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Example: Maximal Independent Set (MIS) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Maximal Independent Set (MIS) 

– a non-extendable set of pair-wise non-adjacent nodes 
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• Given a network with n nodes, nodes have unique IDs. 

• Find a Maximal Independent Set (MIS) 

– a non-extendable set of pair-wise non-adjacent nodes 

 

 

 

 

 

 

 

 

 

 

 

• Traditional (sequential) computation:  
The simple greedy algorithm finds MIS (in linear time) 
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What about a Distributed Algorithm? 

 

• Nodes are agents with unique ID’s that can communicate with neighbors 
by sending messages. In each synchronous round, every node can send a 
(different) message to each neighbor. 
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A Simple Distributed Algorithm 

 

• Wait until all neighbors with higher ID decided 

• If no higher ID neighbor is in MIS  join MIS 
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• What’s the problem with this distributed algorithm? 
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Example 

 

• Wait until all neighbors with higher ID decided 

• If no higher ID neighbor is in MIS  join MIS 

 

 

 

 

• What if we have minor changes? 

 

 

 

 

 

• Proof by animation: In the worst case, the algorithm is slow (linear in the 
number of nodes). In addition, we have a terrible „butterfly effect“. 
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What about a Fast Distributed Algorithm? 

 

• Can you find a distributed algorithm that is polylogarithmic in the number 
of nodes n, for any graph? 
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What about a Fast Distributed Algorithm? 

 

• Surprisingly, for deterministic distributed algorithms, this is an  
open     problem! 

 

• However, randomization helps! In each synchronous round, nodes should 
choose a random value. If your value is larger than the value of your 
neighbors, join MIS! 
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• How many synchronous rounds does this take in expectation (or whp)? 
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Analysis 

• Event (𝑢 → 𝑣) : node 𝑢 got largest random value 
in combined neighborhood 𝑁𝑢 ∪ 𝑁𝑣. 

• We only count edges of 𝑣 as deleted. 

 

 

 

 

 

 

• Similarly event (𝑣 → 𝑢) deletes edges of 𝑢. 

• We only double-counted edges. 

• Using linearity of expectation, in expectation 
at least half of the edges are removed in each round. 

• In other words, whp it takes 𝑂(log 𝑛) rounds to compute an MIS. 

 

 

 

𝑢 𝑣 



Results: MIS 

1          log∗ 𝑛                log 𝑛                𝑛𝜖                                𝑛
                     
  

General Graphs, Randomized 
[Alon, Babai, and Itai, 1986] 
[Israeli and Itai, 1986] 
[Luby, 1986] 
[Métivier et al., 2009] Naïve Algo 

Decomposition, Determ. 
[Awerbuch et al., 1989]  
[Panconesi et al., 1996] 



Local Algorithms 

 

• Each node can exchange a message with all neighbors, for t 
communication rounds, and must then decide. 

• Or: Given a graph, each node must determine its decision as a function of 
the information available within radius t of the node. 

• Or: Change can only affect nodes up to distance t.  

• Or: … 
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[Afek, Alon, Barad, et al., 2011] 



What about an Even Faster Distributed Algorithm? 

 

• Since the 1980s, nobody was able to improve this simple algorithm. 

 

• What about lower bounds? 

 

• There is an interesting lower bound, essentially using a Ramsey theory 
argument, that proves that an MIS needs at least Ω(log*n) time. 

– log* is the so-called iterated logarithm – how often you need to take the 
logarithm until you end up with a value smaller than 1. 

– This lower bound already works on simple networks such as the linked list 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



• Build graph 𝐺𝑡, where nodes are possible views of nodes for distributed 
algorithms of time 𝑡. Connect views that could be neighbors in ring.  

• Here is for instance of 𝐺1:  

 

 

 

 

 

 

 

 

 

 

 

• Chromatic number of 𝐺𝑡 is exactly minimum possible colors in time 𝑡. 
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Example: Minimum Vertex Cover (MVC) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Minimum Vertex Cover (MVC) 

– a minimum set of nodes such that all edges are adjacent to node in MVC 
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Differences between MIS and MVC 

 

• Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard 

• Instead: Find an MVC that is “close” to minimum (approximation) 

• Trade-off between time complexity and approximation ratio  

 

 

 

 

 

 

 

 

 

• MVC: Various simple (non-distributed) 2-approximations exist! 

• What about distributed algorithms?!? 
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𝑆1 

Finding the MVC (by Distributed Algorithm) 

 

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1  

• The MVC is just all the nodes in 𝑆1 

• Distributed Algorithm… 

𝑆0 
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• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1  

• The MVC is just all the nodes in 𝑆1 

• Distributed Algorithm… 



𝑆1 

𝑆0 

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1 

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) 



𝑆1 

𝑆0 

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1 

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) Graph is “symmetric”,  
yet highly non-regular! 



Lower Bound: The Argument 

 

• The example graph is for t = 3. 

• All edges are in fact special bipartite graphs 
with large enough girth. 

 

 

 

 

 

 

 

 

 

• If you use the graph of recursion level t, then a distributed algorithm 
cannot find a good MVC approximation in time t.  



Lower Bound: The Math 
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• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1  nodes on level 1 
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• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0. 

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡. 
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• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0. 

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡. 

Graph useful for proving lower 
bounds in sublinear algos? 



Lower Bound: Results 

 

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least 

 

 

 

 

 

 

 

• Constant approximation needs at least Ω(log Δ) and Ω( log 𝑛) time. 

• Polylog approximation Ω(log Δ/ log log Δ) and Ω( log 𝑛/ log log 𝑛). 
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Lower Bound: Reductions 

 

• Many “local looking” problems need non-trivial t, in other words, the 

bounds Ω(log Δ) and Ω( log 𝑛) hold for a variety of classic problems. 
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MVC through MM 

line graph 



Results: MIS 

1          log∗ 𝑛 log 𝑛 … log 𝑛                𝑛𝜖                                𝑛

                     
  

Linked List 
[Linial, 1992] 

General Graphs, Randomized 
[Alon, Babai, and Itai, 1986] 
[Israeli and Itai, 1986] 
[Luby, 1986] 
[Métivier et al., 2009] 

Linked List, Deterministic 
[Cole and Vishkin, 1986] 
 

Growth-Bounded Graphs 
[Schneider et al., 2008] 
 

|𝐼𝑆 𝑁2 | ∈ 𝑂(1) 
Other problems 
e.g., [Kuhn et al., 2006] 

General Graphs 
[Kuhn et al., 2004, 2006] 

e.g., covering/packing 
LPs with only local 
constraints: constant 
approximation in time 
𝑂(log 𝑛) or 𝑂(log2 Δ) 

e.g., coloring, CDS,   
matching, max-min 
LPs, facility location 

Decomposition, Determ. 
[Awerbuch et al., 1989]  
[Panconesi et al., 1996] 

Naïve Algo 



 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

              

 

 

 

 

 

 

 

 

 

 

 

Summary 

1             log*n          log 𝑛 … log 𝑛   Diameter  

        

MIS, maximal 
matching, etc. 

Growth-Bounded Graphs  
(various problems) 

MST, Sum, 
etc. 

Approximations of 
dominating set, 
vertex cover, etc. 

Covering and 
packing LPs E.g., dominating 

set approximation 
in planar graphs 



Thank You! 
Questions & Comments? 

 
 
 
 

TexPoint fonts used in EMF.  

Read the TexPoint manual before you delete this box.: 
AAAAAAA 

Thanks to my co-authors 
Fabian Kuhn 
Thomas Moscibroda 
Johannes Schneider www.disco.ethz.ch 



Open Problems 

 

• Close the gap between log 𝑛 and log 𝑛 (for randomized algorithms)! 

• Find a fast deterministic MIS algorithm (or strong det. lower bound)! 

• Where are the boundaries between constant, log*, log, and diameter? 

• What about algorithms that cannot even exchange messages? 

• Can the lower bound graph be used in the context of sublinear 
algorithms? 

 


