perspective. In both
graphs, u can recognize if v is removed in a run since u does not receive a “gray” message in the
first round. However, the dropout of v has a different effect in the two graphs later in the process: in
the right-hand graph, it means that there is no gray neighbor at a 3-hop distance from u, while in the
left-hand graph, u will still see a gray node (itself) in a 3-hop distance.

Thus by identifying the 1-dropout of v, an algorithm can distinguish the two graphs: if we observe
runs where u receives no gray message in the first round, but it receives an (aggregated) gray message
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Figure 2: Several example graphs which show that DropGNNs are more expressive than standard
GNN:ss in various cases. Different node colors correspond to different node features.

in the third round, then u has the left-hand neighborhood. This also means that a sufficiently powerful
GNN which is equivalent to the 1-WL test can also separate the two cases.

Example 3. Note that using a sum function for neighborhood aggregation is often considered a
superior choice to mean, since u cannot separate e.g. the two cases shown in Figure 2] with mean
aggregation [37]]. However, the mean aggregation of neighbors also has some advantages over sum;
most notably, it the computed values do not increase with the degree of the node.

We show that dropouts also increase the expressive power of GNNs with mean aggregation, thus
possibly making mean aggregation a better choice in some applications. In particular, a DropGNN
with mean aggregation is still able to separate the two cases on Figure[2c]

Assume that the two colors in the figure correspond to feature values of 1 and —1, and let p = %. In
the left-hand graph, there is a 1-dropout where u ends up with a single neighbor of value 1; hence
mean aggregation yields a value of 1 with probability % . % ~ 0.19 in each run. However, in the
right-hand graph, the only way to obtain a mean of 1 is through a 2-dropout or some 3-dropouts; one
can calculate that the total probability of these is only 0.06 (see Appendix [A). If we first transform all
other values to 0 (e.g. with o(z — 0.5), where ¢ is a step function), then run aggregation with mean
or sum can easily separate these cases. Note that if we apply a more complex transformation at run
aggregation, then separation is even much easier, since e.g. the mean value of 0.33 can only appear in
the right-hand graph.

4 Theoretical analysis

4.1 Required number of runs

We analyze DropGNNs with respect to the neighborhood of interest around a node wu, denoted by I'.
That is, we select a specific region around u, and we want to ensure that the distribution of dropout
combinations in this region is reasonably close to the actual probabilities. This choice of I' then
determines the ideal choice of p and 7 in our DropGNN.

One natural choice is to select I' as the entire d-hop neighborhood of u, since a GNN will always
compute its final values based on this region of the graph. Note that even for this largest possible
T, the size of this neighborhood v := |T"| does not necessarily scale with the entire graph. That is,
input graphs in practice are often sparse, and we can e.g. assume that their node degrees are upper
bounded by a constant; this is indeed realistic in many biological or chemical applications, and also a
frequent assumptions in previous works [28]. In this case, having d = O(1) layers implies that  is
also essentially a constant, regardless of the size of the graph.

However, we point out that I" can be freely chosen as a neighborhood of any specific size. That is,
even if a GNN aggregates information within a distance of d = 5 layers, we can still select I to
denote, for example, only the 2-hop neighborhood of u. The resulting DropGNN will still compute a
final node embedding based on the entire 5-hop neighborhood of u; however, our DropGNN will
now only ensure that we observe a reasonable distribution of dropout combinations in the 2-hop
neighborhood of w.

In this sense, the size -y is essentially a trade-off hyperparameter: while a smaller v will require a
smaller number of runs r until the distribution of dropout combinations stabilizes, a larger y allows
us to observe more variations of the region around wu.



1-complete dropouts. From a strictly theoretical perspective, choosing a sufficiently large r always
allows us to observe every possible dropout combination. However, since the number of combinations
is exponential in +y, this approach is not viable in practice (see Appendix [B]for more details).

To reasonably limit the number of necessary runs, we focus on the so-called 1-complete case: we
want to have enough runs to ensure that at least every 1-dropout is observed a few times. Indeed,
if we can observe each variant of I' where a single node is removed, then this might already allow
a sophisticated algorithm to reconstruct a range of useful properties of I'. Note that in all of our
examples, a specific 1-dropout was already sufficient to distinguish the two cases.

For any specific node v € T, the probability of a 1-dropout for v is p - (1 — p)” in a run (including
the probability that v is not dropped out). We apply the p value that maximizes the probability of

such a 1-dropout; a simple differentiation shows that this maximum is obtained at p* = -

This choice of p also implies that the probability of observing a specific 1-dropout in a run is

1 ( vy )7 S 1 1
1+~ \14v9/) ~1+7 e’
Hence if we execute > e - (7 + 1) = Q(y) runs, then the expected number of times we observe a

specific 1-dropout (let us denote this by E;) is at least E; > r - é T > 1.

Moreover, one can use a Chernoff bound to show that after Q(-y log «y) runs, the frequency of each
1-dropout is sharply concentrated around E; . This also implies that we indeed observe each 1-dropout
at least once with high probability.

For a more formal statement, let us consider a constant § € [0, 1] and an error probability % < 1. Also,
given anode v € T (or subset S C I), let X, (or Xg) denote the number of times this 1-dropout
(|S]-dropout) occurs during our runs.

Theorem 1 Ifr > Q (ylog~t), then with a probability of 1 — 1, it holds that for each v € T, we
have X, € [(1-0) -Eq, (146) - E; ].

With slightly more runs, we can even ensure that each k-dropout for £ > 2 happens less frequently
than 1-dropouts. In this case, it already becomes possible to distinguish 1-dropouts from multiple-
dropout cases based on their frequency.

Theorem 2 Ifr > ) (72 + vlog 'yt), then with a probability of 1 — % it holds that

* foreachv € T, we have X, € [(1-6) - E1, (149) - E41 ],
o foreach S C T with |S| > 2, we have Xg < (1—9) - E;.

Since the number of all dropout combinations is in the magnitude of 27, proving this bound is slightly
more technical. We discuss the proofs of these theorems in Appendix

Note that in sparse graphs, where -y is essentially a constant, the number of runs described in Theorems
[[]and2]is also essentially a constant; as such, DropGNNs only impose a relatively small (constant
factor) overhead in this case.

Finally, note that these theorems only consider the dropout distribution around a specific node u. To
ensure the same properties for all n nodes in the graph simultaneously, we need to add a further factor
of n within the logarithm to the number of necessary runs in Theorems [I|and 2] However, while this
is only a logarithmic dependence on n, it might still be undesired in practice.

4.2 Expressive power of DropGNNs

In Section [3.4] we have seen that DropGNNs often succeed when a WL-test fails. It is natural to
wonder about the capabilities and limits of the dropout approach in general; we study this question
for multiple neighborhood aggregation methods separately.

We consider neighborhood aggregation with sum and mean in more detail; the proofs of the cor-
responding claims are discussed in Appendices[C|and [D] respectively. Appendix [D]also discusses
briefly why max aggregation does not combine well with the dropout approach in practice.
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Figure 3: Example of two graphs not separable by 1-dropouts (left side). In both of the graphs, for
any of the 1-dropouts, u observes the same tree structure for d = 2, shown on the right side.

Aggregation with sum. Previous work has already shown that sum neighborhood aggregation
allows for an injective GNN design, which computes a different embedding for any two neighborhoods
whenever they are not equivalent for the WL-test [37]. Intuitively speaking, this means that sum
aggregation has the same expressive power as a general-purpose d-hop distributed algorithm in the
corresponding model, i.e. without IDs or port numbers. Hence to understand the expressiveness
of DropGNN:Ss in this case, one needs to analyze which embeddings can be computed by such a
distributed algorithm from a specific (observed) distribution of dropout combinations.

It is already non-trivial to find two distinct neighborhoods that cannot be distinguished in the 1-
complete case. However, such an example exists, even if we also consider 2-dropouts. That is, one
can construct a pair of d-hop neighborhoods that are non-isomorphic, and yet they produce the exact
same distribution of 1- and 2-dropout neighborhoods in a d-layer DropGNN.

Theorem 3 There exists a pair of neighborhoods that cannot be distinguished by 1- and 2-dropouts.

We illustrate a simpler example for only 1-dropouts in Figure 3] For a construction that also covers
the case of 2-dropouts, the analysis is more technical; we defer this to Appendix [C]

We note that even these more difficult examples can be distinguished with our dropout approach,
based on their k-dropouts for larger k values. However, this requires an even higher number of runs:
we need to ensure that we can observe a reliable distribution even for these many-node dropouts.

On the other hand, our dropout approach becomes even more powerful if we combine it e.g. with the
extension by port numbers introduced in [28]. Intuitively speaking, port numbers allow an algorithm
to determine all paths to the removed node in a 1-dropout, which in turn allows us to reconstruct
the entire d-hop neighborhood of u. As such, in this case, 1-complete dropouts already allow us to
distinguish any two neighborhoods.

Theorem 4 In the setting of Theorem|l| a DropGNN with port numbers can distinguish any two
non-isomorphic d-hop neighborhoods.

Finally, we note that the expressive power of DropGNNSs in the 1-complete case is closely related to
the graph reconstruction problem, which is a major open problem in theoretical computer science
since the 1940s [14]. We discuss the differences between the two settings in Appendix

Aggregation with mean. We have seen in Section [3.4]that even with mean aggregation, DropGNNs
can sometimes distinguish 1-hop neighborhoods (that is, multisets S; and S, of features) which look
identical to a standard GNN. One can also prove in general that a similar separation is possible in
various cases, e.g. whenever the two multisets have the same size.

Lemma 1 Let Sy # Sy be two multisets of feature vectors with |S1| = |Sa|. Then Sy and So can be
distinguished by a DropGNN with mean neighborhood aggregation.

However, in the general case, mean aggregation does not allow us to separate any two multisets based
on 1-dropouts. In particular, in Appendix [C| we also describe an example of multisets S; N Sy = ()
where the distribution of means obtained from 0- and 1-dropouts is essentially identical in .S and Ss.
This implies that if we want to distinguish these multisets S; and S, then the best we can hope for is
a more complex approach based on multiple-node dropouts.



5 Experiments

In all cases we extend the base GNN model to a DropGNN by running the GNN r times in parallel,
doing mean aggregation over the resulting r node embedding copies before the graph readout step
and then applying the base GNN’s graph readout. Additionally, an auxiliary readout head is added to
produce predictions based on each individual run. These predictions are used for an auxiliary loss
term which comprises % of the final loss. Unless stated otherwise, we set the number of runs to m
and choose the dropout probability to be p = %, where m is the mean number of nodes in the graphs
in the dataset. This is based on the assumption, that in the datasets we use the GNN will usually have
the receptive field which covers the whole graph. We implement random node dropout by, in each
run, setting all features of randomly selected nodes to 0. See Appendix E for more details about the
experimental setup and dataset statistics. The code is publicly availableﬂ

5.1 Datasets beyond WL

GIN +Ports +IDs +Random feat. +Dropout
Dataset Train Test Train Test Train Test Train Test Train Test
Livrrs 1 111 0.50 £0.00  0.50 £0.00 0.50 £0.00 0.50 £0.00 1.00 £0.00 0.59 +0.19  0.66 £0.19  0.66 £0.22  1.00 £0.00  1.00 +0.00
Livrrs 2 [111 0.50 £0.00  0.50 £0.00 0.50 £0.00 0.50 £0.00 1.00 £0.00 0.61 +0.26  0.72 +0.17 0.64 £0.19  1.00 £0.00  1.00 +0.00
4-CYCLES [20 0.50 £0.00  0.50 £0.00 1.00 £0.01 0.84 £0.07 1.00 £0.00 0.58 £0.07 0.75 +0.05 0.77 £0.05 0.99 £0.03  1.00 +0.01
LCC [29 0.41+0.09 0.38+0.08 1.0+0.00 0.39=0.09 1.00+0.00 0.42+0.08 0.45+0.16 0.46+0.08 1.00=0.00 0.99 +0.02
TRIANGLES [29]  0.53 +0.15 0.52+0.15 1.0+0.00 0.54 £0.11 1.00 £0.00 0.63 +0.08 0.57 +0.08 0.67 £0.05 0.93 £0.12  0.93 +0.13

SKIP-CIRCLES [6]  0.10+0.00 0.10+0.00 1.00+0.00 0.14 £0.08 1.00 £0.00 0.10+0.09 0.16 +0.11 0.16 £0.05 0.81 £0.28 0.82 +0.28

Table 1: Evaluation of techniques that increase GNN expressiveness on challenging synthetic datasets.
We highlight the best test scores in bold. Compared to other augmentation techniques DropGNN
(GIN +Dropout) achieves high training accuracy but also generalizes well to the test set.

To see the capabilities of DropGNN in practice we test on existing synthetic datasets, which are
known to require expressiveness beyond the WL-test. We use the datasets from Sato et al. [29] that are
based on 3—regular graphs. Nodes have to predict whether they are part of a triangle (TRIANGLES)
or have to predict their local clustering coefficient (LCC). We test on the two counterexamples
LiMmITs 1 (Figure[2a) and LIMITS 2 from Garg et al. [11]] where we compare two smaller structures
versus one larger structure. We employ the dataset by Loukas [20] to classify graphs on containing
a cycle of length 4 (4-CYCLES). We increase the regularity in this dataset by ensuring that each
node has a degree of 2. Finally we experiment on circular graphs with skip links (SKIP-CIRCLES)
by Chen et al. [6]], where the model needs to classify if a given circular graph has skip links of length
{2,3,4,5,6,9,11,12,13,16}.

For comparison, we try several other GNN modifications which increase expressiveness. For control,
we run a vanilla GNN on these datasets. We then extend this base GNN with (i) ports [28] (randomly
assigned), (ii) node IDs [20] (randomly permuted), and (iii) a random feature from the standard
normal distribution [29]. The architecture for all GNNs is a 4-layer GIN with sum as aggregation and
€ = 0. For DropGNN 7 = 50 runs are performed. For the SKIP-CIRCLES dataset we use a 9-layer
GIN instead, as the skip links can form cycles of up to 17 hops.

We train all methods for 1, 000 epochs and then evaluate the accuracy on the training set. We then test
on a new graph (with new features). We report training and testing averaged across 10 initializations
in Table[I] We can see that DropGNN outperforms the competition.

5.2 Sensitivity analysis

We investigate the impact of the number of independent runs on the overall accuracy. Generally, we
expect an increasing number of runs to more reliably produce informative dropouts. We train with a
sufficiently high number of runs (50) with the same setting as before. Now, we reevaluate DropGNN
but limit the runs to a smaller number. We measure the average accuracy over 10 seeds with 10 tests
each and plot this average in Figure 4] on three datasets: LIMITS 1 (Figure[a), 4-CYCLES (Figure [4b),
and TRIANGLES (Figure ic). In all three datasets, more runs directly translate to higher accuracy.

Next, we investigate the impact of the dropout probability p. We use the same setting as before, but
instead of varying the number of runs in the reevaluation, we train and test with different probabilities

"https://github.com/KarolisMart/DropGNN
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(a) LIMITS 1 (b) 4—CYCLES (c) TRIANGLES

Figure 4: Investigating the impact of the number of runs (x—axis) versus the classification accuracy
(y —axts). In all three plots, having more runs allows for more stable dropout observations, increasing
accuracy. The tradeoff is higher runtime since the model computes more runs.
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(a) LIMITS 1 (b) 4—CYCLES (c) TRIANGLES

Figure 5: Investigating the impact of the dropout probability (z—axis) versus the classification
accuracy (y—axis). DropGNN is robust to the choice of p for decently small p. Choosing p ~ v~ ! is

a decent default that is shown by vertical black lines.

p on an exponential scale from 0.01 to 0.64. We also try 0 (no dropout) and 0.95 (almost everything
is dropped). Figure [5|shows the accuracy for each dropout probability, again averaged over 10 seeds
with 10 tests each. Generally, DropGNN is robust to different values of p until p becomes very large.

5.3 Graph classification

Model Complexity ~ MUTAG PTC  PROTEINS IMDB-B IMDB-M
WL subtree [37131] O(n) 904457 599+43 750%3.1  738+39 50.9=3.8
DCNN [2] O(n) - - 613+1.6  49.1+14 335+14
PatchySan [23] O(n) 89.0 +4.4 623457 75.0+2.5 71.0 423 452 +2.8
DGCNN [39] O(n) 858 £1.7 58.6+25 755+09  70.0+0.9 47.8+0.9
GIN [37] O(n 89.4 456 64.6+7.0 762+28 75151 52328
DropGIN (ours) O(rn),r~20 904+7.0 663=8.6 763+6.1  757+42 51.4+28
1-2-3 GNN [22] O(n*) 86.1 60.9 75.5 74.2 49.5

PPGN [21]* O(n?) 90.6 £8.7 662 =65 772+47  73+58  50.5+3.6

Table 2: Graph classification accuracy (%). The best performing model in each complexity class is
highlighted in bold. *We report the best result achieved by either of the three versions of their model.

We evaluate and compare our modified GIN model (DropGIN) with the original GIN model and other
GNN models of various expressiveness levels on real-world graph classification datasets. We use
three bioinformatics datasets (MUTAG, PTC, PROTEINS) and two social networks (IMDB-BINARY
and IMDB-MULTI) [38]]. Following [37]] node degree is used as the sole input feature for the IMDB
datasets, while for the bioinformatics datasets the original categorical node features are used.

We follow the evaluation and model selection protocol described in [37]] and report the 10-fold
cross-validation accuracies [38]]. We extend the original 4-layer GIN model described in [37] and
use the same hyper-parameter selection as [37)]. From Figure[5|we can see that it is usually safer to
use a slightly larger p than a slightly smaller one. Due to this, we set the node dropout probability to
p= %, where m is the mean number of nodes in the graphs in the dataset.



Our method successfully improves the results achieved by the original GIN model on the bioinfor-
matics datasets (Table[2) and is, in general, competitive with the more complex and computationally
expensive expressive GNNs. Namely, the 1-2-3 GNN [22] which has expressive power close to
that of 3-WL and O(n*) time complexity, and the Provably Powerful Graph Network (PPGN) [21]]
which has 3-WL expressive power and O(n?) time complexity. Compared to that, our method has
only O(rn) time complexity. However, we do observe, that our approach slightly underperforms the
original GIN model on the IMDB-M dataset. Since the other expressive GNNs also underperform
when compared to the original GIN model, it is possible that classifying graphs in this dataset rarely
requires higher expressiveness. In such cases, our model can lose accuracy compared to the base
GNN as many runs are required to achieve a fully stable dropout distribution.

5.4 Graph property regression

Property  Unit MPNN [34] 1-GNN[22] 1-2-3GNN [22] PPGN [21] DropMPNN Drop-1-GNN
I Debye 0.358 0.493 0.473 0.0934 0.059* 0.453%*

« Bohr® 0.89 0.78 0.27 0.318 0.173* 0.767*
€HOMO Hartree 0.00541 0.00321 0.00337 0.00174 0.00193* 0.00306*
ELUMO Hartree 0.00623 0.00350 0.00351 0.0021 0.00177* 0.00306*
Ae Hartree 0.0066 0.0049 0.0048 0.0029 0.00282* 0.0046%*
(R%) Bohr? 28.5 34.1 229 3.78 0.392+ 30.83*
ZPVE Hartree 0.00216 0.00124 0.00019 0.000399 0.000112* 0.000895*
Uy Hartree 2.05 2.32 0.0427 0.022 0.0409* 1.80*

U Hartree 2.0 2.08 0.111 0.0504 0.0536* 1.86*

H Hartree 2.02 223 0.0419 0.0294 0.0481%* 2.00*

G Hartree 2.02 1.94 0.0469 0.24 0.0508* 2.12

C, cal/(mol K) 0.42 0.27 0.0944 0.0144 0.0596* 0.259%*

Table 3: Mean absolute errors on QM9 dataset [25]]. Best performing model is in bold and DropGNN
versions that improve over the corresponding base GNN are marked with a *.

We investigate how our dropout technique performs using different base GNN models on a different,
graph regression, task. We use the QM9 dataset [25], which consists of 134k organic molecules.
The task is to predict 12 real-valued physical quantities for each molecule. In all cases, a separate
model is trained to predict each quantity. We choose two GNN models to augment: MPNN [12] and
1-GNN [22]. We set the DropGNN run count and node dropout probability the same way as done
for graph classification. Following previous work [22} [21] the data is split into 80% training, 10%
validation, and 10% test sets. Both DropGNN model versions are trained for 300 epochs.

From Table 3] we can see that Drop-1-GNN improves upon 1-GNN in most of the cases. In some of
them, it even outperforms the much more computationally expensive 1-2-3-GNN, which uses higher-
order graphs and has three times more parameters [22]. Meanwhile, DropMPNN always substantially
improves on MPNN, often outperforming the Provably Powerful Graph Network (PPGN), which as
you may recall scales as O(n?). This highlights the fact that while the DropGNN usually improves
upon the base model, the final performance is highly dependent on the base model itself. For example,
1-GNN does not use skip connections, which might make retaining detailed information about the
node’s extended neighborhood much harder and this information is crucial for our dropout technique.

6 Conclusion

We have introduced a theoretically motivated DropGNN framework, which allows us to easily increase
the expressive power of existing message passing GNNs, both in theory and practice. DropGNNs are
also competitive with more complex GNN architectures which are specially designed to have high
expressive power but have high computational complexity. In contrast, our framework allows for an
arbitrary trade-off between expressiveness and computational complexity by choosing the number of
rounds r accordingly.

Societal Impact. In summary, we proposed a model-agnostic architecture improvement for GNNs.
We do not strive to solve a particular problem but to enhance the GNN toolbox. Therefore, we do
not see an immediate impact on society. We found in our experiments that DropGNN works best on
graphs with smaller degrees, such as molecular graphs. Therefore, we imagine that using DropGNN
in these scenarios is interesting to explore further.
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A Concrete GNN representations for the examples

In this section, we revisit the example graphs from Section [3.4] and we provide a concrete GNN
implementation for each of them which is able to distinguish the two cases.

Example 1. Let us assume for simplicity that each node starts with the integer 1 as its single feature.
Also, assume that neighborhood aggregation happens with a simple summation, with no non-linearity
afterwards, and that this sum is then combined with the node’s own feature again through a simple
addition.

Now consider this GNN with d = 2 layers. Note that in this case, a node w in the left-hand graph is
able to gather information from the whole cycle, while a node w in the right-hand graph will behave
as if it was the middle node in a simple path of 5 nodes. In both cases, if no dropouts happen, then u
will have a value of 3 after the first round, and a value of 9 after the second round.

However, the 1-dropouts are already significantly different: in the left-hand graph, they will produce
aresult of 5, 5 and 7, while in the right-hand graph, they result in a final value of 5, 5, 8 and 8. One
can similarly compute the k-dropouts for £ > 2, which will also produce a range of other values (but
at most 7 in any case).

If we apply a more sophisticated transformation on these embeddings before run aggregation, then it
is straightforward to separate these two distributions. For example, we can use an MLP to only obtain
a positive value in case if the embedding is 8 (we discuss this technique in more detail at Example 2);
this will happen regularly for the right-hand graph, but never for the left-hand graph. After this, a
simple sum run aggregation already distinguishes the cases.

However, if one prefers a simpler transformation, then a choice of o(x — 8) also suffices (with o
denoting the Heaviside step function). With this transformation, a run aggregation with sum simply
counts the number of cases when the final embedding was a 9. Since the probability of the 0-dropout
is different in the two graphs, the expected value of this count will also differ by at least Q(p - r) after
r runs, which makes them straightforward to distinguish.

Example 2. For an elegant representation of Example 2, the most convenient method is to apply
a slightly more complex non-linearity for neighborhood aggregation; this allows a very simple
representation for everything else in the GNN.

In particular, let us again assume that each node simply starts with an integer 1 as a feature (i.e. not
even aware of its degree initially). Furthermore, assume that neighborhood aggregation happens with
a simple sum operator; however, after this, we use a more sophisticated non-linearity & which ensures
4(2) = 1, and 6(z) = 0 for all other integers x. One can easily implement this function with a
2-layer MLP: we can use 1 = o(x — 1) and 2 = o(—x + 3) as two nodes in the first layer, and
then combine them with a single node o(z1 + 2 — 1) as the second layer. Finally, for the UPDATE
function which merges the aggregated neighborhood x y(,,) with the node’s own embedding x,,, let
us select o (2 (y) + Ty — 2).

The resulting GNN can be described rather easily. Each node begins with a feature of 1, and has
an embedding of either O or 1 in any subsequent round. The update rule for the embedding is also
simple: if v’s own value is 1 and u has exactly 2 neighbors with a value of 1, then the embedding of
u will remain 1; in any other case, v’s embedding is set to 0, and it will remain O forever.

In case of dropouts, this GNN will behave differently in the two graphs of Example 2. Note that in
both cases, whenever the connected component containing node u is not a cycle after the dropouts,
then in at most d = 3 rounds, the embedding of w is set to 0. On the other hand, if the component
containing u is a cycle, then the embedding of v will remain 1 after any number of rounds.

Now let u denote one of the nodes with degree 3 in both graphs. In the left-hand graph, there is a
1-dropout (of the other gray node) that puts « in a cycle, so u will produce a final embedding of 1
relatively frequently. Besides this, there are also 2 distinct 2-dropouts and a 3-dropout that removes
the other gray node but keeps the triangle containing u intact; these will all result in a final embedding
of 1 for u. On the other hand, in the right-hand graph, there are only 2 distinct 2-dropouts which
result in a single cycle containing u.

14



This means that the probability of getting a final value of 1 is significantly higher in the left graph. In
particular, after r runs, the difference in the expected frequency of getting a 1 is at least Q(p - '), so
we can easily separate the two cases by executing run aggregation with sum or mean.

Example 3. The base idea of this separation has already been outlined in Section 3.4} assume that
the middle node u uses a simple mean aggregation of its neighbors, and the dropout probability is
p= %. Since we are now interested in the behavior of a specific step of mean aggregation, we only
study the GNN for d = 1 rounds.

With p = %, the left-hand graph provides the following distribution of means in a DropGNN:

Pr(0) = (4) and Pr(1) =Pr(-1) = i : %

As such, the probability of obtaining a 1 is about 0.19. Note that we disregarded the case when all
neighbors of u are removed, but we could assume for convenience that e.g. the mean function also
returns 0 in this case. Furthermore, we only considered the cases when u is not removed, since these
are the only runs when u computes an embedding at all.

On the other hand, in the right-hand graph, u obtains the following distribution:

o= () e () () ) () -2  ()
and Pr(1) =Pr(—1) = <i>2~ (i)Q +2- (i)g : %

This gives a probability of about 0.06 for the value 1.

If we apply e.g. the transformation z — o(x — 0.5) on these values, then the embedding 1 is indeed
significantly more frequent in the left-hand graph. Using either mean or sum for run aggregation
allows us to separate the two cases: the final embeddings in the two graphs will converge to 0.19 and
0.06 (both multiplied by 7 in case of sum).

Alternative dropout methods. Throughout the paper, we consider a natural and straightforward
version of the dropout idea: some nodes of the graph (and their incident edges) are removed for an
entire run. However, we note that there are also several alternative ways to implement this dropout
approach. For example, one could remove edges instead of nodes, or one could remove nodes in an
asymmetrical manner (e.g., they still receive, but do not send messages). We point out that all these
examples from Section 3.4. could also be distinguished under these alternative models.

B Required number of runs

We now discuss the proofs of Theorems|[I]and [2]

Note that for any specific subset S of size &, the probability of this k-dropout happening in a specific
run is p¥ - (1 —p)7+1=F = (ﬁ) . (ﬁ)’ﬁl_k. To obtain the expected frequency EX g of this
k-dropout after r runs, we simply have to multiply this expression by r.

Furthermore, given a constant § € [0, 1], a Chernoff bound shows that the probability of significantly
deviating from this expected value is

52 EXg

PT(X5¢[(1—(S)-]EX5, (1+5)EX5]) < 2.7 3

Let us consider the case of Theorem |T]first. Since we have ~y different 1-dropouts, we can use a union
bound over these dropouts to upper bound the probability of the event that any of the nodes v € T’
will have X, ¢ [(1—-0) - Eq, (146) - E; ]; the probability of this event is at most

2
_S°Ey
3

2-v-e
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If we ensure that this probability is at most %, then the desired property follows. Note that after taking
a (natural) logarithm of both sides, this is equivalent to

and thus

Recall that for E; we have

1 v 1 1
Elzi. L .7'27.7.7".
1+ \1+7v 1+v e
Due to this lower bound, it is sufficient to ensure
1 1 3
.z > Zlog(2-~-t
e sy,

that is,
3e
52 (y+1)-log(2-v-t) =Q(y-logt).

This completes the proof of Theorem [T}

T

For Theorem 2] we also need to upper bound the probability of each dropout combination of multiple
nodes. Consider k-dropouts for a specific k. In this case, we have

k ~y+1-—k
1 1
EXg=(— ) - (—— = ‘E; .
1+~ 1+~ k-1

This implies that in order to ensure Xg < (1—4) - E; in Theorem [2] it is sufficient to have
Xg < (1 —20)-+*"1.EXg. If we want to express this as (1 + ¢) - EXg for some ¢, then we get
€= (1-6) -7t —1, and thus e = © (y*~1) for appropriately chosen constants. Applying a
Chernoff bound (in this case, a different variant that also allows € > 1) then gives

2 EXg

Pr (XS > (1+€) -EXs) < e " 2Fe
Since e = © (v*71) and EXg = v~ "=V . E,, this is in fact

67@(1).,7@—1_,},_(16—1).]121 — 67@(])]}:1 )

Note that the number of different k-dropouts is (Z) < 27, so with a union bound, we can establish this
property for each k-dropout simultaneously; for this, we need to multiply this error probability by 27.
Finally, since we want to ensure this for all ¥ > 2, we can take a union bound over k € {2,3,...,v},
gletting another multiplier of y. Thus to obtain the second condition in Theorem 2] with error probability
1o We need

v-27. e M) E1

~+ | =

After taking a logarithm and reorganization, we get
Er > ©(1) - log(27 -v-1).
With our lower bound for [E; and a reorganization of the right side, we can reduce this to
r>01) (y+1)-y-log(2-v-t) = Q(7*+1logt) .

Another union bound shows that the two conditions of Theorem 2]also hold simultaneously when 7 is
in this magnitude, thus completing the proof of Theorem 2]

Note that if we want to ensure this property for the neighborhood of all the n nodes in the graph
simultaneously, then we also have to take a union bound over all the n nodes, which results in a factor
of n within the logarithm in our final bounds on 7.
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Asymptotic analysis. Finally, let us note that from a strictly theoretical perspective, if we consider
~ to be a constant, and p to be some function of -y, then the probability of any specific k-dropout is
pF - (1 — p)¥*1=F ie. aconstant value. As such, a Chernoff bound shows that if we select 7 to be a
sufficiently large constant, then every possible dropout combination is observed, and their frequencies
are reasonable close to the expected values.

However, this approach is clearly not realistic in practice: e.g. for our choice of p ~ !, the
probability of a specific k-dropout is less than p* ~ y~*. This means that we need » > +* runs even
to observe this k-dropout at least once in expectation. While this v* is, asymptotically speaking, only
a constant value, it still induces a very large overhead in practice, even for relatively small k and ~y
values.

Different v and p values. Note that our choice of « was defined for an arbitrary node of the graph;
however, the dropout probability p, chosen as a function of 7, is a global parameter of DropGNNS.
As such, our choice of p from the analysis only works well if we assume that the graph is relatively
homogeneous, i.e. 7y is similar for every node.

In practice, one can simply apply the average or the maximum of these different  values; a slightly
smaller/larger than optimal p only means that we observe some dropouts with slightly lower probabil-
ity, or we execute slightly more runs than necessary. The ablation studies in Figures[4]and [5]also show
that our approach is generally robust to different number of runs and different dropout probabilities.
We note, however, that if e.g. the graph consists of several different but separately homogeneous
regions, then a more sophisticated approach could apply a different p value in each of these regions.

C Expressiveness with sum aggregation

We now discuss our claims on DropGNNs with sum neighborhood aggregation. Recall that with this
aggregation method, a GNN with injective functions (such as GIN) has the same expressive power as
the WL-test.

Note that in this setting, we understand a d-hop neighborhood around w to refer to the part of the
graph that u can observe in d rounds of message passing. In particular, this contains (i) all nodes that
are at most d hops away from u, and (ii) all the edges induced by these nodes, except for the edges
where both endpoints are exactly at distance d from wu.

C.1 Proof of Theorem[3

To prove Theorem [3] we show two different d-neighborhoods around a node u (for d = 2) that
are non-isomorphic, but they generate the exact same distribution of observations for u if we only
consider the case of k-dropouts for k& < 2.

Note that the example graphs on Figure [3|already provide an example where the 0-dropout and the
1-dropouts are identical. One can easily check this from the figure: in case of no dropouts, « observes
the same tree representation in d = 2 steps, and in case of any of the 6 possible 1-dropouts (in either
of the graphs), u observes the tree structure shown on the right side of the figure.

To also extend this example to the case of 2-dropouts, we need to slightly change it. Note that the
example graph is essentially constructed in the following way: we take two independent cycles of
length 3 in one case, and a single cycle of length 6 in the other case, and in both graphs, we connect
all these nodes to an extra node u. This construction is easy to generalize to larger cycle lengths. In
particular, let us consider an integer £ > 3, and create the following two graphs: in one of them, we
take two independent cycles of length ¢, and connect each node to an extra node u, while in the other
one, we take a single cycle of length 2 - ¢, and connect each node to an extra node .

We claim that with a choice of £ = 5, this construction suffices for Theorem 3} As before, one can
easily verify that u observes the same 2-hop neighborhood in case of no dropouts, and also identical
2-hop neighborhoods for any of the 10 possible 1-dropouts in both graphs. The latter essentially has
the same structure as the right-hand tree in Figure [3] except for the fact that the number of degree-3
branches (i.e. the ones on the left side of « in the figure) is now 7 instead of 3.
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It only remains to analyze the distribution of 2-dropouts. For this, note that the only information that
u can gather in d = 2 rounds is the multiset of degrees of its neighbors. In practice, this will depend
on the distance of the two removed nodes in the cycles; in particular, we can have the following cases:

1. If the two nodes are neighbors in (one of) the cycle(s), then due to the dropouts, u will have two
neighbors of degree 2, and six neighbors of degree 3. There are 2 - £ = 10 possible cases to have this
dropout combination in both graphs.

2. If the two nodes are at distance 2 in (one of) the cycle(s), then u will have a single neighbor
of degree 1, two neighbors of degree 2 and five neighbors of degree 3. This can again happen in
2 - ¢ = 10 different ways in both graphs.

3. If the nodes have distance at least 3 within the same cycle, or they are in different cycles, then the
dropout creates four neighbors of degree 2, and four neighbors of degree 3. In the 2 - ¢ cycle, this

can happen in w = 2.2 — 5. ( = 25 different ways. In case of the two distinct /-cycles,

this cannot happen in a single cycle at all (i.e. for general ¢, it can happen in w ways, but this

equals to 0 for £ = 5); however, it can still happen if the two dropouts happen in different cycles, in
¢ - ¢ = 25 different ways.

Hence the distribution of observed neighborhoods is also identical in case of 2-dropouts.

C.2 Proof of Theorem[d

The setting of Theorem [ considers GNNs with port numbers (such as CPNGNN) where the neigh-
borhood aggregation function is not permutation invariant, i.e. it can produce a different result for
a different ordering of the inputs (neighbors) [28]. Our proof of the theorem already builds on the
fact that one can extend the idea of injective GNNs (such as GIN in [37])) to this setting with port
numbers. To show that port numbers can be combined with the injective property, one can e.g. apply
the same proof approach as in [37], using the fact that the possible combinations of embeddings and
port numbers is still a countable set.

Given such an injective GNN with port numbers, the expressiveness of this GNN is once again identi-
cal to that of a general distributed algorithm in the message passing model with port numbers [28]].
As such, it suffices to show that a distributed algorithm in this model can separate any two different
d-hop neighborhoods.

Let us assume the 1-complete setting of Theorem[T] i.e. that we have sufficiently many runs to ensure
that each 1-dropout is observed at least once in the d-hop neighborhood of u. We show that the set of
neighborhoods observed this way is sufficient to separate any two neighborhoods, regardless of the
frequency of multi-dropout cases.

The general idea of the proof is that 1-dropouts are already sufficient to recognize when two nodes in
the tree representation of u’s neighborhood are actually corresponding to the same node. Consider
three nodes v, vy and vs, and assume that edges (v1,v3) and (vg,v3) are both within the d-hop
neighborhood of u. More specifically, assume that v;’s port number by leads to vs, and vs’s port
number b also leads to v3; then we can observe that the nodes at the endpoints of these two edges
are always missing from the graph at the same time. That is, since we are guaranteed to observe every
1-dropout at least once, if neighbor b of v; and neighbor b of v are distinct nodes, then we must
observe at least one neighborhood variant where only one of these two neighbors are missing; in this
case, we know that the b;™ neighbor of v, and the bo™ neighbor of vy are not identical. On the other
hand, if the two neighbors are always absent simultaneously, then the two edges lead to the same
node.

The proof of the theorem happens in an inductive fashion. Note that from the 0-dropout, we can
already identify the degree of w in the graph, and the port leading to each of its neighbors; this is
exactly the 1-hop neighborhood of w.

Now let us assume that we have already reconstructed the (¢ — 1)-hop neighborhood of w; in this
case, we can identify each outgoing edge from this neighborhood by a combination of a boundary
node (a node at distance (i — 1) from ) and a port number at this node. We can then extend our
graph into the ¢-hop neighborhood of u (for ¢ < d) with the following two steps:
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1. First, we reconstruct the edges going from distance (i — 1) nodes to distance ¢ nodes. Let us refer
to nodes at distance 7 as outer nodes. Note that all the outer neighbors of the boundary nodes can be
identified by the specific outgoing edges from the boundary nodes; we only have to find out which of
these outer nodes are actually the same. This can be done with the general idea outlined before: if two
boundary nodes v and vo have a neighbor at ports b; and b, respectively, and we do not observe a
graph variant where only one of these neighbors is missing, then the two edges lead to the same outer
node.

2. We also need to reconstruct the adjacencies between the boundary nodes; this is part of the ¢-hop
neighborhood of u by definition, but not part of the (¢ — 1)-hop neighborhood. This happens with the
same general idea as before: assume that vy and v3 are both nodes at distance (i — 1), and v; is a node
at distance (¢ — 2) that is adjacent to vs. Then we can check whether v3 disappears simultaneously
from the respective ports by and bs of nodes v; and vs; if it does, then we know that edge b of node
v9 leads to this other boundary node vs.

After d steps, this process allows us to reconstruct the entire d-hop neighborhood of u, thus proving
the theorem.

Let us also briefly comment on the GNN interpretation of this graph algorithm. An injective GNN
construction ensures that we map different d-hop neighborhoods to a different real number embedding.
Note that the algorithm can separate any two neighborhoods without using the frequency of the
specific neighborhoods variants; this implies that the set of real numbers obtained is different for any
two neighborhoods, i.e. there must exist a number z € R that is present in one of the distributions,
but not in the other. One can then develop an MLP that essentially acts as an indicator for this value
z, only outputting 1 if the input is z; this allows us to separate the two neighborhoods.

Finally, note that our main objective throughout the paper was to compute a different embedding for
two different neighborhoods. However, in this setting of Theorem ] it is also possible to encounter
the opposite problem: if two d-hop neighborhoods are actually isomorphic, but they have a different
assignment of port numbers, then they might produce a different embedding in the end.

We point out that with more sophisticated run aggregation, it is also possible to solve this problem,
i.e. to recognize the same neighborhood regardless of the chosen port numbering. In particular, we
have seen that in the 1-complete case, the multiset of final embeddings already determines the entire
neighborhood around u, and thus also its isomorphism class. This means that there is a well-defined
function from the embedding vectors in R” that we can obtain in 7 runs to the possible isomorphism
classes of u’s neighborhood (assuming for convenience that the neighborhood size is bounded).
Due to the universal approximation theorem, a sufficiently complex MLP can indeed implement
this function; as such, determining the isomorphism class of u’s neighborhood is indeed within the
expressive capabilities of DropGNNS in this setting. However, while such a solution exists in theory,
we note that this graph isomorphism problem is known to be rather challenging in practice.

C.3 Briefly on the graph reconstruction problem

The graph reconstruction problem is a well-known open question dating back to the 1940s. Assume
that there is a hidden graph G on n > 3 nodes that we are unaware of; instead, what we receive as
an input is n different modified variants of G, each obtained by removing a different node (and its
incident edges) from G. This input multiset of graphs is often called the deck of G. Note that the
graphs in the deck are only provided up to an isomorphism class, i.e. for a specific node of the deck
graph, we do not know which original node of G it corresponds to. The goal is to identify G from its
deck; this problem is solvable exactly if there are no two non-isomorphic graphs with the same deck.
This assumption is known as the graph reconstruction conjecture [[14].

This problem is clearly close to our task of reconstructing a neighborhood from its 1-dropout variants;
however, there are also two key differences between the settings. Firstly, in our DropGNNs, we
do not observe a graph, but rather a tree-representation of its neighborhood where some nodes
may appear multiple times. In this sense, our GNN setting is much more challenging than the
reconstruction problem, since it is highly non-trivial to decide whether two nodes in this tree
representation correspond to the same original node. On the other hand, the DropGNN setting has the
advantage that we can also observe the 0-dropout; this does not happen in the reconstruction problem,
since it would correspond to directly receiving the solution besides the deck.
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D Dropouts with mean or max aggregation

In this section, we discuss the expressiveness of the dropout technique with mean and max neighbor-
hood aggregation. In particular, we prove that separation is always possible with mean aggregation
when | S| = | Sz, we construct a pair of neighborhoods that provide a very similar distribution of
mean values, and we briefly discuss the limits of max aggregation in practice.

D.1 Proof of Lemmal(l]

We begin with the proof of Lemma I} More specifically, we show that if [ S| = |Ss|, then there
always exists a choice of p and integers a, b such that after applying an activation function o (ax + b)
on 57 and Ss, a mean neighborhood aggregation allows us to distinguish the two sets.

In our proof, we assume that S; and S5 are both multisets of integers (instead of vectors), i.e. that
node features are only 1-dimensional. With multi-dimensional feature vectors, we can apply the same
proof to each dimension of the vectors individually; since S; # Sa, we will always have a dimension
that allows us to separate the two multisets with the same method.

Let 57 denote the mean of S7 and S, denote the mean of Sy. We first discuss the simpler case when
S1 # So; if this holds, we can distinguish any two sets .S; and S3, so we make this proof for the
general case, without the assumption that | S;| = |Ss|. After this, we discuss the case when 5; = 3
and |.S1| = |S2]; this completes the proof of Lemma

The main idea of the proofs is to find a threshold 7 such that in S, we have mean values larger
than 7 much more frequently than in S (or vice versa). We can then use an activation function
&(x) := o(x — 1) (with o denoting the Heaviside step function) to ensure that o(x) = 1 if 2 > 7,
and o(z) = 0 otherwise. This means that a run aggregation with sum will simply count the cases
when the mean is larger than 7, and thus with high probability, we get a significantly different sum in
case of S7 and S>.

Note that even though the proof is described with a Heaviside activation function for ease of
presentation, one could also use the logistic function (a more popular choice in practice), since the
logistic function provides an arbitrary close approximation of the step function with the appropriate
parameters.

When the means are different. First we consider the case when 51 # Ss.

In this setting, finding an appropriate 7 is relatively straightforward. Assume w.l.o.g. that’s; < 5s,
and let us choose an arbitrary 7 such that 5; < 7 < 33. This implies that whenever no node is
removed, then the mean in S7 will produce a 0, while the mean in S5 will produce a 1.

It only remains to ensure that 0-dropouts are frequent enough to distinguish these two cases. For this,
let v = max(|S1],]S2|), and let us select p = % For both S; and Ss, this gives a probability of at

least
2y —1\"
1-p) =
(1-p) (27>

for 0-dropouts. When v > 2, this probability is strictly larger than 0.55.

With a Chernoff bound, one can also show that the number of 0-dropouts is strictly concentrated
around this value: with 6 = 0.05 and r runs, the probability of the number of 0-dropouts being below
(1—6)-0.55 ~ 0.52 is upper bounded by e~ 39 0-55" Ty ensure that this is below L, we only need
O(1) - r > logt, and hence r > Q(logt). This already ensures that in case of Sz, we have at least
0.52 - r runs that produce a 1, while in .S;, we have at least 0.52 - r runs that produce a 0 (i.e. at most
0.48 - r runs that produce a 1). Hence with high probability, a sum run aggregation gives a sum below
0.48 - r and above 0.52 - r for S; and S5 respectively, so the two cases are indeed separable.

When the means are the same. Now consider the case when 5; = 52, and we have |S1| = |Sa|.

In this setting, let v = |S1| = |S2|. Since the multisets are not identical, there must be an index
i € {1,...,7} such that in the sorted version of the multisets, the i element of S is different from
the i™ element of S5. Let us consider the smallest such index ¢, and assume w.l.o.g. that the 4t
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element of S; (let us call it z; ;) is larger than the i element of S, (denoted by x5 ;). Furthermore,
Let 51,—; and 52 _; denote the mean of .S; and Ss, respectively, after removing the i element.

Note that if we only had 1-dropouts and 0-dropouts in our GNNS, then finding this index ¢ would
already allow a separation in a relatively straightforward way. Since x1; > 2 ;, we must have
51,—; < S2,—;. The idea is again to select a threshold value 7 such that 51 _; < 7 < 53 _;. This
ensures that in S, at least 4 of the 1-dropouts produce a 0, whereas in S, at most ¢ — 1 of the
1-dropouts produce a 0. If the frequency of all 1-dropouts is concentrated around its expectation, then
this shows that the occurrences of 1 will be significantly higher in Ss.

What makes this argument slightly more technical is the presence of k-dropouts for £ > 2. In order
to reduce the relevance of these cases, we select a smaller p value. In particular, let p = ﬁ In this
case, the probability of a k-dropout is only
1
K —k k
P s = s
and the probability of having any multiple-dropout case in a specific run is at most
v Tk v
ol 1 ¥ 1 1 1 1
I DR D D LI
k=2 k=2 k=2

using the fact that (}) < 3 - 7" for k > 2 and the fact that § + = + ... <

On the other hand, the probability of a 1-dropout is

1 /292 —1\"""
(1=p) = .
poa-a= o ()

1
1

where one can observe that the second factor is at least % for any positive integer . As such, the
probability of a 1-dropout is lower bounded by 1—76 : 7%, i.e. it is notably larger than the cumulative
probability of multiple-dropout cases.

This means that our previous choice of 5; _; < 7 < 33 _; also suffices for this general case. In
particular, even if all the multiple-dropouts in S; produce a mean that is larger than 7, and all the
multiple-dropouts in S5 produce a mean that is smaller than 7, we will still end up with a considerably
larger probability of obtaining a value of 1 in case of So, due to the 1-dropout of the i" element. More
specifically, the difference between the two probabilities will be at least 1373 . 712; using a Chernoff

bound in a similar fashion to before, one can conclude that Q(v* - log t) runs are already sufficient to
separate the two case with error probability at most %

D.2 Construction for similar mean distribution

Let us now comment on the general case when we have 5; = 35 but |S1| # [Sa|. We present an
example for two different sets S; and Sy where the distribution of mean values obtained from 0- and
1-dropouts is essentially identical, thus showing the limits of any general approach that uses mean
aggregation, but does not execute a deeper analysis of k-dropouts for k£ > 2.

Consider an even integer ¢, and consider the following two subsets. Let .S; consist of g distinct copies

of the number —(¢ — 1), and £ distinct copies of the number (¢ — 1). Let S> consist of £ distinct

copies of the number —¢, and % distinct copies of the number ¢, and a single instance of 0. These sets
provide |S1| = ¢ and |S2| = £+ 1, and also 5; = S = 0. For a concrete example of £ = 4, we get
the multisets S; = {—3,—3,3,3} and S = {—4,—4,0,4,4}.

The mean values obtained for 1-dropouts is also easy to compute in these examples. In S;, we have %

distinct 1-dropouts with a mean of 1, and g distinct 1-dropouts with a mean of —1. In S5, we have
% distinct 1-dropouts with a mean of 1, and % distinct 1-dropouts with a mean of —1, and a single
1-dropout with a mean of 0.

Note that if we only consider these 0 and 1-dropouts, then the probability of getting a 0 is exactly
the same in both settings. In S, this comes from the probability of the 0-dropout only, so it is
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(1 — p)*. In Sy, we have to add up the probability of the O-dropout and a single 1-dropout: this is
1=p)*+p-1-p)=(1-p"

The set of means obtained from 1-dropouts is also identical in the two neighborhoods, it is only their
probability that is slightly different. In S7, both —1 and 1 are obtained with probability g p-(1-p)*1,

while in S5, they are both obtained with probability % -p- (1 — p)*. Hence the difference between the
two probabilities is only

14
g (=P =(=p)f) =5 (1-p)"

Recall that we have ©(¢?) distinct 2-dropouts, each with a probability of p? - (1 — p)*~!, so these
2-dropouts are together easily able to bridge this difference of frequency of the 1-dropouts between
S1 and Sy. This shows that we cannot conveniently ignore multiple-node dropouts as in case of
|S1] = |S2| before: the only possible 1-dropout-based approach to separate the two sets (i.e. to use
the slightly different frequency of the values —1 and 1) is not viable without a deeper analysis of the
distributions of 2-dropouts. It is beyond the scope of this paper to analyze this distribution in detail,
or to come up with more sophisticated separation methods based on multiple-node dropouts.

N~

D.3 Aggregation with max

Another well-known permutation-invariant function (and thus a natural candidate for neighborhood
aggregation) is max; however, this method does not combine well with the dropout approach in
practice.

In particular, if the multisets .S; and S, only differ in their smallest element, then max aggregation
can only distinguish them from a specific (v — 1)-dropout when all other neighbors of « are removed.
This dropout combination only has a probability of p?~! - (1 — p)2; thus for a reasonably small p
(e.g. for p & v~ 1), we need a very high number of runs to observe this case with a decent probability.

E Details of the experimental setup

In all of our experiments, we use Adam optimizer [17]. For synthetic benchmarks and graph clas-
sification, we use a learning rate of 0.01, for graph property regression we use a learning rate of
0.001. For graph classification benchmarks we decay the learning rate by 0.5 every 50 steps [37]]
and for the graph regression benchmark we decay the learning rate by a factor of 0.7 on plateau
[22]. The GIN model always uses 2-layer multilayer perceptrons and batch normalization [[16] after
each level [37]. For our dropout technique, during preliminary experiments we tested three different
node dropout implementation options: i) completely removing the dropped nodes and their edges
from the graph; ii) replacing dropped node features by Os before and after each graph convolution;
iii) replacing the initial dropped node features by Os. These preliminary experiments showed that
all of these options performed similarly in practice, but the last option resulted in a more stable
training. Since it is also the simplest dropout version to implement we chose to use it in all of our
experiments. To ensure that the base model is well trained, when our technique is used we apply an
auxiliary loss on each run individually. This auxiliary loss comprises % of the final loss. While our
model can have O(n) memory consumption if we execute the runs in sequence, we implement it in
a paralleled manner, which reduces the compute time, as all r runs are performed in parallel, but
increases memory consumption.

For the synthetic benchmarks (LIMITS 1, LIMITS 2, 4-CYCLES, LCC, TRIANGLES, SKIP-CIRCLES)
we use a GIN model with 4 convolutional layers (+ 1 input layer), sum as aggregation, € = 0 and for
simplicity do not use dropout on the final READOUT layer, while the final layer dropout is treated as
a hyper-parameter in the original model. For synthetic node classification tasks (LIMITS 1, LIMITS
2, LCC, and TRIANGLES) we use the same readout head as the original GIN model but skip the
graph aggregation step. In all cases, except the SKIPCIRCLES dataset, 16 hidden units are used for
synthetic tasks. For the SKIPCIRCLES dataset we use a GIN model with 9 convolutional layers (+ 1
input layer) with 32 hidden units as this dataset has cycles of up to 17 hops and requires long-range
information propagation to solve the task. For the DropGIN variant, mean aggregation is used to
aggregate node representations from different runs. When the GIN model is augmented with ports,
which introduce edge features, we use modified GIN convolutions that include edge features [15]].
In synthetic benchmarks, we always generate the same number of graphs for training and test sets
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(generate a new copy of the dataset for testing) and for each random seed, we re-generate the datasets.
We always feed in the whole dataset as one batch. LIMITS 1, LIMITS 2 and SKIP-CIRCLES datasets
are always comprised of graphs with the same structure, just with permuted node IDs for each dataset
initialization, the remaining datasets have random graph structure, which changes when the datasets
are regenerated. You can see the synthetic dataset structure type and statistics in Table[d] All nodes in
these datasets have the same degree.

Dataset Number of graphs Number of nodes Degree  Structure Task

LimiTs 1 [1L1] 2 16 2 Fixed Node classification
LiMITs 2 [11] 2 16 3 Fixed Node classification
4-CYCLES [20] 50 16 2 Random  Graph classification
LCC [29] 6 10 3 Random  Node classification
TRIANGLES [29] 1 60 3 Random  Node classification
SKIP-CIRCLES [6] 10 41 4 Fixed Graph classification

Table 4: Synthetic dataset statistics and properties.

For graph classification tasks we use exactly the same GIN model as described originally and apply
our dropout technique on top. Namely, with 1 input layer, 4 convolution layers with sum as aggregation
and € = 0 and dropout [32] on the final READOUT layer. For the DropGIN variant, mean aggregation
is used to pool node representations from different runs. Note, that in our setting sum and mean
aggregations are equivalent, up to a constant multiplicative factor, as the number of runs is a constant
chosen on a per dataset level. We use exactly the same model training and selection procedure as
described by [37]]. We decay the learning rate by 0.5 every 50 epochs and tune the number of hidden
units € {16, 32} for bioinformatics datasets while using 64 for the social graphs. The dropout ratio
€ {0, 0.5} after the final dense layer the batch size € {32, 128} are also tuned. The epoch with the
best cross-validation accuracy over the 10 folds is selected. You can see the statistics of synthetic
datasets in Table

Number of nodes Degree
Dataset Number of graphs  Min Max Mean Min Max Mean
MUTAG 188 10 28 18 3 4 3.01
PTC 344 2 64 14 1 4 3.18
PROTEINS 1109 4 336 38 3 12 5.78
IMDB-B 996 12 69 19 11 68 18.49
IMDB-M 1498 7 63 13 6 62 11.91
QM9 130 831 3 29 18 2 5 3.97

Table 5: Real-world dataset statistics.

For the graph property regression task (QM9) we augment two models: 1-GNN [22] and MPNN
[12]. For 1-GNN we use the code and the training setup as provided by the original authorﬂ For
MPNN we use the reference model implementation from PyTorch Geometric ﬂ We otherwise follow
the training and evaluation procedure used by 1-GNN [22]. The models are trained for 300 epochs
and the epoch with the best validation score is chosen.

We use PyTorch [24] and PyTorch Geometric [10] for the implementation. All models have been
trained on Nvidia Titan RTX GPU (24GB RAM).

“https://github.com/chrsmrrs/k-gnn
*https://github.com/rustyls/pytorch_geometric/blob/master/examples/qm9_nn_conv.py
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