Optimal Synchronous Approximate Agreement with Asynchronous Fallback

Diana Ghinea¹ Chen-Da Liu-Zhang² Roger Wattenhofer¹

¹ETH Zürich

²NTT Research

Approximate Agreement

Given ε > 0, the honest parties obtain outputs that:
are within the range of their inputs (validity)

• are ε -close (ε -agreement)

Resilience Thresholds

• Synchronous model:

(known message delay Δ , synchronized clocks)

• Asynchronous model:

(delay unknown, clocks might not be synchronized)

Resilience Thresholds

• Synchronous model:

(known message delay Δ , synchronized clocks)

• Asynchronous model:

(delay unknown, clocks might not be synchronized)

Resilience Thresholds

• Synchronous model:

(known message delay Δ , synchronized clocks)

• Asynchronous model:

(delay unknown, clocks might not be synchronized)

Main Question

The parties do not know the type of network they are in:

- synchronous $\implies n/3 \le t_s < n/2$ by zantine parties
- asynchronous $\implies t_a < n/3$ by zantine parties

Can we achieve Approximate Agreement in this model?

Main Question

The parties do not know the type of network they are in:

- synchronous $\implies n/3 \le t_s < n/2$ by zantine parties
- asynchronous $\implies t_a < n/3$ byzantine parties

Can we achieve Approximate Agreement in this model? Yes, when $2t_s + t_a < n!$

Scenario 1 (synchronous network)

Scenario 2 (synchronous network)

Scenario 3 (asynchronous network)

Scenario 3 (asynchronous network)

Achieving Approximate Agreement

Multiple iterations.

In iteration i:

- **1** Distribute current value v_i to all the parties
- **2** When *enough* values v'_i are received, discard the outliers
- 3 Compute $v_{i+1} :=$ the average between the min and max values v'_i that were not discarded

• Outlier = value outside the range of honest values $v_i \implies$ sent by a corrupted party

- Outlier = value outside the range of honest values $v_i \implies$ sent by a corrupted party
- If the network is synchronous and $\mathbf{n} \mathbf{t_s} + \mathbf{k}$ values are received, at most \mathbf{k} of these are sent by corrupted parties.

- Outlier = value outside the range of honest values $v_i \implies$ sent by a corrupted party
- If the network is synchronous and $\mathbf{n} \mathbf{t_s} + \mathbf{k}$ values are received, at most \mathbf{k} of these are sent by corrupted parties.

- Outlier = value outside the range of honest values $v_i \implies$ sent by a corrupted party
- If the network is synchronous and $\mathbf{n} \mathbf{t_s} + \mathbf{k}$ values are received, at most \mathbf{k} of these are sent by corrupted parties.

- But what if the network is actually asynchronous and the missing values are honest but delayed?
 - \implies we discard the lowest and the highest $\max(\mathbf{k}, \mathbf{t_a})$ values!

Achieving Approximate Agreement

In iteration i:

- (1) Distribute current value v_i to all the parties
- 3 Compute $v_{i+1} :=$ the average between the min and max values v'_i that were not discarded

Ensuring ε -Agreement is achieved

If the distributing step guarantees that every two parties receive $n - t_s$ common values:

Even after removing the outliers, there is some common range.

 \implies the range of honest values is halved in each iteration

Each party P has an input v_P and outputs a set O_P upon termination.

Each party P has an input v_P and outputs a set O_P upon termination.

If P_1 and P_2 are honest, then:

- $\bullet |O_{P_1} \cap O_{P_2}| \ge n t_s$
- Synchronous network $\implies (v_{P_2}, P_2) \in O_{P_1}$

Each party P has an input v_P and outputs a set O_P upon termination.

If P_1 and P_2 are honest, then:

- $|O_{P_1} \cap O_{P_2}| \ge n t_s$
- Synchronous network $\implies (v_{P_2}, P_2) \in O_{P_1}$
- $(v, P_3) \in O_{P_1}$ and $(v', P_3) \in O_{P_2}$ $\implies v = v' (= v_{P_3} \text{ if } P_3 \text{ is honest})$

Each party P has an input v_P and outputs a set O_P upon termination.

If P_1 and P_2 are honest, then:

- $\bullet |O_{P_1} \cap O_{P_2}| \ge n t_s$
- Synchronous network $\implies (v_{P_2}, P_2) \in O_{P_1}$
- $(v, P_3) \in O_{P_1}$ and $(v', P_3) \in O_{P_2}$ $\implies v = v' (= v_{P_3} \text{ if } P_3 \text{ is honest})$
- Synchronous network \implies simultaneous termination

In iteration i:

- **1** Join Overlap All-to-All Broadcast with input v_i . Obtain O_P
- 2 Out of the $\mathbf{n} \mathbf{t_s} + \mathbf{k}$ values in O_P : discard the lowest and the highest $\max(\mathbf{k}, \mathbf{t_a})$ values
- 3 Compute v_{i+1} := the average between the min and max values from O_P that were not discarded

Summary

The parties do not know if the network:

• is synchronous

$$\implies n/3 \le t_s < n/2$$
 corruptions

• or asynchronous

 $\implies t_a < n/3$ corruptions

In this setting, Approximate Agreement is achievable iff $2t_s + t_a < n$.