
Using State Predictions for Value Regularization in

Curiosity Driven Deep Reinforcement Learning

Gino Brunner, Manuel Fritsche*, Oliver Richter and Roger Wattenhofer**

Department of Information Technology and Electrical Engineering

ETH Zürich

Switzerland

{brunnegi,manuelf,richtero,wattenhofer}@ethz.ch

Abstract—Learning in sparse reward settings remains a chal-
lenge in Reinforcement Learning, which is often addressed by
using intrinsic rewards. One promising strategy is inspired by
human curiosity, requiring the agent to learn to predict the
future. In this paper a curiosity-driven agent is extended to use
these predictions directly for training. To achieve this, the agent
predicts the value function of the next state at any point in time.
Subsequently, the consistency of this prediction with the current
value function is measured, which is then used as a regularization
term in the loss function of the algorithm. Experiments were
made on grid-world environments as well as on a 3D navigation
task, both with sparse rewards. In the first case the extended
agent is able to learn significantly faster than the baselines.

Index Terms—curiosity, deep reinforcement learning, intrinsic
rewards, machine learning

I. INTRODUCTION

In a classical Reinforcement Learning problem an agent is

trained to fulfill one or multiple goals in an environment. This

is achieved by rewarding the agent whenever it does something

desirable. However, in many settings the rewards are extremely

rare. In these cases it can be hard for an agent to learn

because potential rewards are too far in the future. To solve this

problem, additional auxiliary tasks which provide “intrinsic”

rewards to the agent have been introduced [1]. The purpose of

intrinsic rewards is to provide more reward signals to the agent.

Auxiliary tasks should be designed such that by solving them,

the agent will be able to get higher “extrinsic” reward, i.e.,

get better at solving the main objective. Human curiosity has

inspired several of these intrinsic rewards [2]–[4]: The idea is

to make predictions about the consequences of an action, i.e.,

the future state of the environment. The difference between

these predictions and the actual consequences are then used

as a measure of surprise. If a prediction was inaccurate, the

agent is surprised and gets “curious” about it. The farther off

the predictions, the higher the intrinsic rewards. This approach

can help an agent to learn (cf. [2], [3]), but it often introduces

additional neural networks that have to be trained in order

to make predictions. This can make learning unstable due

to the difficulty of simultaneously optimizing multiple inter-

dependent neural networks. Therefore, reusing neural network

modules for related tasks might help to regularize the training.

* Main contributor
** Authors listed in alphabetical order.

Intuitively, if future states can be predicted well, then these

predictions should contain valuable information for the choice

of the next action. As humans, we often base our actions

on predictions, e.g., we bring along an umbrella because we

predict that it will rain. Existing deep reinforcement learning

algorithms like A3C [5] estimate the value function, which

is the expected sum of discounted future rewards for a given

state and policy. Thus, the value function includes a forecast

of future rewards. This forecast should be consistent with

the predicted future state for the actions that are taken. If

not, then either the state prediction or the forecast must be

wrong. This idea motivates the algorithm that is proposed in

this paper. Building on the A3C algorithm and the work of

Pathak et al. [2], we add a regularization term to the loss

function to improve the estimate of the value function during

training. This regularization term penalizes inconsistencies

between the predicted consequences of an action (future state)

and the value function. The algorithm is tested on 2 different

grid-world mazes and the VizDoom environment [6]. The

experimental results suggest that penalizing these prediction

inconsistencies can improve the performance of an algorithm.1

II. RELATED WORK

Several different ways of using intrinsic rewards have been

proposed: Jaderberg et al. [1] introduce multiple pseudo-

reward functions that the agent tries to maximize in addition

to the extrinsic rewards. Their value function replay auxiliary

task is similar to the regularization term proposed in this paper.

However, our approach does not require a replay buffer and

therefore has lower memory requirements. Houthooft et al.

[7] propose an exploration bonus based on information gain.

Sukhbaatar et al. [8] use two versions of the same agent in

an adversarial fashion with each agent repeatedly proposing

tasks that the other agent is supposed to complete. Some work,

e.g., [9]–[11], has used state visitation counts as a measure

of novelty, which is then used to define intrinsic rewards. A

review of earlier work on intrinsic rewards can be found in

[12]. Curiosity-driven exploration is a popular way of defining

intrinsic rewards. Schmidhuber [13] proposes an agent with an

additional prediction model to obtain a measure of curiosity.

1Our code can be found here: https://github.com/ManuelFritsche/vpc

it will take in the future, but it assigns a value function V π(st)
to the states. This value function basically reflects the current

plan, because it sums up all the expected discounted future

rewards. Thus, this value function should also be consistent

with the prediction of the next state. Mathematically the value

function can be expressed as follows:

V π(st) = Eπ

[
∞∑

k=0

γkrt+k

]
= Eπ[rt] + γV π(st+1)

Thus, V π(st+1) can be calculated recursively as

V π(st+1) =
V π(st)− Eπ[rt]

γ

In the following the value function estimate of a state s with

input features φ(s) is denoted by V π(φ(s)).
At time t the Prediction Model and the A3C Network

have experienced the same information. Thus, to be consistent

with each other, the value function of the predicted features

V π(φ̂(st+1)) should be consistent with the value function

V π(φ(st+1)) that is estimated only with information from

time t. Since this is not generally the case, we define a Value

Prediction Consistency (VPC) error as follows:

eVPC = V π

(
φ̂(st+1)

)
−

V π(φ(st))− Eπ[rt]

γ

Calculating the expected reward Eπ[rt] is usually not feasi-

ble, since only one action can be taken at each state. However,

when acting on policy π the reward rt that is obtained at every

step is an unbiased sample of the random variable rt. Thus,

rt is a reasonable approximation for Eπ[rt]. This yields:

eVPC ≈ V π

(
φ̂(st+1)

)
−

V π(φ(st))− rt

γ

This error can now be calculated at every iteration of

the A3C algorithm. Reducing eVPC of the value function

estimate increases its consistency with the Prediction Model.

An addition to this architecture that is able to calculate the

components of eVPC is shown in Figure 1 (green part).

In an environment where the agent encounters hardly any

rewards, there is little information to train a neural network to

estimate the value function. It is easier to train the Prediction

Model than to train the A3C Network in these cases, because

the Prediction Model may gain additional information with

every step. Value Prediction Consistency introduces additional

information for the A3C Network, which can benefit the

training. In practice this can be achieved by using eVPC as a

regularization term in the loss function. Since it is assumed that

the Prediction Model trains faster than the A3C Network, it

makes sense to backpropagate only through the A3C Network,

but not through the Prediction Model (as shown in Figure 1),

such that the A3C network learns from the Prediction Model

and not the other way around. Using the constant λVPC to

weight the regularization term, the loss function changes to

L = LA3C + LP + LVPC with LVPC = λVPC ∗ eVPC

V. EXPERIMENTS

In this section the algorithm described in Section IV is eval-

uated in different deterministic environments and compared to

other baseline algorithms.

A. Algorithms

In all algorithms the same Feature Extractor architecture is

used, which consists of 4 convolutional layers with 32 filters

each, a stride of 2 and 3x3 kernels. Between the layers an

ELU activation function [15] is used.

1) A3C: This is the basic implementation of the A3C

algorithm [5]. The output of the Feature Extractor φ(st) is fed

into an LSTM with 256 units. The value function V π(st) and

the action at are then estimated by separate fully connected

layers that use the output of the LSTM units as inputs.

2) PRED (ours): Additional to the A3C architecture, the

Prediction Model is used as described in Section III and

Figure 1 (blue part). The Forward and Inverse Model use the

same Feature Extractor as the A3C Network uses. For the

Forward Model two fully connected layers are used with φ(st)
and at as input and a ReLU activation function in between.

For the Inverse Model the features φ(st) and φ(st+1) are

calculated and then fed into a fully connected layer with a

ReLU activation function. On top of this layer another fully

connected layer is used after which a softmax is applied to

obtain an estimate of the probability distribution of action at.

3) ICM: The Internal Curiosity Module (ICM) was pro-

posed by [2] and is used for comparison. It is similar to PRED,

with the only difference being that the Prediction Model does

not share the Feature Extractor with the A3C Network. It uses

a duplicate of the Feature Extractor with different weights for

the Prediction Model.

4) VPC (ours): This is the architecture that is described in

Section IV and Figure 1. After calculating the value function

of st, the features of the prediction φ̂(st+1) are fed into the

LSTM of the A3C network to obtain V π

(
φ̂(st+1)

)
. To predict

V π

(
φ̂(st+1)

)
the LSTM is set to the state that it has after

estimating V π (φ(st)), i.e. first V π(φ(st)) is estimated and

then V π

(
φ̂(st+1)

)
. For the next step the LSTM is reset

to the state it had after calculating V π(st). This is done to

make sure that the value prediction does not interfere with

the A3C Network directly, but only through the loss function.

V π

(
φ̂(st+1)

)
is treated as a constant in the regularization

term, as described in Section IV.

B. Experiments on Grid World

One environment that is used for evaluation is a grid world.

The agent acts in a 2D maze with a top down view of the

surroundings. However, it does not see the whole maze, but

only a window of 10×30 points around itself. It has to navigate

the maze and arrive at a certain marked spot to obtain a reward

of 1. An episode ends either after a certain amount of steps

or if the agent arrives at the final reward. With every step

the agent takes it gets an extrinsic reward of −0.001, which

encourages finding the final reward as quickly as possible.

