
Stabilization Time in Weighted Minority Processes
Pál András Papp
ETH Zürich, Switzerland
apapp@ethz.ch

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
A minority process in a weighted graph is a dynamically changing coloring. Each node repeatedly
changes its color in order to minimize the sum of weighted conflicts with its neighbors. We study
the number of steps until such a process stabilizes. Our main contribution is an exponential lower
bound on stabilization time. We first present a construction showing this bound in the adversarial
sequential model, and then we show how to extend the construction to establish the same bound
in the benevolent sequential model, as well as in any reasonable concurrent model. Furthermore,
we show that the stabilization time of our construction remains exponential even for very strict
switching conditions, namely, if a node only changes color when almost all (i.e., any specific fraction)
of its neighbors have the same color. Our lower bound works in a wide range of settings, both for
node-weighted and edge-weighted graphs, or if we restrict minority processes to the class of sparse
graphs.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Mathematics of
computing → Graph algorithms; Theory of computation → Distributed computing models; Theory
of computation → Self-organization

Keywords and phrases Minority process, Benevolent model

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.54

Related Version The full version of the paper is available online as arXiv preprint https://arxiv.
org/abs/1902.01228.

1 Introduction

Given a simple graph and an initial coloring of its nodes, a minority process is a sequence of
states (colorings) such that each state is obtained from the previous state by some of the
nodes deciding to change their color. Each node, when it has the opportunity to act, switches
to the least frequent color in its neighborhood. This may then prompt other neighbors of the
node to switch their color, too, leading to a sequence of steps and a dynamically changing
coloring. A state is stable when no node in the graph wants to change its color anymore,
and the number of steps until a stable state is reached is known as the stabilization time of
the process.

Minority processes have numerous applications in different areas where agents in a system
are motivated to anti-coordinate with their neighbors. Assume, for instance, a set of wireless
devices, each using a given frequency from a predefined set of frequencies for communication.
In order to minimize interference with their neighbors, each device may repeatedly decide
to switch to the frequency which is the least used in its neighborhood. In another setting,
assume that some companies need to decide which product or commodity to produce, and
they repeatedly adjust their strategy to avoid competition with specific other companies
(that are e.g. geographically close, or share the same costumer base) [16]. Minority processes
also appear in a wide range of other areas, including cellular biology [10], physics [6, 7] and
social sciences [9].

© Pál András Papp and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 54; pp. 54:1–54:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:apapp@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.STACS.2019.54
https://arxiv.org/abs/1902.01228
https://arxiv.org/abs/1902.01228
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Stabilization Time in Weighted Minority Processes

It is often quite natural to model such settings not only as graphs, but as weighted graphs,
since in many applications, either the nodes or edges of the graphs naturally exhibit some
kind of weights that define their importance in the minority setting. For example, when
selecting products, some competitors may be larger or more resourceful than others, and
thus it is more crucial for their neighbors to differentiate from these specific nodes. In the
frequency allocation setting, some nodes may handle much more traffic than others, and
thus it is more important to avoid interference with such neighbors. Frequency allocation
also provides a natural example for edge weights, since the severity of interference can also
depend on the distance between neighboring devices, and thus it might be more imperative
for nodes to avoid interference with closer neighbors.

The paper considers minority processes in these weighted cases, when the cost function of
a node to minimize is not simply the number of its conflicts, but the sum of these conflicts
multiplied by the weight of the neighboring node or by the weight of the connecting edge.
In such a weighted setting, the only straightforward upper bound on the number of steps
is exponential. In this paper, we prove an asymptotically matching lower bound of 2Θ(n),
showing that there are weighted graphs where stabilization can indeed last for an exponential
number of steps.

For a realistic analysis of stabilization time in applications, some further aspects of the
processes are also worth studying. To avoid unreasonably many switches, nodes may decide
not to switch color if this benefit is too small. Thus it is often more reasonable to assume a
proportional switching rule in the weighted setting, i.e. that a node only decides to change its
color if this reduces its cost at least by a given fraction of its weighted degree (or, equivalently,
if a large fraction of its neighborhood has the same color). Note that this is a significantly
stricter switching rule, and thus proving a lower bound on the number of steps under this
rule is a stronger result. Furthermore, in most application areas, the underlying graphs
are sparse, i.e. contain only O(n) edges, so it is also interesting to study if the behavior is
different when restricting ourselves to sparse graph instances.

There are multiple different models to study minority processes, sequential and concurrent
alike. Even in the sequential setting, when only one node switches in each step, we can
observe different behaviors depending on the order in which the nodes are selected. For
example, this order may be chosen by a benevolent player who aims to minimize stabilization
time, or an adversarial player aiming to maximize it. While stabilization time in these models
have been studied thoroughly in the related area of majority processes, stabilization time in
minority processes has remained open.

In the paper, we present weighted graph constructions that prove an exponential lower
bound on stabilization time. Our lower bound holds both for node-weighted and edge-
weighted graphs, for any number of colors, and also if we restrict the process to the class of
sparse graphs.

The main contributions of the paper are as follows. We first present a construction that
shows an exponential lower bound in the adversarial model. Then with further improvements
to the construction, we prove that the same bound also holds in the benevolent model. This
shows that there are graphs where not only one, but every possible run of the process takes
exponential time. Moreover, we also show that the lower bound holds not only for the
sequential process, but also in any reasonable concurrent setting. Our lower bounds are
shown for a very strict switching rule, when a node is only allowed to switch if a given fraction
of its neighbors have the same color. Most surprisingly, our results show that even with this
rule, the exponential lower bound holds for any non-trivial fraction of the neighborhood.

P.A. Papp and R. Wattenhofer 54:3

2 Related Work

The question of stabilization time has only been studied in detail for majority processes. In
[15], the authors devise a weighted graph construction, which exhibits a majority process
with 2Θ(n) stabilization time both in the synchronous and the adversarial sequential models
(benevolent models are not discussed in this paper). For the unweighted case, the stabilization
time of majority processes has been characterized by [11] in the synchronous, sequential
adversarial and sequential benevolent models. The study of [15] also shows further results on
some slightly different variants of majority processes in unweigthed graphs. On the other
hand, apart from a straightforward O(n2) upper bound in the unweighted case [14, 15], to
our knowledge, the stabilization time of minority processes in these models has remained
open so far.

However, for unweighted graphs, there are numerous theoretical studies that focus on
different properties of stable states, both in case of minority [16, 3, 21, 1, 8] and majority
[3, 12, 13, 20, 4, 2, 5] processes.

Minority processes have also been thoroughly studied in special classes of graphs, such
as grids, trees or cycles, by the cellular automata community [17, 18, 19]. However, these
results work with unweighted graphs, and a different variant of the minority process which
considers the closed neighborhood of nodes. Besides the theoretical results, some of these
studies also include an experimental analysis of the process on grids.

Papers working with minority processes almost always consider the basic switching rule,
i.e. when nodes switch color for any small amount of improvement (although they sometimes
assume different rules for tie-breaking). Some slightly different switching rules, based on
distance-2 neighborhood of nodes, are examined in [14]; however, the aim of these modified
rules is not to achieve earlier stabilization, but to reduce the number of conflicts in the final
(stable) state. To our knowledge, however, minority processes have not yet been studied
under the proportional switching rule.

3 Models and Notation

Preliminaries and notation

In the paper, we consider simple, undirected graphs, denoted by G = (V,E), with V being
the set of nodes and E the set of edges. The number of nodes is denoted by n, the edge
between vertices u and v is denoted by e(u, v). In case of node-weighted graphs, we assume
a positive weight function w : V → IR+ on the nodes of the graph, while for edge-weighted
graphs, we assume w : E → IR+ on the edges.

For a specific node v ∈ V , we denote by N(v) the neighborhood of v. In case of
node-weighted graphs, for a set S ⊆ V , we denote by WS the sum of weights

∑
u∈S w(u).

Specifically, we use WN(v) to denote the sum of weights in v’s neighborhood.
Given a set of colors Γ, a coloring is a function C : V → Γ. If for some edge e(u, v) we

have C(u) = C(v), then we have a conflict, and the edge in question is a conflicting edge.
Generally, the goal of graph coloring is to minimize the number of conflicts in the graph.

We also use the notation NS(v) := {u | u ∈ N(v) and C(u) = C(v)} and NO(v) :=
N(v) \NS(v) for a node v under a coloring C (the same-color and other-color neighborhood
of v, respectively). Note that since we will use these notions in regard to a state of the
process (a current coloring of G), we assume that the coloring function C is clear from the
context, and thus it is not included in the above notation for simplicity.

STACS 2019

54:4 Stabilization Time in Weighted Minority Processes

In both weighted settings, we have a natural cost function f for each node v of the graph.
In node-weighted graphs, we define f(v) =

∑
u∈NS(v) w(u), while in the edge-weighted setting,

we define the cost function as f(v) =
∑
u∈NS(v) w(e(u, v)). The aim of nodes in the minority

process is to minimize this cost function. For a color c ∈ Γ, let fc(v) denote the cost that
node v would have if it was recolored to color c, with the colors of all nodes in N(v) remaining
unchanged. Let us denote the preferred color of v by c∗ = argminc fc(v); in case of multiple
minimal values, we select an arbitrary one of them as c∗. When v switches, it changes its
color to c∗. If f(v)− fc∗(v) is above a given threshold, or more generally, if the relation of
f(v) and fc∗(v) satisfies a specific condition known as the switching rule, then v is switchable.

A minority process on G is a sequence of colorings S0, S1, ..., known as states, where,
except for S0, each state Si can be obtained from Si−1 by switching a set of nodes that are
switchable in Si−1. The state S0 is referred to as the initial state. Given a graph and an
initial state, the set of nodes to be switched in each step (and thus the entire sequence of
states) is determined by the model, as discussed below.

We say that a state Si is stable if there are no switchable nodes in Si. A process stabilizes
if it reaches a stable state; the number of steps until the process stabilizes is the stabilization
time of the process.

While presenting our construction, we assume node-weighted graphs and |Γ| = 2 available
colors. Section 4 discusses how to generalize our lower bound to edge-weighted graphs or
more than 2 colors.

Models

We consider minority processes in the following models:
Sequential Adversarial (SA): In each step, only one node switches. This node is
chosen by an adversarial player, who aims to maximize the stabilization time.
Sequential Benevolent (SB): In each step, only one node switches. This node is
chosen by a benevolent player, who aims to minimize the stabilization time.
Concurrent Benevolent (CB): In each step, the benevolent player can switch any set
of switchable nodes concurrently, in order to minimize the stabilization time.

There are many further popular models of minority processes, for example, with synchron-
ous or randomized behavior. However, these models always exhibit a larger stabilization time
than model CB, since in model CB, the benevolent player is free to choose any sequence of
(possibly concurrent) steps to minimize stabilization time, and thus he can also simulate the
behavior of any of these additional models. Therefore, a lower bound for model CB also
implies the same bound in these various other models.

Note that in concurrent models, it is possible that neighboring nodes repeatedly force each
other to switch at the same step, cycling through the same colors infinitely. Because of this,
related studies in the synchronous model often use an alternative definition of stabilization,
also considering a periodically repeating process to be stable. However, the design of our
benevolent construction ensures that connected nodes can never be switchable at the same
time, and thus in our graphs, even in concurrent models, the process always terminates in a
fixed state. Nonetheless, our lower bound also holds with this alternative, more permissive
definition of stabilization.

Our lower bound construction for model SA is shown in Section 5. Then Section 6
describes how to extend this construction to the case of model SB. Once we present our
construction for model SB, it will follow that this same construction also proves the lower
bound in model CB. As the construction heavily restricts the set of selectable sequences,

P.A. Papp and R. Wattenhofer 54:5

always allowing only a few switchable nodes in the graph, even in model CB, the benevolent
player has no other option than to execute exactly the same steps as in the sequential case,
possibly some of them at the same time. On the other hand, the construction will have
specific nodes that alone switch 2Θ(n) times, and thus even with some of the steps executed
simultaneously, stabilization takes 2Θ(n) steps.

Switching rules

Most of the related work studies the following switching rule:

Rule I (Basic Switching): v is switchable if WNS(v) −WNO(v) > 0.

Here we introduce a stricter switching rule, based on a real parameter λ (where 0 < λ < 1):

Rule II (Proportional Switching): v is switchable if WNS(v) −WNO(v) ≥ λ ·WN(v).

This alternative switching condition is reasonable in many settings where switching comes
with a certain cost for the node, and therefore, it is only beneficial when this allows the node to
reduce its cost considerably, i.e. by a given factor ofWN(v). Since we haveWNS(v)+WNO(v) =
WN(v) in the case of two colors, this condition is equivalent to WNS(v) ≥ 1+λ

2 ·WN(v), i.e.
that a node is only allowed to switch if 1+λ

2 fraction of its (weighted) neighborhood has the
same color. Therefore, if λ is close to 1, then Rule II intuitively means that in order to
switch v twice, we also have to switch almost every neighbor of v in the meantime to make v
switchable again for the second time.

While the above definition of Rule II is more intuitive, for the analysis, it is often convenient
to express Rule II in another alternative form: v is switchable if WNS(v) ≥ Λ ·WNO(v), for
some other constant Λ. One can show that this is equivalent to the definition with a choice
of Λ := 1+λ

1−λ . We will mostly use this alternative Λ parameter throughout our analysis.
Our technique proves the lower bound for Rule II with any λ < 1. However, for ease of

presentation, we are first going to describe our construction for a specific parameter value
of λ ≈ 2

3 . Note that λ = 2
3 corresponds to 5 in the Λ-notation; let us introduce the new

notation ΛB := 5 for this base value. We need this extra notation because the construction
we present is actually not for Λ = 5, but in fact only for Λ = 5− ε with any ε > 0, hence
proving the lower bound for Rule II with any Λ < 5 (or, using the λ-notation, for any λ < 2

3).
Note that we have specifically chosen λ > 1

2 for demonstration because some challenges in
the construction are easier if λ ≤ 1

2 .
Given the proof of the lower bound for Λ = 5− ε with any ε > 0, we then discuss how

to generalize the same construction technique for any other odd integer ΛB as a base value.
This proves the lower bound for Λ = 7− ε, Λ = 9− ε, and so on, with any ε > 0.

Note that limΛB→∞λ = 1, that is, as ΛB goes to infinity, the λ value corresponding to
ΛB − ε gets arbitrarily close to 1 (this follows from the fact that λ can be expressed as Λ−1

Λ+1 ,
by the definition of Λ). Therefore, we can obtain any λ < 1 value with an appropriate odd
integer ΛB and appropriate ε > 0, and since our construction can be generalized for ΛB − ε
with any such ΛB and ε, this already establishes the lower bound for every λ ∈ (0, 1).

While it is not required for our lower bound proof, the full version of the paper also
presents a general method to prove the monotonicity of the lower bound: that is, for any λ0
and λ < λ0 values, given a construction for λ0, there is a straightforward way to convert it
into a construction for λ. Note that this monotonicity is trivial in the adversarial case: since
any node that is switchable for Rule II with λ0 is also switchable for the rule with λ, the
construction for λ0 is, without any change, also a valid construction for λ, exhibiting the
same stabilization time. The case is, however, not this simple for benevolent models, where a

STACS 2019

54:6 Stabilization Time in Weighted Minority Processes

lower λ value may allow a wider set of moves for the benevolent player, which might reduce
the stabilization time significantly. Monotonicity in this model can be shown using so-called
fixed nodes; see the full version for a discussion.

Helpful tools and definitions

We say that a node v is dominated by a subset S ⊆ N(v) if WS ≥ Λ
Λ+1 ·WN(v), that is, if S

having the same color as v is enough to make v switchable. If v is dominated by a single-node
subset {u}, then we say that v is a follower node, and u is the dominant node of v; this
implies that the preferred color of v is always simply the opposite of u’s color.

One tool we will frequently use in our constructions is the addition of so-called fixed node
neighbors. A fixed node is a node that is added to the graph construction in a way that
ensures it can never become switchable throughout the process, and thus always keeps its
initial color. This can easily be achieved by adding a black and a white stabilizer node to
the graph, and connecting each fixed node to the stabilizer of the opposite color. If we then
assign significantly larger weights to the stabilizer nodes than to all other nodes in the graph
(i.e., sufficiently large weights such that each fixed node is a followers of its (opposite-colored)
stabilizer node neighbor), then the fixed nodes can indeed never switch throughout the
process.

In our construction, each fixed node we add is only connected to one specific node v,
and its only purpose is to influence the behavior of v in the process (i.e., make it easier or
harder to switch v to a specific color). We may add a separate black and a white fixed node
neighbor (with any desired weight) to every node v of the construction. However, note that
it makes no sense to add more than two fixed neighbors to a node v: if we were to add two
same-colored fixed neighbors to v, we could simply combine the two into one fixed neighbor
with the sum of the two weights. Therefore, the use of fixed node neighbors adds at most
2n+ 2 extra nodes to the graph, only changing the magnitude of n by a constant factor, and
thus it does not affect the exponential nature of stabilization time.

4 Basic Observations

Node or edge weights

We consider minority processes on both node-weighted and edge-weighted graphs. Note
that edge weights have at least as much (in fact, more) expressive power than node weights:
assume that we have a graph G with some node weights w(v), and consider the edge-
weighted graph that consist of the same nodes and edges, and edge weights are defined as
w(e(u, v)) = w(u) · w(v). A minority process in this derived graph behaves the exact same
way as in the original, node-weighted graph: for any node v, each neighbor u ∈ N(v) stands
for a w(u)

WN(v)
portion of WN(v) in the node-weighted case, and u contributes exactly the same

w(u)·w(v)
WN(v)·w(v) portion in the derived edge-weighted graph.

This implies that for any node-weighted graph, we can create a corresponding edge-
weighted graph with the same stabilization time, regardless of the model. Therefore, when
showing the lower bounds of the paper, we only consider node-weighted graph construc-
tions. Our observations imply that the same lower bound will then also hold for edge-
weighted graphs.

P.A. Papp and R. Wattenhofer 54:7

Number of colors

The constructions in the paper assume there are only two available colors: black and white.
However, it is simple to generalize the lower bound to any number of colors. The main idea
is to take the lower bound construction for 2 colors, and for each node of the graph and
for every additional color, add an extra neighbor with high weight having this color. The
process in the resulting graph will behave as if the graph only consisted of the original nodes
and the original two colors. A detailed discussion of the technique is available in the full
version of the paper. The method allows us to generalize the lower bound not only to any
constant number of, but also up to Θ(n) colors.

Matching upper bound

While the proof of exponential lower bound is quite involved, it is straightforward to show an
exponential upper bound on stabilization time in sequential models. To discuss this upper
bound, we briefly return to the case of edge-weighted graphs, as they can exhibit a wider set
of behaviors. Since for each node-weighted graph there exists an edge-weighted graph with
the same stabilization time, the upper bound on edge-weighted graphs immediately implies
the same upper bound on node-weighted graphs.

In an edge-weighted graph, for each state (i.e., coloring of the graph), we can define a
potential value as the sum of w(e) for all edges e in the graph that are currently conflicting.
In sequential models when only one node switches in one step, this potential strictly decreases
after every step, since the incentive of the nodes is exactly to reduce the potential in their
neighborhood. This allows for a simple upper bound on stabilization time in sequential
models: since each state has a fixed potential value and potential is monotonously decreasing
throughout the process, each state can be visited at most once. For the case of 2 colors, there
are 2n distinct possible states, which implies that stabilization time is upper bounded by 2n.

5 Construction for the Adversarial Case

We first present a graph construction to show the exponential lower bound in model SA.

I Theorem 1. For Switching Rule II with any λ < 1, there exists a class of (sparse) weighted
graphs with 2Θ(n) stabilization time in model SA.

While the theorem holds for any λ < 1, recall that we present the construction for a
concrete value of λ ≈ 2

3 (that is, Λ = 5− ε for some small ε > 0).
Throughout the presentation of our construction, nodes that are shown vertically higher

in figures will always have larger weight than nodes that are placed below. Based on this, we
also refer to neighbors of nodes as upper or lower neighbors. We will define the weight of
each node in the graph as a function of the weights of the nodes below. As such, one can
determine a concrete set of node weights for the construction by following these rules in a
bottom-to-top fashion, with the lowermost weights chosen arbitrarily.

The basic idea behind our construction is recursive, and as such, the resulting graph
consists of multiple levels. Given a construction that exhibits a sequence which switches
some specific nodes of the graph s times at least, we show how to extend this graph with
a constant number of new nodes (a next level) to obtain another construction where, with
the correct choice of sequence, a specific new set of nodes switch 3

2s times. With a repeated
application of this step, after adding ` levels, we obtain a set of nodes that switch

(3
2
)` · s

times. Since each new level consists of only O(1) nodes, our graph can contain linearly many
levels, yielding a final construction with 2Θ(n) switches.

STACS 2019

54:8 Stabilization Time in Weighted Minority Processes

Figure 1 A 6-tuple of base nodes (be-
low) and control nodes (above). The sym-
bol × denotes a complete bipartite connec-
tion.

Figure 2 Final structure of a level, with
two distinct 6-tuples of base and control
nodes.

control nodes
Color of

afterwards
Color of vb

Figure 3 A control sequence of 6 steps, each
time switching a 4-node subset of the control
nodes (marked by a dotted line). The resulting
switch of the base nodes is shown on the right.

The key nodes of our graph are the base nodes, which appear in 6-tuples with the same
weight and same initial color. Each 6-tuple of base nodes has 6 common upper neighbors,
known as the control nodes for these base nodes, forming a complete bipartite graph. The
two 6-tuples together comprise a level of our construction (see Figure 1).

The 6 control nodes in a level also all have the same weight; let us denote this weight
by w(vc). The main idea of the construction is to choose w(vc) sufficiently large such that
5 of the 6 control nodes already dominate each of the base nodes below. Assuming that
one of the base node vb has further (lower) neighbors of weight wL altogether, this requires
5 · w(vc) ≥ Λ · (w(vc) + wL) to hold, which can be ensured by a choice of w(vc) ≥ 5−ε

ε · wL
for our current Λ = 5− ε. Thus we can select sufficiently large weights such that a base node
vb is indeed switchable whenever 5 out of 6 control nodes have the same color as vb.

Note that from the initial state shown in Figure 1, we only need to switch 4 of the 6
control nodes (from white to black) in order to force a base node vb below to switch to white.
In fact, we can specify a sequence of 4-node subsets of the control nodes such that every
time we switch the next subset in the sequence, we once again have 5 control nodes with the
same color that vb currently has, and therefore vb can be switched again. A possible such
sequence is shown in Figure 3; we refer to this as the control sequence. The sequence has a
couple of convenient properties: each control node is switched exactly 4 times throughout
the sequence, and each control node (and also vb) returns to its initial color at the end of the
sequence.

This is exactly the technique that allows us to increase the number of switches by a factor
of 3

2 within each level of the construction. If the upper levels provide a way to switch each of
the 6 control nodes in the current level s times, then this allows us to execute the control
sequence s

4 times, and each such execution switches the base nodes in the current level 6
times, adding up to 6

4s switches for each of the 6 base nodes.
It only remains to connect the different levels of our recursive construction. It comes as a

natural first idea that the 6-tuple of base nodes in a level could also directly take the role
of the control nodes in the level below. The first difficulty to overcome with this approach

P.A. Papp and R. Wattenhofer 54:9

Figure 4 When a conflict is
created at the top of the chain,
then switching the nodes one
by one propagates this conflict
down through the chain.

(a) (b)

Figure 5 When charging (a), we propagate each new con-
flict to the next position (Figure 4 shows the first step of
(a) in detail). When unloading (b), we always propagate the
lowermost stored conflict to the bottom.

is the color of the nodes in question: while all 6 base nodes of a level have the same color
(say, initially black), the control nodes initially have mixed color (5 white and 1 black) in
the control sequence. We can overcome this by duplicating the structure in Figure 1 in the
opposite initial color, and redefining a level as these two bipartite graphs together. Since a
level now consists of 12 base nodes, 6 white and 6 black initially, we can reorganize these
nodes into two appropriate groups (5 white + 1 black, 5 black + 1 white) to act as the
control nodes of the next level (see Figure 2).

There is a further problem with using the base nodes directly as the control nodes of the
level below: our level design only provides a way to switch a 6-tuple of base nodes together
(that is, consecutively in any order). However, in order to execute the control sequence, we
need to be able to switch specific subsets of the control nodes. For example, in the sequence
of Figure 3, the second node from the left has already switched twice before the rightmost
node ever switches. Thus, the fact that we can switch both 6-tuples of base nodes s times
does not yet imply that we can switch specific 4-node subsets of them in the given order, as
needed for the control sequence.

To provide a way to switch the control nodes in any order of our choice, we connect the
levels of the construction with tools known as storage chains. A storage chain is a path of 5
nodes, initially colored in an alternating fashion. The weights of the nodes in the chain are
chosen such that each node is a follower node of its upper neighbor (this can be ensured by
defining node weights in a bottom-to-top fashion, always choosing sufficiently large weight
for the next node). The uppermost and lowermost nodes may have other upper and lower
neighbors outside of the chain, respectively.

Assume now that the topmost node in the chain is switched by some external condition
(i.e., its upper neighbors outside of the chain). This introduces a conflict into the chain
between the uppermost two nodes, as shown in Figure 4. However, recall that by our
definition of node weights, the second node (from the top) is a follower of the uppermost
node, and therefore this conflict makes the second node switchable. Switching the second
node (to black) resolves the original conflict, but creates a new conflict between the second
and third nodes instead (now making the third node switchable). Generally, whenever there
is a conflicting pair of subsequent nodes above an alternating-colored (part of the) chain, we
are able to switch the lower node, and thus move the conflict down to the next node pair in
the chain. We can use this method to move a conflict down to any point in the chain, as
shown in the figure; we refer to this process as propagating down the conflict in the chain.

STACS 2019

54:10 Stabilization Time in Weighted Minority Processes

upper level

lower level

Figure 6 Two levels of the construction, connected by storage chains (edges within a level are
shown in dashed). For simpler illustration, the two sides of the lower level are horizontally swapped.

With this technique, we can accumulate and store conflicts in the chain “for later use”. If
the uppermost node is forced to switch 4 times, then we can propagate down each of the
emerging conflicts to a different position (i.e., pair of nodes) in the chain, ending up with
4 conflicts in a completely monochromatic chain. This process (see Figure 5a) is referred
to as charging the chain. In another sequence of steps, we can then unload the chain and
propagate these conflicts one by one to the bottom of the chain, essentially using the stored
conflicts to switch the lowermost node 4 times in a timing of our own choice (see Figure 5b).
When the sequence is finished, each node in the chain once again has its original color.

We use such storage chains to connect subsequent levels of our construction, with the base
nodes and control nodes being the uppermost and lowermost nodes in the chains, respectively,
as shown in Figure 6. This way, every time after the 6-tuple of base nodes in the upper level
switch (together), we can execute the next step in charging each of the storage chains. After
each of the base nodes switch 4 times, each of the storage chains are charged. Then, by
unloading each chain in 4 steps in the order of our choice, we can switch each of the control
nodes below 4 times, in any preferred order; this enables us to execute the control sequence
on the lower level. Thus, if the upper-level base nodes are switched 4 times, we can indeed
switch the lower-level base nodes 6 times.

For a high-level overview of the process, the execution of the adversarial sequence on a
given level L could be summarized by the following recursive pseudocode:

Function ProcessLevel(L)
For each of the 6 steps of the control sequence:

On both sides, switch the next subset of 4 control nodes
Switch all 6 + 6 base nodes
Propagate down the conflict in each chain as far as possible
If the chains below are fully charged:

Call ProcessLevel(L+ 1) (execution continues on level below)
Return (execution continues on level above)

Even with the storage chain connections, the addition of each new level increases the
number of nodes only by a constant value. This implies that a graph on n nodes can contain
Θ(n) levels, and thus each node in the lowermost level indeed switches 2Θ(n) times.

P.A. Papp and R. Wattenhofer 54:11

There is one more detail to discuss: for convenience, we assumed that the number of
switches s in an upper level is always divisible by 4. However, s switches in each control
node in fact allows for only b s4c complete executions of the control sequence, and hence
b s4c · 6 switches for the base nodes. Nonetheless, this still implies exponential increase for s
large enough (for example, b s4c · 6 ≥

6
5s holds if s ≥ 20). Thus to overcome this problem,

we ensure that the control nodes in the uppermost level already switch 20 times; this is
achieved by adding an initially charged storage chain of 21 nodes above each uppermost
control node. Unloading the chains allows us to switch these top-level control nodes 20 times
in the preferred order, and thus the exponential increase of switches is guaranteed.

This proves our lower bound in model SA for the case of Rule II with Λ = 5− ε for any
ε > 0. However, the construction is straightforward to generalize to any other odd integer
ΛB: for most of the analysis, one only needs to replace the value 4 by (ΛB − 1) and the
value 6 by (ΛB + 1). This provides a construction with (ΛB + 1)-tuples of control and base
nodes, and a ΛB+1

ΛB−1 factor of increase in switches for every new level. The control sequence
can also be generalized for other ΛB values; details of the generalization are discussed in the
full version of the paper.

6 Benevolent Case

It is significantly more difficult to show an exponential lower bound for benevolent models,
since such a construction needs to guarantee that every possible sequence lasts for an
exponential number of steps. We overcome this problem by heavily restricting the set of
selectable sequences in the graph. Specifically, we start from the construction of Section
5, and we show how to add a set of extra nodes which ensure that the previously defined
sequence is the only possible sequence the benevolent player can choose. In this section, we
outline the main ideas of this benevolent construction; a detailed discussion of the technique
is provided in the full version of the paper.

I Theorem 2. For Switching Rule II with any λ < 1, there exists a class of (sparse) weighted
graphs that have 2Θ(n) stabilization time in the benevolent models (models SB and CB).

We basically use two tools (gadgets) to ensure that the player, when selecting the sequence,
has to follow the procedure described in the pseudocode above. On the one hand, we show
how to build logical and gates and or gates, in order to check that a given step of the
procedure is reached, and use these gates to allow the player to proceed to the next step
of the procedure. On the other hand, we devise a state chain in order to keep track of the
current phase of the procedure, which can then be used as a condition in the logical gates
that control the execution of the procedure.

With the appropriate combination of these two gadgets, we can ensure that the benevolent
player has no other option than to switch the control nodes, base nodes and storage chain
nodes in the order described by the recursive procedure. We add a separate such combination
of these gadgets to each level of the construction of Section 5. However, since in our recursive
procedure, each level of the graph executes the same sequence of steps multiple times (the
lower levels exponentially many times), the design of these gadgets also needs to ensure
that the gadget can execute its task multiple times. This is achieved through introducing a
method to repeatedly “reset” the gadgets to their initial state.

For the purpose of resetting these gadgets, we introduce another tool, the third main
ingredient of our benevolent construction, known as a pacer system. The main idea of the
resetting technique is to connect each gadget (logical gate or state chain) to so-called pacer

STACS 2019

54:12 Stabilization Time in Weighted Minority Processes

nodes higher in the graph, and to ensure that each such pacer node switches at least twice
between two consecutive times of using the gadget. The gadgets are designed in a way which
guarantees that this pacer node switching twice results in the gadget being reset to its default
state (i.e., each node to its initial color).

Such a pacer node essentially “recharges” the gadget with conflicts: since the weighted
sum of conflicts in the graph monotonically decreases, the gadget can only return to the same
(initial) state repeatedly if it “acquires” new conflicts from some other part of the graph.
This is achieved through the connection to the pacer node, which is in a higher level of the
graph (with larger weights), and thus has significantly more conflicts to “push down” into
the gadget as a byproduct of its switching.

The simplest way to add pacer nodes to our construction is to place a pair of them
between a set of control and base nodes, as shown in Figure 7. In this modified level version,
the steps of the control sequence do not switch the base nodes directly. Instead, this happens
indirectly: after 5 of the 6 control nodes are black, first the upper pacer node, and then the
lower pacer node switches, followed by the base nodes in the end. Thus, the addition of pacer
nodes leaves the general behavior of the level unchanged: the base nodes will still switch
eventually after each step of the control sequence. However, in this new level construction,
the newly added pacer nodes will also both switch in each of these steps.

The actual pacer systems used in our construction are more sophisticated constructions
based on this idea. They consist of multiple pacer nodes in order to be able to recharge
gadgets of both colors, and they are also responsible for checking that the recharging process
has indeed been executed on the connected gadgets.

Given the technique to reset gadgets, it only remains to briefly present the behavior of
the two gadgets (logical gates and state chains), and to outline how they are used in the
construction. For the convenient description of gadgets, we first introduce two special kinds
of node concepts. Essentially, these are methods to carefully select the weight of some specific
neighbors of nodes such that they fulfill the following roles:

Observer node: given a set of nodes U0, we can add a new common neighbor vo to these
nodes such that the behavior of vo depends on the nodes in U0, but the behavior of U0 is
unaffected by the addition of vo
Enabler node: given a node u1 dominated by another node ud, we can add a new neighbor
ve to u1, such that u1 is no longer dominated by {ud}, but it is dominated by the subset
{ud, ve}

Given a set of input nodes U0 and an output node u1, we can use these concepts to build
an and gate which only enables the switching of u1 if all nodes in U0 are colored with a given
color. This gadget connects to each of the input nodes in U0 through a common observer
node, and connects to the output u1 through an enabler node. Besides the observer and
enabler node, the gadget only requires an extra relay node (and an appropriate choice of
weights) to connect these two nodes, and an extra upper neighbor for each node in order
to connect the gadget to a pacer system which resets it after use. A brief illustration of
the gadget is available in Figure 8. In a very similar fashion, we can also create and gates
for inputs of the other color, or gates, or even multi-layer gates that allow us to combine
different conditions.

Besides logical gates, the other key gadget in our benevolent construction is the state
chain. For each level of the construction, we add a separate state chain in order to indicate
the current state (i.e., point in the execution) of the procedure on this level. Essentially, a
state chain is a vertical chain of nodes, where every node in the chain is dominated by its
upper neighbor, similarly to the case of a storage chain. However, while storage chains are

P.A. Papp and R. Wattenhofer 54:13

Figure 7 Adding a pair of pacers between
a layer of control nodes and base nodes.

no
de
s

ob
se
rv
ed

pacers

en
ab
le
d

no
de

observer enabler

Figure 8 Logical (e.g. and) gate.

first
state

second
state

third
state

fourth
state

Figure 9 Simplified illustration of a state chain on 4 states (see the full version of the paper for a
more detailed illustration). The position of the conflict in the chain shows our current state of the
procedure. When propagating the conflict down by one step, the chain proceeds to the next state.

used to accumulate conflicts, a state chain will, on the other hand, always contain exactly
one conflict, which we propagate down step by step. The different possible positions of the
conflict can then correspond to different states of the procedure, and at a given point in time,
our current state in the procedure is determined by the current position of the conflict in the
chain (as illustrated in Figure 9).

One such state chain is added to each level of our benevolent construction. The node
pairs in the chain that express a state are included in the conditions of the logical gates that
control the execution of the recursive procedure on the level, ensuring that certain steps are
only available to the benevolent player at certain points in the process. Furthermore, the
nodes in the state chain are also connected to enabler nodes, and thus proceeding to the next
state is always based on a given condition. Therefore, the benevolent player has no other
option than to simultaneously proceed through the steps of the recursive process and the
states of the state chain, in the appropriate order. With a couple of auxiliary nodes at the
top of the chain, we can also connect the state chain to a pacer node, allowing us to reset
the chain and jump back to the first state whenever the last state of the chain is reached.

Given these gadgets, let us now briefly reflect on the states and conditions we need to
encode in order to ensure that the player has to follow the recursive sequence. The main idea
is to use the logical gates to control the flow of execution within a given level: through the
enabler nodes of the gates, we ensure that the switching of the next 2× 4 control nodes (i.e.,
the next step of the control sequence) is only enabled after the previous switching of the base
nodes is finished. In practice, this means that, after the base nodes have switched, when the
newly added conflicts are propagated down far enough in each of the 2× 6 storage chains
below, the gates enable the further down-propagation of the appropriate 2× 4 conflicts in
the storage chains above, which will in turn make the next subset of 2 × 4 control nodes
switchable. That is, the input (observer) nodes of these logical gates are connected to specific
nodes of the storage chains below the level, while their output (enabler) nodes are connected
to nodes of the storage chains above the level.

STACS 2019

54:14 Stabilization Time in Weighted Minority Processes

However, recall that charging the storage chains below takes 4 steps, while executing the
control sequence above consist of 6 steps, so the two processes do not remain in synchrony.
Thus in different phases of the procedure, the same set of storage chain nodes below have to
enable different subsets of the control nodes above. Because of this, our construction encodes
these different phases of the procedure as states in the state chain, and the appropriate state
is also included in the condition of the logical gate that enables the next set of control nodes.
When a cycle is finished (i.e., the two processes return to their default state at the same
time), the state chain is reset and iteration starts again from the first state of the chain.

Furthermore, note that throughout the recursion, execution repeatedly leaves the current
level and continues on the level above (or below), so the state chain of each level also has
specific states indicating that the execution is currently on a level above (or below).

Altogether, these benevolent-case modifications only add constantly many gadgets (each
of constant-size) to each level of the construction. Therefore, the modified construction still
has only O(1) nodes in a level, allowing for Θ(n) levels and thus 2Θ(n) stabilization time.
This establishes our lower bound for model SB. By design, the construction only has a few
(at most constantly many) switchable nodes at every point in time, and thus even in model
CB, it allows for only very limited concurrency for the benevolent player. Specifically, since
there are concrete nodes in the construction that switch 2Θ(n) times, the number of steps is
still exponential in model CB.

Also, note that even with the gadgets added in the benevolent case, each node of the
graph still has a constant degree, and thus our bound is also valid for sparse graphs.

References
1 Ron Aharoni, Eric C Milner, and Karel Prikry. Unfriendly partitions of a graph. Journal of

Combinatorial Theory, Series B, 50(1):1–10, 1990.
2 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. On the existence and determination of

satisfactory partitions in a graph. In International Symposium on Algorithms and Computation,
pages 444–453. Springer, 2003.

3 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Complexity and approximation of
satisfactory partition problems. In International Computing and Combinatorics Conference,
pages 829–838. Springer, 2005.

4 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. The satisfactory partition problem.
Discrete applied mathematics, 154(8):1236–1245, 2006.

5 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Satisfactory graph partition, variants,
and generalizations. European Journal of Operational Research, 206(2):271–280, 2010.

6 Olivier Bodini, Thomas Fernique, and Damien Regnault. Quasicrystallization by stochastic
flips. HAL online archives, 2009.

7 Olivier Bodini, Thomas Fernique, and Damien Regnault. Stochastic flips on two-letter words.
In 2010 Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 48–55. SIAM, 2010.

8 Henning Bruhn, Reinhard Diestel, Agelos Georgakopoulos, and Philipp Sprüssel. Every rayless
graph has an unfriendly partition. Combinatorica, 30(5):521–532, 2010.

9 Zhigang Cao and Xiaoguang Yang. The fashion game: Network extension of matching pennies.
Theoretical Computer Science, 540:169–181, 2014.

10 Jacques Demongeot, Julio Aracena, Florence Thuderoz, Thierry-Pascal Baum, and Olivier
Cohen. Genetic regulation networks: circuits, regulons and attractors. Comptes Rendus
Biologies, 326(2):171–188, 2003.

11 Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence in (social) influence
networks. In International Symposium on Distributed Computing, pages 433–446. Springer,
2013.

P.A. Papp and R. Wattenhofer 54:15

12 Michael U Gerber and Daniel Kobler. Algorithmic approach to the satisfactory graph parti-
tioning problem. European Journal of Operational Research, 125(2):283–291, 2000.

13 Michael U Gerber and Daniel Kobler. Classes of graphs that can be partitioned to satisfy all
their vertices. Australasian Journal of Combinatorics, 29:201–214, 2004.

14 Sandra M Hedetniemi, Stephen T Hedetniemi, KE Kennedy, and Alice A Mcrae. Self-stabilizing
algorithms for unfriendly partitions into two disjoint dominating sets. Parallel Processing
Letters, 23(01):1350001, 2013.

15 Barbara Keller, David Peleg, and Roger Wattenhofer. How Even Tiny Influence Can Have a
Big Impact! In International Conference on Fun with Algorithms, pages 252–263. Springer,
2014.

16 Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph
colorings. In International Symposium on Algorithmic Game Theory, pages 122–133. Springer,
2013.

17 Damien Regnault, Nicolas Schabanel, and Éric Thierry. Progresses in the Analysis of Stochastic
2D Cellular Automata: A Study of Asynchronous 2D Minority. In Luděk Kučera and Antonín
Kučera, editors, Mathematical Foundations of Computer Science 2007, pages 320–332. Springer
Berlin Heidelberg, 2007.

18 Damien Regnault, Nicolas Schabanel, and Éric Thierry. On the analysis of “simple” 2d
stochastic cellular automata. In International Conference on Language and Automata Theory
and Applications, pages 452–463. Springer, 2008.

19 Jean-Baptiste Rouquier, Damien Regnault, and Éric Thierry. Stochastic minority on graphs.
Theoretical Computer Science, 412(30):3947–3963, 2011.

20 Khurram H Shafique and Ronald D Dutton. On satisfactory partitioning of graphs. Congressus
Numerantium, pages 183–194, 2002.

21 Saharon Shelah and Eric C Milner. Graphs with no unfriendly partitions. A tribute to Paul
Erdös, pages 373–384, 1990.

STACS 2019

	Introduction
	Related Work
	Models and Notation
	Basic Observations
	Construction for the Adversarial Case
	Benevolent Case

