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Example: Maximal Independent Set (MIS)

e Given a network with n nodes, nodes have uniqgue IDs.

¢ Find a Maximal Independent Set (MIS)
— anon-extendable set of pair-wise non-adjacent nodes
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Example: Maximal Independent Set (MIS)

e Given a network with n nodes, nodes have unique IDs.

¢ Find a Maximal Independent Set (MIS)
— anon-extendable set of pair-wise non-adjacent nodes

e Traditional (sequential) computation:
The simple greedy algorithm finds MIS (in linear time)



What about a Distributed Algorithm?

e Nodes are agents with unique ID’s that can communicate with neighbors
by sending messages. In each synchronous round, every node can send a
(different) message to each neighbor.
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A Simple Distributed Algorithm

e Wait until all neighbors with higher ID decided
e [f no higher ID neighbor is in MIS = join MIS
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A Simple Distributed Algorithm

e Wait until all neighbors with higher ID decided
e [f no higher ID neighbor is in MIS = join MIS

e What’s the problem with this distributed algorithm?
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Example

e Wait until all neighbors with higher ID decided
e [f no higher ID neighbor is in MIS = join MIS

® 00 0

e What if we have minor changes?
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e Proof by animation: In the worst case, the algorithm is slow (linear in the
number of nodes). In addition, we have a terrible ,butterfly effect”.



What about a Fast Distributed Algorithm?

e Can you find a distributed algorithm that is polylogarithmic in the number
of nodes n, for any graph?
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What about a Fast Distributed Algorithm?

e Surprisingly, for deterministic distributed algorithms, this is an
problem!

e However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!
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What about a Fast Distributed Algorithm?

e Surprisingly, for deterministic distributed algorithms, this is an
problem!

e However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!
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e How many synchronous rounds does this take in expectation (or whp)?



Analysis

e Event (u — v):nodeu got largest random value
in combined neighborhood N, U N,,.

e We only count edges of v as deleted.

e Similarly event (v — u) deletes edges of wu.
e We only double-counted edges.

e Using linearity of expectation, in expectation
at least half of the edges are removed in each round.

e |n other words, whp it takes O (logn) rounds to compute an MIS.



Results: MIS

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]

[Luby, 1986]

[Métivier et al., 2009] Naive Algo




Local Algorithms

e Each node can exchange a message with all neighbors, for t
communication rounds, and must then decide.

e Or: Given a graph, each node must determine its decision as a function of
the information available within radius t of the node.

e Or: Change can only affect nodes up to distance t. 0
e Or:..




Locality




Locality is Everywhere!

Applications
e.g. Multicore

Self-
Assembling
Robots
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What about an Even Faster Distributed Algorithm?

e Since the 1980s, nobody was able to improve this simple algorithm.

e \What about lower bounds?

e There is an interesting lower bound, essentially using a Ramsey theory
argument, that proves that an MIS needs at least (1(log*n) time.

— log* is the so-called iterated logarithm — how often you need to take the
logarithm until you end up with a value smaller than 1.

— This lower bound already works on simple networks such as the linked list
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Coloring Lower Bound on Oriented Ring

e Build graph G;, where nodes are possible views of nodes for distributed
algorithms of time t. Connect views that could be neighbors in ring.

e Hereis for instance of G:

0_0-0j§0.0.0
f)—)
©-0 00 -0-0

e Chromatic number of G, is exactly minimum possible colors in time t.
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e Build graph G;, where nodes are possible views of nodes for distributed
algorithms of time t. Connect views that could be neighbors in ring.

e Hereis for instance of G:
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e Chromatic number of G, is exactly minimum possible colors in time t.



Results: MIS
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Example: Minimum Vertex Cover (MVC)

e Given a network with n nodes, nodes have uniqgue IDs.

e Find a Minimum Vertex Cover (MVC)
— a minimum set of nodes such that all edges are adjacent to node in MVC




Example: Minimum Vertex Cover (MVC)

e Given a network with n nodes, nodes have uniqgue IDs.

e Find a Minimum Vertex Cover (MVC)
— a minimum set of nodes such that all edges are adjacent to node in MVC
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e Given a network with n nodes, nodes have uniqgue IDs.

e Find a Minimum Vertex Cover (MVC)
— a minimum set of nodes such that all edges are adjacent to node in MVC




Differences between MIS and MVC

Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard
Instead: Find an MVC that is “close” to minimum (approximation)

Trade-off between time complexity and approximation ratio

e MVC: Various simple (non-distributed) 2-approximations exist!
e What about distributed algorithms?!?



Finding the MVC (by Distributed Algorithm)

e Given the following bipartite graph with |Sy| = § |5,
e The MVCis just all the nodes in Sy
e Distributed Algorithm...
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Lower Bound: The Argument

All edges are in fact special bipartite graphs T s s
with large enough girth. \ J

D@D@ ) oy

e The example graph is for t = 3.
) . JUODO
8,\81

e If you use the graph of recursion level t, then a distributed algorithm
cannot find a good MVC approximation in time t.



Lower Bound: The Math

e Choose degrees §; such that §;,,/8; = 2'6.
e We have |Sy| > §/2 |L{|, with |L{| nodes on level 1
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e By induction we have a (1 — 0(1/8)) fraction of the nodes is in S,.

Now 6, n, A are depending on the recursion level t.



Lower Bound: The Math

Graph useful for proving lower
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bounds in sublinear algos?

e Choose degrees §; such that §;,,/8; = 2'6.
e We have |Sy| > §/2 |L{|, with |L{| nodes on level 1
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e By induction we have a (1 — 0(1/8)) fraction of the nodes is in S,.

Now 6, n, A are depending on the recursion level t.



Lower Bound: Results

e We can show that fore > 0, in t time, the approximation ratio is at least

Q(nl/;’_e) and Q(Azlrli)

e Constant approximation needs at least (L(log A) and Q.(,/logn) time.

e Polylog approximation ( (logA/loglogA) and Q(\/log n/loglogn).



Lower Bound: Results

e We can show that fore > 0, in t time, the approximation ratio is at least

tight for MVC

Q(nl/;’_e) and Q(Azlrli)

e Constant approximation needs at least (L(log A) and Q.(,/logn) time.

e Polylog approximation ( (logA/loglogA) and Q(\/log n/loglogn).



Lower Bound: Reductions

e Many “local looking” problems need non-trivial t, in other words, the
bounds Q(log A) and Q(y/logn) hold for a variety of classic problems.

Minimum Vertex | (Fractional) Maximum
Cover (MVC) Matching (MaxM)
Minimum Dominating Maximal Matching
Set (MDS) (MM)

l

Maximal
Independent Set (MIS)




Lower Bound: Reductions

e Many “local looking” problems need non-trivial t, in other words, the
bounds Q(log A) and Q(y/logn) hold for a variety of classic problems.

cloning

Minimum Vertex | (Fractional) Maximum
line graph Cover (MVC() Matching (MaxM)

/ \ MVC through MM

[ Minimum Dominating J [ Maximal Matching ]

Set (MDS) (MM)

l line graph
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Results: MIS
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Summary
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Thank You!

Questions & Comments?

% Q;% ?‘.!

Thanks to my co-authors

Fabian Kuhn

Thomas Moscibroda

Johannes Schneider www.disco.ethz.ch




Open Problems

e Close the gap between \/@ and logn (for randomized algorithms)!
e Find a fast deterministic MIS algorithm (or strong det. lower bound)!

e Where are the boundaries between constant, log*, log, and diameter?
e What about algorithms that cannot even exchange messages?

e Can the lower bound graph be used in the context of sublinear
algorithms?




