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Abstract— Peer-to-peer (p2p) systems have the potential to
harness huge amounts of resources. Unfortunately, however, it
has been shown that most of today’s p2p networks suffer from
a large fraction of free-riders, which mostly consume resources
without contributing much to the system themselves. This results
in an overall performance degradation. One particularly inter-
esting resource is bandwidth. Thereby, a service differentiation
approach seems appropriate, where peers contributing higher
upload bandwidth are rewarded with higher download band-
width in return. Keeping track of the contribution of each peer
in an open, decentralized environment, however, is not trivial;
many systems which have been proposed are susceptible to false
reports. Besides being prone to attacks, some solutions have
a large communication and computation overhead, which can
even be linear in the number of transactions—an unacceptable
burden in practical and active systems. In this paper, we propose
a reputation system which overcomes this scaling problem. Our
analytical and simulation results are promising, indicating that
the mechanism is accurate and efficient, especially when applied
to systems where there are lots of transactions (e.g., due to
erasure coding).

I. INTRODUCTION

The power of peer-to-peer (p2p) computing is based on the
resource contribution of the network’s constituent parts, the
peers. Therefore, the success of a system in practice crucially
depends on its ability to cope with selfish peers which
aim at only using resources without contributing anything
themselves. One resource of special interest is bandwidth.
Thereby, a service differentiation approach seem appropriate:
peers providing higher upload bandwidth (and for longer
time periods!) should be rewarded with higher download
bandwidths in return.

When faced with the task of implementing a fairness
scheme for our distributed p2p storage system research
project Kangoo1, we could not find a solution which perfectly
fits our needs. In Kangoo, erasure codes are employed to
achieve high data availability with moderate redundancy.
Files are divided into blocks, which are further divided
and recoded into redundant fragments. Therefore, lots of
transactions are necessary to reconstruct a file.

In this paper, we present the reputation system Havelaar,
which we have developed and implemented for Kangoo.
Unlike many existing solutions, Havelaar does not rely on
transitivity of trust, and achieves a high robustness to attacks
by design. This is achieved by a novel technique in which a

1To be released in autumn 2006.

peer u always reports directly or indirectly observed contri-
butions to the same set of peers (the so-called successors of
peer u). These successor peers are determined a set of hash
functions h(u) on the identifier (e.g., the IP-address) of u.
Thus, a successor is able to detect and defend against any
abuse (e.g., reporting too large values, reporting too often,
etc.). This is different from so-called distributed hash table
(DHT) approaches where a peer u benefitting from a peer v
reports v’s contribution value to peers determined by a hash
function h(v) (depending on v rather than u).

Our results are promising: Havelaar is not only robust to
attacks, but also efficient and—unlike many other solutions—
scales well in the number of transactions. Hence, we believe
that Havelaar is well-suited for other active p2p systems with
many transactions (e.g., due to erasure coding).

The rest of this paper is organized as follows. In Section
II, related work is reviewed. Section III describes how
Havelaar rewards peers given their uploading reputations. The
reputation system is then presented in detail in Section IV. In
Section V, we analyze how many observations a peer has to
accumulate in order to achieve an accurate approximation of
the real contributions. Means to reduce the message sizes in
the Havelaar system are studied in Section VI. We evaluate
the communication complexity by simulation and compare it
to a benchmark system in Section VII. Section VIII considers
some classic attacks on fairness systems and shows how
Havelaar copes with these attacks. The accuracy of Havelaar’s
reputation values is studied by simulation in Section IX.
Finally, Section X concludes the paper.

II. RELATED WORK

It is not hard to find evidence of selfish behavior in existing
p2p systems [2], [11]. The problem has already spurred a
large body of research, and the field is still very active [7],
[10], [14], [18], [24].

Perhaps the simplest approach of a fairness mechanism
is to directly incorporate contribution monitoring into the
client software itself. For example, in the popular file-sharing
system Kazaa, the client records the contribution of its user.
However, such a solution can simply be bypassed by imple-
menting a different client, which hard-wires the contribution
level of the user to the maximum, as has been demonstrated
by Kazaa Lite.

In systems such as BitTorrent [6] in which peers upload to
the same peers from which they also download, a simple tit-



for-tat mechanism [3] is feasible. When interactions between
the same pairs of peers are less frequent, however, such barter
systems [28] fail.

Inspired by real economies, some researchers have also
proposed to use some form of virtual money for each trans-
action. However, these monetary or credit based approaches
typically have a substantial overhead in terms of commu-
nication costs and infrastructure, and hence are inefficient
[9], [29]. Often these systems also require market regula-
tion mechanisms [27] to cope with inflation or deflation—a
complex issue. Additionally, monetary based systems may
provide disincentives to the users to participate [19].

If a peer has too few own direct observations to judge
the contribution of some other peer, it has to take into
account indirect observations of other peers [13]. Such
systems are generally called reputation systems (sometimes
also reciprocity based systems). They are well-known from
auctioning applications such as eBay. However, second-hand
observations introduce the problem of false reports [4], [13].
Many proposals have been made to mitigate these effects [1],
[8], [12]), most of them relying on trust-transitivity, where
observations are weighted by the reputation of the reporter.
However, these systems can be exploited by peers with good
reputations.

Additionally to the problem of false reports, also an
infrastructure to exchange the second-hand observations is
needed [13]. In most most reputation-based systems, second-
hand observations are either requested before a transaction
from other peers [1], [4], or they are simply flooded through
the system. Alternatively, the reputation values can be stored
in a distributed hash table (DHT) [21], [23], [26]. For sys-
tems with lots of transactions, where contribution values are
updated constantly, however, this results in an unacceptable
communication overhead: checking a peer’s reputation entails
costly (wide-area) DHT lookups [17], [20].

In contrast, in the Havelaar reputation system, a peer is able
to compute the reputation of a requesting peer locally. This
is particularly beneficial in systems where there are lots of
transactions. By aggregating the contribution values of a large
number of peers, our system tackles also the problem of trust-
transitivity. Finally, Havelaar is able to check the credibility
of reports locally, thus preventing many reputation attacks by
design.

III. REWARDING MECHANISM

Havelaar is mainly a reputation system (cf Section IV)
and therefore independent of any concrete rewarding mecha-
nism. That is, given the reputation values of Havelaar, many
strategies can be applied to allocate bandwidth to the peers.

However, to complete the picture, we briefly sketch the
approach we have chosen for our distributed storage system
Kangoo. In Kangoo, we make use of the mechanism proposed
in described in [15]. However, as performance is crucial in
Kangoo, we only apply fairness mechanisms in situations of
contention, i.e., when several peers want to download from

the same node concurrently. Assuming that bandwidth is free
and lost when not used, the maximum possible bandwidth
will always be allocated to a requesting peer, and no artificial
limits are used. For our system, this is the desired behavior
because we do not want to provide any disincentives to
participate and download in the network, as there would be
with monetary-based systems. We only limit the resource
allocation for excessive downloaders, as will be described
in Section IV.

IV. REPUTATION MECHANISM

In this section, we describe the main ideas behind Havelaar.
Basically, Havelaar has three goals: (1) robustness against
selfish peers, (2) accurate estimation of the real contribution
values of other peers, and (3) efficiency.

In our system, the reputation of a peer u should reflect
on the peer’s contribution Cu, which in turn depends on the
bandwidth bu it provides, and the size s of the corresponding
fragments. Hence, the total contribution value is given by
Cu =

∑
∀ transactions t (bu(t) · su(t)). Note that the contribu-

tion value will only be increased after a complete upload in
order to reward proper transactions only.

So how does Havelaar track this contributions? Each peer
u maintains a vector ~o (observations) of size n (number of
peers in the network), where it stores the contributions of
other peers which it has directly experienced itself. That is,
after each download, u updates its ~o vector accordingly.

Even in active systems with lots of transactions and erasure
coding, a peer typically only gets in touch with a subset of
all peers. Therefore, the private observations are sent to other
peers once in a while. Basically, to achieve this, Havelaar
employs a round-based aggregation technique. Thereby, once
in a round, each peer u sends its observation vector ~o to a
small number k (e.g., 7) of other peers in the system, called
u’s successors (similarly, we will refer to u as a predecessor
of such a successor peer). The successor peers are determined
by a set of k hash functions h(u) on u’s identifier.2 In the
following, we will assume that a round is roughly one week.
Moreover, note that it does not matter, when exactly in this
time interval a peer sends its reports to the successors, and
hence, churn is not an issue here.

Observe that by this scheme, a peer u always informs the
same set of peers, independently of which peers contributed
resources to u; hence, upon receiving a vector, a peer can
check whether it has been sent by a correct predecessor by
verifying the hash function3—otherwise, it can simply drop
the vector. Note that the “observed” contribution value of the
successor is not taken into account, so that the attack with
the biggest incentive is simply made impossible by design.
What is more, each peer can also ignore the vector of a peer
that sends too frequently (more than once in a round). If

2Due to the hash function, some peers will have slightly more, others
slightly less predecessors.

3To verify the predecessor identifier, public/private-key pairs among peers
are presumed.



an observation vector is susceptible to be a false report (cf
Section VIII), it is not taken into account either. Finally,
“extremely large contribution values” are culled as well, due
to the danger of false praise. Thus, already by this simple
mechanism, the potential influence of an attacker is limited.

Unfortunately, sending direct observations to the succes-
sors is still not enough in order to accurately estimate the
contributions of all peers. Therefore, we extend the mech-
anism as follows: Upon receiving the observation vectors
from its k predecessors, each peer aggregates them with
its own observations, and sends the new vector to its k
successors. Thus, one vector can summarize a large number
of observations. However, we have to make sure that the
values in the vectors do not increase forever, and do not
contain too many observations from the past which do not
reflect the current behavior of each peer. What is needed
is a scheme where old observations can be truncated in the
observation vector, while still containing enough observations
to update the contribution vector after each round.

Therefore, the Havelaar finally works as follows. In every
round, a peer puts its own observations into a vector ~o0 (so far
simply called ~o). After each round, it sends a message to its k
successors containing its own (direct) observations from this
round (~o0), the aggregated observations of its k predecessors
from the last round ~o1, the aggregated observations of the
k predecessors of its own k predecessors ~o2 from the round
before the last round, and so forth. The message thus contains
an n × r-matrix O := [~o0, . . . , ~or−1]. Upon receiving the
matrix Oi := [~o1, . . . , ~or] from predecessor i ∈ [1, k] (note
that when sending, the index runs from 0 . . . r−1, and when
receiving, it is renamed to 1 . . . r), a peer aggregates all ob-
servations and updates its contribution vector ~c accordingly.
Observe that the vectors from previous rounds aggregate an
exponentially growing number of observations. Furthermore,
also observe that at any moment, the oldest observations lie
r rounds in the past.

A simplified description of the Havelaar reputation system
is given in Algorithm 1. The algorithm extends the method
described so far by an aging factor γ ≤ 1. However,
note that since the aggregation vectors already include many
observations from the past, using γ = 0 is fine for our
purpose, but can be increased if longer absences from the
system should not result in a complete loss of the previous
contribution value.

Algorithm 1 Simplified Havelaar Reputation System
1: observe ~o0;
2: receive O1 := [~o1, . . . , ~or] , . . . , Ok from predecessors;
3: for j ∈ [1, r]: ~oj =

∑k
i=1 Oij ;

4: ~c = γ~c + (1− γ)(
∑r

i=0 ~oi);
5: send O := [~o0, . . . , ~or−1] to k successors;

In our system, a peer u increases the contribution values
only after downloading fragments from other peers, but it
never decreases any contribution values if it has to provide

upload bandwidth to some peer. This has the drawback that
if two peers have contributed to the system equally, they will
be allocated the same amount of download bandwidth, inde-
pendently of their downloading behavior—it is questionable
whether this is fair. However, as mentioned, we do not want
to provide any disincentives for downloading in our network,
so that this is acceptable.

However, the behavior of excessive downloads should be
discouraged. Such downloads could have the disadvantage
of a vicious circle: because of excessive downloads, the
network is congested, which in turn encourages other users
to download in advance, resulting in an even more congested
network. Therefore, in our system, each peer u additionally
maintains a second vector ~d (downloads). After another peer
downloads from u, u will increase the download value of that
peer. As opposed to the observation vector, the download
vector will not be sent around. However, before allocating
resources among competing peers, the download values will
be subtracted from the respective contribution values from ~c,
and only then used to allocate the bandwidth. For excessive
downloaders, repeated interactions are more probable, and
hence excessive downloaders are eventually slowed down.
Note that the download values need to age. However, one
could also treat downloads differently, for instance, not at
all, or by a similar mechanism as we use it for uploads.

V. ANALYSIS

A. Overview

Assume that two peers u and v compete for the same
upload bandwidth of a given peer w. In order to achieve
the desired fairness, peer w should allocate the bandwidth to
u and v according to their (global) contribution values Cg

u

and Cg
v , respectively, i.e., with respect to all transactions to

which they have contributed. However, in Havelaar, peer w
does not have precise information about Cg

u and Cg
v , but only

knows the local approximations Cl
u and Cl

v (values from its
observation vector ~c). Hence, if Cg

u

Cg
v

is five, also Cl
u

Cl
v

should be
roughly five, such that peer u indeed receives approximately
five times more bandwidth than peer v.

In this section, we analyze how many observations x
are needed in order that the values in the local vectors ~c
are an acceptable approximation of the global contributions.
Consequently, we can compute the number of rounds r that
are necessary in Havelaar to achieve the required number of
(aggregated) observations. In the following, we use Cu and
Cv to denote Cl

u and Cl
v , respectively.

Our network consists of n peers, not all of which are
always online. We simplify the analysis by assuming that
at any time exactly m < n peers are online. Furthermore,
we assume that each peer downloads t fragments from other
peers, which are chosen uniformly at random among all peers.
Hence, when downloading a fragment, the probability that a
given peer is chosen is simply given by p = 1

m . Finally,
assume that these transactions are distributed uniformly over
time.
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Fig. 1. The coefficient of variation converges to 0 for x→∞.

B. Basic Analysis

Since we aggregate all x observations of peer u in the
variable Cu, it does not matter where these observations are
made. For the basic analysis, we assume that bandwidth and
fragment sizes are equal to 1, that is, the Cu is increased by
1 after each download from u. As explained before, peer u is
chosen with probability p for every download. Therefore, Cu

can be regarded as a random variable. What is the probability
distribution of Cu after x downloads?

This situation corresponds to a balls-into-bins problem
[16], where x balls are tossed into m bins, and where p = 1

m
is the probability that a tossed ball lands in any given bin.
For a concrete bin u, the ball tossing process can be viewed
as a sequence of x random, independent Bernoulli trials,
each with a probability p of success. Therefore, the random
variable Cu follows a binomial distribution Cu ∼ Bin(x, p),
where µCu = E(Cu) = x · p and σ2

Cu
= V ar(Cu) =

x · p · (1− p).
For small x and large m, the coefficient of variation

σCu

µCu
is large. However, for x → ∞, it quickly converges

to 0, as shown in Figure 1. This indicates that for lots
of transactions, relative estimates become accurate enough.
However, estimating the actual contribution of u is a difficult
task, since it depends on many factors. Instead, we are only
interested in the ratio of the contribution values of two peers
competing for resources at the same time. Therefore, let us
introduce the random value Z, reflecting this ratio:

Z =
Cu

Cv
.

What is the expected value and the variance of Z? Since
Cu and Cv are independent, the following approximations
are reasonable [22]:

µZ = E(Z) ≈ µCu

µCv

+ σ2
Cv

µCu

µ3
Cv

(1)

σ2
Z = V ar(Z) ≈ σ2

Cv

µ2
Cu

µ4
Cv

+
σ2

Cu

µ2
Cu

(2)

Obviously, for x →∞, the variance converges to 0. Thus, for
lots of observations x, Z will be a very good approximation
to the ratio of the real contributions of peers u and v.

Our goal is to have an acceptably small coefficient of
variation σZ

µZ
(or, similarly, a small variance-to-mean ratio

σ2
Z

µZ
). In the following, we will make use of another helpful

approximation of the coefficient of variation [25]:(
σZ

µZ

)2

≈
(

σCu

µCu

)2

+
(

σCv

µCv

)2

(3)

However, before we conclude how many transactions are
necessary, we want to extend our model such that it incorpo-
rates more aspects arising in reality.

C. Online Time

So far, we have assumed that peers u and v are online all
the time and can thus be chosen for all x transactions. In
reality, however, some peer u might be online much longer
than some other peer v. Therefore, u is likely to be involved
in more transactions and will hence also contribute more to
the network. This should clearly be reflected in the local
approximations Cu and Cv .

Let us assume that peer u is online with a fixed probability
of pu, and peer v with probability pv . Based on the assump-
tion that the transactions are distributed uniformly over time,
peer u will only be chosen for xu = pux transactions in
expectation, and peer v for xv = pvx transactions. It is run
of the mill to extend our random variable appropriately to
Cu ∼ Bin(xu, p), with µCu

= E(Cu) = xu · p = pu · x · p
and σ2

Cu
= V ar(Cu) = xu · p · (1− p) = pu · x · p · (1− p),

and similarly for Cv . Clearly, the mean contribution value
is double for peers having double the online time of other
peers.

D. Bandwidth and Fragment Size

The goal of the Havelaar system is to encourage high
upload bandwidths; consequently, the provided bandwidth
must be included in the model. Let us assume that peer u
uploads fragments with a fixed bandwidth bu, and peer v
with bandwidth bv . Instead of adding 1 to the contribution
value of each peer, we add the respective bandwidth. This
corresponds to the multiplication of a random variable with
a constant. The expected value of Cu changes therefore
to µCu = E(Cu) = bu · pu · x · p, and the variance to
σ2

Cu
= V ar(Cu) = b2

u · pu · x · p · (1 − p). Note that the
variance is now multiplied twice (b2

u); thus, the variance in the
contribution Cu does not increase linearly in the bandwidth,
but quadratically.

We could also extend the model to variable fragment
sizes. However, in order to keep things simple, we omit
this generalization in our analysis; note that this would also
influence the variance of the ratio Z as well.

E. Observations

With the complete model, we can now estimate the number
of observations necessary for a good approximation, that is,
for small coefficients of variation of Z. Plugging µCu , σCu ,
µCv , and σCv into Equation (3) yields
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(
σZ

µZ

)2

≈

(√
b2
upux(p− p2)
buxpup

)2

+

(√
b2
vpvx(p− p2)
bvxpvp

)2

=
1− p

xpup
+

1− p

xpvp
(4)

We can solve Equation (4) for x, and get the following
fact.

Fact 5.1: Havelaar requires

x ≈ −pv(p− 1) + pu(p− 1)(
σZ

µZ

)2

pupvp

observations in order to compute a good approximation of
the global contribution values.

As an example, for a network of n = 100, 000 peers, where
at any time m = 1

4n = 25000 peers are online and if we
assume that pu = pv = 1

4 , x ≈ 107 observations are required
for an acceptable coefficient of variation of 0.1.

F. Rounds

Knowing how many observations x are approximately
needed for an acceptable accuracy, we can now determine
how many aggregation rounds are necessary. Assuming that
every peer makes t transactions (= observations), the number
of rounds r is simply given by r = logk

x
t .

For the above example of x = 107 observations, assuming
that each peer makes t = 5000 transactions and sends its
observations to k = 7 peers, r = 3.9 ≈ 4 rounds are
needed. Since x depends on the size of the network n,
more observations need to be aggregated as well. Because
of the multiplicative increase of observations per round, this
is certainly feasible, as shown in Figure 2. On the other hand,
one can imagine that t is larger in larger networks, as more
interesting fragments can be downloaded.

G. Contention

Z follows a log-normal distribution which does not contain
negative values and is skewed to the left. Knowing the
distribution of Z, we could define a 95%-confidence interval
depending on t and compute the relative error. However, since
our model is based on several simplifications, this would be
overly exact. Instead, we are interested in a rough estimate

of x in order to determine the number of rounds necessary
of Algorithm 1.

Especially when taking into account another aspect of
reality: contention. In times of contention, the fairness mech-
anism applies and bandwidth is allocated according to a
mechanism similar to the one outlined in Section ??. If
so, the allocated upload bandwidth will be much smaller
than the actually provided one, and hence the increase in
the contribution value does not reflect this correctly.

However, assuming that contention is distributed uni-
formly, this aspect affects each download with equal prob-
ability, and with lots of observations, it will be smoothed
out. But it certainly introduces another variance to the model,
which ultimately influences the variance of Z. We can see
from Equation (2) that a linear increase in the variance of
the contribution values results in a quadratic increase of the
ratio Z. However, since we can increase the aggregation size
multiplicatively (factor k) by using just one more round,
integrating that necessary amount of observations becomes
feasible.

VI. CODING AND COMPRESSION

The Achilles’ heel of Havelaar is its message size: Every
peer has to send—for example, once a week—the aggregated
observations to its successor. Although we believe that this is
a tolerable burden in many practical systems, some forms of
compression are still very desirable. Therefore, in this section,
we explore some coding and compression techniques that we
can apply to reduce the size of the messages.

Contribution Values: So far, we have not said anything
about the size of a contribution value. Of course, if we allow
the contribution values only to be within a certain range of
2l discrete (integer) values, using l bits per observation is
enough. Of course, this introduces another variance, which is
however small with respect to the analysis in Section V.

Moreover, contribution vectors from older rounds will
have higher contribution values on average because they are
aggregated from much more observations. This entails a great
range of different contribution values. Therefore, it could be
worth normalizing these values first. This is done by dividing
each value by the sum of all values in the vector, or by
dividing each value of vector i by ki. Before aggregating, the
values need to be multiplied by that factor of course. This
clearly reduces the accuracy, especially for values from older
rounds. However, for the purpose of the fairness system, this
is acceptable, as this variance is smaller than the one due to
the factors analyzed in Section V. However, the gain in the
size reduction is huge.

Analyzing a histogram of all values shows that a further
reduction is possible. Since not every value is equally likely,
it would be worth encoding the values with different lengths.
This could for instance be done using a Huffman encoding,
using the relative frequency of each value, which would
encode the values close to their entropy. Another, more
generic approach is to fit a distribution to the histogram,



and use this distribution to encode the values, which renders
it unnecessary to send the code alphabet. In the following,
however, we will not take into account any possible reduc-
tions from encoding techniques, but instead assume that the
contribution values can be encoded with l = 8 bits each (in
a simulation, the entropy was only ≈ 7).

Sparseness and Bloom Filter: The matrix O contains
r observation vectors, each corresponding to the observed
aggregation from the predecessors of the respective round.
In particular, ~o0, the first column vector, is the observation
vector of only one peer. Therefore, because t � n, this vector
will contain many empty entries and is thus very sparse.
Of course, it is unnecessarily expensive to send all these
empty entries. Instead, we will only send entries for which
at least one observation could be made. That is, we need to
identify the corresponding entry of the vector using dlogne
bits. If t � n, this is much cheaper than sending the entire
vector. We can generalize this also to the other rounds. Again,
assuming that each peer makes t transaction, the column
vector from round r will contain x = krt observations. How
many entries are empty in this case? The answer corresponds
to the number of empty bins in a balls-into-bins game with
n bins and x balls. The expected number of non-empty bins
is given by f(n, x) := n − n · (1 − 1

n )x ≈ n − n · e− x
n .

Therefore, we will send the entire vector ~oi only if it is more
efficient in terms of size than when sending the single entries
individually, which is expressed by

min{f(n, ki−1 · t) · (dlog ne+ l), n · l}

A further reduction can be achieved; instead of addressing
each peer by dlog ne bits, we could encode them using a
Bloom filter [5] with c · f(n, x) bits, where c would be small
constant (e.g., 8)—a small false positive rate is certainly
acceptable for the purpose of this reputation system if it
results in a large efficiency gain. As an example, for encoding
250, 000 identifiers using a Bloom filter with 5 hash functions
and 2, 000, 000 bits, we would have a false positive rate of
only 0.021, with a reduction in size of dlogne

8 . Putting this
together yields the size of the vector ~oi by

min{f(n, ki−1 · t) · (c + l), n · l}

Conclusion: To conclude, we define the expected message
size χ, depending on the number of rounds r and the number
of transactions t in the system. We will use l = 8 and c = 8.
In a simulation, l = 7 was sufficient.

Fact 6.1: The average size in bytes of messages in Have-
laar is approximately given by

χ =
1
8
·

r∑
i=0

[
min{f(n, ki−1 · t) · (8 + 8), n · 8}

]
.

VII. EVALUATION OF COMMUNICATION COST

As mentioned, besides Havelaar’s strengths—e.g., being
robust to attacks, and computing fair contribution values—,

one of the major concerns is the amount of information which
has to be transmitted per round. Therefore, in this section,
we analyze the communication costs. Moreover, we compare
them to a reputation system which is based on DHTs, i.e.,
where the contribution value of a given peer u is stored
in the DHT based on a hash function h(u). Note that this
is only meant as a benchmark in terms of communication
overhead: unlike Havelaar, the DHT approach is typically
already vulnerable to simple attacks.

A. DHT Benchmark

DHT, because peers will not always remain online. There
are basically two approaches: First, we could store the value
redundantly at different peers. Second, we could move the
contribution value to the next closest peer whenever a peer
leaves.

is especially important for large data. However, it suffers
from the problem that the data is read-only; updating all
redundant copies would be too expensive. Updating the
contribution value is obviously necessary. However, we could
argue that it does not matter if not all copies would be updated
when increasing the contribution value of a peer. After all,
also in our system, the contribution value does not need to be
exact. However, in this case, the variance in the contribution
value would depend on the online behavior of these peers,
which cannot be controlled and could thus vary very much.
To balance this, we would need to introduce an even further
redundancy.

purpose; however, it does result in an increased communi-
cation overhead, especially under high churn rates. Further-
more, there is a huge potential for attacks.

performance evaluation, since we do not take this extra
communication costs into account. Instead, we state the costs
of the DHT approach as ”lower bound” for exactly this
reason.

Exact DHT: In the DHT approach, the contribution value
of peer u is stored at a peer which is chosen based on a hash
function h(u). Before uploading data to peer u, its value must
be retrieved from the DHT. After downloading data from peer
u, its value must be updated.

Let us assume that every message has an overhead of
µ = 40 bytes (e.g., message header plus packet type).
We assume dlog ne bits for identifying each peer, and we
assume that each contribution value uses 8 bits. Furthermore,
a message can be routed in log n steps, which is typical for
many DHTs [21], [23], [26], [30]. Finally, we consider a
scenario where each peer makes t downloads and therefore
also approximately t uploads.

Thus, since the contribution value of each peer needs to
be requested before an upload, and needs to be stored after
a download, the communication costs of this approach are
approximately given by 2 · t · log n(µ + dlog ne

8 + 1).
Note that these are lower bound costs; in reality, the

DHT approach would need to move the contribution value
to another peer whenever a peer joins or leaves the system,



so that it is always available. Storing redundant copies does
not work, because not all replicas can be updated on a change.

For t � n, there is only a very small probability that peer
u has contact with the same peer again. For large t, however,
we could—similarly to our reputation system—only update
and retrieve the contribution value of each individual peer
once a round. As described in Section VI, this corresponds to
the number of non-empty bins in a balls-into-bins game and
can be described by the function f(n, t). Therefore, we will
extend our lower bound cost function for the exact approach
(DHTEL for DHT exact lower bound) accordingly:

DHTEL = 2 · f(n, t) · log n · (µ +
dlog ne

8
+ 1)

Approximate DHT: In the exact approach, the contribution
value of each peer is reflected accurately. In Havelaar, how-
ever, we accept that the value is only approximate, and hence
the comparison is not entirely fair yet, as we could also reduce
the communication overhead of the DHT approach: Instead
of updating the contribution value after each transaction, we
could only update it with a probability p. This approach has
been suggested in [20], where the authors have shown that
the results are accurate enough. A value of p = 0.05 would
result in a variance that is in the same order as in our case.
However, these costs can only be saved for updates; before
every download, we still need to retrieve the contribution
value. Thus, the adapted costs for this approach (DHTAL

for DHT approximate lower bound) are:

DHTAL = (1 + p) · f(n, t) · log n · (µ +
dlog ne

8
+ 1)

B. Results

We can now compare the costs of the DHT approach to
Havelaar. In the Havelaar reputation system, every peer sends
the observation matrix O to its k successors. The size χ of
such a message has been computed in Section VI. The total
communication costs in our Havelaar system are therefore

Havelaar = k · χ

Note that we keep r in this simple evaluation. However,
as has already been mentioned, r is always quite small, and
changes slowly (logarithmical) in the total number of peers.

3 compares Havelaar to the exact and approximate DHT
benchmarks for a network of size n = 100, 000. It shows the
communication overhead in megabytes (MB) depending on
the number of transactions. For small number of transactions
(t < 2000), the communication overhead of our reputation
system is higher than when a DHT approach is used. How-
ever, it clearly indicates that it scales very well with the
number of transactions. Furthermore, observe that the both
DHT approaches represent a lower bound—in reality, further
communication costs occur.

4 compares the communication costs of Havelaar to the
exact DHT approach for a fixed number of t = 20, 000
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Fig. 3. Comparison of the communication complexity of our reputation
system Havelaar to the DHT approach for a network of n = 100, 000
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Fig. 4. Comparison of the communication overhead for t = 20, 000
transactions depending on the size of the network.

transactions depending on the size of the network. brauchts
da noch conclusion?

In conclusion, we see that although the costs of Havelaar
can be high, they are still tolerable in many practical systems.
Moreover, our system compares well to DHT approaches,
especially if there are many transactions per round (i.e., per
week).

VIII. ATTACKS

Havelaar is designed to cope with peers aiming at selfishly
consuming larger shares of resources than other peers. The
fact that every peer can send its observations only to its k
successors makes local defenses possible.

The peer uses several defense mechanisms. First a receiver
will check whether a sender is one of its predecessors, and
otherwise ignores the report. Moreover, it can make sure that
a peer does not report contributions too often.

Of course, a peer does not take into account observations
of the predecessor itself. Thus, a most attractive attack is
made hard by design: It is only possible to falsely “praise”
or “accuse” another peer.



In addition to limiting the range of possible values, other
measures are taken in our system to detect and ignore false
reports. Before updating the local contribution vector ~c on
the basis of the k observation matrices, for each value the
average and variance is calculated. If one value is extremely
large, it is considered an outlier with respect to the other k−1
values, and is dropped. Then, the average of the other k − 1
values is taken as the input to the update function.

Clearly, one can think of several further local defense
mechanisms. For instance, statistical measures could be in-
cluded to detect a possible false report by studying the
distribution (histogram) of the observation vector, e.g., by
checking whether the histogram is spiked. In any of the
above cases where the successor is suspicious of an attack, it
could reduce the trust value associated with each predecessor.
The trust value can be used to either drop observations
by suspected peers, or to weigh their observation values
accordingly. However, so far, we make not use of these
techniques.

Besides the advantages of local defense, the robustness
of Havelaar comes from the extensive aggregation: A single
wrong value can hardly influence the overall outcome. In this
sense, also the damage which can be done by a small fraction
of colluding peers is limited. In particular, as successor peers
are determined by hash functions, becoming a predecessor
of a specific peer is difficult, and hence colluders cannot
efficiently leverage their accumulated power either.

In summary, Havelaar’s design—which is based on local
defense and extensive accumulation, and which (unlike many
other approaches) does not rely on trust transitivity—makes
it hard to falsely report in this system.

IX. SIMULATION

We have performed several simulation of Havelaar which
fortify our results. In this section, we want to present the
most interesting findings.

In Figure 5, the real ratio of the contribution values
of two peers are compared using the ratio from the local
approximation in several rounds in a network of size n =
100, 000, with k = 7 successors and r = 4 rounds. In
each round, the peers can change their upload bandwidth.
In the first round, for instance, peer u contributed exactly
three times more than peer v. Note that the approximation is
shifted to the right; this is due to the fact that contribution
values are only updated once a round, based on observations
from the past. Note also that the standard deviation of the
approximation is generally low—being higher when peers
change their behavior abruptly, again because of observations
from the past.

Figure 6 plots the local contribution vector for the same
network against the real contribution vector. Both vectors are
normalized by dividing each entry by the sum of the whole
vector. Therefore, each contribution value reflects the pro-
portional contribution of the whole network. Again, the local
approximation reflects the real contribution very accurately.
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For peers with higher contribution, however, the variance
becomes larger. The reason for this is that the variance is
multiplied by the square of the bandwidth, as described in
Section ??. Observe, however, that the coefficient of variation
remains constant for every peer because it does not depend
on the bandwidth.

Finally, in Figure 7, we plot the locally computed contri-
bution ratios of all peers in a histogram. In reality, peer u
has contributed twelve times more than peer v, in the same
network as above. The histogram shows that the distribution
is slightly skewed to the left. Fitting a log-normal distribution
indicates that the ratio Z is in fact log-normally distributed.
Figure 8 depicts the probability plot as an indication of the
accuracy of the fit.

X. CONCLUSIONS

The main goals of the Havelaar reputation system are (1)
robustness to false reports, (2) efficiency, especially in the
absence of contention, and (3) a communication complexity
which does not depend on the number of transactions. This is
achieved by a novel design approach in which peers always
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report the reputation values the same set of peers, which
allows for a local control of a peer’s behavior. Encouraged
by our results, we have now integrated Havelaar in our
distributed storage system (Kangoo). However, we believe
that Havelaar is a good choice for many active p2p systems
requiring a fairness mechanism.
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