
Online Graph Exploration on Trees,
Unicyclic Graphs and Cactus Graphs

Robin Fritsch∗

Abstract

We study the problem of exploring all vertices of an undirected weighted graph that is
initially unknown to the searcher. An edge of the graph is only revealed when the searcher
visits one of its endpoints. Beginning at some start node, the searcher’s goal is to visit every
vertex of the graph before returning to the start node on a tour as short as possible.

We prove that the Nearest Neighbor algorithm’s competitive ratio on trees with n vertices
is Θ(log n), i.e. no better than on general graphs. Furthermore, we examine the algorithm
Blocking for a range of parameters not considered previously and prove it is 3-competitive on
unicyclic graphs as well as 5/2 +

√
2 ≈ 3.91-competitive on cactus graphs. The best known

lower bound for these two graph classes is 2.

1 Introduction
Exploration and map construction problems arise in robotics when a robot is tasked with exploring
an unknown environment [2]. While moving around, the robot gathers information about its
surroundings and with this must decide how to proceed in its exploration. This problem can be
modeled as exploring an unknown graph.
We consider the fixed graph scenario, first introduced in [11], in which a connected undirected
graph G = (V,E) with n = |V | vertices is explored. Each edge e ∈ E has a positive weight
|e| and the graph contains a distinguished start node s ∈ V from which the searcher begins its
exploration. We assume that each vertex has an assigned unique identifier (ID). Upon arriving at
a vertex for the first time, the searcher obtains the weights of all edges incident to that vertex as
well as the IDs of all adjacent vertices. The searcher must visit every vertex of the graph before
finally returning to the start node.
To measure the performance of an online algorithm, we use competitive analysis which compares its
solution to the solution of the corresponding offline problem, in our case the traveling salesperson
problem. We call an online exploration algorithm c-competitive if it produces a tour no longer
than c times the optimal (offline) tour for every instance. The competitive ratio of an online
algorithm is defined as the infimum over all c such that the algorithm is c-competitive.
The best known algorithms on general graphs are Nearest Neighbor (NN) [15] and hierachical DFS
[12] both with a competitive ratio of Θ(logn). For NN this worst-case ratio is tight even on planar
unit-weight (unweighted) graphs [10]. In particular, no algorithm with constant competitive ratio
is known on general graphs. On the other hand, the best known lower bound on the competitive
ratio of an online algorithm has recently been improved from 2.5 [6] to 10/3 [3].

∗Technical University of Munich, Email: robin.fritsch@tum.de

1

Algorithms with constant competitive ratio are known for several restricted graph classes. The
Blocking algorithm, introduced as ShortCut [11] and reformulated due to a "precarious issue
in the formal implementation" [12], is known to be 16-competitive on planar graphs. Megow
et al. [12] also showed that Blocking has a constant competitive ratio on graphs with bounded
genus but not in general. Furthermore, they present a hierarchical generalization of DFS which is
2k-competitive on graphs with at most k distinct weights and use this to construct an algorithm
that is Θ(logn)-competitive on general graphs.
The problem was solved on cycles by Miyazaki et al. [13] who found an algorithm that achieves
the best possible competitive ratio on that graph class of (1 +

√
3)/2 ≈ 1.366. Furthermore, they

proved a general lower bound of 2 on unweighted graphs which DFS achieves on this graph class.
Brandt et al. [4] studied tadpole graphs (a cycle with a path attached to it) and showed that
NN is 2-competitive on them. Additionally, they extended Miyazaki’s lower bound example for
unweighted graphs [13] to tadpole graphs to prove this is also the best achievable competitive
ratio.

1.1 Our Results
We prove that the tight lower bound of Θ(logn) on the competitive ratio of NN also holds on trees
which improves the previous lower bound of Θ(logn/ log logn) [9]. We do so by modifying a graph
construction Hurkens and Woeginger [10] use to prove the lower bound on planar unit-weight
graphs.
Furthermore, we prove upper bounds for two more graph classes: For unicyclic graphs, i.e. graphs
that contain exactly one cycle, we prove that Blocking is 3-competitive. We achieve this by
examining the algorithm for a range of parameters which had not been considered previously.
This way, we also prove it to be 5/2 +

√
2 ≈ 3.91-competitive on cactus graphs, i.e. graphs in

which any two cycles have at most one vertex in common. The best known lower bound for these
two graph classes is 2.

1.2 Further Related Work
Some of the first formal models for exploration problems were introduced by Papadimitriou and
Yannakakis in [14] in which they search for the shortest path between two points in an unknown
environment. Following this, the problem of exploring an unknown graph was studied by Deng
and Papadimitriou [5], Albers and Henzinger [1] and Fleischer and Trippen [7]. They worked
with strongly connected directed graphs and the premise that all vertices as well as all edges of
the graph are required to be explored. Our setting in which only all vertices have to be visited
has also been studied on directed graphs by Förster and Wattenhofer [8] who proved upper and
lower bounds on the best-possible competitive ratio linear in the number of vertices.

2 Nearest Neighbor on Trees
On general graphs, the Nearest Neighbor algorithm is Θ(logn)-competitive [15]. We will prove
that this bound is tight even for the simple graph class of trees. To do so, we modify a construction
Hurkens and Woeginger [10] use to prove the tightness of the bound for unweighted planar graphs.
Instead of considering a path of triangles, as they do, we construct a path with unit length edges
(spikes) attached to it.
We recursively define graphs Gk for k ≥ 1 containing three distinguished vertices lk, rk and mk

(see Figure 1). The graph G1 simply consists of the two unit length edges l1r1 and r1m1. For
k ≥ 2, we construct Gk by placing two copies G′k−1 and G′′k−1 of Gk−1 next to each other and,

2

2 23l3 = l′2 r′2 l′′2 r3 = r′′2

m′2 m3 m′′2

Figure 1: The graph G3

in the middle, adding a new vertex mk. To connect the components, we add an edge of length
k between r′k−1 and l′′k−1 as well as a unit weight edge between l′′k−1 and mk. Finally, we set
lk = l′k−1 and rk = r′′k−1. Let pk be the length of the shortest path from lk to rk in Gk. Since
p1 = 1 and pk = 2pk−1 + k for k ≥ 2, a simple induction shows that pk = 2k+1 − k − 2.

Lemma 2.1. For k ≥ 1, consider a graph G that contains Gk as a subgraph. Furthermore,
assume that edges between Gk and G−Gk are either incident to lk and have a length of at least
1 or are incident to rk and have a length of at least k + 1.
Then there exists a partial NN tour exploring all of Gk that starts in lk, finishes in mk and has a
length of (k + 1)2k − 2.

Proof. We prove this by induction on k. For k = 1 the tour from l1 to r1 to m1 satisfies all
conditions. For k ≥ 2, assume that NN resides in lk = l′k−1. Note that both G′k−1 and G′′k−1 as
subgraphs of G satisfy all conditions from the lemma. Therefore, by the induction hypothesis,
NN may next explore all of G′k−1 on a tour of length k2k−1 − 2 ending up in m′k−1. From
m′k−1, the shortest path to any vertex of G−Gk includes lk = l′k−1 and has a length of at least
1 + (k − 1) + pk−2 + 1. Since the distance to l′′k−1 is 1 + pk−2 + k, NN may visit l′′k−1 next. (This
argument also holds for k = 2 with p0 = 0 since we can already start the recursive construction
at G0 consisting of a single vertex l0 = r0 = m0.) Again by the induction hypothesis, NN may
next explore all of G′′k−1 finishing in m′′k−1. At this point, the shortest path from m′′k−1 to any
vertex of G−Gk includes either rk = r′′k−1 or lk = l′k−1. In the former case, the shortest path
has a length of at least 1 + pk−2 + (k + 1). In the latter case, the length of the shortest path is at
least 3k+ 3pk−2 > k+ 2 + pk−2. With mk only being at a distance of 1 + (k− 1) + pk−2 + 1, NN
will visit this vertex next. The total length of the tour taken by NN from lk to mk is

2
(
k2k−1 − 2

)
+ 2 (pk−2 + k + 1) = (k + 1)2k − 2.

Theorem 2.2. The competitive ratio of NN on trees is Θ(logn).

Proof. The upper bound follows directly from the general case [15]. For the lower bound, consider
Gk and let lk be the start node. Then NN explores Gk on the tour described in Lemma 2.1 and,
finally, returns from mk to lk. Hence,

NN(Gk) = (k + 1)2k − 2 + 1 + k + pk−1 = (k + 2)2k − 2

On the other hand, let wk be the total weight of Gk. Then OPT(Gk) = 2wk = 6 · 2k − 2k − 6,
which follows from w1 = 2 and wk = 2wk−1 + k+ 1 for k ≥ 2. Finally, it is easy to see inductively
that Gk has n = 2k+1 − 1 vertices which implies k + 1 = log(n+ 1). This proves

NN(Gk)
OPT(Gk) = (k + 2)2k − 2

6 · 2k − 2k − 6 ≥
k + 2

6 = log(n+ 1) + 1
6 .

3

3 Blocking on Unicyclic Graphs and Cactus Graphs
The algorithm Blockingδ is a generalization of DFS [12]. It uses a blocking condition which,
depending on a fixed blocking parameter δ ∈ R, determines when to delay the traversal of an edge,
possibly forever.

Definition 3.1 (Boundary edge). During the exploration, we call an edge a boundary edge when
one of its endpoints has been visited while the other has not.

Whenever we define a boundary edge in the form e = (u, v), the first vertex (in this case u) has
been visited while the second has not.

Definition 3.2 (Blocking condition). A boundary edge e = (u, v) is blocked by another boundary
edge e′ = (u′, v′) if e′ is shorter than e and the length of any shortest path from u to v′ is at most
(1 + δ)|e|.

Algorithm 1: The exploration algorithm Blockingδ(G, y) as in [12]
Input: A partially explored graph G, and a vertex y of G that is explored for the first

time.
1 while there is an unblocked boundary edge e = (u, v), with u explored and v unexplored,

such that u = y or such that e had previously been blocked by some edge (u′, y) do
2 walk a shortest known path from y to u
3 traverse e = (u, v)
4 Blockingδ(G, v)
5 walk a shortest known path from v to y
6 end while

In [11] and [12] the algorithm is considered only for blocking parameters δ > 0. We also examine
it for −1 < δ ≤ 0. Note that for δ ≤ −1 the blocking condition will never be satisfied, implying
that Blocking−1 is simply DFS.
Arguing that the algorithm actually explores the whole graph for the new parameter range works
just as for δ > 0 in [12]. Let G be the graph to be explored. It is clear that the algorithm
terminates since a new vertex is explored in every iteration of the while loop. Suppose not all
vertices have been visited after the termination of the algorithm and let e = (u, v) be a shortest
boundary edge at that time. Since no shorter boundary edge exists, e is not blocked. However,
the edge must have been blocked at some point, as otherwise it would have been explored during
the call of Blockingδ(G, u). Assume e became unblocked for the last time through the traversal of
the edge (x, y). But that means e should have been traversed during the call of Blockingδ(G, y)
which is a contradiction.
On planar graphs, Blockingδ is 2(2 + δ)(1 + 2/δ)-competitive for δ > 0 and in particular 16-
competitive for δ = 2 [12]. Like in that proof we charge the costs of the algorithms actions to
the edges of the explored graph. Let Bδ be the cost of Blockingδ, i.e. the sum of charges to all
edges. For each iteration of the while loop, the costs of the movements described in the Lines 2, 3
and 5 are charged to the edge traversed in Line 3. Note that only unblocked boundary edges
are charged this way and, in particular, every edge will be charged at most once. Moreover, the
following holds.

Lemma 3.3. Every edge e that is charged, is charged at most (4 + 2δ)|e|.

Proof. If the algorithm resides at u before traversing an edge e = (u, v) in Line 3, the action in
Line 2 will incur no cost and e will be charged with at most 2|e|. Otherwise, if e was previously

4

blocked by an edge (u′, y), the blocking condition implies that d(u, y) ≤ (1 + δ)|e|. Therefore, the
edge e will be charged at most (1 + δ)|e|, |e| and (2 + δ)|e| by the movements described in the
Lines 2, 3 and 5, respectively.

Definition 3.4. We call an edge contained in a cycle a long edge if it is longer than half the
total length of that cycle.

Lemma 3.5. Let C be a cycle contained in some graph and let e be a long boundary edge on C
which is not blocked. Then

|e| < 1
1 + δ

(|C| − |e|).

In particular, long boundary edges are always blocked for δ > 0.

Proof. Let e = (u, v). At the time e is a boundary edge, another boundary edge on C exists. Let
e′ = (u′, v′) be the first boundary edge on C encountered when traversing C − e from u to v.
Since e is a long edge it is longer than e′. In order for e not to be blocked by e′ we must have
(1 + δ)|e| < d(u, v′) ≤ |C| − |e|.
For δ > 0, the fact that e is not blocked implies |e| < |C| − |e| which contradicts the definition of
a long edge.

Since a cactus graph only contains edge disjoint cycles, it is easy to see that its optimal tour can
be characterized in a similar way to cycles.

Lemma 3.6. The optimal tour of a cactus graph traverses all edges which are not contained in a
cycle twice. Furthermore, in cycles which contain a long edge all but the long edge are traversed
twice while otherwise every edge in the cycle is traversed once.

In the following we will prove the previously stated upper bounds on the competitive ratio of
Blockingδ on unicyclic graphs and on cactus graphs. For unicyclic graphs, we also prove the bound
to be tight. Finally, we prove that for δ ≤ 0 the competitive ratio of Blockingδ on planar graphs
is in Ω(n), i.e. considering the new parameter range for that graph class is not advantageous.

Theorem 3.7. On unicyclic graphs, Blockingδ is (4 + 2δ)-competitive for δ > 0 and
max

(
4 + 2δ, 3 + δ2+δ/2

1+δ

)
-competitive for δ ≤ 0. In particular, the algorithm is 3-competitive

for δ = − 1
2 .

Proof. Let G be a unicyclic graph containing a cycle C. By Lemma 3.3, all edges of G are charged
at most 4 + 2δ times their length. On the other hand, the optimal tour will traverse all edges in
G that are not long at least once according to Lemma 3.6. Since long edges are not charged for
δ > 0 by Lemma 3.5, Blockingδ is (4 + 2δ)-competitive in this case.
For δ ≤ 0 however, a long edge may also be charged. Should C not contain a long edges or should
the long edge in C not be charged, it follows just as for δ > 0 that the competitive ratio is at
most 4 + 2δ.
Otherwise, let e = (u, v) be the long edge in C which is traversed from u to v when it is charged.
At the time e is charged there exists a second boundary edge on C which we call e′ = (u′, v′).
Furthermore, let y be the position the algorithm resides at directly before moving to u and
traversing e. Let P be the path from y to C which is unique in G (see Figure 2). Note that
P ⊆ G \ C and in particular |P | ≤ |G \ C|. The fact that no edge of P is contained in a cycle is
the crucial difference to the case of cactus graphs examined later.
We show that after Blockingδ(G, v) has been executed all edges on C have been revealed. Suppose
the opposite is true and let G0 be the known subgraph of G after the call of Blockingδ(G, v) has

5

P

y

u

e

v

e′′

Figure 2: Exploring a unicyclic graph

been executed. Furthermore, let S be the induced subgraph of all vertices in G0 that can be
reached from v without traversing e.
Let e′′ be a shortest boundary edge in S. The situation is shown in Figure 2 where blank nodes
represent unvisited nodes and the edges of S are indicated by thick lines. Since S contains a
boundary edge on C which is shorter than e, the edge e′′ must also be shorter than e. That
implies that e′′ cannot be blocked by any boundary edge outside of S because the distance to
such an edge is larger than |e| > (1 + δ)|e| > (1 + δ)|e′′|. By definition there also exists no smaller
boundary edge than e′′ in S that could block it. So e′′ is not blocked after Blockingδ(G, v) has
been executed. However, this leads to a contradiction since e′′ should have been traversed during
the call Blockingδ(G, v) either after it was detected if it was not blocked then or otherwise later
when it became unblocked.
So since C will be fully revealed when Blockingδ returns from v to y, the algorithm will not
traverse e a second time but instead take the shorter way around the cycle. The charge to e is
therefore exactly |C|+ 2|P |. Since e is a long edge that was traversed, we can apply Lemma 3.5
and conclude

Bδ ≤ (4 + 2δ)|G \ C|+ (4 + 2δ)(|C| − |e|) + |C|+ 2|P |
≤ 2(3 + δ)|G \ C|+ (5 + 2δ)(|C| − |e|) + |e|

≤ 2(3 + δ)|G \ C|+ 2
(

3 + δ2 + δ/2
1 + δ

)
(|C| − |e|).

On the other hand, OPT = 2|G \ C|+ 2(|C| − |e|). Since δ ≤ (δ2 + δ/2)/(1 + δ) for δ ≤ 0, we
have established the proposed upper bound.

Theorem 3.8. On unicyclic graphs, Blockingδ has a competitive ratio of at least (4 + 2δ) for
δ > 0 and of at least max

(
4 + 2δ, 3 + δ2+δ/2

1+δ

)
for δ ≤ 0.

Proof. Consider the graph in Figure 3 which we call a spiked path SPm for some m ∈ N. Choose
k = d1 + δe+ 1 which implies k > 1 + δ. The graph contains a path from the entry node (the
leftmost node in the figure) to the exit node (the rightmost node). This path is made up of a
unit length entry edge followed by mk edges of length 1/k and finally m edges l1, . . . , lm, where
|li| = (i+

∑i−1
j=1 |lj |)/(1 + δ). Additionally, the spikes s1, . . . , sm, each of length 1/k, are attached

to the path as shown in Figure 3. The spike s1 is at a distance of 1 − 1/k from l1 while the
distance between si and si−1 is 1 for i ≥ 2.

6

1 1
k

sm

1

sm−1 s2

1

s1

1− 1
k

l1 lm

Figure 3: The spiked path SPm (Dashed lines indicate paths consisting of edges of length 1/k.)

The spiked path will later be a subgraph of a larger graph and will only be connected to other
parts of the graph by edges incident to the entry or exit node. Assume that Blockingδ enters
SPm by traversing the entry edge at a point in time when the exit node is still unseen. We will
prove that the edges l1, . . . , lm are each charged 4 + 2δ times their length and that their total
length dominates the total length of the remaining edges in the graph for large m.
Suppose that Blockingδ, after traversing the entry edge, continues along the path up to l1 without
exploring any of the spikes on the way. The length of l1 has been chosen such that the unexplored
tip of s1 is now at a distance of exactly (1 + δ)|l1|, implying that l1 is blocked by s1. So the
algorithm backtracks and traverses s1. Since this unblocks l1, the algorithm now walks to l1 and
traverses it, which together costs (2 + δ)|l1|. Since l2 is now blocked by s2 the algorithm returns
to the tip of s1, which again costs (2 + δ)|l1|. Next it will traverse s2 which unblocks l2 and the
process repeats. So for i = 1, . . . ,m− 1 the edge li is charged exactly (4 + 2δ)|li|.
For lm this is also true if a shortest path from the exit node to the entry node when considering
the whole graph is contained in the subgraph SPm. This ensures that the return from lm to the
tip of sm costs (2 + δ)|lm|. In this case we say that there is no shortcut outside SPm. Otherwise,
the edge lm is nevertheless charged at least (2 + δ)|lm|.
It can be easily verified that no edges in SPm apart from the entry edge can be blocked
by a boundary edge outside SPm. Finally, the fact that |li| ≥ i/(1 + δ) for i = 1, . . . ,m
implies that

∑m
i=1 |li| ∈ Ω(m2). Meanwhile, the lengths of all other edges of SPm add up to

1 +m(1 + 1/k) ∈ O(m).
For both the cases δ > 0 and δ ≤ 0 consider the graph made up of two spiked paths SP (1)

m and
SP

(2)
m which are connected as shown in the left of Figure 4. The arrows indicate the direction

from entry to exit node.

1

1
s

1

1SP
(1)
m

SP
(2)
m

1

1
s

SPm

Figure 4: Lower bound constructions for unicyclic graphs

Assume Blockingδ chooses to enter SP (1)
m through its entry edge in its first step. It will then

completely explore SP (1)
m before traversing the two unit length edges and entering SP (2)

m through
its entry edge. Subsequently, it completely explores SP (2)

m . Hence, Bδ ≥ 2(4 + 2δ)
∑m
i=1 |li| since

there are not shortcuts outside SP (1)
m or SP (2)

m . On the other hand, OPT = 2
∑m
i=1 |li|+O(m).

This implies that the ratio Bδ/OPT comes arbitrarily close to 4 + 2δ from below when we choose
m sufficiently large.
In order to prove the second part of the lower bound for δ ≤ 0 consider the spiked path SPm
connected into a cycle as shown in the right of Figure 4. Assume that Blockingδ chooses to
traverse the entry edge of SPm as its first step and then consequently explores the whole of SPm.

7

Note that in this graph there is a shortcut outside SPm, implying that lm will only be charged at
least (2 + δ)|lm|. Hence,

Bδ ≥ (4 + 2δ)
m−1∑
i=1
|li|+ (2 + δ)|lm| ≥ 2

(
3 + δ2 + δ/2

1 + δ

)m−1∑
i=1
|li|

which follows from |lm| >
∑m−1
i=1 |li|/(1+δ). Finally, OPT = 2

∑m−1
i=1 |li|+O(m) and

∑m−1
i=1 |li| ∈

Ω(m2) prove the desired lower bound.

Theorem 3.9. On cactus graphs, Blockingδ is (4 + 2δ)-competitive for δ > 0 and
(

4 + δ2+δ/2
1+δ

)
-

competitive for δ ≤ 0. In particular, the algorithm is 5
2 +
√

2 ≈ 3.91-competitive for δ = 1√
2 − 1 ≈

−0.29.
Proof. For δ > 0 the proof works just as for unicyclic graphs. Let δ ≤ 0 and consider a cycle
C in a cactus graph. Assume C contains a long edge e = (u, v) that is traversed from u to v
when it is charged. Analogously to unicyclic graphs we know that after Blockingδ(G, v) has
been executed the cycle C is fully revealed. It is then possible to traverse C − e instead of e
when returning from v to the previously explored vertex. Hence, the edge e is charged at most
(1 + δ)|e|+ |e|+ |C| − |e|+ (1 + δ)|e|. Let Bδ(C) denote the sum of charges made to edges of C.
Using Lemma 3.5 we conclude

Bδ(C) ≤ (4 + 2δ)(|C| − |e|) + (2 + 2δ)|e|+ |C|
≤ (5 + 2δ)(|C| − |e|) + (3 + 2δ)|e|

≤ 2
(

4 + δ2 + δ/2
1 + δ

)
(|C| − |e|).

Let e1, . . . , ek be the long edges in G which are charged and let C1, . . . , Ck be the cycles they are
contained in, respectively. Let G′ be the graph G excluding all edges in C1, . . . , Ck and excluding
all other long edges which are not charged. Then OPT ≥ |G′| +

∑k
i=1 2(|Ci| − |ei|) because

according to Lemma 3.6 all edges of the graph which are not long are traversed at least once by
the optimal tour. Furthermore, the bound on Bδ(C) yields

Bδ ≤ (4 + 2δ)|G′|+
(

4 + δ2 + δ/2
1 + δ

) k∑
i=1

2(|Ci| − |ei|).

This proves the proposed competitiveness since 2δ ≤ δ2+δ/2
1+δ for δ ≤ 0.

Theorem 3.10. On planar graphs, the competitive ratio of Blockingδ is in Ω(n) for δ ≤ 0.
Proof. Let m ∈ N and consider the graph in Figure 5. It contains a path of m unit length edges
between the start node s and the node p. Additionally, there are further m paths connecting s
and p each of which consists of two unit length edges and one edge of length m in this order. So
the graph contains n = 3m+ 1 vertices in total.
Suppose Blockingδ begins its exploration by traversing the path of unit length edges from s to
p. When it resides at p, all m edges of length m are unblocked since the distance from p to the
unexplored vertex of any unit length boundary edges is m+ 1 > (1 + δ)m. So the algorithm will
successively traverse each edge of length m as well as the following unit length edge on the path.
This implies Bδ ≥ 2m2. On the other hand, the length of the optimal tour is 6m. Thus,

Bδ
OPT

≥ 1
3m ≥

1
12n.

8

s pm× 1

1

1

m

...

Figure 5: Planar lower bound example for δ ≤ 0

Acknowledgements
I would like to thank Prof. Dr. Susanne Albers for suggesting the topic of and supervising the
master’s thesis, the main findings of which are presented in this paper. Furthermore, I would like
to thank the anonymous reviewers for their helpful comments and suggestions, in particular, for
pointing out a simpler graph construction for the lower bound on trees.

References
[1] S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Comput.,

29(4):1164–1188, Feb. 2000.

[2] P. Berman. On-line searching and navigation. In Developments from a June 1996 Seminar
on Online Algorithms: The State of the Art, pages 232–241, Berlin, Heidelberg, 1998.
Springer-Verlag.

[3] A. Birx, Y. Disser, A. V. Hopp, and C. Karousatou. Improved lower bound for competitive
graph exploration, 2020.

[4] S. Brandt, K.-T. Foerster, J. Maurer, and R. Wattenhofer. Online graph exploration on a
restricted graph class: Optimal solutions for tadpole graphs. Theoretical Computer Science,
839:176 – 185, 2020.

[5] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In Proceedings of the 31st
Annual Symposium on Foundations of Computer Science, SFCS ’90, pages 355–361 vol. 1,
Washington, DC, USA, 1990. IEEE Computer Society.

[6] S. Dobrev, R. Královič, and E. Markou. Online graph exploration with advice. In G. Even
and M. M. Halldórsson, editors, Structural Information and Communication Complexity,
pages 267–278, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[7] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In G. S. Brodal and
S. Leonardi, editors, Algorithms – ESA 2005, pages 11–22, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[8] K.-T. Förster and R. Wattenhofer. Directed graph exploration. In R. Baldoni, P. Flocchini,
and R. Binoy, editors, Principles of Distributed Systems, pages 151–165, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[9] M. Herlihy, S. Tirthapura, and R. Wattenhofer. Competitive concurrent distributed queuing.
In Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed

9

Computing, PODC ’01, page 127–133, New York, NY, USA, 2001. Association for Computing
Machinery.

[10] C. Hurkens and G. Woeginger. On the nearest neighbor rule for the traveling salesman
problem. Oper. Res. Lett., 32:1–4, 01 2004.

[11] B. Kalyanasundaram and K. Pruhs. Constructing competitive tours from local information.
Theoretical Computer Science, 130(1):125–138, 1994.

[12] N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New results on old
and new algorithms. Theoretical Computer Science, 463:62–72, 2012.

[13] S. Miyazaki, N. Morimoto, and Y. Okabe. The online graph exploration problem on restricted
graphs. IEICE Transactions, 92-D(9):1620–1627, 2009.

[14] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical
Computer Science, 84(1):127 – 150, 1991.

[15] D. J. Rosenkrantz, R. E. Stearns, and P. M. Levis. An analysis of several heuristicss for the
traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977.

10

