
GraphChef: Learning the Recipe of Your Dataset

Peter Müller 1 Lukas Faber 1 Karolis Martinkus 1 Roger Wattenhofer 1

Abstract

We propose a new graph model, GraphChef, that
enables us to understand graph datasets as a whole.
Given a dataset, GraphChef returns a set of rules
(a recipe) that describes each class in the dataset.
Existing GNNs and explanation methods reason
on individual graphs not on the entire dataset.
GraphChef uses decision trees to build recipes
that are understandable by humans. We show
how to compute decision trees in the message
passing framework in order to create GraphChef.
We also present a new pruning method to pro-
duce small and easy to digest trees. In the ex-
periments, we present and analyze GraphChef’s
recipes for Reddit-Binary, MUTAG, BA-2Motifs,
BA-Shapes, Tree-Cycle, and Tree-Grid. We verify
the correctness of the discovered recipes against
the datasets’ ground truth.

1. Introduction
Graphs abstractly represent complex relational data in a
myriad of applications, and play a crucial role in, e.g., chem-
istry, engineering, social sciences, or transportation. Graph
Neural Networks (GNNs) have been successfully applying
machine learning techniques to many graph-based domains.
So far GNNs are used as black-box models to classify indi-
vidual graphs, as in “Is this protein (represented as a graph)
an enzyme?” In contrast, in our work we do not only want
to understand individual graphs, but whole datasets, as in
“What makes a protein an enzyme?” To answer questions
about whole datasets, we need a form of abstract articula-
tion, a “recipe” that describes precisely which proteins are
enzymes. Decision trees seem suitable to articulate such a
recipe because they can produce human-readable explana-
tions. In this paper, we propose a novel architecture called
GraphChef that combines the strengths of decision trees
with graph neural networks. As a motivating example, we

1ETH Zurich, Switerland. Correspondence to: Lukas Faber
<lfaber@ethz.ch>.

Workshop on Interpretable ML in Healthcare at International Con-
ference on Machine Learning (ICML), Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

discuss the GraphChef recipe for Enzymes in Figure 1.

Enzymes are easy to understand without intermediate lay-
ers. We show in other experiments that GraphChef works
equally well for various graph benchmarks. In summary, our
contributions are as follows:

• While traditional GNNs are based on synchronous mes-
sage passing (Loukas, 2020), we propose a new layer
that is inspired by a simplified distributed computing
model known as the stone age model (Emek & Watten-
hofer, 2013). In this model, nodes use a small categori-
cal space for states and messages. The stone age model
is simple and as such suitable for interpretation while
retaining a high theoretical expressiveness. We call our
new layer dish (DIfferentiable Stone-“H”).

• We distill the multi-layer perceptrons in all dish lay-
ers to decision trees. We call the resulting model
GraphChef. GraphChef abstractly expresses the reason-
ing behind a graph classification task (the classification
recipe) with a series of decision trees.

• We propose a way to collectively prune the decision
trees in GraphChef. Pruning may affect accuracy, but
also gives simpler explanations. GraphChef hence al-
lows for a trade-off between accuracy and simplicity.

• We show that we can also use the decision trees to com-
pute node-level importance scores similar to orthodox
GNN explanation methods.

• We test our proposed architecture on established GNN
explanation benchmarks and real-world graph datasets.
We show that our recipes are competitive in classi-
fication accuracy with traditional GNNs. We further
validate that the proposed pruning methods consider-
ably reduce tree sizes. Last, we demonstrate how to
read GraphChef’s recipes to find interesting insights
in real-world datasets or flaws in existing explanation
benchmarks.

• We provide a user interface for GraphChef.1 This tool
allows for the interactive exploration of the GraphChef
recipes on the datasets examined in this paper. We
provide a manual for the interface in Appendix C.

1https://interpretable-gnn.netlify.app/

1

https://interpretable-gnn.netlify.app/

GraphChef: Learning the Recipe of Your Dataset

(a) (b) (c)

Figure 1: (a) An example graph from the PROTEINS dataset. In each graph of the dataset, nodes are secondary structural
elements of amino acids. Each node has one of three types: helix (input 0), sheet (input 1), or turn (input 2). Figure (a) shows
an example graph consisting of mostly helices (green) and two sheets (yellow). The output layer (b) learns to decide whether
a protein is an enzyme based on how many sheet respectively “no sheet” nodes the graph has in the input layer. Whether
nodes are helices or turns does not seem to matter, and consequently the input layer (c) learns to only distinguish nodes as
either sheet and no sheet. Both trees (b,c) together then imply: A protein is an enzyme if it has at most 8 nodes that are not
sheets, or if it has at most 3 sheets. This GraphChef recipe is consistent with previous human analysis (Errica et al., 2020).

2. Related Work
2.1. Explanation methods for GNNs

Given a graph classification problem, GraphChef will com-
pute a series of decision trees (a recipe) that together explain
the classification. As such, GraphChef is a distant relative of
other explanation methods for GNNs. We can group existing
explanation methods into roughly five types:

Gradient based. Baldassarre & Azizpour (2019) and Pope
et al. (2019) show that it is possible to adopt gradient-based
methods known from computer vision, for example Grad-
CAM(Selvaraju et al., 2017). Gradients can be computed on
node features and edges (Schlichtkrull et al., 2021).
Mutual-information based. Ying et al. (2019) measure the
importance of edges and node features. Edges are masked
with continuous values. Instead of gradients, the authors use
mutual information between the inputs and the prediction to
quantify the importance. Luo et al. (2020) follow a similar
idea but emphasize finding structures that explain multiple
instances at the same time.
Counterfactual. Counterfactual approaches measure the
importance of nodes or edges by how much removing them
changes the classifier prediction. They are the extension of
the occlusion idea (Zeiler & Fergus, 2014) to graph neural
networks. Lucic et al. (2021) for example identifies few
edge deletions that change model predictions. Bajaj et al.
(2021) propose a hybrid with an example-based explanation.
They compute decision boundaries over multiple instances
to find optimized counterfactual explanations.
Subgraph based. Yuan et al. (2021) consider each sub-
graph as possible explanation. To score a subgraph, they
use Shapley values (Shapley, 1953) and Monte Carlo tree
search for guiding the search. Duval & Malliaros (2021)

build subgraphs by masking nodes and edges in the graph.
They run their subgraph through the trained GNN and try
to explain the differences to the entire graph with simple
interpretable models and Shapley values. Zhang et al. (2021)
infer subgraphs called prototypes that each represent one
particular class. Graphs are classified and explained through
their similarity to the prototypes.
Example based. Huang et al. (2020) proposes a graph ver-
sion of the LIME (Ribeiro et al., 2016) algorithm. A predic-
tion is explained through a linear decision boundary built
by close-by examples. Vu & Thai (2020) aim to capture
the dependencies in node predictions and express them in
probabilistic graphical models. Faber et al. (2020) explain
a node by giving examples of similar nodes with the same
and different labels. Dai & Wang (2021) create a k-nearest
neighbor model and measure similarity with GNNs. Yuan
et al. (2020a) and Wang & Shen (2022) propose to generate
a representative graph for each class in the dataset which
maximize the models confidence in the class prediction.

While these methods provide some explanation, they do
not grant true understanding of the processes defining each
class. Gradient, Mutual-Information, and Counterfactual
methods compute node-level importance that we can inter-
pret as heatmaps. These heatmaps highlight what parts of
the input are important but not why. Users might puzzle
together a recipe by looking at heatmaps for many graph
examples. However, this will be highly non-trivial. In order
to understand the recipe of the enzymes example of Figure
1, a human would certainly need dozens of example graphs,
and the correct thresholds (3,8) might still be out of reach.

Subgraph and Example based methods explain graphs by
showing other example graphs or idealized prototype repre-
sentatives for classes. Users might find a recipe by looking

2

GraphChef: Learning the Recipe of Your Dataset

at commonalities and differences for many graphs or pro-
totypes, but again with considerable effort. In contrast, a
recipe by GraphChef directly encodes the decision rules.

Explanation properties and benchmarks. Complimentary
to the development of explanation methods is the research
on how to evaluate these methods. Sanchez-Lengeling et al.
(2020) and Yuan et al. (2020b) discuss desirable properties
a good explanation method should have. For example, an
explanation method should be faithful to the model, which
means that an explanation method should reflect the model’s
performance and behavior. Agarwal et al. (2022) provide
a theoretical framework to define how strong explanation
methods adhere to these properties. They also derive bounds
for several explanation methods. Faber et al. (2021) and
Himmelhuber et al. (2021) discuss deficiencies in the ex-
isting benchmarks used for empirical evaluation. We will
show recipes by GraphChef in Appendix A that exploit the
flaws of these datasets.

Simple GNNs. Another interesting line of research is sim-
plified GNN architectures (Cai & Wang, 2018; Chen et al.,
2019; Huang et al., 2021). The main goal of this research
is to show that simple architectures can perform competi-
tively with traditional complex GNNs. As a side effect, the
simplicity of these architectures also makes them slightly
more understandable. However, they are not understandable
to the extent that we can derive recipes for entire datasets.

2.2. Combining decision trees with neural networks

A recent work by Aytekin (2022) shows that we can trans-
form any neural network into decision trees. However, this
approach creates a tree with potentially exponentially many
leaves. Even though this method produces decision trees we
cannot use the outputs as humanly understandable recipes
for datasets.

There is a successful line of work trying to distill neural
networks into trees for better explainability (Boz, 2002;
Craven & Shavlik, 1995; Dancey et al., 2004; Krishnan et al.,
1999). More recently, Schaaf et al. (2019) have shown that
encouraging sparsity and orthogonality in neural network
weight matrices allows for model distillation into smaller
trees with higher final accuracy. Wu et al. (2017a) follow a
similar idea for time series data: they regularize the training
process for recurrent neural networks to penalize weights
that cannot be modeled easily by complex decision trees.
Yang et al. (2018a) aim to directly learn neural trees. Their
neural layers learn how to split the data and put it into
bins. Stacking these layers creates trees. Kontschieder et al.
(2015) learn neural decision forests by making the routing
in nodes probabilistic and learning these probabilities and
the leaf predictions.

GraphChef follows the same underlying idea. We want to

structure a GNN in a way that allows for model distillation
into decision trees to leverage their interpretability. In con-
trast to multi-layer perceptrons, we also have to reason about
states in neighbors that are several hops away. Nevertheless,
we believe that graphs and decision trees are a match made
in heaven, since graph datasets often allow for short recipes.

3. The GraphChef Model
3.1. Creating a tree-based GNN Model

Our idea to create a fully-explainable model is to build a
GNN which is composed of decision trees. We start our
architecture from a GIN model (Xu et al., 2019) with ϵ = 0.
The GIN aggregation rule applies a parametrizable function
fθ on the node state and a sum over the node’s neighbors’
states:

hl+1(v) = fθ(h
l(v),

∑
w∈Nb(v)

hl(w))

Additionally, our GIN model has an encoder layer for its
input features and a decoder layer to map the final embed-
dings hL(v) to class probabilities using skip connections.
For node classification, the decoder has access to the em-
beddings of each layer. For graph classification, the decoder
has access to the pooled embeddings of each layer.

However, we cannot derive recipes for a dataset from a GIN
model since the intermediate states hl(v) are continuous
embeddings. This makes it hard to understand for humans
what information is passed around between the nodes in
each communication step. Loukas (2020) shows that GNNs
such as GIN operate in a similar manner to synchronous
message passing algorithms from distributed computing.
Often, these algorithms have a limit on the message size
of b = O(log n) bits (where n is the number of nodes) but
can perform arbitrary local computation (Peleg, 2000). In
contrast to this, the stone age distributed computing model
(Emek & Wattenhofer, 2013) assumes that each node uses a
finite state machine to update its state and send its updated
state as a message to all neighbors. The receiving node can
count the number of neighbors in each state. A stone age
node cannot even count arbitrarily, it can only count up to a
predefined number, in the spirit of “one, two, many”. Neigh-
borhood counts above a threshold are indistinguishable from
each other. Interestingly enough, such a simplified model
can still solve many distributed computing problems (Emek
& Wattenhofer, 2013).

We follow this model to build our dish (differentiable stone-
h) layers. We extend the GIN update rule with a Gumbel-
Softmax (Jang et al., 2016; Maddison et al., 2016) to pro-
duce categorical states. Formally:

hl+1(v) = Gumbel(fθ(h
l(v),

∑
w∈Nb(v)

hl(w)))

3

GraphChef: Learning the Recipe of Your Dataset

Figure 2: A GraphChef layer. GraphChef updates the state of a node based on its previous categorical state (here 0), the
number of neighbors per state (1 in state 0, 2 in state 1, 1 in state 2), and binary > comparisons between states (only state 1
outnumbers other states, therefore the third and fourth deltas are 1). A decision tree receiving this information computes the
followup categorical state (here 2).

Furthermore, we also apply a Gumbel-Softmax to the result
of the encoder layer. Therefore, hidden states become one-
hot vectors and as a consequence the summation in the GIN
update rule is now counting the number of neighbors in each
state — just like in stone age. Unlike stone age, we did not
find that limiting the counting gave better results or better
interpretability.

From a theoretical perspective, the categorical state space
of dish layers does not reduce expressiveness. If we have
a GNN layer with continuous embeddings that encode
O(log n) bits of information, we can construct a dish layer
using O(n) bits that can represent the same information.
Practically, a state space with thousands of states is not
tractable for a human and not interpretable. Therefore, we
will constrain dish layers to few (O(n)) categorical states.
In theory we look at an exponential loss in expressiveness.
However, we noticed that in practice we incur hardly a loss
for many datasets (c.f., Table 1a).

Next, we replace the update rule in each dish layer by a
decision tree. We find these trees through model distillation:
we pass all of the training graphs through the model and
record all node states hl(v) in each layer. The tree for layer
l learns to predict hl+1(v) from hl(v) and

∑
w∈Nb(v) h

l(w)
over all nodes. Since node states are categorical in dish
layers, this distillation is a classification problem. Formally
our GraphChef layer computes:

hl+1(v) = TREEl(hl(v),
∑

w∈Nb(v)

hl(w))

There is one caveat with using decision trees versus MLPs.
Unlike MLPs, decision trees cannot easily compare two
features, for example, to find out if one feature is larger
than the other. To produce small trees we help the decision
trees with comparisons: We include pairwise delta features
∆, binary features that compare every pair of states. Let
cl(v) =

∑
w∈Nb(v) h

l(w) be vector containing the numbers
of neighbors of each state in layer l and let S be the set
of states. Then we compute the delta features as bits bij

between pairs of states if the number of neighbors in state i
outnumber the number of neighbors in state j. We compute
these Delta features for tree training and during inference.
Figure 2 shows an example GraphChef layer that uses the
following update rule:

∆(cl) = ∥
i∈S,j ̸=i∈S

1ci>cj

hl+1(v) = TREEl(hl(v), cl(v),∆(cl(v)))

After training, we inspect the features that the tree uses.
If the tree uses a feature from hl, the tree considered the
previous state of the node. We model this decision node as
in Figure 3a. If the tree uses one of the features from cl, the
decision tree split is based on the neighborhood count of
one particular state (shown in Figure 3b). The threshold y is
found by the decision tree during training. If tree uses one
of the remaining features from ∆(cl), the decision split is
using one of the pairwise comparison features, which we
can model as in Figure 3c. To obtain the final GraphChef
model, we also distill the encoder and decoder layers to use
decision trees.

3.2. Postprocessing GraphChef

Pruning trees. Decision trees like MLPs can theoretically
be universal function approximators if they are sufficiently
deep (Royden & Fitzpatrick, 1988). But again we prefer
interpretable small and shallow decision trees. Shallow trees
are more akin to the finite state machine used in the stone
age distributed computing model. We limit the number of
leaves in every tree during distillation but find that this alone
is not sufficient. The decision trees still contain many nodes
that are artifacts of overfitting to the training set.

We prune these nodes based on the reduced error pruning
algorithm (Quinlan, 1987). First, we define a pruning set.
We find that using only the validation set does not work.
The validation set is too small to cover all paths in the trees
which causes overpruning. On the other hand, we cannot use

4

GraphChef: Learning the Recipe of Your Dataset

(a) (b) (c)

Figure 3: The different branches possible in a GraphChef layer. We can branch on (a) the state a node is in, (b) if the node
has a certain number of neighbors in a certain state, or (c) if the node has more neighbors in one state than another state.

only the training set since since this set created the articates.
We propose to use merge both sets for our pruning set.

For reduced error pruning we also need a quality criterion
when we are allowed to replace an inner decision node with
a leaf. We propose the following: If replacing a node with a
leaf does not drop accuracy on the validation set, and does
not drop training accuracy below validation accuracy, we
accept the replacement. Not allowing validation accuracy to
drop ensures that we do not overprune. But since we allow
drops in training accuracy for the modified tree, we also
remove decision nodes that result from overfitting. Not al-
lowing training accuracy to drop below validation accuracy
is another safeguard against overpruning. We keep iterating
over all inner decision nodes, sorted by the number data
points they cover, and try replacing them with leaf nodes
until we find no more nodes to prune.

Empirically, we found that we can prune substantially more
decision nodes when we allow for a slight deterioration
in the validation accuracy. We follow the same approach
as before and always prune the decision node that leads
to the smallest deterioration. We repeat this until we are
satisfied with the tradeoff between the model accuracy and
tree size. Defining this tradeoff is difficult as it is subjective
and specific to each dataset. Therefore, we included a feature
in our user interface that allows users to try different pruning
levels and report the impact on accuracy. These steps are
incrementally pruning 10% of the nodes in the losslessly
pruned decision tree.

Computing explanation scores. If we have a recipe from
GraphChef for the dataset, we can also compute heatmap-
style importance scores for single graphs; similar to existing
graph explanation methods. We compute these importance
scores layer by layer. In the input layer, every node is its
own explanation. In each GraphChef layer, we compute
Tree-Shap values (Lundberg et al., 2018) for every decision
tree feature. We then compute importance updates for ev-
ery decision tree feature weighted by this Tree-Shap value
independently (unused features have a value of 0). If the
node uses a state feature (as in Figure 3a) then we give im-
portance to the node itself. If we use a message feature (as
in Figure 3b), we distribute the importance evenly between
all neighbors in this state. Last, if we use a delta feature (as

in Figure 3c), we distribute positive importance between
all neighbors in the majority class and also negative impor-
tance between all neighbors in the minority class. Last, we
normalize the scores back to sum up to 1. In the decoder
layer, we employ skip connections to also consider interme-
diate states (for node classification) or intermediate pooled
node counts (for graph classification). We provide a detailed
formal computation in Appendix D.

4. Experiments
4.1. Experiment setup

Datasets. We conduct experiments on two different types
of datasets. First, we run GraphChef on synthetic GNN ex-
planation benchmarks introduced by the previous works.
We use the Infection and Negative Evidence benchmarks
from Faber et al. (2021), The BA-Shapes, Tree-Cycle, and
Tree-Grid benchmarks from Ying et al. (2019), and the BA-
2Motifs dataset from Luo et al. (2020). We know ground
truth recipes for these datastes so we can evaluate if the
recipe found by GraphChef is correct. Secondly, we experi-
ment with the following real-world datasets: MUTAG (Deb-
nath et al., 1991); BBBP (Wu et al., 2017b); Mutagenic-
ity (Kazius et al., 2005); PROTEINS, REDDIT-BINARY,
IMDB-BINARY, and COLLAB (Borgwardt et al., 2005).
We provide more information for all datasets, such as statis-
tics, descriptions, and examples in Appendix E. Note that all
datasets except COLLAB are small enough to train on a few
commodity CPUs. For example, training the PROTEINS
dataset for one seed on a laptop would take 5 minutes for
the full 1500 epochs, a few seconds for the tree distillation,
and 1 − 2 minutes for tree pruning. The larger REDDIT-
BINARY takes around one hour to train a dish GNN (if it
uses all epochs) few seconds for distilling trees and around
10 minutes for pruning. Computing lossy pruning takes a
comparable amount of time to lossless pruning.

Training and Hyperparameters. We follow the same
training scheme for all datasets similar to existing works (Xu
et al., 2019). We do a 10−fold cross-validation of the data
with different splits and train both GraphChef and a baseline
GIN architecture. The GNNs are trained on the training set
for 1500 epochs, allowing early stopping on the validation
loss with patience of 100. Each split uses early stopping on

5

GraphChef: Learning the Recipe of Your Dataset

GraphChef

Dataset GIN dish GNN No pruning Lossless pruning

Infection 0.98±0.04 1.00±0.00 1.00±0.00 1.00±0.00
Negative 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
BA-Shapes 0.97±0.02 1.00±0.01 0.99±0.01 0.99±0.01
Tree-Cycles 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Tree-Grid 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
BA-2Motifs 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

MUTAG 0.88±0.05 0.88±0.06 0.88±0.06 0.85±0.08
Mutagenicity 0.81±0.02 0.79±0.02 0.75±0.02 0.74±0.02
BBBP 0.81±0.04 0.83±0.03 0.82±0.03 0.83±0.03
PROTEINS 0.70±0.03 0.71±0.02 0.71±0.04 0.71±0.04
IMDB-B 0.69±0.04 0.70±0.05 0.69±0.03 0.69±0.04
REDDIT-B 0.87±0.10 0.90±0.03 0.88±0.03 0.87±0.04
COLLAB 0.72±0.01 0.70±0.02 0.69±0.02 0.69±0.02

(a)

Hyperparameters

Layers States

5 6
1 3
5 5
5 5
5 5
4 6

4 6
3 8
3 5
3 5
3 5
2 5
3 8

(b)

Table 1: a) Test set accuracies using different GNN layers. All methods perform virtually the same for all datasets. This
shows that GraphChef layers match the expressiveness of GIN in practice. (b) The GraphChef hyperparameters are found
through tree inspection.

the validation score. Both GNNs use a 2− layer MLP for the
update function, with batch normalization (Ioffe & Szegedy,
2015) and ReLu (Nair & Hinton, 2010) in between the two
linear layers. We use 5 layers of graph convolution. GIN
uses a hidden dimension of 16, GraphChef uses a state space
of 10. We also further divide the training set for GraphChef
to keep a holdout set for pruning decision trees. After we
train dish GNN with gradient descent, we distill the MLPs
into decision trees. Each tree is limited to having a maximum
of 100 nodes.

After training we can inspect the recipes from GraphChef
and validate if all states and layers are necessary. If we find
that the recipe uses less layers or states, we retrain with a
smaller parameters set. Table 1b shows the number of layers
and states that we find per dataset. A full model is used for
GIN.

4.2. Quantitative Results

GraphChef performs comparably to GIN. First, we in-
vestigate the two assumptions that (i) A dish GNN matches
the performance of GIN and (ii) that converting from a dish
GNN to GraphChef also comes with little loss in accuracy.
We further investigate how pruning impacts GraphChef’s
accuracy. In Table 1a we report the average test set accu-
racy for a GIN-based GNN, dish GNN, GraphChef with no
pruning, and the lossless version of our pruning method.

We find that GraphChef performs almost identically to GIN.

This means that the understandable dataset recipes perform
as well as the GNN. The model simplifications to obtain un-
derstandable recipes do not decrease accuracy. We observe,
that tree pruning can even have a positive effect on test ac-
curacy compared to non-pruned GraphChef. This is likely
due to the regularization induced by the pruning procedure.

GraphChef produces competitive explanations. We fur-
ther evaluate how good the explanations obtained through
the recipes of GraphChef are. In line with previous work,
we measure if GraphChef finds the nodes we know to be
the correct explanation in the synthetic datasets Infection,
Saturation, BA-Shapes, Tree-Cycles, and Tree-Grid. For ex-
ample, we know that the correct explanation for a node in
the Infection dataset is the shortest path from this node to an
infected node. As another example, the correct explanation
for every node in the house in the BA-Shapes dataset are
all nodes in the house. Table 2 shows the explanation accu-
racy for GraphChef and baseline explanation methods. The
importance scores gotten from GraphChef are competitive
with explanation methods. We will show with the dataset
recipes that the lower scores for Tree-Cycles and Tree-Grid
are because of flaws in the dataset in Appendix A. These
flaws were already identified by previous work (Faber et al.,
2021; Himmelhuber et al., 2021).

Pruning significantly reduces the decision tree sizes.
Third, we examine the effectiveness of our pruning method.
We compare the tree sizes before pruning, after lossless

6

GraphChef: Learning the Recipe of Your Dataset

Method Infection Saturation BA-Shapes Tree-Cycles Tree-Grid
Gradient 1.00±0.00 1.00±0.00 0.882 0.905 0.667
GNNExplainer 0.32±0.09 0.32±0.05 0.925 0.948 0.875
PGMExplainer 0.38±0.06 0.01±0.01 0.965 0.968 0.892
GraphChef 0.95±0.02 1.00±0.00 0.94±0.02 0.84±0.02 0.927±0.01

Table 2: Overlap of identified explanation to explanation ground truth. Numbers for GNNExplainer and PGMExplainer are
taken from Ying et al. (2019), Vu & Thai (2020), and Faber et al. (2021).

No pruning REP Training REP Validation REP Ours REP Lossy

Dataset Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size

Infection 1.00±0.00 205±56 1.00±0.00 26±2 1.00±0.00 25±2 1.00±0.00 26±2 0.98±0.01 17±2
Negative 1.00±0.00 18±14 1.00±0.00 5±0 1.00±0.00 5±0 1.00±0.00 5±0 1.00±0.00 4±0
BA-Shapes 0.99±0.01 30±10 0.99±0.01 21±5 0.97±0.03 15±4 0.99±0.01 21±5 0.98±0.04 17±4
Tree-Cycles 1.00±0.00 19±5 1.00±0.00 11±3 0.99±0.02 9±2 1.00±0.00 11±3 0.99±0.01 9±3
Tree-Grid 0.99±0.01 30±13 0.99±0.01 17±8 0.99±0.01 13±4 0.99±0.01 15±8 0.99±0.01 15±8
BA-2Motifs 1.00±0.00 141±43 1.00±0.00 12±3 1.00±0.01 11±3 1.00±0.00 13±4 1.00±0.00 13±4

MUTAG 0.88±0.06 59±27 0.86±0.08 19±17 0.83±0.07 7±6 0.85±0.08 18±16 0.85±0.08 18±16
Mutagenicity 0.75±0.02 375±13 0.76±0.02 154±19 0.73±0.01 56±16 0.74±0.02 91±36 0.73±0.02 50±19
BBBP 0.82±0.03 366±53 0.84±0.02 88±52 0.79±0.04 8±10 0.83±0.03 46±27 0.82±0.03 31±18
PROTEINS 0.71±0.04 206±90 0.72±0.03 12±13 0.70±0.04 8±6 0.71±0.04 9±6 0.71±0.04 9±6
IMDB-B 0.69±0.03 218±32 0.69±0.04 20±9 0.66±0.06 16±6 0.69±0.04 29±9 0.69±0.04 29±9
REDDIT-B 0.88±0.03 248±28 0.88±0.02 53±14 0.85±0.04 28±8 0.87±0.04 49±21 0.87±0.04 38±15
COLLAB 0.69±0.02 301±1 0.70±0.02 36±15 0.67±0.03 22±12 0.69±0.02 30±18 0.68±0.02 21±12

Table 3: Running reduced error pruning (REP) on different pruning sets. Lossy pruning prunes the nodes with least loss in
accuracy up to a manually chosen threshold.

pruning, and after lossy pruning. We measure tree size as
the sum of decision nodes over all trees. Additionally, we
verify the effectiveness of using our pruning criterion for re-
duced error pruning and compare it against simpler setups of
using only the training or validation set for pruning. We re-
port the tree sizes and test set accuracy for all configurations
in Table 3.

We can see that the reduced error pruning leads to an impres-
sive drop in the number of nodes required in the decision
trees. On average, we can prune about 62% of nodes in syn-
thetic datasets and even around 84% of nodes in real-world
datasets without a loss in accuracy. If we accept small drops,
in accuracy we can even prune a total of 68% and 87%
of nodes in synthetic and real-world datasets, respectively.
If we compare the different approaches for reduced error
pruning, we can see that our proposed approach of using
both training and validation accuracy performs the best. As
expected, pruning only on the validation set tends to over-
prune the trees: Trees become even smaller but there is also a
larger drop in accuracy, especially in the real-world datasets.
Using the training set leads to underpruning, there is no drop
in accuracy but decision trees for real-world graphs tend to
stay large.

4.3. Qualitative Results

Last, let us look at one example how to parse a recipe from
GraphChef that is given by its decision trees. We analyze
GraphChef for the Reddit-Binary dataset. The recipe is
shown in Figure 4. First, we will create an understanding
for every categorical state in every layer. We can do so in
an iterative fashion: We first understand the encoder layers,
then use these interpreations to understand the first layer,
then use these interpretations for the second layer We
provide this table for the Reddit-Binary dataset in Table 4.
To understand the dataset, we can inspect the decoder rules.

We can understand that we need to find a certain amount
of users (15) fulfilling certain conditions: 1) inactive users
writing with at least two central users or 2) active or central
users that write with at least one central user and at most
2 active useres. We can understand 1) as just replying to
a single central user is not sufficient. We hypothesize that
also controversial opinions in discussions can attract many
comments, even by inactive users. Users fulfilling 2) write
mostly with inactive users since there are few central users
and few communication with active users is allowed.

GraphChef’s recipe aligns with our belief that Q/A graphs

7

GraphChef: Learning the Recipe of Your Dataset

(a) (b) (c)

Figure 4: GraphChef recipe for the Reddit-Binary dataset. Table 4 provides an interpretation of all states in all layer and for
the entire dataset.

Layer State Decision Rule Interpretation
Encoder 2 All nodes No differentiation due to no features.
Layer 0 2 Nodes with at most 3 neighbors Inactive users
Layer 0 4 Between 4 and 45 neighbors Active users
Layer 0 0 More than 45 neighbors Central users
Layer 1 0 1) State 0 nodes with more than one

state 0 neighbor or 2) Not state 2
nodes that have at most two state 4
neighbors

1) Inactive users writing with at least 2 central
users or 2) Active or central users that write with
at most 2 active users.

Layer 1 1 No neighbor in state 0 Users that do no write with a central user.
Layer 1 2 Not state 2 nodes with at least 3 state

4 neighbors
Active or central users that write with at least 3
active users.

Layer 1 4 Nodes in state 2 with exactly one
state 0 neighbor

Inactive users write with one central user.

Decoder Q/A At least 15 nodes in Layer 1 state 0 See interpretation of Layer 1 state 0.
Decoder Discussion Otherwise The GraphChef model looks for evidence of a

Q/A graph. Discussions are "not Q/A" graphs.

Table 4: Analysis of GraphChef recipe in Figure 4 for the Reddit-Binary dataset. A Q/A graph requires central users and 15
users that 1) are inactive and write with more than one central user or 2) are active or central and write mostly with inactive
users.

are more “star-like” than discussion graphs. Unlike previous
methods (Faber et al., 2020), the recipe defines what we
should consider as star like. We obtain a threshold what
we can consider as centers of the star (central nodes with a
degree of 46 or higher). Furthermore, the recipe tells us to
what extent non-star communication is acceptable for a Q/A
graph (two active users). To the best of our knowledge such
insight about the Reddit-Binary dataset has not been found
yet with existing explanation methods.

We also provide the recipes of GraphChef with analysis for
MUTAG, BA-2Motifs, BA-Shapes, Tree-Cycle, and Tree-
Grid in Appendix A. We verify these recipes against the
ground truth of the datasets. GraphChef also reveals and ex-
ploits some dataset flaws that Faber et al. (2021); Himmelhu-
ber et al. (2021) analyzed before. For example, GraphChef
uses the bias trick for the BA-2Motifs dataset.

5. Conclusion
In this paper, we presented GraphChef, the first archi-
tecture that can compute abstract rules to describe entire
graph datasets, and not just single graphs. We believe that
GraphChef will help improve our understanding of graph
problems. This will be crucial in the adoption of graph learn-
ing models in security critical domains such as medicine. We
can also identify and reject recipes that make biased or dis-
criminatory decisions. As shown with MUTAG, PROTEINS,
or Reddit-Binary, we hope that GraphChef’s recipes help
experts in various domains to better understand the rules be-
hind their data. As a limitation, we observe that GraphChef
struggles with datasets that have thousands of node input
features, e.g. Cora (Sen et al., 2008). We discuss this issue
in more detail in Appendix B.

8

GraphChef: Learning the Recipe of Your Dataset

References
Agarwal, C., Zitnik, M., and Lakkaraju, H. Probing gnn

explainers: A rigorous theoretical and empirical analysis
of gnn explanation methods. In International Conference
on Artificial Intelligence and Statistics (AISTATS), virtual,
2022.

Aytekin, C. Neural networks are decision trees. arXiv
preprint arXiv:2210.05189, 2022.

Bajaj, M., Chu, L., Xue, Z. Y., Pei, J., Wang, L., Lam, P.
C.-H., and Zhang, Y. Robust counterfactual explanations
on graph neural networks. In Conference on Neural In-
formation Processing Systems (NeurIPS), volume 34, pp.
5644–5655, 2021.

Baldassarre, F. and Azizpour, H. Explainability tech-
niques for graph convolutional networks. In International
Conference on Machine Learning (ICML) Workshop on
Learning and Reasoning with Graph-Structured Repre-
sentations, 2019.

Borgwardt, K. M., Ong, C. S., Schonauer, S., Vishwanathan,
S. V. N., Smola, A. J., and Kriegel, H.-P. Protein function
prediction via graph kernels. Bioinformatics, 2005.

Boz, O. Extracting decision trees from trained neural net-
works. In ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD), 2002.

Cai, C. and Wang, Y. A simple yet effective baseline for
non-attributed graph classification. In International Con-
ference on Learning Representations (ICLR) Workshop
on Representation Learning on Graphs and Manifolds,
2018.

Chen, T., Bian, S., and Sun, Y. Are Powerful Graph Neural
Nets Necessary? A Dissection on Graph Classification.
ArXiv, 2019.

Craven, M. and Shavlik, J. Extracting tree-structured repre-
sentations of trained networks. In Conference on Neural
Information Processing Systems (NeurIPS), 1995.

Dai, E. and Wang, S. Towards Self-Explainable Graph
Neural Network. In ACM International Conference on
Information & Knowledge Management (CIKM), 2021.

Dancey, D., Mclean, D., and Bandar, Z. Decision Tree Ex-
traction from Trained Neural Networks. In International
Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS), 2004.

Debnath, A. K., Lopez de Compadre, R. L., Debnath, G.,
Shusterman, A. J., and Hansch, C. Structure-activity rela-
tionship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies
and hydrophobicity. Journal of Medicinal Chemistry,
1991.

Duval, A. and Malliaros, F. D. Graphsvx: Shapley value ex-
planations for graph neural networks. In Joint European
Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML
PKDD), 2021.

Emek, Y. and Wattenhofer, R. Stone age distributed com-
puting. In ACM Symposium on Principles of distributed
computing (PODC), 2013.

Errica, F., Podda, M., Bacciu, D., and Micheli, A. A fair
comparison of graph neural networks for graph classifica-
tion. In International Conference on Learning Represen-
tations (ICLR 2020), 2020.

Faber, L., Moghaddam, A. K., and Wattenhofer, R. Con-
trastive Graph Neural Network Explanation. In Proceed-
ings of the 37th International Conference on Machine
Learning (ICML) Workshop on Graph Representation
Learning and Beyond (GRL+), 2020.

Faber, L., K. Moghaddam, A., and Wattenhofer, R. When
Comparing to Ground Truth is Wrong. In ACM SIGKDD
Conference on Knowledge Discovery & Data Mining
(KDD), 2021.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Himmelhuber, A., Joblin, M., Ringsquandl, M., and Run-
kler, T. Demystifying Graph Neural Network Explana-
tions. In Joint European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD), 2021.

Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., and
Chang, Y. GraphLIME: Local Interpretable Model Ex-
planations for Graph Neural Networks. ArXiv, 2020.

Huang, Q., He, H., Singh, A., Lim, S.-N., and Benson, A. R.
Combining Label Propagation and Simple Models Out-
performs Graph Neural Networks. International Confer-
ence on Learning Representations (ICLR), 2021.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In International Conference on Machine Learning
(ICML), 2015.

Jang, E., Gu, S., and Poole, B. Categorical Reparameteriza-
tion with Gumbel-Softmax. International Conference on
Learning Representations (ICLR), 2016.

Kazius, J., McGuire, R., and Bursi, R. Derivation and valida-
tion of toxicophores for mutagenicity prediction. Journal
of medicinal chemistry, 2005.

9

GraphChef: Learning the Recipe of Your Dataset

Kontschieder, P., Fiterau, M., Criminisi, A., and Bulo, S. R.
Deep neural decision forests. In IEEE International Con-
ference on Computer Vision (CVPR), 2015.

Krishnan, R., Sivakumar, G., and Bhattacharya, P. Extract-
ing decision trees from trained neural networks. Pattern
Recognition, 1999.

Loukas, A. What graph neural networks cannot learn: depth
vs width. In International Conference on Learning Rep-
resentations (ICLR), 2020.

Lucic, A., ter Hoeve, M., Tolomei, G., de Rijke, M., and
Silvestri, F. Cf-gnnexplainer: Counterfactual explanations
for graph neural networks. ArXiv, 2021.

Lundberg, S. M., Erion, G. G., and Lee, S.-I. Consistent
Individualized Feature Attribution for Tree Ensembles.
ArXiv, 2018.

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., and
Zhang, X. Parameterized explainer for graph neural net-
work. In Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Maddison, C. J., Mnih, A., and Teh, Y. W. The Concrete
Distribution: A Continuous Relaxation of Discrete Ran-
dom Variables. In International Conference on Learning
Representations (ICLR), 2016.

Nair, V. and Hinton, G. E. Rectified linear units improve re-
stricted boltzmann machines. In International Conference
on Machine Learning (ICML), 2010.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Conference on
Neural Information Processing Systems (NeurIPS), 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 2011.

Peleg, D. Distributed computing: a locality-sensitive ap-
proach. SIAM, 2000.

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and
Hoffmann, H. Explainability methods for graph convolu-
tional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Quinlan, J. Simplifying decision trees. International Jour-
nal of Man-Machine Studies, 1987.

Ribeiro, M. T., Singh, S., and Guestrin, C. " why should i
trust you?" explaining the predictions of any classifier. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2016.

Royden, H. L. and Fitzpatrick, P. Real analysis. Macmillan
New York, 1988.

Sanchez-Lengeling, B., Wei, J., Lee, B., Reif, E., Wang, P.,
Qian, W. W., McCloskey, K., Colwell, L., and Wiltschko,
A. Evaluating attribution for graph neural networks. In
Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Schaaf, N., Huber, M. F., and Maucher, J. Enhancing Deci-
sion Tree based Interpretation of Deep Neural Networks
through L1-Orthogonal Regularization. 2019 18th IEEE
International Conference On Machine Learning And Ap-
plications (ICMLA), 2019.

Schlichtkrull, M. S., Cao, N. D., and Titov, I. Interpret-
ing graph neural networks for NLP with differentiable
edge masking. In International Conference on Learning
Representations (ICLR), 2021.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
In IEEE International Conference on Computer Vision
(CVPR), 2017.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 2008.

Shapley, L. S. 17. A Value for n-Person Games. Contribu-
tions to the Theory of Games, 1953.

Vu, M. and Thai, M. T. Pgm-explainer: Probabilistic graph-
ical model explanations for graph neural networks. In
Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Wang, X. and Shen, H.-W. Gnninterpreter: A probabilis-
tic generative model-level explanation for graph neural
networks. arXiv preprint arXiv:2209.07924, 2022.

Wu, M., Hughes, M. C., Parbhoo, S., Zazzi, M., Roth, V.,
and Doshi-Velez, F. Beyond Sparsity: Tree Regularization
of Deep Models for Interpretability. In AAAI Conference
on Artificial Intelligence (AAAI), 2017a.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
MoleculeNet: A Benchmark for Molecular Machine
Learning. Chemical Science, 2017b.

10

GraphChef: Learning the Recipe of Your Dataset

Xu, K., Jegelka, S., Hu, W., and Leskovec, J. How Powerful
are Graph Neural Networks? International Conference
on Learning Representations (ICLR), 2019.

Yang, Y., Morillo, I. G., and Hospedales, T. M. Deep Neural
Decision Trees. ArXiv, 2018a.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting semi-
supervised learning with graph embeddings. In Interna-
tional conference on machine learning (ICML), 2018b.

Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec,
J. GNNExplainer: Generating Explanations for Graph
Neural Networks. In Conference on Neural Information
Processing Systems (NeurIPS), 2019.

Yuan, H., Tang, J., Hu, X., and Ji, S. Xgnn: Towards model-
level explanations of graph neural networks. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 430–438,
2020a.

Yuan, H., Yu, H., Gui, S., and Ji, S. Explainability in Graph
Neural Networks: A Taxonomic Survey. ArXiv, 2020b.

Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. On Explain-
ability of Graph Neural Networks via Subgraph Explo-
rations. In International Conference on Machine Learn-
ing (ICML), 2021.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision (ECCV), 2014.

Zhang, Z., Liu, Q., Wang, H., Lu, C., and Lee, C. ProtGNN:
Towards Self-Explaining Graph Neural Networks. In
AAAI Conference on Artificial Intelligence (AAAI), 2021.

11

GraphChef: Learning the Recipe of Your Dataset

A. More Graphchef Recipe Analyses
A.1. MUTAG

(a) (b) (c)

(d) (e)

Figure 5: GraphChef recipe for MUTAG. Table 5 shows an interpretation for all states in all layers. For a graph to be
mutagenic, it requires at least twelve atoms other than O and eight atoms that 1) have three or more non-O bindings 2) are O
atoms, 3) bound to O2 atoms.

Table 5 shows an incremental interpretation (from Encoder to Decoder) of the states in all layers that are shown in the trees
the GraphChef recipe in Figure 5 for the MUTAG dataset. The encoder shows that graph size is important (we need at least
twelve non-O atoms) and O atoms and their connectivity play a role. We need at least eight nodes that 1) have three non-O
bindings 2) are O atoms 3) are connected to O2 groups. The last two conditions highlight why NO2 groups are associated
with mutagenicty: The N atom fulfills the last condition and the two O atoms fulfill the other condition. However, in the
MUTAG (Debnath et al., 1991) dataset, these structures are not sufficient for mutagenic molecules.

12

GraphChef: Learning the Recipe of Your Dataset

Layer State Decision Rule Interpretation
Encoder 3 All nodes receive state 3 GraphChef drops atom types (and rediscovers

them later via degrees).
Layer 0 Less than two neighbors Degree 1 nodes, H atoms are implicit

so these represent O atoms.
Layer 0 3 At least two neighbors Nodes with at least two electron bindings, pre-

dominantly C and N.
Layer 1 0 More neighbors in state 1 than state 3 Atoms with majorly bindings to O atoms.
Layer 1 5 At least as many state 3 as state 1

neighbors
Atoms not connected to O, or mainly to other
atom types.

Layer 2 0 No neighbor in state 5 Rediscovers almost all O atoms, especially those
in O2 groups. They have one neighbor each and
that neighbor has bindings to mostly O.

Layer 2 3 At least one neighbor in state 5 Atoms other than O and some O atmons that are
not in O2 groups.

Layer 3 1 1) Exactly two state 3 neighbors 2)
Nodes with no state 3 neighbors 3)
Nodes with 1 state 3 neighbor but at
most state 0 neighbor

1+3) Nodes with at most one O neighbor and at
most two other neighbors 2) Nodes with only O
neighbors.

Layer 3 5 1) Nodes with at least 3 state 3 neigh-
bors 2) not state 3 nodes 3) state 3
nodes with one state 3 and 2 state 0
neighbors

1) Atoms with at least 3 connections to atoms
other than O 2) O atmons 3) atoms connected to
O2 groups.

Decoder Mutagenic At least twelve atoms in layer 2 state
3 and at least eight nodesin layer 3
state 5.

At least twelve atoms other than O and 1) Atoms
with at least 3 connections to atoms other than O
2) O atmons 3) atoms connected to O2 groups.

Decoder Not Mutagenic otherwise otherwise

Table 5: Analysis of the GraphChef recipe in Figure 5 for the MUTAG dataset. For a graph to be mutagenic, it requires at
least twelve atoms other than O and eight atoms that 1) have three or more non-O bindings 2) are O atoms, 3) bound to O2

atoms.

13

GraphChef: Learning the Recipe of Your Dataset

A.2. BA-2Motifs

(a) (b) (c) (d) (e)

Figure 6: Layers of GraphChef for the decision process on BA-2MOTIFS. Table 6 shows an interpretation for all states in all
layers. The model learns to identify house nodes and classify such graphs. Cycle graphs are graphs which are not house
graphs, thus solved with the bias term. Explanation scores for cycles are therefore off (e).

Layer State Decision Rule Interpretation
Encoder 3 All nodes No node features available for differentiation.
Layer 0 2 Two state 3 neighbors Degree 2 nodes.
Layer 0 4 Three or more state 3 neighbors Degree 3 or higher nodes.
Layer 0 5 Less than two neighbors Degree 1 nodes (graphs are connected).
Layer 1 0 State 2 nodes Degree 2 nodes.
Layer 1 3 State 5 nodes Degree 1 nodes.
Layer 1 5 Neither state 2 nor 5 Degree 3 or higher nodes.
Layer 2 1 Not state 3 nodes with more state 5

than state 3 neighbors.
House candidates: nodes with a degree of at least
2, with at least one degree 3 or higher neighbor
and no degree 1 neighbor.

Layer 2 4 State 3 nodes Degree 1 nodes.
Layer 2 5 Not state 3 nodes with state 5 neigh-

bors
At least degree 2 nodes but connected to at least
degree 1 neighbor (which house nodes do not
have).

Layer 3 2 More state 4 than state 5 neighbors Nodes that have majorly degree 1 neighbors (not
house nodes).

Layer 3 3 At least two state 1 neighbors House nodes: connected to two more house can-
didates.

Layer 3 4 At most one state 1 neighbor Nodes connected to at most one house candidate
(wrong for every node in the house).

Decoder House At least five nodes in layer 3 state 3. Graphs with at least five house nodes.
Decoder Cycle otherwise otherwise.

Table 6: Analysis of the GraphChef recipe in Figure 6 for the BA-Motifs dataset. The model learns to identify house nodes
and classify such graphs. Cycle graphs are graphs which are not house graphs, thus solved with the bias term.

Table 6 shows an interpretations of the states in all layers for the GraphChef recipe for BA-2MOTIFS. Figure 5 shows
the recipe. GraphChef only learns to identify house nodes. The important step is state 1 in the second layer. Due to the
Barabasi-Alert base graph structure, house nodes stand out with their degree of 2 or 3. The next layer confirms the house as
house candidates that are connected to house candiates. The model does not learn about cycles at all, Cycles are “not houses”.
We can see that GraphChef found and exploited the pitfall about bias terms noted by Faber et al. (2020); Himmelhuber et al.
(2021). Figure 6e shows that we cannot trust explanation scores for cycles.

14

GraphChef: Learning the Recipe of Your Dataset

A.3. Tree Cycle

(a) (b) (c) (d) (e)

Figure 7: GraphChef recipe for TREE-CYCLE. Table 6 shows an interpretation for all states in all layers. A degree check for
degree 2 nodes find the cycles quickly without considering the whole structure. Explanation scores for cycles are therefore
off (e).

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for differentiation.
Layer 0 0 Three or more state 0 neighbors Degree 3 or higher nodes (inner nodes in the tree,

cycle node connecting the cycle to the tree).
Layer 0 2 Two neighbors in state 0 Degree 2 nodes (root node and cycles nodes).
Layer 0 3 One or zero neighbors in state 0 Degree 1 nodes (leaves in the connected graph).
Layer 1 1 At least as many state 3 as state 2

neighbors
As least as many leaves as cycle neighbors (true
for inner nodes as well having zero of both).

Layer 1 3 More state 2 than state 3 neighbors Most cycle nodes, nodes connected to degree 2
nodes.

Layer 2 4 Not previous state 3 and at least one
state 1 neighbor

Not already a cycle node and connected to a non-
cycle node.

Layer 2 1 1) Previous state 3 or 2) no state 1
neighbors

1) already a cycle node or 2) only connected to
cycle nodes.

Decoder Cycle In layer 2 state 1 See previous state.
Decoder No Cycle otherwise otherwise.

Table 7: Analysis of the GraphChef recipe in Figure 7 for the Tree-Cycle dataset. The base graph contains only one degree
two node that is not part of a cycle. A degree check quickly finds the cycles.

Table 7 shows an interpretations of the states in all layers for the GraphChef recipe for BA-2Motifs. Figure 7 shows the
recipe. Due to the base graph being a binary tree, degree two nodes (especially those connected to degree two nodes) are
a strong indicator for cycles. For almost all nodes, GraphChef can identify if they are part of the cycle after two layers.
Therefore, we do not even need the whole cycle. This is consistent with previous analysis on Tree-Cycle that not the whole
cycle is necessary (Faber et al., 2020; Himmelhuber et al., 2021). Figure 7e shows that we cannot trust explanation scores
for cycles since they find only a subset of the motif.

15

GraphChef: Learning the Recipe of Your Dataset

A.4. Tree Grid

(a) (b) (c)

(d) (e) (f)

Figure 8: GraphChef recipe for TREE-GRID. Table 8 shows an interpretation for all states in all layers. A degree check for
degree 2 nodes find the corner nodes in the grid, after which we explore the remaining motif.

The Tree-Grid (Ying et al., 2019) dataset is similar to the Tree-Cycles dataset we discussed in the main body of the paper.
The base graph is a balanced binary tree to which we append 3× 3 grids. As in the Tree-Cycles example, there are (apart
from the root node) no other nodes with degree 2 which makes bootstrapping the grid discovery easier. As in the Tree-Cycles
example, a GNN does not need to see the whole grid to make a prediction. Table 8 shows the interpretation of the layers and
states of GraphChef shown in Figure A.4. The corner nodes in the grid can be quickly found with a degree check. Then the
remaining grid can be found by exploring the neighborhood.

Some nodes can identify that they are part of the grid in just three layers — importantly the corner nodes generally belong to
this group. This means these nodes need not consider the opposite corner node at distance 4. GraphChef does not include
this node in its explanation. This is consistent with the explanation accuracy in Table 2: GraphChef achieves a bit more than
8
9 which means that one node is missing.

16

GraphChef: Learning the Recipe of Your Dataset

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for differentiation.
Layer 0 1 Three or more state 0 neighbors Degree 3 or higher nodes. (Inner tree nodes and

grid nodes except corners)
Layer 0 2 Less than two state 0 neighbors Degree 1 nodes (leaves in the tree).
Layer 0 4 Two state 0 neighbors Degree 2 nodes (root node, corner nodes in the

grid).
Layer 1 0 At least as many state 2 as state 4

neighbors and at least two state 1
neighbors

Inner nodes in the tree and grid, except parents of
leaf nodes.

Layer 1 1 More state 4 than state 2 neighbors Nodes connected to the root or grid corners.
Layer 1 4 At least as many state 2 as state 4

neighbors and at most one state 1
neighbors

Leaves and their parent nodes.

Layer 2 1 Previous state 4 nodes Leaves and their parents.
Layer 2 2 Previous state 1 nodes Nodes connected to the root or grid corners.
Layer 2 3 Otherwise Inner nodes in the tree and grid, except parents of

leaf nodes.
Layer 3 3 More state 2 than state 1 neighbors More corner and root nodes in the distance 2 (can

be the node itself) than leaves. This captures cor-
ner and center nodes in the grid

Layer 3 4 At least as many state 1 as state 2
neighbors.

Most nodes since they are connected to leaves or
not to the root.

Layer 4 2 At least two state 3 neighbors Nodes with two grid neighbors, finding the re-
maining grid nodes.

Layer 4 4 At most one state 3 neighbor Nodes with at most one grid neighbor.
Decoder Grid Layer 3 state 3 or layer 4 state 2 Corner or center grid node or nodes connected to

two such nodes.

Table 8: Analysis of the GraphChef recipe in Figure A.4 for the Tree-Grid dataset. The base graph contains only one degree
two node that is not part of a cycle. A degree check for two quickly finds the corner nodes of grids as a starting point to
discover the motif.

17

GraphChef: Learning the Recipe of Your Dataset

A.5. BA-Shapes

(a) (b) (c)

(d) (e) (f)

Figure 9: GraphChef recipe for BA-SHAPES. Table 8 shows an interpretation for all states in all layers. Degrees below 4
connected to more nodes with such degrees finds the general house. Middle nodes are degree 3 in this structure; Top nodes
are connected to both middle nodes; Bottom nodes are connected to one.

Let us now look at the BA-SHAPES dataset to classify each node with its position in a house motif, or if the node is part of
the Barabasi-Albert base graph. Nodes in the base graph generally have a high degree, we can find house nodes as being
connected to almost no high-degree nodes but only among each other. From there we subdivide house nodes: Middle nodes
have a 3 house neighbors, the top node is connected to both middle nodes, and the bottom nodes only to one.

18

GraphChef: Learning the Recipe of Your Dataset

Layer State Decision Rule Interpretation
Encoder 0 All nodes No node features available for differentiation.
Layer 0 0 Less than four state 0 neighbors Degree 3 or lower nodes. (lower degree)
Layer 0 1 At least four state 0 neighbors Degree 4 or higher nodes. (high degree)
Layer 1 2 At most 3 neighbors of state 1 At most three high-degree neighbors. (House can-

didates, all nodes in the house have lower degree,
the basegraph has many high-degree nodes).

Layer 1 4 At least four neighbors in state 1 At least four high-degree neighbors.
Layer 2 0 Three state 2 neighbors Three house candidates in the neighborhood (mid-

dle nodes in the house).
Layer 2 1 At most state 2 neighbors Top or bottom of the house.
Layer 2 4 Previous state 4 nodes At least four high-degree neighbors.
Layer 3 0 At most one state 3 neighbor Nodes connected to zero or one middle house

node.
Layer 3 3 Previous state 0 Middle house nodes.
Layer 3 4 At least two state 0 neighbors Top house nodes.
Layer 4 0 At least one state 3 neighbor and pre-

vious state 0
Bottom house node: nodes connected to one house
middle node.

Layer 4 1 No state 3 neighbors Nodes not connected to the house.
Layer 4 2 At least one state 3 neighbor but not

previous state 0
Top node in the house.

Decoder Not in house Layer 2 state 4 At least four high-degree neighbors.
Decoder Middle of House Not above and layer 3 state 3 Three house candidates in the neighborhood.
Decoder Bottom of House Not above and layer 4 state 0 Nodes connected to one house middle node.
Decoder Top of House Otherwise (but GraphChef could

have used layer 3 state 4)
Otherwise (or nodes connected to two house mid-
dle nodes).

Table 9: Analysis of the GraphChef recipe in Figure A.5 for the BA-Shapes dataset. The base graph has many edges, house
nodes stand out by having a degree of 3 or lower and being connected to such nodes.

19

GraphChef: Learning the Recipe of Your Dataset

B. GraphChef on datasets with many input features

GraphChef

Dataset Features GIN Differentiable No pruning Lossless pruning

CORA 1433 0.87±0.02 0.82±0.03 0.69±0.04 0.68±0.03
CiteSeer 3703 0.77±0.01 0.70±0.03 0.61±0.04 0.61±0.02
PubMed 500 0.88±0.01 0.87±0.01 0.85±0.01 0.85±0.01
OBGN-Arxiv 128 0.68±0.02* 0.68±0.01 0.28±0.11 -

Table 10: GraphChef results for citation datasets with high-degree counts. *Since the dataset has 40 classes, we use a
state-size of 50 for GraphChef variants and 128 wide embeddings for GIN.

In the following we want to discuss GraphChef on high-dimensonal datasets such as Cora (1433) features. Table 10 shows a
comparison of GIN, dish GNN and GraphChef similar to Table 1a. The results are mixed: on Pubmed, GraphChef performs
comparable to GIN, on Cora there is a small drop for dish GNN but a significant drop when converting to trees. For CiteSeer,
both dish GNN and converting to trees cause clear drops in accuracy. We see two factors that make this dataset challenging:
Large feature spaces make it harder to reduce to a categorical state. For example for the Cora dataset, the encoder needs
to reduce from 1433 to 10 features. This effect increases in GraphChef when we limit the number of leaves: Having 100
decision leaves means that a tree can have 99 decision nodes and look at most at 99 features. But already such trees are
impractical to interpret. We found that even after pruning, the trees often contain long paths of depth 20 or more. The
problems aggravate on the larger OBGN-Arxiv dataset: dish GNN performs decently with a drop comparable to CiteSeer
but GraphChef drops drastically in accuracy. Furthermore, this dataset reveals scalability limits for GraphChef’s pruning
method: Pruning requires the number of leaves squared many runs over the dataset and does not scale to this dataset.

Therefore we believe that handling such datasets requires a different approach. In future work, we image that these issues
could be addressed through approaches such as PCA, clustering, or special MLP construction techniques (Wu et al., 2017a;
Schaaf et al., 2019) to reduce the input space without breaking the interpretability chain before applying GraphChef.

20

GraphChef: Learning the Recipe of Your Dataset

C. Using the tool

Figure 10: Initial page for the web tool. We can see the decision trees for GraphChef per dataset and which node for a graph
is in what state. We can switch layers, graphs and datasets. We can also see the test accuracy for the current setting and
choose an amount of lossy pruning. with the slider.

A example instance of the tool is deployed and available via Netlify2 and can be accessed under the link https://
interpretable-gnn.netlify.app/. The supplementary material also contains code to host the interface yourself,
in case you want to try variations of GraphChef. In the backend, we use PyTorch (Paszke et al., 2019)3 and PyTorch
Geometric (Fey & Lenssen, 2019)4 to train GraphChef and SKLearn(Pedregosa et al., 2011)5 to train the decision trees.

The tool is built with React, in particular the Ant Design library.6 We visualize graphs with the Graphin library.7 The
interface is a single page that will look similar to Figure 10.

The largest part of the interface is taken by two different panels at the top. In the right panel, you can see the decision tree
for the currently selected layer. The trees use the three branching options from Figure 3. In the interface, evaluating the
branching to true means taking the left path (this is opposite to Figure 3, which we will flip). In the left panel, you can see an
example graph and which nodes end up in which state after this layer (in the bottom left you can toggle to see the input
states instead). This panel does not show the full graph (most graphs in the datasets are prohibitively large) but an excerpt
around an interesting region. Directly below these two graphics, you have the option to switch between layers by clicking on
the respective bubble.

2https://netlify.com/
3https://github.com/pytorch/pytorch
4https://github.com/pyg-team/pytorch_geometric
5https://github.com/scikit-learn/scikit-learn
6https://github.com/ant-design/ant-design/
7https://github.com/antvis/Graphin

21

https://interpretable-gnn.netlify.app/
https://interpretable-gnn.netlify.app/
https://netlify.com/
https://github.com/pytorch/pytorch
https://github.com/pyg-team/pytorch_geometric
https://github.com/scikit-learn/scikit-learn
https://github.com/ant-design/ant-design/
https://github.com/antvis/Graphin

GraphChef: Learning the Recipe of Your Dataset

In the bottom right, you can switch to a different graph in the same dataset or to a different dataset. In the centre, you can
see the accuracy of GraphChef with the displayed layers. The slider allows to apply the lossy pruning from Section 3.2 and
the accuracy values update to the selected pruning level.

The interface also allows us to examine a single node more closely by clicking on it (see Figure 11; here we clicked the blue
node on the very right). Selecting reveals two things: In the graph panel, you can see the explanation scores from Section D
for this node in this layer. In the tree panel, you can see the decision path in the tree for this node. This is particularly helpful
if multiple leaves in the tree would lead to the same output state as in this example.

Figure 11: Interface when clicking on a node for closer examination. We can see node-level importance scores for this node
on the left and the taken decision path on the right. Two paths end in the blue state, shown by the red boxes. The path the
node takes is highlighted, the other path is blurred out.

22

GraphChef: Learning the Recipe of Your Dataset

D. Generating Explanations
In this section, we describe in detail how we can use GraphChef recipes to derive importance scores for the classification
of a single node/graph. As in many existing explanation methods, these scores form a heatmap over all nodes to identify
important inputs.

Formally we are going to compute scores of the form RN×S×N where N is the number of nodes and S the number of
categorical states. We assume for simplicity that every layer has the same number of states. For one node u and one state s
the explanation e(u, s) is a real-valued vector that assigns every other node v an importance how much v contributes to u
being in state s. We accumulate the importance over layers.

Importance for every node u for the encoder layer are initialized as e(u, v) = 1u for every state v, where 1u is a vector that
is 1 at the index of u and 0 everywhere else. In other words, every node is its own explanation after the encoder.

To compute the explanation update for node u in a GraphChef layer, we investigate its decision tree. First, we compute
the Tree-Shap values for u in the decision tree. These values reveal how important each decision feature in the tree are for
predicting u; a value of 0 corresponds to an unused decision. Depending on the type of decision feature — a state feature, a
message features, or a delta feature (see possible cases in Figure 3) — we will add explanation to nodes differently. We
handle each decision feature independently and weigh it with it’s Tree-Shap value.

State features. There are S possible state features that can each lead to S different new states. This yields S × S Tree-Shap
values that we denote with τS(s, s

′) To compute explanations we additionally require the indicator variable sign(s) that is 1
if u is in state s at the start of the layer, and −1 otherwise. This indicator allows us to measure negative evidence that u is
not in a certain state. The “propagation” of state features is then easy since all importance stays with the node.

σ(u, s′) =
∑
s∈S

τS(s, s
′) · e(u, s) · sign(s)

Message features. There are also S message features that can lead to S different states, thus we have S × S Tree-Shap
values τM (s, s′). Computing explanations for a neighbor feature gives each neighbor in the state s importance, normalized
by the number of neighbors. Let N(s) denote u’s neighbors in state s:

µ(u, s′) =
∑
s∈S

τM (s, s′) ·
∑

v∈N(s)

e(v, s)

|N(s)|
.

Delta features. We have S2 − S delta features where (s, s′) encodes the feature that there are more neighbors in state s
than neighbors in s′. Here we use the Tree-Shap values τ∆(s, s′, s′′). We also need the indicators variable (1>(s,s′)) that are
1 if indeed more neighbors are in state s rather than s′ and 1 if not. Now, explanation for delta features is similar to that of
neighborhood features, where the majority class contribution is positive and the minority class contribution is negative:

δ(u, s′′) =
∑
s∈S

∑
s′ ̸=s∈S

τ∆(s, s
′, s′′)

∑
v∈N(s) e(v, s)−

∑
v∈N(s′) e(v, s

′)

|N(s)|+ |N(s′)|
· 1>(s,s′).

These explanations are added to those of the previous layers:

e(u, s) = e(us, s) + σ(u, s) + µ(u, s) + δ(u, s)

Decoder layer The decoder layer is slightly special since it uses skip connections. For node classification, we directly
concatenate all intermediate features and use the same computation scheme to compute the final explanations. For graph
classification we additionally need to pool the nodes. We do this layer-wise and supply the decoder layer with per-layer node
counts per state. The decoder can then use counting and comparison features similar to M and ∆ features in the GraphChef
layers. The only difference is that instead of propagating the explanation to neighbors, we now need to propagate it to all of
the nodes in the graph that were in the corresponding states.

23

GraphChef: Learning the Recipe of Your Dataset

E. Datasets
E.1. Synthetic Datasets

• Infection (Faber et al., 2021) is a synthetic node classification dataset. This dataset consists of randomly generated
directed graphs, where each node can be healthy or infected. The classification task predicts the length of the shortest
directed path from an infected node.

• Negative Evidence (Faber et al., 2021) is a synthetic node classification dataset. A random graph with ten red nodes,
ten blue nodes, and 1980 white nodes is created. The task is to determine whether the white nodes have more red or
blue neighbours.

• BA Shapes (Ying et al., 2019) is a synthetic node classification dataset. Each graph contains a Barabasi-Albert (BA)
base graph and several house-like motifs attached to random nodes of the base graph. The node labels are determined
by the node’s position in the house motif or base graph.

• Tree Cycle (Ying et al., 2019) is a synthetic node classification dataset. Each graph contains an 8-level balanced binary
tree and a six-node cycle motif attached to random nodes of the tree. The classification task predicts whether the nodes
are part of the motif or tree.

• Tree Grid (Ying et al., 2019) is a synthetic node classification dataset. Each graph contains an 8-level balanced binary
tree and a 3-by-3 grid motif attached to random nodes of the tree. The classification task predicts whether the nodes are
part of the motif or the tree.

• BA 2Motifs (Luo et al., 2020) is a synthetic graph classification dataset. Barabasi-Albert graphs are used as the base
graph. Half of the graphs have a house-like motif attached to a random node, and the other half have a five-node cycle.
The prediction task is to classify each graph, whether it contains a house or a cycle.

Dataset Graphs Classes Avg. Nodes Avg. Edges Features
Infection 1 7 1000 3973 2
Negative Evidence 1 2 2000 102394 3
BA Shapes 1 4 700 4110 0
Tree Cycle 1 2 871 1942 0
Tree Grid 1 2 1231 3130 0
BA 2Motifs 1000 2 25 50.96 0

Table 11: Statistics of Synthetic Datasets

E.2. Real-World Datasets

• MUTAG (Debnath et al., 1991) is a molecule graph classification dataset. Each graph represents a nitroaromatic
compound, and the goal is to predict its mutagenicity in Salmonella typhimurium. Mutagenicity is the ability of
a compound to change the genetic material permanently, usually DNA, in an organism and therefore increase the
frequency of mutations. The nodes in the graph represent atoms and are labeled by atom type. The edges represent
bonds between atoms.

• Mutagenicity (Kazius et al., 2005) is a molecule graph classification dataset. Each graph represents the chemical
compound of a drug, and the goal is to predict its mutagenicity. The nodes in the graph represent atoms and are labeled
by atom type. The edges represent bonds between atoms.

• BBBP (Wu et al., 2017b) is a molecule graph classification dataset. Each graph represents the chemical compound of a
drug, and the goal is to predict its blood-brain barrier permeability. The nodes in the graph represent atoms and are
labeled by atom type. The edges represent bonds between atoms.

• PROTEINS (Borgwardt et al., 2005) is a protein graph classification dataset. Each graph represents a protein that is
classified as an enzyme or not and enzyme. Nodes represent the amino acids, and an edge connects two nodes if they
are less than 6 Angstroms apart.

24

GraphChef: Learning the Recipe of Your Dataset

(a) Infection Input (b) Infection Prediciton (c) Saturation Input (d) Saturation Prediciton

(e) BA Shapes Input (f) BA Shapes Prediciton (g) Tree Grid Input (h) Tree Grid Prediction

(i) BA 2Montifs - House Input (j) BA 2Montifs - Cycle Input

Figure 12: Synthetic Benchmarks - Example Graphs

• REDDIT BINARY (Borgwardt et al., 2005) is a social graph classification dataset. Each graph represents the comment
thread of a post on a subreddit. Nodes in the graph represent users, and there is an edge between users if one responded
to at least one of the other’s comments. A graph is labeled according to whether it belongs to a question/answer-based
or a discussion-based subreddit.

• IMDB BINARY (Borgwardt et al., 2005) is a social graph classification dataset. Each graph represents the ego network
of an actor/actress. In each graph, nodes represent actors/actresses, and there is an edge between them if they appear in
the same film. A graph is labeled according to whether the actor/actress belongs to the Action or Romance genre.

• COLLAB (Borgwardt et al., 2005) is a social graph classification dataset. A graph represents a researcher’s ego
network. The researcher and their collaborators are nodes, and an edge indicates collaboration between two researchers.
A graph is labeled according to whether the researcher belongs to the field of high-energy physics, condensed matter
physics, or astrophysics.

• Cora, CiteSeer, and PubMed are popular citation networks (Yang et al., 2018b). Nodes are papers and citations are
edges. Nodes contain features that represent words of their contents and are labeled by sub-fields.

25

GraphChef: Learning the Recipe of Your Dataset

(a) MUTAG Input (b) Mutagenicity Input (c) PROTEINS Input

(d) Reddit Binary Discussion (e) Reddit Binary Q/A (f) IMDB Binary Input (g) COLLAB Input

Figure 13: Real-world benchmarks - Example graphs

Dataset Graphs Classes Avg. Nodes Avg. Edges Features
MUTAG 188 2 17.93 39.59 7
Mutagenicity 4337 2 30.32 61.54 14
BBBP 2039 2 24.06 51.91 9
PROTEINS 1113 2 39.06 145.63 3
REDDIT BINARY 2000 2 429.63 995.51 0
IMDB BINARY 1000 2 19.77 193.06 0
COLLAB 5000 3 74.49 4914.43 0
Cora 1 7 2485 5069 1433
CiteSeer 1 6 2110 2668 3703
PubMed 1 3 19717 44324 500

Table 12: Statistics of Real-World Datasets

26

	Introduction
	Related Work
	Explanation methods for GNNs
	Combining decision trees with neural networks

	The GraphChef Model
	Creating a tree-based GNN Model
	Postprocessing GraphChef

	Experiments
	Experiment setup
	Quantitative Results
	Qualitative Results

	Conclusion
	More Graphchef Recipe Analyses
	MUTAG
	BA-2Motifs
	Tree Cycle
	Tree Grid
	BA-Shapes

	GraphChef on datasets with many input features
	Using the tool
	Generating Explanations
	Datasets
	Synthetic Datasets
	Real-World Datasets

