
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
of One-shot Graph Generators

Karolis Martinkus 1 Andreas Loukas * 2 Nathanaël Perraudin * 3 Roger Wattenhofer 1

Abstract

We approach the graph generation problem from
a spectral perspective by first generating the dom-
inant parts of the graph Laplacian spectrum and
then building a graph matching these eigenvalues
and eigenvectors. Spectral conditioning allows
for direct modeling of the global and local graph
structure and helps to overcome the expressivity
and mode collapse issues of one-shot graph gener-
ators. Our novel GAN, called SPECTRE, enables
the one-shot generation of much larger graphs
than previously possible with one-shot models.
SPECTRE outperforms state-of-the-art deep au-
toregressive generators in terms of modeling fi-
delity, while also avoiding expensive sequential
generation and dependence on node ordering. A
case in point, in sizable synthetic and real-world
graphs SPECTRE achieves a 4-to-170 fold im-
provement over the best competitor that does not
overfit and is 23-to-30 times faster than autore-
gressive generators.

1. Introduction
The ability to generate new samples from a distribution is
a central problem in machine learning. Most of the work
has focused on data with a regular structure, such as images
and audio (Brock et al., 2018; Oord et al., 2016a). For such
data, Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014; Arjovsky et al., 2017) have emerged as a
powerful paradigm, managing to balance generation novelty
and fidelity in a manner previously thought impossible.

The present work considers the use of GANs for graph data.
The generation of novel graphs is relevant for numerous
applications in molecule (Jin et al., 2018; De Cao & Kipf,

*Equal contribution 1ETH Zurich 2EPFL and Prescient De-
sign, Genentech 3Swiss Data Science Center. Correspondence to:
Karolis Martinkus <martinkus@ethz.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Sp
ec

tra
l E

m
be

dd
in

g

True Graph SPECTRE (Real Spectra) SPECTRE (Generated Spectra)

Ge
ne

ra
te

d
Gr

ap
h

Figure 1. Generating the spectrum first allows SPECTRE to control
the global graph structure prior to the local connectivity. SPEC-
TRE is also able to correct for imperfect generated spectra. Top:
Conditioning spectral embedding. Bottom: The generated graph,
plotted using its final spectral embedding.

2018; Liu et al., 2018), protein (Huang et al., 2016), net-
work, and circuit design (Mirhoseini et al., 2021). Yet, de-
spite recent efforts, the problem remains largely unresolved:
current state-of-the-art approaches are constrained to small
graphs and often fail to strike a beneficial trade-off between
capturing the essential properties of the training distribution
and exhibiting high novelty. We argue that the one-shot gen-
erators used in current GAN models face expressivity issues
that hinder them from capturing the global graph properties.
We refer to a model as one-shot if it generates all edges
between nodes at once. In contrast, auto-regressive models
build a graph by progressively adding new nodes and edges.

One-shot generators are typically confronted with the de-
manding task of controlling global graph structure emergent
from a large number of local node interactions. As a thought
experiment, consider the toy problem of generating a tree by
sampling node embeddings and then connecting them using
some similarity kernel (Krawczuk et al., 2020; Serviansky
et al., 2020; Vignac & Frossard, 2021). Even if the extended
neighborhood of each node is locally tree-like, the overall
graph will not be valid unless all nodes are positioned appro-
priately w.r.t. each other. Misplacing even a few nodes can

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

completely alter the global properties by introducing cycles
and rendering the graph disconnected. Sadly, the aforemen-
tioned expressivity issue becomes increasingly pronounced
as the size of the graph grows and can manifest in terms of
non-convergent GAN training.

This work puts forth SPECTRE—an equivariant generator
that aims to overcome the expressivity issues of one-shot
approaches. SPECTRE decomposes the graph generation
problem into two parts that are learned jointly: (i) model-
ing the dominant components of the graph spectrum and
(ii) generating a graph conditioned on a set of eigenvalues
and eigenvectors. Modeling the distribution of the top-k
eigenvalues and eigenvectors is a simpler problem than one-
shot graph generation. Crucially, a direct inspection of the
graph spectrum conveys many pertinent global graph prop-
erties (e.g., connectivity, cluster structure, diameter) and
can be utilized to construct embeddings that approximate
the geodesic distance between nodes (Belkin & Niyogi,
2003; Coifman et al., 2005; Mohar, 1997). As shown in
Figure 1, the (normalized) graph Laplacian eigenvectors (as-
sociated with low eigenvalues) capture well the coarse graph
structure, making them ideal to model non-local dependen-
cies. Thus, by generating the spectrum first, SPECTRE
can control the global properties of the generated graphs.
The learned eigenvectors and eigenvalues are then used to
initialize the node embeddings of a second generator (in-
spired by GG-GAN (Krawczuk et al., 2020)) that acts as
a local refinement procedure. Both steps are permutation
equivariant, differentiable, and are optimized jointly in an
end-to-end fashion.

Our experiments with synthetic and real-world graphs pro-
vide evidence that spectral conditioning helps to overcome
the limitations of one-shot generators, managing to faithfully
capture the graph statistics even for graphs with hundreds
of nodes. Interestingly, SPECTRE can outperform state-of-
the-art by a non-negligible margin, striking a compelling
trade-off between the ability to generate graphs not in the
training distribution (novelty) and modeling fidelity. We
also find that conditioning SPECTRE on real spectra can
yield further improvement without sacrificing novelty, espe-
cially when k is large, indicating that additional gains may
be attainable by using a better spectrum generator.

2. Related Work
Graph generation entails building statistical models and
fitting them to distributions of graphs. In this light, the prob-
lem is intimately linked with random graph models (Erdos
et al., 1960; Holland et al., 1983; Eldridge et al., 2016) stud-
ied extensively in discrete mathematics, statistical physics,
and network science. These models represent useful abstrac-
tions but are generally too simplistic to fit the real graph
distributions that we care about. We refer the interested

reader to the surveys (Chakrabarti & Faloutsos, 2006; Gold-
enberg et al., 2010) for a more in-depth exposition.

Deep learning approaches, on the other hand, forego the
simplicity and tractability of most random graph models
to achieve greater data fidelity. Two main types of deep
learning approaches have been proposed:

Autoregressive. Autoregressive models learn to build a
graph by iteratively adding new nodes and predicting their
edges (You et al., 2018b; Liao et al., 2019; Dai et al., 2020).
By breaking the problem into smaller manageable parts,
these methods are generally apt at capturing complex statis-
tics of the data distribution. Unfortunately, training autore-
gressive generators hinges on imposing an order on the
nodes, which renders the generator permutation sensitive
and can lead to low novelty (due to memorizing the train-
ing set and generating different permutations of the same
adjacency matrix). In addition, autoregressive generators
are generally non fully parallelizable and thus take longer
to generate larger graphs.

One-shot. One-shot models aim to learn how to generate
all edges between nodes at once, bringing the promise of
parallelization. Within one-shot methods we can distinguish
those that build on the variational autoencoder (VAE) and
generative adversarial network (GAN) paradigms: Graph
VAEs (Kipf & Welling, 2016; Simonovsky & Komodakis,
2018; Mitton et al., 2021) are generally easy to train and
can work well for small graphs. A key challenge with VAEs
that have a vector-based latent state is that to decouple the
learning process from the permutation chosen when repre-
senting the graph as an adjacency matrix, one needs to solve
a graph matching problem to align the VAE’s input and out-
put. The high computational complexity of graph matching
necessitates the use of rough heuristics when training mod-
els with more than a handful of nodes and can significantly
deteriorate performance.

The GAN framework provides an elegant alternative to
VAEs (Wang et al., 2018; De Cao & Kipf, 2018; Bojchevski
et al., 2018; Yang et al., 2019; Krawczuk et al., 2020). Ad-
versarial training is believed to encourage larger sample
diversity than maximizing likelihood, and moreover, by em-
ploying a permutation invariant discriminator one sidesteps
the need for graph matching. Nevertheless, current equiv-
ariant one-shot GANs may exhibit convergence issues re-
quiring involved fixes (Yang et al., 2019) and, even after
recent improvements on their generator (Krawczuk et al.,
2020; Vignac & Frossard, 2021), they remain less apt at
modeling complex graph statistics of larger graphs. Our
work builds and improves upon this previous work: we find
that GAN generators have difficulty in faithfully capturing
graph statistics—a phenomenon that manifests more promi-
nently as graphs become larger. We introduce the idea of
spectrum conditioning to mitigate this challenge.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Other generation strategies include learning a score function
based on annealed Langevin dynamics (Niu et al., 2020) and
graph normalizing flows (Liu et al., 2019). We also mention
two special instances of GANs: GraphGAN models the
distribution of a node’s neighborhood conditioned on the
rest of the graph (Wang et al., 2018), whereas NETGAN
assembles a graph from a collection of random walks gen-
erated by a GAN (Bojchevski et al., 2018)—these models
were designed for (and evaluated on) graph representation
learning tasks and not graph generation. VAEs have also
been applied on such tasks (Shi et al., 2020).

We note that the above discussion focuses on generally
applicable methods and does not review specialized methods
such as those specifically tailored to molecules (Jin et al.,
2018; You et al., 2018a; Liu et al., 2018; Bresson & Laurent,
2019; Jin et al., 2020; Garcia Satorras et al., 2021; Mahmood
et al., 2021; Liu et al., 2021).

Finally, there exist optimization-based approaches for build-
ing co-spectral graphs (Baldesi et al., 2018; Shine & Kempe,
2019). These works do not explicitly focus on modeling
graph distributions.

3. Background
In this contribution, we consider unweighted undirected
graphs G = (V, E) where V is a set of n nodes connected
(or not) by a set of edges E . We index each node vi ∈ V with
i = 1, . . . , n and define the adjacency matrixA asAi,j = 1
if vi and vj are connected andAi,j = 0, otherwise.

3.1. Spectral Graph Theory

Spectral graph theory studies the connections between the
spectrum of the graph Laplacian and the general properties
of the graph. The normalized graph Laplacian1 is defined as
L = I−D− 1

2AD−
1
2 ,whereD = diag(d1, · · · , dn) is the

diagonal degree matrix defined as di =
∑n
j=1Ai,j . Being

a symmetric positive semi-definite matrix, the graph Lapla-
cian can always be diagonalized as L = UΛUT , where
the orthogonal matrix U = [u1, · · · ,un] and the diagonal
matrix Λ = diag(λ1, · · · , λn) contain the graph Laplacian
eigenvectors and eigenvalues, respectively. We follow the
convention of sorting eigenvalues in non-decreasing order
as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

Our approach is motivated by the well known fact that the
first few eigenvalues λk = (λ1, · · · , λk) and eigenvectors
Uk = [u1, · · · ,uk] of the graph Laplacian describe global
properties of the graph structure such as its connectivity,
clusterability, diameter, and node distance (see Appendix E).

1Though, in the following, by graph Laplacian we refer to the
normalized Laplacian, our ideas can be trivially extended to the
combinatorial and random-walk Laplacian matrices.

We assume the graph to be connected. Therefore the first
eigenvector (associated with λ1 = 0) only contains infor-
mation about the node degree (a local feature) and we start
conditioning graph generation with the second eigenvector.

3.2. Orthogonal Matrices

In the following, we describe some useful facts about the
geometric, algebraic, and group structure of orthogonal ma-
trices as eigenvectors of undirected graphs are such matrices.

The special orthogonal group SO(n). Being orthogonal
matrices (UU> = U>U = I), eigenvectors belong to
the orthogonal matrix group O(n). The latter contains two
connected components: one comprising of all of the ma-
trices with a determinant of −1 and another comprising of
all of the matrices with a determinant of +1 (rotation ma-
trices), also known as the special orthogonal group SO(n).
Graph eigenvectors are phase-independent, meaning that
−U corresponds to the same eigenbasis as U and there
always exists a SO(n) matrix that corresponds to a given
graph’s eigenbasis. We can thus generate all possible graph
eigenspace while being restricted to SO(n), as we do in the
following.

The Lie algebra of SO(n) is formed by skew-symmetric
matrices (ST = −S). The matrix exponentialU = exp(S)
can then be used as a surjective map from skew-symmetric
matrices onto SO(n) (Shepard et al., 2015). A simple count-
ing argument reveals that orthogonal matrices can be defined
using n(n− 1)/2 parameters.

The Stiefel manifold Vk(n). In this work, we mostly fo-
cus on the first k eigenvectors Uk = [u1, · · · ,uk] ∈
Rn×k, which form a Stiefel manifold Vk(n) and abide to:
U>k Uk = Ik, where Ik is the k × k identity matrix. Note
that UkU>k = In iff n = k. One point in the Stiefel mani-
fold can be transformed into any other with a rotation, i.e. ,
using multiplication with orthogonal matricesRL ∈ SO(n),
RR ∈ SO(k):

U ∈ Vk(n)⇒ RLURR ∈ Vk(n). (1)

We use this property to build the layers of the eigenvec-
tor generator (see Sec. 4.2). To generate a random initial
point on the Stiefel manifold, one can create a random
skew-symmetric matrix with nk − k(k + 1)/2 non-zero
parameters, compute its exponential and select the first k
columns.

4. Spectrum and Graph Generation
SPECTRE aims to overcome a key difficulty that one-shot
graph generators face: controlling the global graph structure
by manipulating local interactions. To this end, SPECTRE
generates graphs by first modeling the distribution of the top-
k eigenvalues and eigenvectors λk ∈ �k and Uk ∈ Vk(n),

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Prediction

Generator Discriminator

Bank of
Stiefel

SumPool

Linear Inner
x 3

Figure 2. Left: General architecture. Generation is performed sequentially with 3 GANs generating the eigenvalues (purple), the
eigenvectors (blue) and finally the graph (green). Each generation step is conditioned on the previous generated variable. The input latent
variable w of each sub-generator is obtained using an MLP. Right: Eigenvector generator. The initial eigenvectors U (0) are selected
from a learned Bank of Stiefel Manifolds. They are then transformed with 3 rotation layers (orange box) that each perform one left and
one right rotation.

where �k is the set of k strictly positive non-decreasing
eigenvalues of the graph Laplacian

�k := {λk ∈ (0, 2]k s.t. λ1 ≤ · · · ≤ λk},

whereas Vk(n) is the Stiefel manifold.

The graph is then generated conditioned on (Uk,λk). As ex-
plained in the background section, the dominant Laplacian
spectra succinctly summarize the global structural proper-
ties of a graph and provide a rough embedding for the nodes.
The latter can be used to bootstrap the graph generator mod-
ule, simplifying its job.

We cover the architecture of SPECTRE (Figure 2, left) by
first presenting the conditional graph generator and then
showing how the top-k eigenvalue and eigenvector genera-
tion works. Each latent variable zλ ∈ R1×k, zU ∈ Rn×k,
zA ∈ Rn×k is obtained by sampling a uniform point zU
from a hypersphere. Then, they are transformed using four-
layer Multi-Layer Perceptrons (MLPwλ , MLPwU , MLPwA)
to obtain wλ ∈ R1×k, wU ∈ Rn×k, wA ∈ Rn×k. Further
implementation details of the architecture can be found in
Appendix A.

4.1. Conditional Graph Generation

The SPECTRE graph generator gL aims to construct graphs
with a given dominant spectra (λk,Uk):

A = gA(λk,Uk,wA).

First, we build L(0) ∈ Rn×n, a rough approximation of the
Laplacian matrix

L(0) = Uk diag(λk)U>k .

Though L(0) does not look like a graph at this stage as it
lacks the local connectivity information, it internally en-
codes the global graph structure. This matrix is passed in

place of an adjacency matrix to a l-layer Provably Powerful
Graph Network (PPGN) (Maron et al., 2019) using λk, Uk
and wA as node features. The PPGN then produces the
final adjacency matrix. We can interpret this as gA taking
the initial approximation of the Laplacian matrix L(0) and
progressively refining it:

L(l) = PPGNl(L(l−1)) for layer l = 1, · · · , L− 1.

The final layer then produces the adjacency matrix directly
to avoid a complicated manual conversion from a Laplacian
to an adjacency:

A = σ(PPGNL(L(L−1))),

where σ is the sigmoid activation function. Since we ac-
tually use high-dimensional representations between the
PPGN layers, in this interpretation, this high-dimensional
representation encodes L(l). PPGN’s expressive power
matches that of a 3-WL test. The network is thus better
suited to modeling and distinguishing graphs than typical
Graph Neural Networks (GNNs) that typically are as dis-
criminative as a 2-WL test (Xu et al., 2019; Morris et al.,
2019). More recent GNNs are either less expressive than
PPGN (Zhang & Li, 2021; Sandfelder et al., 2021; Papp
et al., 2021; Bevilacqua et al., 2021), or are computationally
slower in the non-asymptotic regime (Vignac et al., 2020;
Morris et al., 2020), or hinge on the computation of pre-
defined features (Bouritsas et al., 2020). We stress that the
list of mentioned references provides an incomplete sample
of all known GNN architectures whose expressive power
surpasses the 2-WL test.

We should note that the set Sk(n) ⊂ �k × Vk(n) of valid
graph Laplacian spectra, i.e., those (λk,Uk) that lead to
a valid graph G, can be much smaller than those that are
modeled by SPECTRE. Unfortunately, the problem of deter-
mining whether (λk,Uk) ∈ Sk(n) appears to be computa-
tionally hard when k � n, meaning that we cannot expect

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

that the spectrum generator always returns a valid sample.
We thus do not enforce exact conditioning on (λk,Uk) but
instead motivate the graph generator to generate graphs
whose first k eigenvalues and eigenvectors are close to those
sampled during the first stages.

The graph discriminator takes the adjacency matrix and
corresponding spectral features as input:

eA = dA(A,λk,Uk, n).

Due to its conditioning, the discriminator helps to ensure
that the generated graph and eigenvectors are consistent. To
further encourage the discriminator to focus on the relation
between the graph and the eigenvectors, we sometimes pass
true (perturbed) eigenvalues and eigenvectors to the gen-
erator. The discriminator architecture is analogous to the
generator, with an additional global pooling layer before
the output. Note that having spectral features strengthens
the discriminator. Consider, for instance, the task of deter-
mining whether a graph is connected—a task that a good
discriminator needs to solve. Whereas in normal architec-
tures the GNN depth needs to exceed the graph diameter to
determine connectivity, when spectral features are available,
connectivity can be checked locally. To guarantee global
consistency, we then just need to ensure that the spectral
features we condition on are well-posed.

Note that while in this paper we mainly focus on the genera-
tion of graph structure alone, we can also use the PPGN to
directly produce node and edge features for the generated
graph (see Appendix A.1).

4.2. Conditional Eigenvector Generation

The eigenvector generator (Figure 2 right), aims to construct
eigenvectors Uk matching given eigenvalues λk:

Uk = gU (λk,wU),

It operates by iteratively refining a starting eigenvector ma-
trix. First, a starting Stiefel matrix U (0)

k is selected from a
bank of learned matrices {B0, ...,Bm} with Bi ∈ Vk(n)
for all i = 1, · · · ,m. Using a bank helps to make the
generation easier, as orthogonal matrices which correspond
to valid graph Laplacian eigenvectors form a potentially
small subset of all orthogonal matrices. However, it is pos-
sible to instead use only one fixed learnable rotation matrix
as input, which would cause a slight decrease in genera-
tion quality. The selection is done by generating a query
matrix Q = MLP(λk) of size n× k that is compared to
matrices in the bank using the canonical Stiefel manifold
metric (Edelman et al., 1998):

m(Q,Bi) := tr
(
QT
(
I − 1

2
BiB

>
i

)
Bi

)
,

which we normalize such that the distance fromBi to itself
is equal to one. Here tr(X) computes the trace of the matrix.

The starting matrix U (0)
k is then sampled using Gumbel-

softmax (Jang et al., 2016; Maddison et al., 2017).

The generator proceeds to refine U (0)
k by repeatedly multi-

plying it with left and right orthogonal matrices:

U
(`)
k = R

(`)
L U

(`−1)
k R

(`)
R for layer ` = 1, · · · , L.

As described in (1) this transformation ensures that the ma-
trix stays on the Stiefel manifold, meaning that it is a valid
eigenvector matrix with orthogonal unit-length column vec-
tors. The left refinement matrix is constructed by processing
inputs with a PointNetST layer (Segol & Lipman, 2019) and
projecting the result onto SO(n) by constructing a skew-
symmetric matrix and finally using the matrix exponential:

R
(`)
L = proj

(
outer

(
PointNetST(U

(`−1)
k ,λk, zU)

))
,

where we define outer(X) := XX> and proj(X) :=
exp(tril(X) − tril(X)>), where tril(X) gives the lower
triangular of the matrix. The right rotation matrix is con-
structed similarly by using a second PointNetST layer (no
parameter-sharing) and mean pooling over the set of nodes:

R
(`)
R = proj

(
MLPRR(

1

n

n∑
i=1

PointNetST(U
(`−1)
k ,λk, zU))

)
.

The eigenvector discriminator takes the eigenvectors and
the corresponding eigenvalues as input:

eUk = dU (Uk,λk, n).

Since spectral node embeddings induce a clustering, for
the discriminator we use an architecture based on Point-
Net (Qi et al., 2017), which achieves good results on point
cloud segmentation and classification. This architecture
comprises of a right rotation, a point-wise transformation
with an MLP, another right rotation, and a PointNetST layer
followed by mean pooling and an MLP. The right rotations
are constructed in the same way as done in the generator.

We use PointNetST layers as they are efficient and can
approximate any equivariant set function (Segol & Lipman,
2019). Model weights are initialized such, that all of the
rotation matrices are initially close to identity.

To avoid any sign ambiguity in the eigenvector represen-
tation we transform both the generated and the true eigen-
vectors such that the maximum absolute value for each
eigenvector is positive.

4.3. Eigenvalue Generation

The final piece of the puzzle entails generating

λk = gλ(wλ).

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Pl

an
ar

True Graphs GraphRNN GRAN MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE
SB

M
Pr

ot
ei

ns

Figure 3. A set of sample graphs produced by the models. Each row is conditioned on the same number of nodes.

As eigenvalues are just an increasing sequence, the eigen-
value generator is a simple 4-layer 1D CNN with up-
sampling (Donahue et al., 2018).

Likewise, the discriminator:

eλk = dλ(λk, n),

is a strided 4-layer 1D CNN with a linear final read-out
layer. Both networks employ gated activation units z =
tanh(W1X) · σ(W2X) as used in WaveNet (Oord et al.,
2016a) and PixelCNN (Oord et al., 2016b).

4.4. Training

To train our model we use the WGAN-LP loss (λLP = 5)
(Petzka et al., 2018), ADAM optimizer (β1 = 0.5, β2 =
0.9) (Kingma & Ba, 2015), and learning rate of 1e− 4 for
both the generator and the discriminator.

During training we utilize a form of teacher forcing, where
initially each model is trained separately for 26k training
steps, using true slightly perturbed spectral features from
the training set for conditioning. We then gradually anneal
the mixing temperature τ , which defines how many real
inputs each model receives, over the next 26k steps from 1.0
to 0.8 using a cosine schedule. This teacher forcing serves
to “teach” the model how to construct graphs with given
spectral features and correct small errors. All of our models
are trained for 150k steps in total. The code is publicly
available2.

The selection of k (the number of eigenvalues and eigen-
vectors) is done as follows. First we train only the graph

2https://github.com/KarolisMart/SPECTRE

generator gA conditioned on true spectra using different val-
ues of k ∈ [2, 4, 8, 16, 32] for 26k steps. Then we select the
lowest k which resulted in the generation of good quality
graph samples (low MMD measures).

5. Experimental Evaluation
Our experimental setup largely follows You et al. (2018b)
and Liao et al. (2019) with some important extensions that
are discussed below.

Datasets. We consider five real and synthetic datasets of
varying size and connectivity: Community-small (12-20
nodes) (You et al., 2018b), QM9 (9 nodes) (Ramakrishnan
et al., 2014), Planar graphs (64 nodes), a Stochastic Block
Model (20-40 nodes per community, 2-5 communities), Pro-
teins (100-500 nodes) (Dobson & Doig, 2003). All datasets
are described in Appendix C. We split all datasets into test
(20%) and training (80%) sets. We use 20% of the training
set for validation. We generate the same number of samples
as there are in the test split of each dataset.

MMD measures. Generated graph quality is commonly
evaluated by comparing the distributions of graph statis-
tics between the generated and test graphs (Li et al., 2018;
You et al., 2018b; Liao et al., 2019; Krawczuk et al., 2020).
In particular, we adopt the Maximum Mean Discrepancy
(MMD) measures used by Liao et al. (2019): node degree
(Deg.), clustering coefficient (Clus.), orbit count (Orbit),
eigenvalues of the normalized graph Laplacian (Spec.). We
further introduce an eigenspace-based MMD (Wavelet) that
evaluates the similarity of graph eigenspaces using statistics
from a graph wavelet transform (Hammond et al., 2011).

https://github.com/KarolisMart/SPECTRE

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Planar graphs

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ Val., Uniq. & Nov. ↑ t (s) ↓
Training set 0.0002 0.0310 0.0005 0.0052 0.0012 1.0 100.0 100.0 — — —

GraphRNN 0.0049 0.2779 1.2543 0.0459 0.1034 527.4 0.0 100.0 100.0 0.0 0.774
GRAN 0.0007 0.0426 0.0009 0.0075 0.0019 1.9 97.5 85.0 2.5 0.0 0.920

MolGAN* 0.0009 0.3164 1.1730 0.1989 0.0729 491.9 0.0 25.0 100.0 0.0 0.002
GG-GAN (RS)* 0.1005 0.2571 1.0313 0.2040 0.3829 586.3 0.0 100.0 100.0 0.0 0.011
GG-GAN* 0.0630 1.1820 1.2280 0.1990 0.1890 601.0 0.0 10.0 100.0 0.0 0.011
SPECTRE (k = 2) 0.0005 0.0785 0.0012 0.0112 0.0059 2.9 25.0 100.0 100.0 25.0 0.026

SPECTRE (k = 2, real spectra) 0.0010 0.0668 0.0010 0.0095 0.0056 3.1 47.5 100.0‡ 100.0‡ 47.5‡ 0.011

Stochastic Block Model

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ Val., Uniq. & Nov. ↑ t (s) ↓
Training set 0.0008 0.0332 0.0255 0.0063 0.0007 1.0 100.0 100.0 — — —

GraphRNN 0.0055 0.0584 0.0785 0.0065 0.0431 14.9 5.0 100.0 100.0 5.0 5.108
GRAN 0.0113 0.0553 0.0540 0.0054 0.0212 9.8 25.0 100.0 100.0 25.0 1.887

MolGAN* 0.0235 0.1161 0.0712 0.0117 0.0292 15.8 10.0 95.0 100.0 9.5 0.002
GG-GAN (RS)* 0.0338 0.0581 0.1019 0.0613 0.1749 61.5 0.0 100.0 100.0 0.0 0.056
GG-GAN* 0.0035 0.0699 0.0587 0.0094 0.0202 7.8 25.0 100.0 100.0 25.0 0.057
SPECTRE (k = 4) 0.0015 0.0521 0.0412 0.0056 0.0028 2.0 52.5 100.0 100.0 52.5 0.074

SPECTRE (k = 4, real spectra) 0.0079 0.0528 0.0643 0.0074 0.0112 6.2 60.0 100.0‡ 100.0‡ 60.0‡ 0.057

Table 1. Sample quality on synthetic datasets. We also provide SPECTRE results when the graph generator is conditioned on real spectra
(λk,Uk) from the test set. ‡ novelty is compared to the test set graphs, from which (λk,Uk) were taken. Methods marked with * are
similar models implemented with building blocks from our architecture.

Similar features have been used to identify the role of each
node on the graph (Donnat et al., 2018) — see Appendix B
for definition. The distance between the samples is com-
puted using the total variational Gaussian kernel, which is
consistent with the Gaussian earth mover’s distance kernel
while being considerably faster (Liao et al., 2019). To stay
consistent with published results for the Community dataset
for it we use a Gaussian EMD kernel (Liu et al., 2019; Niu
et al., 2020). We also summarize these measures by report-
ing the average ratio (Ratio) between a generator’s and the
training set’s MMD values. As the training set MMD values
are the best we can hope to achieve, this ratio indicates how
far away we are from the optimal statistics.

Validity. While the measures based on graph statistics
measure how similar certain properties are between two
distributions of graphs, they cannot guarantee that the gen-
erated graphs come from the same distribution. To this end,
when the true distribution is known we also report a validity
measure counting the percentage of generated graphs that
belong to the ground-truth class. Specifically, we assert
that planar graphs must be planar and connected and that
SBM graphs are statistically indistinguishable from those
generated by the ground-truth model (see Appendix C).

Novelty and uniqueness. While generating correct and
statistically similar graphs is important, ultimately, a gener-
ator is useless unless the generated graphs are sufficiently
diverse. To ensure that our model generates sufficiently
diverse graphs, we follow Krawczuk et al. (2020) and in-

troduce two measures based on graph isomorphism classes
(Cordella et al., 2001): Uniqueness. We count the fraction
of the generated graphs belonging to a unique isomorphism
class. This way we check if the generator does not collapse
to generating different permutations of the same few graphs.
Novelty. We further determine what fraction of the gener-
ated graphs belong to an isomorphism class unseen in the
training set. This measure further estimates how many novel
graphs the generator is able to produce.

The validity, uniqueness, and novelty measures are sum-
marized by computing the percentage of graphs that are
all valid (if applicable), unique and novel. Together with
the MMD ratio, this constitutes the two most important
evaluation metrics we use.

Baselines. Besides the autoregressive GRAN and
GraphRNN models, we construct GAN baselines inspired
by MolGAN (De Cao & Kipf, 2018) and GG-GAN
(Krawczuk et al., 2020). Neither of these baselines uses
spectral conditioning and serve to prove the value of our
approach. We choose to modify our architecture to create
the baselines instead of faithfully re-implementing them, to
ensure that improvements in score seen by SPECTRE do
not come solely from other improvements we have made
to the architecture, which include using a more powerful
GNN, improved noise pre-processing and a symmetric
architecture which is more stable to train. We create
MolGAN*, by replacing our conditional graph generator
with a three-layer MLP and a set of linear layers that convert

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Proteins

Model Deg. ↓ Clus. ↓ Orbit ↓ Spectral ↓ Wavelet ↓ Ratio ↓ Unique ↑ Novel ↑ Uniq. & Nov. ↑ t (s) ↓
Training set 0.0003 0.0068 0.0032 0.0009 0.0003 1.0 100.0 — — —

GraphRNN 0.0040 0.1475 0.5851 0.0152 0.0530 82.3 100.0 100.0 100.0 36.41
GRAN 0.0479 0.1234 0.3458 0.0125 0.0341 82.7 100.0 100.0 100.0 11.68

MolGAN* 0.0008 0.0644 0.0081 0.0021 0.0012 4.2 97.3 100.0 97.3 0.003
GG-GAN (RS)* 0.4727 0.1772 0.7326 0.4102 0.6278 875.8 100.0 100.0 100.0 0.482
GG-GAN* 0.5192 0.5220 0.7326 0.3996 0.6157 906.5 100.0 100.0 100.0 0.485
SPECTRE (k = 16) 0.0056 0.0843 0.0267 0.0052 0.0118 16.9 100.0 100.0 100.0 0.507

SPECTRE (k = 16, real spectra) 0.0013 0.0469 0.0287 0.0020 0.0022 6.0 100.0 100.0‡ 100.0‡ 0.485

Table 2. Protein graphs with up to 500 nodes. We also provide SPECTRE results when the graph generator is conditioned on real spectra
(λk,Uk) from the test set. ‡ novelty is compared to the test set graphs, from which (λk,Uk) were taken. Methods marked with * are
similar models implemented with building blocks from our architecture.

final embedding to an adjacency matrix, node, and edge
features (if needed). We retain the noise pre-processing
MLP. We also build two models which use our PPGN-based
generator. GG-GAN* uses learned fixed node embeddings
alongside processed noise wA as generator input, while
GG-GAN (RS)* depends only on the random pre-processed
set wA. In all cases, the discriminator architecture remains
unchanged.

To compare how expensive it is to generate graphs with
SPECTRE and with these baselines, we also provide the
time it takes to generate one mini-batch of 10 graphs.

Model selection. GANs tend to oscillate around the op-
tima. To this end, we track the exponential moving average
of model weights with a retention coefficient of 0.995. We
also compute the MMD measures between training and val-
idation sets and select the model with the best average ratio
between its and the training set’s MMD values.

5.1. Results

Synthetic datasets. Table 1 reports our results for distri-
butions consisting of planar and SBM graphs and shows
how SPECTRE, respectively, achieves a 169.6× and 3.9×
improvement over the best non-overfitting baseline. Ex-
amples of generated graphs can be found in Figure 3 and
Appendix F. We see that only SPECTRE is able to produce
novel and valid planar graphs. This example also highlights
the importance of measuring generated graph uniqueness, as
GRAN is able to produce perfectly valid graphs, but those
graphs are memorized from the training set. When looking
at SBM graphs, we observe that SPECTRE achieves much
better MMD scores than alternatives. It is likely that the
diverse number of nodes and communities causes GRAN
to underperform here, while the constant number of nodes
in planar graphs helps it overfit. Notice also how GAN
baselines that do not utilize spectral conditioning do not
produce good results on these larger graphs, whereas they

work much better when the number of nodes is reduced
(see e.g., the Community results in Table 4). The latter
confirms our supposition that using spectral conditioning to
separate global and local scale graph structure generation
helps to overcome the expressivity limits of one-shot GAN
generators.

Proteins. As seen in Table 2, the findings made on syn-
thetic datasets also hold to larger real-world protein graphs.
Here, the expressivity issues are even more pronounced,
with some GAN baselines mostly failing to train. A notable
exception is MolGAN*, which, in part due to our improved
discriminator, is able to produce unique graphs with great
statistical measures. Nevertheless, upon closer inspection,
we observe that the graphs generated by MolGAN* have the
tendency to be minor variations of a small number of graphs.
In fact, on average only 17.6% of edges differ between any
two graphs produced by MolGAN* (Appendix G). Using
teacher forcing and conditioning the generator and the dis-
criminator on true spectral features in SPECTRE helps to
avoid mode-collapse, which is a common issue with GANs,
and helps to guide the model to convergence. Figure 3 and
Appendix F display generated graphs.

Conditioning on real spectra. In Tables 1 and 2, we addi-
tionally provide the results achieved by the same SPECTRE
model, when conditioned on true first k eigenvalues and
eigenvectors taken form test graphs. We observe that when
SPECTRE fails to capture the correct graph distribution
(e.g. high MMDs in Table 2), conditioning on real spectra
significantly improves the generation process. This behavior
suggests that there is still room for improvement in our spec-
trum generation procedure, especially when generating a
large number of eigenvectors and eigenvalues. Furthermore,
it is a sign that the conditional graph generator is able to
leverage accurate spectral features without overfitting. In
contrast, in the case when SPECTRE achieves a very good
fit of the training distribution (Table 1), the percentage of

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Dataset Eigenvalue Wavelet (true) Wavelet (fake)

Planar (k=2) 17.60 45.43 206.15
SBM (k=4) 9.39 7.01 19.46
Proteins (k=16) 36.83 4.94 23.42

Table 3. MMD ratios (vs training set MMD) for generated k eigen-
values (direct MMD) and generated eigenvectors (Wavelet MMD)
conditioned on fake and true test eigenvalues.

Community-small

Model Deg. ↓ Clus. ↓ Orbit ↓ Ratio ↓
Training set 0.02 0.07 0.01 1.0

GraphRNN 0.08 0.12 0.04 3.2
GRAN 0.06 0.11 0.01 1.9

GraphVAE 0.35 0.98 0.54 28.5
DeepGMG 0.22 0.95 0.40 21.5
GNF 0.02 0.20 0.17 6.9
EDP-GNN 0.05 0.14 0.03 2.5

MolGAN* 0.06 0.13 0.01 1.9
GG-GAN (RS)* 0.04 0.53 0.03 4.9
GG-GAN* 0.08 0.22 0.08 5.5
SPECTRE (k = 2) 0.02 0.21 0.01 1.7

Table 4. Community graphs with up to 20 nodes. Methods marked
with * are similar models implemented with building blocks from
our architecture. Other baseline results are taken from (Liu et al.,
2019; Niu et al., 2020)

valid graphs (i.e., graphs that are planar or match the true
SBM parameters) improves when using true spectra while
some MMD measures, most notably the degree MMD, be-
come worse. This signals slight overfitting on the generated
spectra by the graph generator gA and some divergence be-
tween the generated and true spectra. Note that training gA
only on the true spectra would likely improve results.

In Table 3, we test the quality of the k generated eigen-
values and eigenvectors using respectively a direct MMD
for the eigenvalues and the Wavelet MMD (See B) for the
eigenvectors. We evaluate the eigenvector generator both
on the true and on the generated set of eigenvalues. As the
overall MMD ratios are high, it indicates that a) the spectral
generation procedure can be improved, and that b) condi-
tioning even on imperfect spectra can significantly improve
one-shot graph generation.

Smaller datasets. We also compared our method to a
larger number of baselines that are unable to successfully
generate larger graphs on two standard datasets consisting
of small community graphs and molecules. As shown in Ta-
ble 4, SPECTRE achieves the smallest average MMD ratio.
While the MLP generator (MolGAN*) performs well on this
simple graph distribution, we see that spectral conditioning
considerably improves performance as compared to other
equivariant GANs.

QM9

Model Valid ↑ Val. & Uniq. ↑ Val., Uniq. & Nov. ↑
CharacterVAE 10.3 7.0 6.3
GrammarVAE 60.2 5.6 4.5
GraphVAE 55.7 42.0 26.1
GraphVAE NoGM 81.0 20.5 11.9
GraphTransformerVAE 74.6 16.8 15.8
MolGAN 98.1 10.2 9.6

MolGAN* 99.0 0.6 0.6
GG-GAN (RS)* 51.2 24.4 24.4
GG-GAN* (|emb| = 64) 100.0 0.4 0.4
GG-GAN* (|emb| = 2) 6.6 1.8 1.8
SPECTRE (k = 2) 87.3 31.2 29.1

Table 5. QM9 molecules with up to 9 heavy atoms. Methods
marked with * are similar models implemented with building
blocks from our architecture. Other baseline results are taken from
(Mitton et al., 2021; De Cao & Kipf, 2018).4

Table 5 presents our results on the QM9 molecule dataset,
which also involves node and edge feature generation. As
highlighted by De Cao & Kipf (2018), GANs are prone to
mode collapse on this dataset. We found that our strong
PPGN discriminator aggravates this problem, especially for
the GG-GAN* and MolGAN* variants.5 On the other hand,
the GG-GAN (RS)* and SPECTRE methods proved more
robust, which again highlights the power of conditional
spectral generation in preventing mode collapse.

6. Conclusion
We argue that spectral conditioning is a key step in overcom-
ing the challenges of one-shot graph generation: it prevents
mode collapse, thus favoring the generation of novel and
unique graphs, and it aids the generator to control the global
structure leading to higher quality samples. Our experiments
show that SPECTRE outperforms competing methods with
respect to generation time and sample quality, while also
tending to generate more unique, valid, and novel graphs.

Disclosure of Funding
Andreas Loukas would like to thank the Swiss National
Science Foundation for supporting him in the context of the
project “Deep Learning for Graph Structured Data”, grant
number PZ00P2 179981.

4Note, that we used the evaluation code provided by (Vignac
& Frossard, 2021; De Cao & Kipf, 2018), which accepts samples
with multiple connected components. If we instead only keep the
largest connected component SPECTRE Val., Uniq. & Nov. score
drops to 19.1.

5We attempted to prevent mode collapse for our GG-GAN*
and MolGAN* by increasing dropout rates, increasing the pertur-
bations used for gradient penalty, and, removing the noise pre-
processing MLP. None of these helped, besides reducing the num-
ber of dimensions used by the learned embeddings for GG-GAN*.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

References
Alon, N. Eigenvalues and expanders. Combinatorica, 6(2):

83–96, 1986.

Alon, N. and Milman, V. D. λ1, isoperimetric inequalities
for graphs, and superconcentrators. Journal of Combina-
torial Theory, Series B, 38(1):73–88, 1985.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International Conference
on Machine Learning, pp. 214–223, 2017.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
Advances in NIPS 2016 Deep Learning Symposium, 2016.

Baldesi, L., Butts, C. T., and Markopoulou, A. Spectral
graph forge: Graph generation targeting modularity. In
IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pp. 1727–1735. IEEE, 2018.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for di-
mensionality reduction and data representation. Neural
computation, 15(6):1373–1396, 2003.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron,
H. Equivariant subgraph aggregation networks. arXiv
preprint arXiv:2110.02910, 2021.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann,
S. Netgan: Generating graphs via random walks. In
Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, pp. 609–618, 2018.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein,
M. M. Improving graph neural network expressivity
via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Bresson, X. and Laurent, T. A two-step graph convolutional
decoder for molecule generation. In NeurIPS Workshop
on Machine Learning and the Physical Sciences, 2019.

Brock, A., Donahue, J., and Simonyan, K. Large scale
gan training for high fidelity natural image synthesis. In
International Conference on Learning Representations,
2018.

Chakrabarti, D. and Faloutsos, C. Graph mining: Laws,
generators, and algorithms. ACM computing surveys
(CSUR), 38(1):2–es, 2006.

Chung, F. R. and Graham, F. C. Spectral graph theory.
Number 92. American Mathematical Soc., 1997.

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler,
B., Warner, F., and Zucker, S. W. Geometric diffusions
as a tool for harmonic analysis and structure definition
of data: Diffusion maps. Proceedings of the national
academy of sciences, 102(21):7426–7431, 2005.

Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. An
improved algorithm for matching large graphs. In 3rd
IAPR-TC15 workshop on graph-based representations in
pattern recognition, pp. 149–159. Citeseer, 2001.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.
Scalable deep generative modeling for sparse graphs. In
International Conference on Machine Learning, pp. 2302–
2312. PMLR, 2020.

De Cao, N. and Kipf, T. Molgan: An implicit genera-
tive model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Defferrard, M., Martin, L., Pena, R., and Perraudin, N.
Pygsp: Graph signal processing in python.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330(4):771–783, 2003.

Donahue, C., McAuley, J., and Puckette, M. Adversarial
audio synthesis. In International Conference on Learning
Representations, 2018.

Donnat, C., Zitnik, M., Hallac, D., and Leskovec, J. Learn-
ing structural node embeddings via diffusion wavelets.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1320–1329, 2018.

Edelman, A., Arias, T. A., and Smith, S. T. The geometry
of algorithms with orthogonality constraints. SIAM jour-
nal on Matrix Analysis and Applications, 20(2):303–353,
1998.

Eldridge, J., Belkin, M., and Wang, Y. Graphons, mergeons,
and so on! In Advances in Neural Information Processing
Systems, pp. 2307–2315, 2016.

Erdos, P., Rényi, A., et al. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,
1960.

Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. Regression.
Springer, 2007.

Garcia Satorras, V., Hoogeboom, E., Fuchs, F., Posner, I.,
and Welling, M. E (n) equivariant normalizing flows.
Advances in Neural Information Processing Systems, 34,
2021.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Goldenberg, A., Zheng, A. X., Fienberg, S. E., and Airoldi,
E. M. A survey of statistical network models. 2010.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. Improved training of wasserstein gans,
2017.

Hammond, D. K., Vandergheynst, P., and Gribonval, R.
Wavelets on graphs via spectral graph theory. Applied
and Computational Harmonic Analysis, 30(2):129–150,
2011.

Hammond, D. K., Gur, Y., and Johnson, C. R. Graph diffu-
sion distance: A difference measure for weighted graphs
based on the graph laplacian exponential kernel. In 2013
IEEE Global Conference on Signal and Information Pro-
cessing, pp. 419–422. IEEE, 2013.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Huang, P.-S., Boyken, S. E., and Baker, D. The coming
of age of de novo protein design. Nature, 537(7620):
320–327, 2016.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. 2016.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Jin, W., Barzilay, D., and Jaakkola, T. Hierarchical gen-
eration of molecular graphs using structural motifs. In
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 4839–4848. PMLR, 13–18 Jul
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
In NIPS Workshop onBayesian Deep Learning, 2016.

Krawczuk, I., Abranches, P., Loukas, A., and Cevher, V. Gg-
gan: A geometric graph generative adversarial network.
2020.

Lee, J. R., Gharan, S. O., and Trevisan, L. Multiway spec-
tral partitioning and higher-order cheeger inequalities.
Journal of the ACM (JACM), 61(6):1–30, 2014.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P.
Learning deep generative models of graphs. 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-
naud, D. K., Urtasun, R., and Zemel, R. Efficient graph
generation with graph recurrent attention networks. In
Advances in Neural Information Processing Systems, pp.
4255–4265, 2019.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32:13578–13588, 2019.

Liu, M., Yan, K., Oztekin, B., and Ji, S. GraphEBM: Molec-
ular graph generation with energy-based models. In En-
ergy Based Models Workshop - ICLR 2021, 2021.

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A. L.
Constrained graph variational autoencoders for molecule
design. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, pp.
7806–7815, 2018.

Maddison, C., Mnih, A., and Teh, Y. The concrete dis-
tribution: A continuous relaxation of discrete random
variables. In Proceedings of the international conference
on learning Representations. International Conference on
Learning Representations, 2017.

Mahmood, O., Mansimov, E., Bonneau, R., and Cho, K.
Masked graph modeling for molecule generation. Nature
communications, 12(1):1–12, 2021.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. Provably powerful graph networks. In Advances in
Neural Information Processing Systems, pp. 2156–2167,
2019.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., et al. A graph placement methodology for
fast chip design. Nature, 594(7862):207–212, 2021.

Mitton, J., Senn, H. M., Wynne, K., and Murray-Smith, R. A
graph VAE and graph transformer approach to generating
molecular graphs. In Graph Representation learning and
beyong (ICLR Workshop), 2021.

Mohar, B. Some applications of laplace eigenvalues of
graphs. In Graph symmetry, pp. 225–275. Springer, 1997.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602–4609, 2019.

Morris, C., Rattan, G., and Mutzel, P. Weisfeiler and leman
go sparse: Towards scalable higher-order graph embed-
dings. In Advances in Neural Information Processing Sys-
tems, volume 33, pp. 21824–21840. Curran Associates,
Inc., 2020.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. volume 108 of Proceedings of Ma-
chine Learning Research, pp. 4474–4484, Online, 26–28
Aug 2020. PMLR.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016a.

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt, L.,
Graves, A., and Kavukcuoglu, K. Conditional image
generation with pixelcnn decoders. In Proceedings of
the 30th International Conference on Neural Information
Processing Systems, NIPS’16, 2016b.

Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R.
DropGNN: Random dropouts increase the expressiveness
of graph neural networks. volume 34, pp. 21997–22009,
2021.

Peixoto, T. P. Bayesian stochastic blockmodeling. Advances
in network clustering and blockmodeling, pp. 289–332,
2019.

Peixoto, T. P. Merge-split markov chain monte carlo for
community detection. Physical Review E, 102(1):012305,
2020.

Perraudin, N. Graph-based structures in data science: fun-
damental limits and applications to machine learning.
PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
2017.

Petzka, H., Fischer, A., and Lukovnikov, D. On the regular-
ization of wasserstein gans. In International Conference
on Learning Representations, 2018.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Sandfelder, D., Vijayan, P., and Hamilton, W. L. Ego-gnns:
Exploiting ego structures in graph neural networks. In
ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
8523–8527. IEEE, 2021.

Segol, N. and Lipman, Y. On universal equivariant set
networks. In International Conference on Learning Rep-
resentations, 2019.

Serviansky, H., Segol, N., Shlomi, J., Cranmer, K., Gross,
E., Maron, H., and Lipman, Y. Set2graph: Learning
graphs from sets. In Advances in Neural Information
Processing Systems, volume 33, pp. 22080–22091, 2020.

Shepard, R., Brozell, S. R., and Gidofalvi, G. The represen-
tation and parametrization of orthogonal matrices. The
Journal of Physical Chemistry A, 119(28):7924–7939,
2015.

Shi, H., Fan, H., and Kwok, J. T. Effective decoding in graph
auto-encoder using triadic closure. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 906–913, 2020.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on pattern analysis and machine
intelligence, 22(8):888–905, 2000.

Shine, A. and Kempe, D. Generative graph models based on
laplacian spectra? In The World Wide Web Conference,
WWW ’19, pp. 1691–1701, 2019.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.
In International conference on artificial neural networks,
pp. 412–422. Springer, 2018.

Sinclair, A. and Jerrum, M. Approximate counting, uniform
generation and rapidly mixing markov chains. Infor-
mation and Computation, 82(1):93–133, 1989. ISSN
0890-5401. doi: https://doi.org/10.1016/0890-5401(89)
90067-9.

Vignac, C. and Frossard, P. Top-n: Equivariant set and
graph generation without exchangeability. arXiv preprint
arXiv:2110.02096, 2021.

Vignac, C., Loukas, A., and Frossard, P. Building powerful
and equivariant graph neural networks with structural
message-passing. In NeurIPS, 2020.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang,
F., Xie, X., and Guo, M. Graphgan: Graph representation
learning with generative adversarial nets. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32, 2018.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Yang, C., Zhuang, P., Shi, W., Luu, A., and Li, P. Con-
ditional structure generation through graph variational
generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pp. 1340–1351, 2019.

You, J., Liu, B., Ying, R., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecu-
lar graph generation. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing
Systems, NIPS’18, 2018a.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In ICML, 2018b.

Zhang, M. and Li, P. Nested graph neural networks. Ad-
vances in Neural Information Processing Systems, 34,
2021.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

A. Model Implementation Details
In this section, we present additional information describing
in details our general architecture presented in Figure 2 left.

The input noise used by each generator is sampled from
a Gaussian distribution z ∼ N (0, 1), normalized to unit
length and processed by a 4-layer MLP, with input, output,
and hidden sizes of 100. Three different MLPs are used,
each for a different generator. Every linear layer, including
ones in MLPs except the final model output layer use layer
normalization (Ba et al., 2016). We use GELU (Hendrycks
& Gimpel, 2016) activation function throughout our archi-
tecture, except for the eigenvalue generator which uses gated
activation units (Oord et al., 2016b;a). In our model, we
ignore the very first eigenvalue and eigenvector as the first
normalized Laplacian eigenvector only caries degree infor-
mation.

Both PPGN models (Maron et al., 2019) have 8 layers (3
layers for QM9 experiments) with hidden dimension of
64, PointNetST models (Segol & Lipman, 2019) use 3-
layer MLPs with base size of 32 (see Section A.2) and
the CNN models have 4 convolutional layers [5× 32, 9×
16, 17 × 8, 25 × 1] for the generator, with discriminator
having same architecture in reverse. For each dataset, we
select the number of spectral components k to be at least
2, but as small as is sufficient for the conditional graph
generator to achieve good validity, while conditioned only
on true spectral features. Our MolGAN* generator uses
MLP of size [128, 256, 512] following (De Cao & Kipf,
2018). For GG-GAN* we use a learned embedding size of
64.

The models are trained on a machine with two 64 Core
AMD EPYC 7742 CPUs, 500GB RAM, and eight 24GB
GeForce RTX 3090 GPUs. All of the individual runs only
use one GPU at a time, except protein generation with GAN
models. There we use 4 GPUs to achieve an effective batch
size of 4. For SBM experiments we use a batch size of 5,
for community and planar graphs a batch size of 10, and for
QM9 following (De Cao & Kipf, 2018) we use a batch size
of 128.

A.1. Provably Powerful Graph Network (PPGN)

The PPGN layer (Maron et al., 2019) consists of four op-
erations on channel-first input X ∈ Rh×n×n. First, two
versions of the matrix are built using two MLPs applied to
each feature independently, i.e., repeated across the n× n
dimensions.

M1 = MLP1(X) ∈ Rh2×n×n,

M2 = MLP2(X) ∈ Rh2×n×n.

The h2 matrices of size n× n are then multiplied as

M i = M i
1M

i
2.

Eventually, the output is obtained by concatenating6 M
together with the original transformed by a third MLP:

Xt+1 = MLP3(Xt ‖M).

We use 8 layers, an embedding size of 64, and a skip con-
nection from each layer (including inputs after the initial
embedding linear layer) to the final readout. In the read-
out, a linear layer is applied on the concatenation of all of
the layer outputs. For the generator, this is passed through
an MLP to produce the adjacency matrix, while for the
discriminator it is read out by applying an MLP over the
sum of diagonal values and another MLP over the sum of
off-diagonal values (Maron et al., 2019). Instance normal-
ization is used after each PPGN layer. Disregarding the
skip (concatenation) connection and instance normalization,
our PPGN architecture matches the original implementation
with one small, but important improvement. We normalize
M i = M i

1M
i
2 by 1/

√
n, to avoid growth of the gradient

and value variance. We apply a dropout of 0.1 before the
final readout linear layer in PPGN.

Extending PPGN to generate node and edge features as well
is simple. a) To produce the node features, a readout MLP
that uses the concatenation of the diagonal elements from
all of the layer outputs can be added. b) To produce the edge
features, we change the adjacency readout MLP to produce
not just a single channel matrix, but a multi-channel one,
and interpret the new channels as different edge types or
features. These node and edge features can then be fed into
the discriminator.

A.2. PointNetST

A PointNetST layer (Segol & Lipman, 2019) is mean to
process set inputsXn×h and is comprised of three MLPs:
MLPfeat, MLPagg and MLPcat. All MLPs have different
relative sizes, with respect their base hidden dimension
h. MLPfeat is small ([h, h, h]) and is used for input pre-
processing:

Y = MLPfeat(X) ∈ Rn×h.

MLPagg enlarges the embeddings ([h, h ∗ 2, h ∗ 4]) and pre-
pares them for global aggregation:

Ȳ =
1

n

∑
n

MLPagg(X) ∈ R1×4∗h.

MLPcat of size ([h∗4, h∗2, output dimension]) concatenates
individual set element features Y with the (repeated) global
set feature vector Ȳ and produces the final output:

X = MLPcat(Y ‖ Ȳ) ∈ Rn×output dimension.

6The concatenation operation is written (· ‖ ·)

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Whenever a global output vector is required in our architec-
ture we apply another MLP on the mean-aggregated outputs
of the PointNetST layer as discussed before. In such cases
PointNetST output dimension is set to h ∗ 4 and this final
MLP is of size [h ∗ 2, h,final output dimension]. When this
readout MLP is used we apply a dropout of 0.1 to its inputs.

A.3. Dynamic Number of Nodes

To handle graphs with a varying number of nodes we create
a binary mask using the conditioning number of nodes. We
apply such n×h sized masks before any global set operation,
such as mean (we also correct the mean for the true number
of nodes). We also apply n × n × h sized mask before
any graph convolution or pooling (we again correct mean
pooling for the true number of nodes). This allows us to use
batched dense tensor operations with dynamic graph sizes
in our model.

A.4. Gradient Penalty

To ensure good convergence of our GANs, we use Wasser-
stein loss (Wang et al., 2018) with gradient penalty (Gulra-
jani et al., 2017). In particular, we use the less restrictive
gradient penalty formulation (Petzka et al., 2018):

gp = γ(max {0, ||∇d(x̂)|| − 1})2,

where d is a discriminator and x̂ are inputs on which gradi-
ent penalty is computed. In general, x̂ is created by interpo-
lation between true and fake samples. While interpolation
of eigenvalues is straightforward, it is challenging to inter-
polate between eigenvectors. To interpolate eigenvectors,
we first apply a canonical set ordering, which is achieved by
flipping the eigenvector sign, such that the largest absolute
value is positive, and sort them lexicographically. We then
compute a cheap approximate interpolation, by interpolating
the eigenvector matrices in Euclidean space and then down-
projecting to a Stiefel manifold using a QR decomposition.
Graph interpolation is similarly difficult because, while sets
have a true canonical ordering, graphs do not. To compute
gradient penalty for graphs, we randomly rewire them with
p = 0.1, add Gaussian noise with the variance of 0.05 to
the resulting adjacency and clip it to a range of [0, 1]. We
do this for both, true and fake graphs. On top of this, we
found it helpful to also compute gradient penalty directly
on the (unpermuted) true and fake samples of graphs and
eigenvectors.

As QM9 has node and edge features, we add random per-
turbations to those categorical features. This is achieved
by adding Gaussian noise and with certain probability ran-
domly permuting the indices of the one-hot vector. We use
the same variance and permutation probability as before.

Adding Gaussian noise to otherwise discrete values is im-
portant, as our generator uses either sigmoid or softmax to

produce them and we pass the resulting output from the gen-
erator directly to the discriminator without hard sampling
as we find that improves the stability of the training.

B. Spectral Graph Features (Wavelet)
As graph generation is conditioned on the eigenvectors and
eigenvalues, it is of interest to build a measure of spectral
similarity between two different graphs. Therefore, we need
the features to be a) invariant to node permutation, and b)
descriptive for a specific range of eigenvalues. Our con-
struction takes inspiration from graph spectrograms (Per-
raudin, 2017, Chapter 3.2) and diffusion wavelet embed-
dings (Donnat et al., 2018). Given a collections of P kernels
φp : R+ → R, we define spectral features for each node as:

S[p, i] := ‖[φ(L)]i‖22 =

n∑
`=1

φ(λ`)
2u2

` [i] (2)

We obtain invariance with respect of the node order by
computing the histogram of the node independently of p

S̄[p, q] = hist(S[p, ·])[q] (3)

The Maximum Mean Discrepancy (MMD) can then be
computed using the vectorized version of S̄. We selected
P = 12 ab-spline wavelet functions using the PyGSP (Def-
ferrard et al.) for the kernels φp.

C. Datasets
As existing one-shot generative models only work with
relatively small graphs (Krawczuk et al., 2020; De Cao &
Kipf, 2018), we take two commonly used datasets for their
evaluation:

Community-small Dataset (You et al., 2018b): This syn-
thetic dataset consists of 100 random community graphs,
which have between 12 and 20 nodes.

QM9 (Ramakrishnan et al., 2014): This dataset contains
134k organic molecules with up to 9 heavy atoms: carbon,
oxygen, nitrogen, and fluorine. We follow the evaluation
setup from (Simonovsky & Komodakis, 2018; De Cao &
Kipf, 2018), by using 10k molecules for validation, 10k
molecules for testing, and the remaining ones for training.
Due to the very small size of graphs in this dataset, we
reduce the number of PPGN layers used in the generator and
discriminator to 3. As usually only validity, uniqueness and
novelty are evaluated on this dataset. We use the number
of valid, unique, and novel generated graphs for model
selection instead of the MMD ratio.

To truly test our model’s capability to generate large and
valid graphs, we create two new challenging larger graph
datasets:

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Planar Graph Dataset: The dataset consists of 200 planar
graphs with 64 nodes. The graphs are generated by applying
Delaunay triangulation on a set of points that were placed
uniformly at random.

Stochastic Block Model Dataset: We build 200 Stochastic
Block Model graphs, with [2, 5] communities (sampled at
random) and [20, 40] nodes (sampled at random) in each
of them. The inter-community edge probability is 0.3 and
the intra-community edge probability is 0.05. To determine
whether a generated graph is a valid SBM we employ the
following procedure: We use Bayesian inference (Peixoto,
2019), to estimate communities present in the graph and
then refine the community assignments using a merge-split
Markov chain Monte Carlo scheme (Peixoto, 2020). From
these assignments we recover the inter- and intra- commu-
nity edge probabilities. We then use a Wald test (Fahrmeir
et al., 2007) to determine the probability that the predicted
parameters match the original parameters. We only consider
the graph valid, if the match probability is at least 0.9. On
top of that, we check if the generated graph has between 2
and 5 communities and if each of them has between 20 and
40 nodes. If the graph does not meet these restrictions we
deem it invalid.

We also use a large real-world graph dataset:

Protein Dataset (Dobson & Doig, 2003): This dataset con-
sists of 918 protein graphs, where each protein graph is con-
structed by connecting nodes (amino acids) by an edge if
they are less than 6 Angstroms away. These protein graphs
have between 100 and 500 nodes.

D. Baselines
For the GraphRNN (You et al., 2018b) and GRAN (Liao
et al., 2019) baselines, we use the settings recommended by
their authors. For GraphRNN we use the generation proce-
dure proposed originally, where 1024 graphs are generated,
and then the ones with the most similar node count to test
graphs are selected. To be compatible with this, for GRAN
and our models we directly condition on the test graph node
distribution.

E. Additional Background: Spectrum
In the following, we provide further information about how
the first few eigenvalues and eigenvectors convey and sum-
marize properties relating to the global structure (Figure 4):

Connectivity. The multiplicity of the zero eigenvalue equals
the number of connected components (Chung & Graham,
1997).

Clusterability. The differences between the smallest suc-
cessive eigenvalues of connected graphs reveal how easy it

Planar Stochastic Block Model 2D Grid

Figure 4. Normalized Laplacian eigenvectors which correspond to
the lowest eigenvalues for different graphs. Top: Source graph.
Bottom: The spectral embedding computed using the 2nd and
3rd eigenvectors of the graph normalized Laplacian captures the
coarse graph structure. We do not use the 1st eigenvector as it only
captures the degree distribution. Node color represents the value
of the 2nd eigenvector.

is to partition the graph. The phenomenon is particularly
prominent for the difference of the first two eigenvalues,
often referred to as the spectral gap, which by the Cheeger
inequality (Alon & Milman, 1985; Alon, 1986; Sinclair &
Jerrum, 1989) upper and lower bounds the graph expansion
and conductance. Nevertheless, analogous results also hold
for higher-order eigenvalues (Lee et al., 2014).

Diameter. The first non-zero eigenvalue λ1 can be used to
bound the graph diameter as ∆ ≥ 1/2mλ1, with m = |E|
being the number of edges of G.

Node embeddings. The first eigenvectors provide node em-
beddings that correlate with the geodesic distance. Eigen-
vectors have been used to embed the nodes of a graph (as in
Laplacian Eigenmaps (Belkin & Niyogi, 2003) and in Diffu-
sion Maps (Coifman et al., 2005)) or to perform clustering
(as in graph spectral clustering (Shi & Malik, 2000)).

Link between the graph eigenvectors and the diffusion dis-
tance. One way to link spectral embedding with graph
nodes is to use the graph diffusion distance (Hammond
et al., 2013). Given a decreasing kernel function φ(x) (such
as φ(x) = e−tx for example), one can define a diffusion
distance between two vertices vi and vj as

D(vi, vj) := ‖[φ(L)]i,: − [φ(L)]j,:‖22

=

n∑
`=1

φ (λ`)
2

(u`[i]− u`[j])2 ,

where φ(L) = Uφ(Λ)U>. Therefore, when embedding
graph vertices using the eigenvectors associated with the

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

k lowest eigenvalues, one obtains a map where points are
separated with a specific graph diffusion distance.

F. Graph samples
In this section, we showcase uncurated graph samples pro-
duced by the different models. Figure 5, 6, 7 and 8 displays
respectively planar, SBM, protein and community graphs.
In every row, each model is conditioned on the same number
of nodes. For protein graphs (Figure 7) all models fail to
consistently produce connected graphs, thus following pre-
vious work (You et al., 2018b; Liao et al., 2019) we display
only the largest connected component. From these sample
graphs, it is easy to see that spectral conditioning greatly
improves the quality of the generated graphs and is the only
model that truly respects hard constraints imposed on the
training set, such as the maximum number of nodes allowed
in an SBM component or graph planarity. We also provide
uncurated unique molecule samples produced by SPECTRE
in Figure 9. While the given molecules are valid, in the sense
that they can theoretically exist, they can be very unstable.
It is also worth noting that while spectral conditioning pre-
vents total mode collapse in this molecule generation task,
the variety of the generated molecules is still somewhat
low. Meaning, that while they are non-isomorphic they are
mostly comprised of similar substructures.

G. Adjacency matrices of MolGAN* proteins
In Figure 10, we show, that MolGAN* produces nearly
identical adjacency matrices for different generated pro-
tein graphs. Observe, that while the node count differs in
these adjacency matrices, as we cut the matrix based on
the n the model was conditioned on, resulting in overall
non-isomorphic graphs, the edge connections are almost
identical.

Model Mean Edit Distance

Test Dataset 78.8

GraphRNN 83.7
GRAN 48.8
MolGAN* 17.6
GG-GAN (RS)* 75.4
GG-GAN* 90.9
SPECTRE (k = 16) 97.0

Table 6. Mean edit distance as percentage of different edges be-
tween generated protein graphs. Consistent node ordering is as-
sumed.

To show this effect more clearly, we evaluate the percentage
of different edges between any two graphs in the generated
set in Table 6. The edit distance is computed assuming that
the node ordering is consistent between the graphs. Given

that all models, except GG-GAN (RS)*, either directly use
an ordering or some (semi)-fixed initialization this is a rea-
sonable assumption and the resulting value gives us the
upper bound on the true mean edit distance. When compar-
ing two graphs of different size, the larger graph is clipped
to match the size of the smaller one. It is clear to see, that the
mean edit distance between graphs generated by MolGAN*
is very low and much lower than between graphs produced
by any other model.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

True Graphs GraphRNN GRAN MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE

Figure 5. Uncurated set of sample Planar graphs produced by the models. Each row is conditioned on the same number of nodes.

True Graphs GraphRNN GRAN MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE

Figure 6. Uncurated set of sample Stochastic Block Model graphs produced by the models. Each row is conditioned on the same number
of nodes.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

True Graphs GraphRNN GRAN MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE

Figure 7. Uncurated set of sample Protein graphs produced by the models. Each row is conditioned on the same number of nodes.

True Graphs GraphRNN GRAN MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE

Figure 8. Uncurated set of sample Community graphs produced by the models. Each row is conditioned on the same number of nodes.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Figure 9. Uncurated set of unique sample QM9 molecules produced by SPECTRE.

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Figure 10. Adjacency matrices of 9 random proteins produced by MolGAN*. For each graph we highlight in red the edges that are also
present in the first graph. All graphs are sub-graphs of the larger graph with a few changed edges.

