
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

 Distributed Algorithms
Tutorial

Distributed
Algorithms

Message
Passing

Shared
Memory

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes





11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

• Traditional (sequential) computation:
The simple greedy algorithm finds MIS (in linear time)

69

17

11

10 7

What about a Distributed Algorithm?

• Nodes are agents with unique ID’s that can communicate with neighbors
by sending messages. In each synchronous round, every node can send a
(different) message to each neighbor.

69

17

11

10 7

What about a Distributed Algorithm?

• Nodes are agents with unique ID’s that can communicate with neighbors
by sending messages. In each synchronous round, every node can send a
(different) message to each neighbor.

69

17

11

10 7

A Simple Distributed Algorithm

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

69

17

11

10 7

A Simple Distributed Algorithm

69

17

11

10 7

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

A Simple Distributed Algorithm

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What’s the problem with this distributed algorithm?

69

17

11

10 7

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS  join MIS

• What if we have minor changes?

• Proof by animation: In the worst case, the algorithm is slow (linear in the
number of nodes). In addition, we have a terrible „butterfly effect“.

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

What about a Fast Distributed Algorithm?

• Can you find a distributed algorithm that is polylogarithmic in the number
of nodes n, for any graph?

69

17

11

10 7

69 17 11 10 7 4 3 1

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

69

17

21

10 7

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

69

17

21

10 7

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

• How many synchronous rounds does this take in expectation (or whp)?

69

17

21

10 7

Analysis

• Event (𝑢 → 𝑣) : node 𝑢 got largest random value
in combined neighborhood 𝑁𝑢 ∪ 𝑁𝑣.

• We only count edges of 𝑣 as deleted.

• Similarly event (𝑣 → 𝑢) deletes edges of 𝑢.

• We only double-counted edges.

• Using linearity of expectation, in expectation
at least half of the edges are removed in each round.

• In other words, whp it takes 𝑂(log 𝑛) rounds to compute an MIS.

𝑢 𝑣

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009] Naïve Algo

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Local Algorithms

• Each node can exchange a message with all neighbors, for t
communication rounds, and must then decide.

• Or: Given a graph, each node must determine its decision as a function of
the information available within radius t of the node.

• Or: Change can only affect nodes up to distance t.

• Or: …

v

Local
Algorithms

Locality

Sublinear
Algorithms

Local
Algorithms

Locality is Everywhere!

Self-
Stabilization

Dynamics

Self-
Assembling

Robots

Sublinear
Algorithms

Applications
e.g. Multicore

Local
Algorithms

Locality is Everywhere!

Self-
Stabilization

Dynamics

Self-
Assembling

Robots

Sublinear
Algorithms

Applications
e.g. Multicore

[Afek, Alon, Barad, et al., 2011]

What about an Even Faster Distributed Algorithm?

• Since the 1980s, nobody was able to improve this simple algorithm.

• What about lower bounds?

• There is an interesting lower bound, essentially using a Ramsey theory
argument, that proves that an MIS needs at least Ω(log*n) time.

– log* is the so-called iterated logarithm – how often you need to take the
logarithm until you end up with a value smaller than 1.

– This lower bound already works on simple networks such as the linked list

• Build graph 𝐺𝑡, where nodes are possible views of nodes for distributed
algorithms of time 𝑡. Connect views that could be neighbors in ring.

• Here is for instance of 𝐺1:

• Chromatic number of 𝐺𝑡 is exactly minimum possible colors in time 𝑡.

Coloring Lower Bound on Oriented Ring

2 3 6

1 2 3 4 2 3

3 6 7 3 6 9

• Build graph 𝐺𝑡, where nodes are possible views of nodes for distributed
algorithms of time 𝑡. Connect views that could be neighbors in ring.

• Here is for instance of 𝐺1:

• Chromatic number of 𝐺𝑡 is exactly minimum possible colors in time 𝑡.

Coloring Lower Bound on Oriented Ring

2 3 6

1 2 3

3 6 7 3 6 9

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009] Naïve Algo

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)
Other problems
e.g., [Kuhn et al., 2006]

e.g., covering/packing
LPs with only local
constraints: constant
approximation in time
𝑂(log 𝑛) or 𝑂(log2 Δ)

e.g., coloring, CDS,
matching, max-min
LPs, facility location

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)
Other problems
e.g., [Kuhn et al., 2006]

General Graphs
[Kuhn et al., 2004, 2006]

e.g., covering/packing
LPs with only local
constraints: constant
approximation in time
𝑂(log 𝑛) or 𝑂(log2 Δ)

e.g., coloring, CDS,
matching, max-min
LPs, facility location

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.

• Find a Minimum Vertex Cover (MVC)

– a minimum set of nodes such that all edges are adjacent to node in MVC

69

17

11

10 7

Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.

• Find a Minimum Vertex Cover (MVC)

– a minimum set of nodes such that all edges are adjacent to node in MVC

69

17

11

10 7

Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.

• Find a Minimum Vertex Cover (MVC)

– a minimum set of nodes such that all edges are adjacent to node in MVC

69

17

11

10 7

Differences between MIS and MVC

• Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard

• Instead: Find an MVC that is “close” to minimum (approximation)

• Trade-off between time complexity and approximation ratio

• MVC: Various simple (non-distributed) 2-approximations exist!

• What about distributed algorithms?!?

69

17

11

10 7

𝑆1

Finding the MVC (by Distributed Algorithm)

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1

• The MVC is just all the nodes in 𝑆1

• Distributed Algorithm…

𝑆0

𝑆1

Finding the MVC (by Distributed Algorithm)

𝑆0

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1

• The MVC is just all the nodes in 𝑆1

• Distributed Algorithm…

𝑆1

Finding the MVC (by Distributed Algorithm)

𝑆0

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1

• The MVC is just all the nodes in 𝑆1

• Distributed Algorithm…

𝑆1

𝑆0

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1)

𝑆1

𝑆0

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) Graph is “symmetric”,
yet highly non-regular!

Lower Bound: The Argument

• The example graph is for t = 3.

• All edges are in fact special bipartite graphs
with large enough girth.

• If you use the graph of recursion level t, then a distributed algorithm
cannot find a good MVC approximation in time t.

Lower Bound: The Math

• Choose degrees 𝛿𝑖 such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1 nodes on level 1

Lower Bound: The Math

• Choose degrees 𝛿𝑖 such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1 nodes on level 1

• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0.

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡.

Lower Bound: The Math

• Choose degrees 𝛿𝑖 such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1 nodes on level 1

• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0.

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡.

Graph useful for proving lower
bounds in sublinear algos?

Lower Bound: Results

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least

• Constant approximation needs at least Ω(log Δ) and Ω(log 𝑛) time.

• Polylog approximation Ω(log Δ/ log log Δ) and Ω(log 𝑛/ log log 𝑛).

𝑡 𝑡

Lower Bound: Results

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least

• Constant approximation needs at least Ω(log Δ) and Ω(log 𝑛) time.

• Polylog approximation Ω(log Δ/ log log Δ) and Ω(log 𝑛/ log log 𝑛).

𝑡 𝑡

tight for MVC

Lower Bound: Reductions

• Many “local looking” problems need non-trivial t, in other words, the

bounds Ω(log Δ) and Ω(log 𝑛) hold for a variety of classic problems.

Lower Bound: Reductions

• Many “local looking” problems need non-trivial t, in other words, the

bounds Ω(log Δ) and Ω(log 𝑛) hold for a variety of classic problems.

line graph

cloning

MVC through MM

line graph

Results: MIS

1 log∗ 𝑛 log 𝑛 … log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)
Other problems
e.g., [Kuhn et al., 2006]

General Graphs
[Kuhn et al., 2004, 2006]

e.g., covering/packing
LPs with only local
constraints: constant
approximation in time
𝑂(log 𝑛) or 𝑂(log2 Δ)

e.g., coloring, CDS,
matching, max-min
LPs, facility location

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Summary

1 log*n log 𝑛 … log 𝑛 Diameter

MIS, maximal
matching, etc.

Growth-Bounded Graphs
(various problems)

MST, Sum,
etc.

Approximations of
dominating set,
vertex cover, etc.

Covering and
packing LPs E.g., dominating

set approximation
in planar graphs

Thank You!
Questions & Comments?

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAA

Thanks to my co-authors
Fabian Kuhn
Thomas Moscibroda
Johannes Schneider www.disco.ethz.ch

Open Problems

• Close the gap between log 𝑛 and log 𝑛 (for randomized algorithms)!

• Find a fast deterministic MIS algorithm (or strong det. lower bound)!

• Where are the boundaries between constant, log*, log, and diameter?

• What about algorithms that cannot even exchange messages?

• Can the lower bound graph be used in the context of sublinear
algorithms?

