Optimal Synchronous Approximate
Agreement with Asynchronous Fallback

Diana Ghinea! Chen-Da Liu-Zhang? Roger Wattenhofer!

1ETH Zirich

2NTT Research

Approximate Agreement

Given £ > 0, the honest parties obtain outputs that:

o are within the range of their inputs (validity)

o are e-close (e-agreement)

e = 0.05

A~ (000 —501

Resilience Thresholds

o Synchronous model:
(known message delay A, synchronized clocks)

V X (without setup)

n/3

o Asynchronous model:
(delay unknown, clocks might not be synchronized)

Resilience Thresholds

o Synchronous model:
(known message delay A, synchronized clocks)

V X (without setup)

n/3

o Asynchronous model:
(delay unknown, clocks might not be synchronized)

v X

n/3

Resilience Thresholds

o Synchronous model:
(known message delay A, synchronized clocks)

V X (without setup)

n/3

V 6;e’q?o@with setup X

o

n/3 n/2

o Asynchronous model:
(delay unknown, clocks might not be synchronized)

v X

n/3

Main Question

The parties do not know the type of network they are in:
o synchronous = n/3 < ts; < n/2 byzantine parties
o asynchronous = t, < n/3 byzantine parties

Can we achieve Approzimate Agreement in this model?

ta T ‘\/4‘
L
" o X
i R |

S . :‘ tS

n/3 n/2 (sync)

Main Question

The parties do not know the type of network they are in:
o synchronous = n/3 < ts; < n/2 byzantine parties
o asynchronous = t, < n/3 byzantine parties

Can we achieve Approzimate Agreement in this model?
Yes, when 2ts + t, < n!

t, +

(async)

n/3

/. [Aa .

’ -
| - !
Y [
\ An !
’

<

_-

’ An \
1 /-
| ~
\ nAn
N A/

-4/
.
~ -

What if 2t; +t, = n?

P 9@ "
< I
+&. - \ \ ..
\ An l+€_ \ ’
(Y Pt R -
SURRCTY B—_t
’ (s)

Scenario 1
(synchronous network)

What if 2t; +t, = n?

'. o © e
.' -G
L (@ pi
Ats) \\f_fx B (t;)
C (ta)

Scenario 2
(synchronous network)

What if 2t; +t, = n?

. ~

n -0
I/ <O A v/ = ‘_g

+€'\ a)(P
\ u /+€ —S\ u ,I

W) (o 5
C (k)

Scenario 3
(asynchronous network)

What if 2t +t, = n?

Scenario 3
(asynchronous network)

Achieving Approximate Agreement

Multiple iterations.

In iteration 4:
@ Distribute current value v; to all the parties
@ When enough values v, are received, discard the outliers

® Compute v; 41 := the average between the min and max
values v] that were not discarded

How do we remove outliers?

o Qutlier = value outside the range of honest values v;
—> sent by a corrupted party

How do we remove outliers?

o Qutlier = value outside the range of honest values v;
—> sent by a corrupted party

o If the network is synchronous and n — tg + k values are received,
at most k of these are sent by corrupted parties.

12 45 476 th 730 90 100 10Q00000

How do we remove outliers?

o Qutlier = value outside the range of honest values v;
—> sent by a corrupted party

o If the network is synchronous and n — tg + k values are received,
at most k of these are sent by corrupted parties.

12 45 476 th 730 90 100 10Q00000

= we discard the lowest and the highest k values!

—2—45— 476 183 730 90 -1-99—1-9}0’5‘99—

How do we remove outliers?

o Qutlier = value outside the range of honest values v;
—> sent by a corrupted party

o If the network is synchronous and n — tg + k values are received,
at most k of these are sent by corrupted parties.

12 45 476 183 730 90 100 10Q00000

= we discard the lowest and the highest k values!

—2—45— 476 183 730 90 -1-99—1-9@‘99—

o But what if the network is actually asynchronous and the missing
values are honest but delayed?
— we discard the lowest and the highest max(k, ta) values!

Achieving Approximate Agreement

In iteration i:
@ Distribute current value v; to all the parties

@ Out of the n — tg + k values received:
discard the lowest and the highest max(k, t,) values

® Compute v; 41 := the average between the min and max
values v] that were not discarded

Ensuring s-Agreement is achieved

If the distributing step guarantees that every two parties receive n — t,
common values:

Hh
N
w
" S

[6 7] —9—16

o —+[2 3 5 9 10] —+H—

Even after removing the outliers, there is some common range.

— the range of honest values is halved in each iteration

Overlap All-to-All Broadcast

Each party P has an input vp and outputs a set Op upon termination.

10

Overlap All-to-All Broadcast

Each party P has an input vp and outputs a set Op upon termination.

If P, and P, are honest, then:
Q ‘Opl ﬂOpz} >n—ts
o Synchronous network = (vp,, P») € Op,

10

Overlap All-to-All Broadcast

Each party P has an input vp and outputs a set Op upon termination.

If P, and P, are honest, then:
0 |Op, NOp,| >n—ts
o Synchronous network = (vp,, P») € Op,
o (v,P3) € Op, and (v, P3) € Op,
= v =10 (=vp, if P; is honest)

10

Overlap All-to-All Broadcast

Each party P has an input vp and outputs a set Op upon termination.

If P, and P, are honest, then:
0 |Op, NOp,| >n—ts
o Synchronous network = (vp,, P») € Op,
o (v,P3) € Op, and (v, P3) € Op,
= v =10 (=vp, if P; is honest)

o Synchronous network = simultaneous termination

10

Final Protocol

In iteration ¢:
@ Join Overlap All-to-All Broadcast with input v;. Obtain Op

@ Out of the n — tg + k values in Op:
discard the lowest and the highest max(k, t,) values

® Compute v; 11 := the average between the min and max
values from Op that were not discarded

11

Summary

ta

(async)

The parties do not know if the
network:

o is synchronous
= n/3 <ts; <n/2 corruptions

o or asynchronous n/3
= t, < n/3 corruptions

(sync)

In this setting, Approximate Agreement is achievable iff 2t; + t, < n.

12

