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Abstract. In this paper we consider online auctions with buyback; a
form of auctions where bidders arrive sequentially and the bidders have
to be accepted or rejected immediately Each bidder has a valuation
for being allocated the good and a preemption price. Sold goods can
be bought back from the bidders for a preemption price. We allow un-
bounded valuations and preemption prices independent from each other.
We study the clairvoyant model, a model sitting between the traditional
offline and online models. In the clairvoyant model, a sequence of all
potential customers (their bids and compensations) is known in advance
to the seller, but the seller does not know when the sequence stops. In
the case of a single good, we present an algorithm for computing the
difficulty ∆, the optimal ratio between the clairvoyant mechanism and
the pure offline mechanism (which knows when the sequence stops, and
can simply sell the good to the customer with the highest bid, without
having to pay any compensations). We also present an optimal clairvoy-
ant mechanism if there are multiple goods to be sold. If the number of
goods is unbounded, however, we show that the problem in the clairvoy-
ant model becomes NP-hard. Based on our results in the clairvoyant
model, we study the ∆-online problem (where the sequence is unknown
to the mechanism, but the difficulty ∆ of the input sequence is known).
We show that there is a tight gap of Θ(∆5) between the offline and the
online model.

1 Introduction

Traditional auctions have a rich theory but only make sense in the presence of at
least two bidders. In reality, however, many auctions have a rather low demand,
and bidders do not compete concurrently. Instead, bidders appear online, one
after the other.

A familiar example is booking a seat in an airplane. Prices for a flight fluctu-
ate over time, a known pattern is that seats become more expensive as a flight
fills up, because the airline starts to learn that there is demand for the flight.
Selling seats in an airplane is not a traditional auction since customers are not
bidding against each other. Rather, potential customers check the price well in



advance of a flight. If the price is right, they book a seat, sealing the deal with
the airline. Airlines generally try to marginally overbook flights, i.e., they sell
more tickets than available, assuming that not all customers will actually show
up at the gate. Sometimes there are more customers than seats, and the air-
line must get some customers off the plane. This is usually achieved by having
them fly later and giving them some cash as compensation. We believe that such
compensations are easily covered by the high premium of late customers. 4

In this paper we analyze these online auctions. Our bidders come in an online
fashion and name their price for a good. The seller can choose to sell the good
for that price, or not sell the good (and hope for a better bid to come in later).
Bidder and seller also establish a compensation, in case the good is sold to the
customer but the deal is later canceled (in the case of a better bidder showing
up, worth paying the compensation). These online auctions need two ingredients:
First, a good with a price that may fluctuate over time. Second, customers which
want to receive the good (or a reservation for the good) quickly. In particular,
the time between the arrivals of two customers should generally be larger than
the time a customer is willing to wait for the outcome of her bid. In this case
online auctions seem to be a better suitable model than traditional auctions. We
believe that such online auctions happen often in practice. Booking flights is the
running example in this paper, but there are plenty of other examples. Selling
ad slots on web pages is a popular one. Since the number of page views is not
known beforehand, some sold slots might not be served and thus those slots need
to be bought back. More examples are real estate sales, selling network services
with quality of service guarantees, or concert tickets.

A simple example will show that online auctions become academically inter-
esting for a worst case analysis only if reasonable compensations are present:
Let us assume that a first customer offers a low price but a prohibitively high
compensation. If the seller accepts the deal, a next customer offering a much
higher price will show up. On the other hand, if the seller does not accept the
deal, no other customer will show up. No matter how the seller decides regarding
the first customer, the mistake could be devastating.

The starting point for our analysis is what we call the clairvoyant model, a
hybrid online/offline model. In the clairvoyant model, a sequence of all potential
customers (their bids and compensations) is known in advance to the seller, but
the seller does not know when the sequence stops, i.e., who the last customer of
the sequence is. No matter who the last customer is, the seller wants to do a good
job, i.e., the seller wants to sell the good to a customer with a high bid and keep
compensations that accumulated so far low. It turns out that the clairvoyant
model is a stepping stone for a deeper understanding of online auctions, sitting

4 In reality, airlines do not implement online auctions in the clean form described
in this paper. Airlines do not seem to maximize their profits with this mechanism,
probably for psychological reasons. As such, on web pages, flights still can be sold
out, instead of just asking for a higher and higher premium for an unexpectedly
popular flight.



nicely between the pure online and offline models. It introduces a novel technique
for analyzing online auctions from a theoretical point of view.

Our contributions are as follows: After introducing the clairvoyant model, we
present an optimal mechanism for it in the case of a single good. The result of
that mechanism is a factor ∆ worse than a pure offline mechanism (that knows
when the sequence stops, and can simply sell the good to the customer with
the highest bid, without having to pay any compensations). In other words, the
parameter ∆ tells us how nasty the compensations are. It directly tells us the
difficulty of an input sequence. If compensations are minimal (just return the
money to canceled customers), then we have by definition ∆ = 1. We also show
an optimal clairvoyant mechanism if there are multiple goods to be sold. If the
number of goods is unbounded, however, we prove that the clairvoyant model
becomes NP-hard. Based on the results in the clairvoyant model, we study the
pure online problem (where the sequence is unknown to the mechanism) in a
deterministic setting. If ∆ is known, we show that there is a tight gap of Θ(∆5)
between the online and the offline model.

2 Related Work

There has been a lot of research of traditional (“offline”) auctions, inspired by
the seminal papers of Vickrey, Clarke, and Groves (“VCG”) [5, 12, 27]. They
introduce the notion of truthfulness, which means that no bidder has an advan-
tage if she is not telling the truth about her valuation. There is a large amount
of work on traditional auctions, for an overview see, e.g., Nisan, Roughgarden,
Tardos, and Vazirani [23].

Online mechanisms have been introduced in [8, 19]. In those online mecha-
nisms, the bidders have an arrival and departure time and a valuation for the
good. It is assumed that the good expires after a certain period of time, and that
a replacement becomes available. In this setting, it was shown that something
similar to VCG style second price auctions is still a viable allocation strategy.
The initial motivation behind these kind of online auctions is the WiFi at Star-
bucks [8]. Customers arrive and then depart some time later with each customer
having a valuation for the WiFi. Many papers on online mechanisms mainly
focus on truthfulness or other incentive compatible solution concepts, e.g., [13,
20, 24, 25]. An overview of online auctions can be found in [23].

Somewhat related to our online auctions are not even auctions, but the sec-
retary problem [21]. In the classic setting one employer interviews n secretaries,
with the goal to hire the best secretary. The employer has to decide right after
an interview whether to hire or discard a secretary. Unlike our model, previous
decisions cannot be recalled. If secretaries are interviewed in random order, it
has been shown that the optimal strategy is to first interview n/e secretaries,
and then simply hire the first secretary that is better than all previously inter-
viewed secretaries [21]. It has also been shown that, if the input is adversarial (as
in our work), the situation is hopeless; the best strategy is to just hire a random
secretary, without any interview process [11]. This setting has been adapted to



the online auctions in [14]. Instead of secretaries, there are buyers and instead of
a job there is a single indivisible good. They present a mechanism that is, if the
buyers appear in random order – as in the original problem – e+o(1)-competitive
for efficiency and e2 + o(1) competitive for revenue. Since we have the possibil-
ity to cancel previous decisions with financial compensations, our model allows
more freedom.

The work closest to ours considers online auctions with buyback, introduced
independently by Babaioff et al. and Constantin et al. [3, 6]. Both limit the pre-
emption price (paid to reacquire the good) to a constant fraction of the valuation
v of a bidder and this fraction is independent of the individual bidder. Lower
and upper bounds for deterministic and randomized algorithms depending on
the fraction of the preemption price are presented in their work. Our work allows
arbitrary values for the preemption price (that can depend on the specific cus-
tomer) and we analyze how to deal with this very heterogeneous set of customers.
This kind of auction is not truthful since a buyer can overstate her preemption
price and thus gain if her good is bought back [6]. In [2] the goods cannot be
allocated to any subset of bidders, but bidders form a matroid, This is extended
to an intersection of matroids in [1], while still limiting the buyback factor. The
concept of buyback has also been applied to the knapsack problem [3, 15, 18]
where the goods appear in an online fashion and can be removed later on from
the knapsack. Buyback is also used in scheduling with eviction [9].

Online algorithms often face two different types of problems: First, they do
not know the future, and second, they have to deal with past mistakes. Hartline
and Sharp [16, 17] formalized the two types of problems. When problems are
analyzed in this framework, they are called incremental problems. This approach
has been applied to various problems, e.g., to maximum flow, online median,
facility location, and clustering [4, 7, 22, 26]. Our setting is different as we can
potentially fix past mistakes with compensations. Nevertheless, our clairvoyant
analysis is a relative of incremental problems.

3 Model

We consider an online auction. There are r indivisible and identical goods. Each
bidder bi is willing to buy exactly one good, and has a valuation vi for being
allocated a good. The bidders arrive one after another; whether to allocate a
good to a bidder must be decided immediately. Bidders that are not allocated
a good cannot be recalled, but bidders that are allocated a good can be re-
called. A recalled bidder bi is willing to return her good if she receives adequate
compensation. We call the value preemption price, which is paid if the good is
bought back. The preemption price of bidder bi is denoted by πi. In summary,
bidder bi is fully specified by bi = (vi, πi). Neither vi nor πi are bounded, any
value in R+ is allowed. We assume that the input sequence of bidders b1, . . . , bn
is created in advance by an adversary who knows the mechanism that is used
to allocate the goods. As described above, if the good of a bidder bi is bought
back, the mechanism has to pay the preemption price. For now, we assume that



the mechanism retains the initial valuation vi of the bidder. We denote this the
retaining model. In this model we assume that vi ≤ πi for every bidder bi. We
will show later that this is not necessary and in fact use the model when the
value is not retained, which is called the non-retaining model.

Let us concentrate on the case of a single good (r = 1). Let offline(`) denote
the highest valuation of the first ` bidders, i.e., offline(`) = max1≤i≤` vi. Since
the pure offline mechanism knows the whole input sequence and when it stops, it
can sell the good just to one single bidder, the bidder with the highest valuation.

As discussed in the introduction, the online mechanism cannot be competitive
with the offline model. Essentially, an online mechanism has to deal with two
different issues: First, it does not know the future, and second, it needs to offer
a solution at all times. We will now introduce the clairvoyant model, a model
between pure online and offline. The clairvoyant model knows the whole sequence
b1, . . . , bn of future potential bidders, but does not know when the sequence
stops, i.e., who the last bidder of the sequence is. Because of this, a clairvoyant
mechanism must offer a solution at all times.

Both pure online and clairvoyant mechanisms may need to accept more than
one bidder (and hence buy the good back). Let S be the set of all bidders that
have been accepted during the course of a mechanism and let [`] denote the set
of the first ` bidders, i.e., {b1, . . . , b`}. We define gain(S, `) =

∑
bi∈S∩[`](vi−πi)+

maxbi∈S∩[`] πi. It is the sum of valuations of bidders in S up to bidder b`, minus
the preemption prices for the bidders whose good were bought back. Since we
retain the value of a bidder, we have vi ≤ πi for every bidder bi and thus the
bidder with the highest preemption price is also the last accepted bidder.

Since the mechanism does not know when the input sequence stops and it thus
can stop anytime, we evaluate any mechanism in its worst round. Specifically,

given S, the gain competitiveness is defined to be max1≤`≤n
offline(`)
gain(S,`) . If we now

minimize this over the best mechanism (the set S of accepted bidders), we get
the optimal gain competitiveness

∆ = min
S

max
1≤`≤n

offline(`)

gain(S, `)
.

This can be interpreted as the difficulty of the input sequence. In other words,
our mechanisms are evaluated in their worst round, i.e., the round in which it
has the highest competitive ratio compared to the pure offline mechanism. This
forces our mechanisms into accepting bidders early, and possibly repeatedly,
thus paying preemption prices repeatedly. The task is to design mechanisms
that choose a set S and thereby allocate the goods to the bidders minimizing
gain competitiveness.

We will clarify the terms defined above by presenting a simple example.
Let the input sequence be (1, 2), (4, 100), (50, 60). A pure offline mechanism will
accept b3 = (50, 60) since this is the bidder with the highest valuation. A clair-
voyant mechanism must always accept the first bidder since it could also be the
last one. Assume that it also accepts the third bidder. We now calculate the gain



competitiveness for this set as

max

{
offline(1)

v1
=

1

1
,

offline(2)

v1
=

4

1
,

offline(3)

v1 + v3 − π1
=

50

1 + 50− 2

}
= 4.

Note that this is also optimal since accepting bidder b2 prevents the mechanism
from choosing b3, hence ∆ = 4. This gives us a theoretical insight on the in-
put sequence. No online mechanism could have done better. As explained, the
clairvoyant model sits between pure offline and online models. It turns out that
it is comparable to both pure models, even though the pure models are not
comparable to each other.

4 Auctioning Off a Single Good

We start our analysis by considering the special case of just a single good being
sold, i.e., r = 1.

4.1 Clairvoyant Mechanism

We now present a mechanism that optimally solves the clairvoyant model, giving
us insights into what is possible for an online mechanism.

Theorem 1. There exists a clairvoyant mechanism that calculates the set of
bidders that should be accepted to solve the online auction for one good opti-
mally, i.e., it calculates ∆. If the inputs are integers, its runtime is polynomial;
otherwise it is a FPTAS.

We now formalize and extend the impossibility result from the introduction.
Due to space limitations, the proofs have been moved to the full version.

Lemma 1. (1) The value of ∆ depends on the input sequence and is unbounded.
(2) The gain competitiveness of the pure online mechanism is unbounded and

independent of ∆.
(3) No randomized online mechanism can achieve bounded gain competitiveness

if the number r of items is in o (n), i.e., r ∈ o (n).

4.2 Bounded Preemption Prices

The impossibility results from the introduction and the previous section ex-
ploited that the preemption price could be arbitrarily large. Thus, in the follow-
ing we restrict the previously arbitrarily large preemption prices to be at most ρ
times as large as the valuation, i.e., ρ ≥ πi

vi
for all 1 ≤ i ≤ n. Intuitively, this can

either be seen as a simple, reasonable constraint for the customers. If someone
values a seat on an airplane with some value v, then losing this seat should not be
arbitrarily larger than v. One could also model this scenario in such a way that
every customer also has to buy an insurance whose compensation depends on the
premium. If she loses her seat, then the insurance will pay her the preemption



price. Now the price of the insurance is closely related to the preemption price.
This interpretation also guarantees us that at most a factor of ρ between vi and
πi for every bidder bi. The following results resemble closely those in [3, 6]. The
factor ρ allows us to design a mechanism that is 4ρ gain competitive. It accepts
a bidder if her valuation is at least by a factor 2 larger than the preemption price
of the bidder that is currently allocated the good.

Theorem 2. There exists a mechanism that has 4ρ factor gain competitiveness.

Corollary 1. If ρ ≥ πi

vi
for every bidder bi, then ∆ ≤ 4ρ.

4.3 Online Mechanism with ∆

This raises the question whether restricting the preemption price is the only way
to go. We already know that ∆ contains valuable information about the input
sequence. But does it contain all the necessary information for an online mecha-
nism to be competitive? We now provide the mechanisms with this information
and denote them ∆-online mechanisms. These more powerful online mechanisms
can achieve a O(∆5) factor approximation of the clairvoyant mechanisms. Note
that this information is not as strong as knowing that the preemption price of
every bidder is at most a factor of ρ larger. The clairvoyant mechanism might
accept someone whose preemption price is much larger than its valuation. We
briefly describe the mechanism. Simply put, this mechanism accepts bidders
with a sufficiently small preemption price (and a high enough valuation to pay
back the last bidder). Furthermore, it also accepts bidders that have such a high
valuation that the clairvoyant mechanism also had to accept it.

We denote the current bidder with b = (v, π). We call the last accepted
bidder b∗ = (v∗, π∗). The online mechanism accepts the first bidder for sure, so
initially b∗ = (v1, π1). After the first bidder, the current bidder b is accepted for
two different reasons: We call bidders good if π ≤ 2∆2v; if a bidder is not good,
it is bad. The mechanism will accept a good bidder if its valuation v > 2π∗. We
call bidders crucial if v > 2∆v∗∗, where v∗∗ ≥ v∗ is the largest valuation seen so
far. The mechanism will accept a crucial bidder if its valuation v > π∗/(1− 1

∆2 ).
The pseudocode is shown in Algorithm 1.

In this section a ∆-online mechanism is presented that is O(∆5) competitive.
But first, we need some additional notation.

Theorem 3. Given the value of ∆, there exists a mechanism that has gain
competitiveness O(∆5) compared to the offline solution.

Proof. Notice that the clairvoyant mechanism will accept every crucial bidder.
Let b̄1 = (v̄1, π̄1), b̄2 = (v̄2, π̄2), . . . be the subsequence of bidders who are cru-
cial, and let b̄0 = b1 be the very first bidder, who will also be accepted by the
clairvoyant mechanism. We will prove the theorem by induction over the crucial
bidders. Our induction hypothesis is that before b̄i came, the gain competitive-
ness of the mechanism is at most 8∆5, we then prove that before b̄i+1 came, the



ALGORITHM 1: A ∆-online mechanism

accept the first bidder and set (v∗, π∗) = (v1, π1) and v∗∗ = v1 ;
while there is a new bidder bi do

if πi ≤ 2∆2vi and vi > 2π∗ then
buy good back and give it to bidder bi;
π∗ ← πi and v∗ ← vi ;

end
else if vi ≥ 2∆v∗∗ and vi > π∗/(1− 1

∆2 ) then
buy good back and give it to bidder bi;
π∗ ← πi and v∗ ← vi;

end
v∗∗ = max{v∗∗, vi};

end

gain competitiveness remains 8∆5. Before we can continue our proof, we need
two helper lemmas.

As before, let b∗ = (v∗, π∗) be the last bidder our mechanism has accepted.

Lemma 2. If the clairvoyant mechanism accepts a bad bidder b̂ = (v̂, π̂), then
the next bidder it will accept must be the first crucial bidder that comes afterward.

Proof. Let b̄ = (v̄, π̄) be the next bidder clairvoyant mechanism accepts after

b̂ = (v̂, π̂), and v∗∗ be the maximum valuation of all bidders before b̄. Then
we must have v̄ > π̂ > 2∆2v̂. Note that v∗∗ ≤ ∆v̂, since otherwise the gain
competitiveness of the clairvoyant mechanism will be larger than ∆, and thus
we have v̄ > 2∆v∗∗, and therefore b̄ must be crucial. As clairvoyant mechanism
needs to accept all crucial bidders, b̄ must be the first crucial bidder after (v̂, π̂).

Lemma 3. If b∗ is bad, then the next bidder our mechanism accepts must be the
first crucial bidder b̄ = (v̄, π̄) that comes afterward. Furthermore, the gain after
accepting b̄ is at least 1

∆2 v̄.

Proof. Let b̄ be the next crucial bidder after b∗. If b∗ is bad, then b∗ must be
crucial since our mechanism only accepts bad bidders that are crucial. So the
clairvoyant mechanism will also accept b∗ since it accepts every crucial bidder. By
Lemma 2, the next bidder after b∗ the clairvoyant mechanism will accept is b̄. So
v̄−π∗ ≥ 1

∆ v̄, since otherwise the gain of clairvoyant mechanism will be less than
1
∆ v̄. This implies that v̄ ≥ π∗ + 1

∆ v̄ > π∗ + 1
∆2 v̄ and therefore v̄ > π∗/(1− 1

∆2 ).
Thus, our mechanism will also accept b̄. Let v∗∗ be the maximum valuation
before b̄, then v∗∗ ≤ ∆v∗. So between b∗ and b̄, our mechanism will not accept
any bidder.

By our assumption, b∗ is last bidder our mechanism accepts before b̄i, so if b∗ is
bad, b̄i must be the first crucial bidder after b∗, and our mechanism will accept
b̄i. The gain after accepting b̄i is at least 1

∆2 v̄i, and the gain competitiveness is
at most ∆2.



If our mechanism does not accept b̄i, then v̄i < π∗ + 1
∆2 v̄i. Moreover, by

Lemma 3, if our mechanism does not accept b̄i, then b∗ is good, and thus v̄i <
π∗ + 1

∆2 v̄i ≤ 2∆2v∗ + 1
∆2 v̄i. Thus, we have v̄i − 1

∆2 v̄i < 2∆2v∗ or equivalently
v̄i < 2∆2v∗/(1− 1

∆2 ) ≤ 3∆2v∗ (wlog assuming ∆ > 2, otherwise we can achieve
constant factor competitiveness by treating ∆ as two in the mechanism). This
implies that the current gain competitiveness is at most 6∆2 using that b∗ is a
good bidder.

Based on the above analysis and a simple induction we conclude that if our
mechanism accepts a bad bidder b∗ = (v∗, π∗), the gain is at least 1

∆2 v
∗ at

this moment. It is also easy to see, if b∗ is good, then the gain is at least v∗/2
(analogue to the proof of Theorem 2).

We now combine the previous observations. Let c = {b̄i, c1, c2, · · · ct} be the
sequence of bidders that arrive between b̄i and b̄i+1 (excluding b̄i+1). Let b′ =
(v′, π′) be the last bidder the clairvoyant mechanism accepts. If the clairvoyant
mechanism only accepts good bidders in c, then the gain competitiveness between
our online mechanism and the clairvoyant mechanism is at most 4∆4, because
v′ ≤ 2π∗ ≤ 4∆2v∗ holds at all time (otherwise, our online mechanism will accept
(v′, π′)) and the gain of our online mechanism is at least v∗/∆2, which implies
the gain competitiveness is at most 4∆4.

Thus, we only need to consider the case when clairvoyant mechanism ac-
cepts at least one bad bidder in c (possibly b̄i). By the above analysis, we know
that if the clairvoyant mechanism accepts some bad bidder ĉ = (v̂, π̂), then the
next bidder it accepts is b̄i+1. Furthermore, v∗∗ ≤ ∆v̂, where v∗∗ is maximum
valuation before b̄i+1.

Before accepting ĉ = (v̂, π̂) the clairvoyant mechanism only accepts good
bidders. Now suppose we are at the time right before ĉ comes. Suppose, at this
time, our online mechanism accepts b∗ = (v∗, π∗) and clairvoyant mechanism
accepts (v′, π′). We first consider the case when b∗ is good. Then we have v′ ≤
2π∗ ≤ 4∆2v∗. Let m be the maximum valuation before ĉ. We have m ≤ ∆v′, and
b̂v ≤ 2∆m (otherwise b̄i+1 = ĉ). Remember that v∗∗ is the maximum valuation
before b̄i+1. Hence, v∗∗ ≤ ∆v̂ ≤ 2∆2m ≤ 2∆3v′ ≤ 8∆5v∗.

We now conclude this proof with a simple case distinction. If b∗ = (v∗, π∗)
is good, then the gain competitiveness of our mechanism will never be worse
than 8∆5 after it accepts b∗ = (v∗, π∗), as the gain is at least v∗/2. Moreover,

before b̂ (with v̂) came, both our mechanism and clairvoyant mechanism only
accept good bidders, so the gain competitiveness of our mechanism is at most
8∆5 before this time. So the gain competitiveness of our mechanism is at most
8∆5 before b̄i+1 comes.

On the other hand, if b∗ = (v∗, π∗) is bad, which implies that ĉ = b∗ = b̄i,
and that the clairvoyant mechanism does not accept any bidder before b̄i+1. This
implies that v∗∗ ≤ ∆v∗, and the gain competitiveness of our mechanism in this
period is at most ∆3, since the gain is at least 1

∆2 v
∗.

The bound from Theorem 3 is tight. We proceed by showing the matching
lower bound for any deterministic mechanism.



(a) The bidders bj−1 and bj+1 are
accepted by the clairvoyant mecha-
nism. The bidders bj and bj+1 are
accepted by the online mechanism
resulting in negative gain.

(b) The bidders bj−1 and bj+1 are
accepted by the clairvoyant mech-
anism. The bidders bj and bj+2

are accepted by the online mech-
anism. Thus, a bidder bj+3 =
(vjd

999, vjd
1337) would inevitably

lead to a gain competitiveness of
ω(∆5).

(c) The bidders bj−1, bj+1, and
bj+2 are accepted by the clairvoy-
ant mechanism. The bidders bj and
bj+3 are accepted by the online
mechanism. Thus, a bidder bj+4 =
(vjd

1336, vjd
2000) would inevitably

lead to a gain competitiveness of
ω(∆5).

(d) The bidders bj−1, bj+1, and
bj+3 are accepted by the clairvoy-
ant mechanism. The bidders bj and
bj+4 are accepted by the online
mechanism. Thus, a bidder bj+5 =
(vjd

1999, vjd
2000) would inevitably

lead to a gain competitiveness of
ω(∆5).

Fig. 1: The bidders accepted by the clairvoyant mechanism are marked with
(thinly) dashed lines. The online mechanism accepts by definition bj . If the
online mechanism accepts the bottom left bidder, the bidder on the bottom
right appears; resulting in a ω(∆5) gain competitiveness.



Theorem 4. Any deterministic ∆-online mechanism has gain competitiveness
of Ω(∆5) compared to the offline solution.

Proof. For any d > 0, we will present a sequence of bidders, for which the gain
competitiveness between the offline mechanism and the clairvoyant mechanism
is at most 2d, but for any online mechanism, the gain competitiveness is at least
4d5. Given ∆, we can set d = ∆/2. Thus, any online mechanism is at least Ω(∆5)
worse than the offline mechanism. The input sequence is depicted in Figure 1.

The input sequence starts with bidder b1 with (v1, π1) = (1, 1), then the
adversary inserts a sequence of bidders bi+1 = (vi+1, πi+1), for i = 1, 2 . . .,
where (vi+1, πi+1) = (2di, di+2). Let bj be the first bidder in this sequence that
the online mechanism accepts. Notice that the online mechanism has to accept
one, since otherwise the gain competitiveness is infinity. The clairvoyant mech-
anism accepts bidder bj−1, but not bj . The adversary then sets (vj+1, πj+1) =
((d2/2)vj , d

2vj), so that the online mechanism cannot accept this bidder be-
cause the new gain would be at most vjd

2/2− vjd2/2− π1 < 0. The clairvoyant
mechanism accepts bidder bj+1 to maintain gain competitiveness O(∆).

The next bidder bj+2 that comes has (vj+2, πj+2) = (d3vj , d
1000vj), so the

online mechanism cannot accept this bidder either, since otherwise the adversary
can make the next bidder have a valuation of d999vj , which makes the gain com-
petitiveness much larger than 4d5. The clairvoyant mechanism does not accept
bidder bj+2 and still maintains gain competitiveness O(∆).

Bidder bj+3 is then (vj+3, πj+3) = (2d4vj , d
1337vj). For the same reason, the

online mechanism cannot accept this one. The clairvoyant mechanism accepts
bidder bj+3 to maintain gain competitiveness O(∆). If the online mechanism
accepts this bidder, then the clairvoyant mechanism accepts bidder bj+2, but
not bidder bj+3 (see Figure 1).

Bidder bj+4 is (vj+4, πj+4) = (4d5vj , d
2000vj), and again the online mecha-

nism cannot accept this one. The clairvoyant mechanism does not accepts bidder
bj+4 and still maintains gain competitiveness O(∆).

At this point, the online mechanism accepted (vj , πj), and the gain compet-

itiveness is at most
4d5vj
vj

= 4d5. Thus, the claim follows.

5 Auctions with Several Goods

In this section we consider auctions with r goods. The pure offline mechanism
chooses the best r bidders and never has to pay a preemption price. If r is
constant, then we show the following constructive result.

Theorem 5. Checking whether there is a solution with gain competitiveness of
δ in an online auction is r goods can be computed in O(nr+1).

Similar to the problem of checking whether there is a k-clique in a graph, the
general version of this problem is NP-hard.

Theorem 6. Checking whether there is a solution with gain competitiveness of
δ in an online auction is NP-hard.
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