
Grief-free Atomic Swaps
Tejaswi Nadahalli

ETH Zürich
Majid Khabbazian
University of Alberta

Roger Wattenhofer
ETH Zürich

Abstract—Atomic Swaps enable exchanging crypto-assets with-
out trusting a third party. To enable these swaps, both parties
lock funds and let their counterparty withdraw them in exchange
for a secret. This leads to the so-called griefing attack, or the
emergence of an American Call option, where one party stops
participating in the swap, thereby making their counterparty
wait for a timelock to expire before they can withdraw their
funds. The standard way to mitigate this attack is to make the
attacker pay a premium for the emerging American Call option.
In these premium-paying approaches, the premium itself ends
up being locked for possibly an even longer duration than the
swap amount itself. We propose a new Atomic Swap construction,
where neither party exposes itself to a griefing attack by their
counterparty. Notably, unlike previous constructions, ours can be
implemented in Bitcoin as is. Our construction also takes fewer
on-chain transactions and has a lower worst-case timelock.

Index Terms—Bitcoin, Atomic Swaps, Griefing

I. INTRODUCTION

Before Bitcoin, there was considerable research on the Fair
Exchange Problem, with its associated impossibility results
[1], [2], [3], [4]. Many of these results came about in the
quest to remove the trusted third party when two parties want
to exchange different assets of equal value. Bitcoin created a
different kind of trusted third party. Here, both parties trust
the Bitcoin blockchain as an arbiter for dispute resolution
and as a tamperproof public bulletin board. Fair Exchange,
in the Bitcoin setting, is known as the Atomic Swap. It is
atomic in the sense that a swap of assets between two parties
either goes through fully or not at all. Atomic Swaps were
perhaps the first non-trivial smart contracts designed to work
on blockchains. Tier Nolan’s classic swap (TN-swap, from
here on) was discussed on the BitoinTalk forum in 2013 [5].
The TN-swap is not atomic from a transaction perspective.
The swap requires 4 transactions: 2 HTLCs + (2 redeems or
2 refunds).1 The atomicity is from a higher abstraction of the
swap of assets – either the swap goes through, and both parties
end up with the assets they desire, or it does not, and both
parties retain their original assets. These assets could even be
on different blockchains, e.g., Bitcoin and Litecoin. If it were a
cross-chain atomic swap, both blockchains must be compatible
with the primitives used in the swap protocol.

Atomic swaps could involve various assets: say, someone
wants to buy a Sudoku solution for some price. However, these
generally involve more complex protocols that convert assets
into information that can be transferred on a public blockchain.
In the case of a Sudoku, a symmetric key is used to encrypt

1HTLC stands for Hash Timelock Contracts [6], and the redeem and refund
transactions are part of the HTLC specification.

the solution, and this key is atomically swapped for monetary
value, while the encrypted blob is sent off-chain, as seen in
ZKCP [7]. This kind of swap has one of the assets not being
scrutinizable on the blockchain and hence has to rely on more
complex Zero-Knowledge proofs to convince the buyer that
the key encrypts a correct solution. We want to look at a more
straightforward class of atomic swaps where one can scrutinize
the actual asset being swapped on the blockchain, and the
buyer or the swap initiator doesn’t need any other data beyond
the blockchain. In the base case, these swaps involve the native
cryptocurrency of the blockchain(s). In the single blockchain
setting, swapping coins of equal value between Alice and Bob
can improve both their privacy, as proposed in Coinswap [8].

TN-swap, which is formally defined in Section III-A, is
atomic but not fair. There are steps in the swap where either
Alice or Bob can abort the protocol and put their counterparty
at a disadvantage. The counterparty does not lose monetary
value (it is an atomic swap, after all) but is either made to
wait before they get their asset back or might lose blockchain
fees by making extra transactions and such. We refer to the
waiting part of this problem as griefing. Protocols like Arwen
[9] rely on one of the counterparties of the atomic swap caring
about protecting their reputation. A few proposals have been
made to reduce griefing, but they all involve smart contracts
that have access to global state storage. These smart contracts
look up the swap state and proceed according to how the
swap has gone so far. Some of these proposals are: Fairswap
[10], Optiswap [11], Han-Lin-Yu swap (HLY-swap) [12], and
Xue-Herlihy swap (XH-swap) [13]. All these rely on smart
contracts and are not compatible with Bitcoin natively. The
former two optimize for the optimstic case, where the swap
is efficient to execute if it goes as expected. In the pessimistic
case, when the swap does not go through, a more complex
dispute resolution protocol is invoked. The latter two are
more focused on avoiding our griefing problem and solve
it by getting the advantaged party paying a premium2 to
the disadvantaged party. The HLY-swap paper draws parallels
between the atomic swap and an American Call Option from
traditional finance. In traditional finance, these options are
made fair by getting the disadvantaged party to sell the option
itself to the advantaged party. The price at which this option
is sold is called the option premium. As the advantaged party
pays this premium upfront to the disadvantaged party, their
privilege to abort the swap is compensated for. Unfortunately,
Bitcoin’s stack-based execution environment does not allow

2

access to external state storage, and these swaps cannot be
directly implemented in Bitcoin natively. Both these swaps can
be implemented in Bitcoin if a new opcode is added to it. Done
that way, HLY-Swap uses the premium on one side of the swap
but allows griefing on the other side. XH-swap avoids griefing
on both sides of the swap but allows the premiums themselves
to be griefed. Contrary to the claim in the XH-swap paper
that griefing cannot be avoided, we present an atomic swap
construction without griefing, which can also be implemented
in Bitcoin with no changes to Bitcoin itself. Our protocol is
also more efficient regarding the number of transactions and
the worst-case timelock for which funds are locked.

II. SYSTEM MODEL

Our system model is based on Bitcoin, with its UTXO
(Unspent Transaction Outputs) model. We require primitives
like hashes, timelocks, and signatures. Furthermore, we make
the following assumptions about the system.

• Time proceeds as blocks, and each block is separated by
a constant and known unit of real-world time.

• All users are online and through the public blockchain,
know if specific transactions are confirmed.

• Transactions have constant fees, which are independent
of the amounts involved in the transactions.

A. Atomic Swap Specification

The Atomic Swap specification consists of the following:
• Two users: Alice and Bob, who want to swap their coins
Pa and Pb with each other. These could be on different
blockchains or the same blockchain. We call this the
principal amount.

• A sequence of n transactions Sall, made up of individual
transactions T0, T1, T2, . . . , Tn−1, out of which a subset
Sconf get confirmed on the blockchain.

• At the end of Sconf , only one of the following is true:
– Successful swap: Alice has value equivalent to Pb and

Bob has value equivalent to Pa. We call this set S ⊂
Sall. Note that there is typically a single subset of Sall

that makes a successful swap.
– Unsuccessful swap: Alice has value equivalent to Pa

and Bob has value equivalent to Pb. We call this set
F ⊂ Sall. Note that there could be many subsets
F1, F2, . . . that make up different failure scenarios of
the swap.

B. Notation

We recall that in the UTXO model, every transaction con-
sumes unspent outputs of previous transactions and creates the
next set of unspent outputs for other transactions to spend.3 An
unspent transaction output (UTXO) contains the coin value in
question and a set of locking conditions. Unlocking conditions
will come from the transaction that spends this UTXO. A
UTXO can be locked with various primitives like digital

3Coinbase transactions are unique transactions that do not have inputs and
create new coins.

signatures, timelocks, knowledge of preimages of hashes, basic
arithmetic, and such. Note that the locking conditions and their
corresponding unlocking conditions are evaluated together on
the stack, and there is no other external input available during
this evaluation. Not having access to external state data makes
the Bitcoin model stateless. Being stateless in this specific way
makes designing smart contracts harder.

In this paper, we use the transaction/predicate notation for
UTXO based transactions from the Cerberus Channels paper
[14]. We let o = (x |P) to represent a UTXO that holds
value x and lists a predicate P that locks or unlocks this
UTXO. Predicate P can be a base predicate (see list below)
or a combination of base predicates with ∨ (OR) or ∧ (AND)
operators.

• σa: Signature that matches4 the public key A.
• s ∋ h(s) = Hs: The spending transaction needs to

provide a preimage s whose hashed value is Hs.
• ∆k: A timelock of k blocks needs to elapse to unlock

the spending transaction.
A transaction is a mapping from a set of past UTXO’s to a
set future UTXO’s, and can be represented as:

Ti = [oj , ok, . . .] 7→ [o1i , o
2
i , . . .]

where Ti consumes past UTXO’s oj , ok, to produce future
UTXO’s {o1i , o2i , . . .}. Predicates that apprear on the left side
of a transaction unlock the UTXOs in question, and those that
appear on the right side lock the newly created UTXO’s. An
example transaction would look like:

Ti = [(2 |σa), (1 |∆10), (3 |sx)︸ ︷︷ ︸
Tj

] 7→ [(6 |σb ∧Hsy)]

Ti is spending 3 UTXO’s by providing a signature σa for A
(Alice), waiting for time ∆10 (10 blocks), and a preimage sx
such that the hash h(sx) was used to lock the 3rd UTXO that
Ti is spending. Ti itself creates a new UTXO that has the coin
value of 6, and can be spent by providing a signature for B
(Bob) and a preimage sy such that the hash h(sy) = Hsy .
Additionally, the two spent UTXO’s (1 |∆10), (3 |sx) were
created in a previous transaction Tj . The UTXO creating
transaction (in the underbrace) is shown only if it’s relevant
to the protocol. In the above case, the UTXO (2|σa) doesn’t
show a source UTXO under it, and can be assumed that the
transacton from where Alice got her 2 bitcoins doesn’t matter
in this setting.

III. ATOMIC SWAPS: PRIOR WORK

In this section, we formally define Tier Nolan’s classic
atomic swap [5] and two other sophisticated swap designs
that avoid griefing to some extent but do not eliminate it. This
formal treatment of these swaps reveals the scenarios where
griefing happens, how premiums prevent griefing, and how
premiums themselves can be griefed.

4Bitcoin uses SIGHASH flags to control which part of a transaction is
signed by whom. For simplicity, we assume what is being signed is clear
from the context.

2

A. Tier Nolan Atomic Swap

In Tier Nolan’s classic swap (TN-swap), Alice locks Pa

with a timelock (refunding Pa back to her) and a hashlock (so
Bob can redeem Pa). Bob locks Pb symmetrically but with a
lower value for the timelock. If one of the parties aborts, the
other party can wait for their timelock to expire and refund
their principals back to themselves. If neither party aborts, the
swap completes with both parties redeeming the principals
due to them. The blockchain acts as a public bulletin board
that communicates the secret preimage of the hashlock from
Alice to Bob. Alice’s timelock is always longer than Bob’s
to account for Alice’s head start in the protocol and knowing
the preimage of the hashlock, which enables her to finish her
side of the swap first. We use the word refund when a party’s
principal comes back to them after a swap is abandoned, and
the word redeem when a party can complete a swap and get
the counterparty’s principal. The entire set of transactions that
make up the TN-swap can be defined succinctly in our notation
as shown in Figure 1.

Sall = {T0, T1, T2, T3, T4, T5}
T0 = [(Pa|σa)] 7→ [(Pa|(σa ∧∆2) ∨ (σb ∧Hs))]

T1 = [(Pb|σb)] 7→ [(Pb|(σa ∧Hs) ∨ (σb ∧∆1))]

T2 = [(Pb|(σa ∧ s))︸ ︷︷ ︸
T1

] 7→ [(Pb|σa)]

T3 = [(Pa|(σb ∧ s))︸ ︷︷ ︸
T0

] 7→ [(Pa|σb)]

T4 = [(Pb|(σb ∧∆1))︸ ︷︷ ︸
T1

] 7→ [(Pb|(σb)]

T5 = [(Pa|(σa ∧∆2))︸ ︷︷ ︸
T1

] 7→ [(Pa|(σa)]

S = {T0, T1, T2, T3}
F1 = {T0, T5}
[Bob aborts before committing Pb. Alice has to wait for
∆2, and gets no compensation]
F2 = {T0, T1, T4}
[Alice aborts before redeeming Pb. Bob has to wait for
∆1, and gets no compensation]

Figure 1: Tier Nolan Atomic Swap

Griefing: Note that Alice and Bob both have the right to abort
out of the swap before it happens. If either party aborts, their
counterparty is left waiting for their timelock to expire before
getting their refund. If Bob aborts, Alice has to wait for ∆2

to expire before refunding her principal Pa back to her. If
Alice aborts, Bob has to wait for ∆1 to refund his principal
Pb back to him. This leads to the notion of the locked value
of funds or griefing. To account for this, we add a griefing
cost to each subset Fi in the atomic swap specification from
Section II-A. If the griefing cost is zero for all failure subsets

in the specification, we consider a protocol to be grief-free.
Formally, let

cost =
∑

f(Pi ·∆j) ∀i ∈ {a, b}, j ∈ {1, 2, 3, . . .} (1)

where f(Pi · ∆j) is the value of locking Pi for duration
∆j . In the summation, a party’s term f(Pi ·∆j) is introduced
only if a counterparty has aborted. The timelocked value of
the aborting party’s principal or premium is not included in
the griefing cost. TN-swap’s costs for its two failure scenarios
can be quantified as:

costF1
= f(Pa ·∆2) > 0

costF2
= f(Pb ·∆1) > 0

(2)

The idea of locking up the principal amount to enable
swaps seems inherent to atomic swap protocols that use
sequential transactions. To lower the griefing cost of locking
up the principal, atomic swaps have been proposed that offer
a premium as compensation to the locking party if their
counterparty aborts from the swap. This premium’s value is
estimated using the Cox-Ross-Rubinstein model in [12] using
options pricing theory and the price volatility of the crypto-
assets in question. We ignore the price volatility of the crypto
assets and use a simple interest rate model to price the time
value of the locked-up principal. This could be as simple as
a simple interest rate, calculated by taking the product of the
principal, length of the timelock, and an arbitrary interest rate
r that the parties agree upon.

f(Pi ·∆j) = ρi = Pi ·∆j · r ∀i ∈ {a, b}, j ∈ {1, 2, 3, . . .}
(3)

The total griefing cost of the protocol has to account for
both the locked value of the principals and the equivalent
premiums that are returned to the parties based on how the
parties act during the protocol execution. Equation 1 for cost
can be modified as:

cost =
∑

f(Pi ·∆j)−
∑

ρi ∀i ∈ {a, b}, j ∈ {1, 2, 3, . . .}
(4)

If all the locked-up principals are compensated by corre-
sponding premiums, cost goes to zero. TN-swap’s cost is
strictly positive as it does not have compensatory premiums.
Interestingly, in subsequent protocols we discuss, the premium
ρi could also be locked up for some timelock ∆j . In this case,
this timelocked value of the premiums is recognized in the first
term of the right-hand side of Equation 4.

B. Atomic Swaps with Premiums

We now consider two constructions that offer a premium
as compensation to the party that locks up capital during the
swap. The Han-Lin-Yu atomic swap (HLY-swap), introduced
in [12] and the Xue-Herlihy Atomic Swap (XH-swap), in-
troduced in [13]. Regarding the premium value itself, there
are many approaches from the world of traditional finance to
calculate the premium [12]. This premium has to be baked
into the swap protocol - so that it can be transferred from

3

one party to another based on how the swap proceeds. If the
blockchain in question supports stateful smart contracts, like
Ethereum, this coupling between the premium and the swap
can be implemented as shown in [12]. If the blockchain does
not support stateful smart contracts (Bitcoin does not), both
[12] and [13] suggest upgrading the scripting language of the
blockchain to support it. This upgrade comes in the form of
a new opcode that can scan the blockchain to see where the
swapped assets ended up and then redirect the premium to that
address. In other words, an opcode that can use information
not available at the time of writing the contract. In Bitcoin,
this opcode (called OP_LOOKUP_OUTPUT in [12]) requires
a separate index to be maintained by the nodes. Given how
Bitcoin optimizes for a smaller footprint, such a new index is
unlikely to be added in the future. To analyze these swaps that
need OP_LOOKUP_OUTPUT, we introduce two new predicate
types in our notation to represent what OP_LOOKUP_OUTPUT
does.

• Ti.∆j : A future transaction Ti happens before ∆j .
• ¬Ti.∆j : A future transaction Ti does not happen before
∆j .

HLY-swap: If we assume the OP_LOOKUP_OUTPUT opcode
implemented by a combination of the above two predicates,
HLY-swap can be implemented as shown in Figure 2. This
swap handles the second half of the griefing problem from TN-
swap, but not the first. In TN-swap, Alice can grief Bob by not
redeeming his principal by broadcasting TN-T3 (transaction
T3 from the Tier Nolan swap in Figure 1). In HLY Swap, Alice
puts up a premium ρa in HLY-T0, which will go back to Alice
only if Alice goes along with her side of the swap in HLY-T3.
If she aborts here, Bob doesn’t have the secret preimage to
redeem his side of the swap and has to wait for his timelock
∆2 to expire to get his principal back. To compensate for this
grief, Bob gets to keep Alice’s premium ρa by broadcasting
HLY-T7. This is covered in the scenario HLY-F2.

Note that HLY-swap does not compensate Alice in case Bob
aborts before committing his principal. Alice has to wait for
∆3 before getting Pa back in HLY-T6 and ∆4 before getting
back ρa in HLY-T8 (scenario HLY-F1). The griefing costs of
HLY-swap are:

costF1 = f(ρa ·∆4) + f(Pa ·∆3)− ρa > 0 (5)
costF2 = f(Pb ·∆2)− ρa = 0 (6)

As Alice aborts in failure scenario HLY-F2, only Bob’s
principal Pb is included in Equation 6. Bob’s timelocked value
f(Pb.∆2) is compensated by Alice’s premium ρa, and hence
cost of failure scenario HLY-F2 costF2

= 0.
As Bob aborts in failure scenario HLY-F1, only Alice’s

principal Pa is included in Equation 5, and costF1
> 0.

In fact, Alice gets extra grief here because her premium ρa
is also locked up for ∆4. The problem of Alice not being
compensated for locking up her principal is solved in XH-
swap.

Sall = {T0, T1, T2, T3, T4, T5, T6, T7, T8}
T0 = [(ρa|σa)] 7→ [(ρa|((σa ∧ σb ∧∆4)∧

(T3.∆2 ∨ T5.∆4 ∨ T6.∆4 ∨ ¬T2.∆1))]

T1 = [(Pa|σa)] 7→ [(Pa|(σa ∧∆3) ∨ (σb ∧Hs))]

T2 = [(Pb|σb)] 7→ [(Pb|(σa ∧Hs) ∨ (σb ∧∆2))]

T3 = [(Pb|(σa ∧ s))︸ ︷︷ ︸
T1

] 7→ [(Pb|σa)]

T4 = [(Pa|(σb ∧ s))︸ ︷︷ ︸
T0

] 7→ [(Pa|σb)]

T5 = [(Pb|(σb ∧∆2))︸ ︷︷ ︸
T2

] 7→ [(Pb|(σb)]

T6 = [(Pa|(σa ∧∆3))︸ ︷︷ ︸
T1

] 7→ [(Pa|(σa)]

T7 = [(ρa|(σa ∧ σb ∧∆4))︸ ︷︷ ︸
T0

] 7→ [(ρa|σb)]

T8 = [(ρa|(σa ∧ σb ∧∆4))︸ ︷︷ ︸
T0

] 7→ [(ρa|σa)]

S = {T0, T1, T2, T3, T4, T8}
[Everything goes as per plan and Alice gets back her
premium]
F1 = {T0, T1, T6, T8}
[Bob aborts before committing Pb. Alice gets no com-
pensation]
F2 = {T0, T1, T2, T5, T6, T7}
[Alice aborts before redeeming Pb. Bob gets ρa as
compensation]

Figure 2: Han-Lin-Yu Atomic Swap with 1 Premium

XH-swap: XH-Swap, as shown in Figure 3, requires both
Alice and Bob to deposit premiums upfront: ρa, ρb, with
ρa > ρb. This inequality ensures that in certain failure
scenarios, if the smaller ρb goes to Alice and the larger ρa goes
to Bob, Bob is effectively getting the premium ρa − ρb. If the
principal amounts are equal (Pa = Pb), then Alice’s premium
is double that of Bob so that ρa − ρb = ρb. These premiums
are committed to the blockchain upfront, with future-looking
conditions (using the opcode OP_LOOKUP_OUTPUT) that
govern whether these premiums go to Alice or Bob, depending
on whether they take part in the swap, or abort the swap.
The next set of transactions are equivalent to the TN-swap,
but with additional conditions on where the premiums go.
Due to the premiums being timelocked, two additional failure
scenarios (on top of the two original failure scenarios of the
TN-swap) have to be handled by XH-swap: parties aborting
after their premiums are committed but before their principals
are committed. Together, these four failure scenarios are shown
in Figure 3, where in each scenario, either Alice or Bob
aborts, either after committing their premiums or principals.
The griefing costs of XH-swap are:

4

Sall = {T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11}
T0 = [(ρa|σa)] 7→ [(ρa|((σa ∧ σb ∧∆5)∧

((T3.∆2 ∧ (T4.∆2 ∨ T6.∆5)) ∨ ¬T3.∆2))]

T1 = [(ρb|σb)] 7→ [(ρb|((σa ∧ σb ∧∆6)∧
((T2.∆1 ∧ (T5.∆3 ∨ T7.∆6)) ∨ ¬T2.∆1))]

T2 = [(Pa|σa)] 7→ [(Pa|(σa ∧∆4) ∨ (σb ∧Hs))]

T3 = [(Pb|σb)] 7→ [(Pb|(σa ∧Hs) ∨ (σb ∧∆3))]

T4 = [(Pb|(σa ∧ s))︸ ︷︷ ︸
T3

] 7→ [(Pb|σa)]

T5 = [(Pa|(σb ∧ s))︸ ︷︷ ︸
T2

] 7→ [(Pa|σb)]

T6 = [(Pb|(σb ∧∆3))︸ ︷︷ ︸
T3

] 7→ [(Pb|(σb)]

T7 = [(Pa|(σa ∧∆4))︸ ︷︷ ︸
T2

] 7→ [(Pa|(σa)]

T8 = [(ρa|(σa ∧ σb ∧∆5))︸ ︷︷ ︸
T0

] 7→ [(ρa|σa)]

T9 = [(ρa|(σa ∧ σb ∧∆5))︸ ︷︷ ︸
T0

] 7→ [(ρa|σb)]

T10 = [(ρb|(σa ∧ σb ∧∆6))︸ ︷︷ ︸
T1

] 7→ [(ρb|σa)]

T11 = [(ρb|(σa ∧ σb ∧∆6))︸ ︷︷ ︸
T1

] 7→ [(ρb|σb)]

S = {T0, T1, T2, T3, T4, T5, T8, T11}
[Everything goes as per plan and Alice gets back her
premium]
F1 = {T0, T8}
[Bob aborts before committing ρb. Alice gets no com-
pensation]
F2 = {T0, T1, T8, T11}
[Alice aborts before committing Pa. Bob gets no com-
pensation]
F3 = {T0, T1, T2, T7, T8, T10}
[Bob aborts before committing Pb. Alice gets ρb com-
pensation]
F4 = {T0, T1, T2, T3, T6, T7, T9, T10}
[Alice aborts before redeeming Pb. Bob gets (ρa − ρb)
as compensation]

Figure 3: Xue-Herlihy Atomic Swap with 2 Premiums

costF1
= f(ρa ·∆5) > 0 (7)

costF2
= f(ρb ·∆6) > 0 (8)

costF3
= f(ρa ·∆5) + f(Pa ·∆4)− ρb = 0 (9)

costF4
= f(ρb ·∆6) + f(Pb ·∆3)− (ρa − ρb) = 0 (10)

As XH-swap is explicitly designed to handle failure sce-
narios XH-F3 and XH-F4, the griefing costs CF3

and CF4

are 0 in Equations 9 and 10. However, XH-swap does not
compensate Alice and Bob for their premiums. In case their
counterparty aborts during the premium setup phase (XH-F1
for Alice, or XH-F2 for Bob) Alice and Bob receive no
compensation. These are shown in Equations 7 and 8. To get
these griefing costs close to zero, the authors of XH-swap
propose using smaller premiums to bootstrap larger premiums,
till the premiums are sufficient enough to swap the principals.
The first set of premiums in such a premium-chain can be
griefed, as it’s backed by nothing. It is assumed that these
premiums are small enough for Alice and Bob to ignore the
griefing cost.

C. Shortcomings of Atomic Swaps with Premiums

There are four shortcomings in these protocols with premi-
ums:

1) They do not compensate for locked-up premiums.
2) They are not compatible with Bitcoin.
3) Their final timelock is much longer than the classic TN-

swap.
4) The the number of transactions under all scenarios (sizes

of Sall, S, and Fi) are higher than the classic TN-swap.
These four shortcomings can all be attributed to a more
fundamental idea that is embedded in these protocols – which
is that of separating the premium protocol from the principal
protocol. The latter is the classic TN-swap, and the former
is bolted on the TN-swap to make it partially grief-free. As
we see next, if we couple the two protocols together, we can
overcome all four shortcomings.

IV. GRIEF-FREE ATOMIC SWAP

Our Grief-free Atomic Swap (GF-swap) protocol’s transac-
tions are shown in Figure 4 and the actual flow of transactions
between Alice and Bob are shown in the flowchart in Figure 5.
As said before, the key insight that makes the protocol grief-
free is the coupling between the premium and the principal
protocols. The coupling is accomplished in two separate
points.

1) A party’s principal-committing transaction also commits
to the counterparty’s premium.

2) The same secret preimage is used to lock principals and
the premiums in their hashlock arms.

Before we look at the swap in greater detail, a word about
the premiums. As with the XH-swap, the GF-swap relies on
the inequality ρa > ρb, given Alice and Bob’s premiums
ρa, ρb. The compensations that Alice and Bob get, in case
they incur grief, are ρb and ρa−ρb respectively. If the atomic
swap is happening across different blockchains, say Bitcoin
and Litecoin, Alice’s principal Pa and Bob’s premium ρb are
on Bitcoin while Bob’s principal Pb and Alice’s premium
ρa are on Litecoin. If the swap is happening on the same
blockchain, both principals and both premiums are on that
blockchain.

5

Sall = {T0, T1, T2, T3, T4, T5, T6, T7}
T0 = [(ρa|σa)] 7→ [(ρa|(σa ∧ σb) ∨ (σa ∧Hs))]

T1 = [(Pa|σa), (ρb|σb)] 7→ [((Pa + ρb)|
(σb ∧Hs) ∨ (σa ∧∆2))]

T2 = [(Pb|σb), (ρa|(σa ∧ σb))︸ ︷︷ ︸
T0

] 7→ [((Pb + ρa)|

((σa ∧Hs) ∨ (σb ∧∆1))]

T3 = [((Pb + ρa)|(σa ∧ s))︸ ︷︷ ︸
T2

] 7→ [((Pb + ρa)|σa)]

T4 = [((Pa + ρb)|(σb ∧ s))︸ ︷︷ ︸
T1

] 7→ [((Pa + ρb)|σb)]

T5 = [(ρa|(σa ∧ s))︸ ︷︷ ︸
T0

] 7→ [(ρa|(σa)]

T6 = [((Pa + ρb)|(σa ∧∆2))︸ ︷︷ ︸
T1

] 7→ [((Pa + ρb)|(σa)]

T7 = [((Pb + ρa)|(σb ∧∆1))︸ ︷︷ ︸
T2

] 7→ [((Pb + ρa)|(σb)]

S = {T0, T1, T2, T3, T4}
F1 = {T0, T5}
[Bob aborts before committing ρb. Alice loses nothing.]

F2 = {T0, T5}
[Alice aborts before committing Pa. Bob loses nothing.]

F3 = {T0, T1, T6, T5}
[Bob aborts before committing Pb. Alice gets ρb as
compensation]
F4 = {T0, T1, T2, T6, T7}
[Alice aborts before redeeming Pb. Bob gets (ρa − ρb)
as compensation]

Figure 4: Grief-Free Atomic Swap with 2 Premiums

A. Setup

Refer to Figure 5 for the following numbered steps.
1) Alice creates GF-T0, which locks her premium ρa such

that it can be unlocked either by a multisig signed by
both Alice and Bob, or just by Alice if she also reveals
the secret preimage s of hash Hs. Note that GF-T0 has
no timelock. Alice sends GF-T0 to Bob so that he can
inspect it. GF-T0 is not broadcast to the blockchain yet.

2) Bob hands over his premium ρb to Alice off-chain. This
premium is a UTXO that Bob controls. Bob can also
prove that he can spend this UTXO by signing a standard
“Hello World” message with the public key that locks ρb.
Note that such a signature just confirms to Alice that Bob
controls ρb, and she cannot do anything else with such a
signature.

3) Alice constructs GF-T1 which commits Alice’s principal
Pa. This transaction will also include include a reference
to ρb. Alice sends GF-T1 to Bob. Before signing GF-T1,

Alice prepares GF-T0
and sends it to Bob

1

Bob aborts Bob broadcasts GF-T0

Alice broadcasts
GF-T5 (revealing
s) to get back ρa

Alice keeps ρaBob sends unsigned
ρb to Alice2

Alice aborts Bob keeps ρb

Alice prepares GF-T1
and sends it to Bob

3

Bob aborts
Bob signs and

broadcasts GF-T1

Alice has to wait for
∆2 to get back Pa, but
gets ρb as compensation

Alice keeps PaBob prepares GF-T2
and sends it to Alice

4

Alice aborts
Bob keeps Pb and
ρb as GF-T2 is

not broadcast yet

Bob signs and broadcasts
GF-T1; Alice signs

and broadcasts GF-T1;
either Alice or Bob
broadcast GF-T0

5

Alice aborts

Bob broadcasts GF-T7;
Alice broadcasts GF-T6;

Bob gets ρa − ρb
as compensation

Bob broadcasts GF-T3;
Bob broadcasts GF-T4;

Swap completes
6

Yes

Yes

NoNo

Yes

No

Yes

Yes

NoNo

Yes

No

Yes

No

On-chain

Off-chain

Figure 5: Grief-free Atomic Swap - Transaction Flow

6

Bob ensures that it pays Alice’s premium to him if he
reveals the secret preimage of the already known hash
from GF-T0. Note that Bob has already seen GF-T0
and can match the Hs from GF-T0 and GF-T1. GF-T1
also has a refund arm going back to Alice, which has a
timelock.

4) Bob then constructs his principal committing transaction
GF-T2 which also uses Alice’s premium ρa. To do this,
Alice has to give her signature to Bob so that the multisig
that locks ρa can be unlocked in GF-T2. Alice does this
only if GF-T2 sends both Bob’s principal and Alice’s
premium (Pb + ρa) to Alice, if she reveals the preimage
of the same hash Hs. GF-T2 also has a refund arm going
back to Bob, which has a timelock.

The series of transactions GF-T0, GF-T1, and GF-T2 can
be constructed and signed off-chain in the specific order
mentioned above, and broadcasted by either party in Step
5. Both GF-T1 and GF-T2 take two inputs each, a party’s
principal and the counterparty’s premium, and send their sum
to the redeeming party if they reveal the secret preimage, or
refund it back to the party if they wait for timelocks to expire
- just like in TN-swap. The principals and the premiums are
coupled now. After the setup stage, we look at how the rest of
the swap can play out, including success and failure scenarios.

B. Success

If the swap goes as per plan and we reach Step 6, Alice
broadcasts GF-T3 to redeem Pb + ρa and Bob broadcasts
GF-T4 to redeem Pa+ρb. Both parties get their counterparty’s
principal and their own premiums back.

C. Failures

The protocol handles the four failure scenarios gracefully
and grief-free. In the following failure scenarios, we look at
only those cases where a party is being griefed due to their
counterparty aborting. If a party aborts on their own volition
and has to refund their principal amount back to themselves
after a timelock, we do not consider it a failure scenario.

Bob aborts before committing ρbρbρb(GF-F1): During the off-
chain interaction where GF-T0, GF-T1, and GF-T2 are being
constructed, Bob could abort and not give his signature to
GF-T1 even if Alice has constructed it properly. There are
three possibilities here:

1) If nothing has been broadcast on the blockchain, there is
no grief.

2) If GF-T0, GF-T1, and GF-T2 are signed and broadcast,
but not confirmed, Bob could double-spend ρb in a
parallel transaction. In this case, Alice gets back her
premium without delay using GF-T5 by revealing the
preimage. Revealing this preimage is harmless to Alice
as her principal (which can be withdrawn by Bob if
he knows this preimage) cannot be confirmed on the
blockchain as Bob made GF-T1 invalid by spending ρb
elsewhere. If Bob is careless and makes only GF-T1
invalid by spending ρb, and leaves GF-T2 to confirm on

the blockchain - he risks losing his principal Pb as well, as
Alice can broadcast GF-T3 and claim both the principals
and her own premium. If Bob wants to abort at this stage
in good faith, he has to not give his signatures to Alice
for GF-T1 and GF-T2. Nothing hits the blockchain, and
both parties lose nothing.

3) Bob could abort without giving his signature to GF-T1,
but also broadcast GF-T0 to lock up Alice’s premium.
In this case, Alice cannot immediately broadcast GF-T5
to get premium back as her own principal is at risk
if she reveals the secret preimage s. She first has to
make GF-T1 invalid by spending her principal Pa back
to herself before broadcasting GF-T5. This does not
count as grief because she is only waiting for blockchain
confirmation time, and not her timelock time of ∆2.

Alice aborts before committing PaPaPa (GF-F2): Alice’s princi-
pal Pa and Bob’s premium ρb are committed to the blockchain
in a single transaction GF-T1, and hence this scneario cannot
occur. As in, Alice cannot abort and still grief Bob because
if Alice aborts here, Bob’s premium never hits the blockchain
and there is no question of griefing Bob.

Bob aborts before committing PbPbPb(GF-F3): After construct-
ing, signing, and broadcasting GF-T0, GF-T1, and GF-T2,
Bob could double spend Pb in a parallel transaction, thereby
making GF-T2 invalid. Alice can then get Bob’s premium by
confirming GF-T6, and also get her own premium back with
GF-T5. Note that GF-T5 is valid because Bob made the other
transaction spending ρa (GF-T2) invalid by double spending
Pb elsewhere. Alice has to wait for the timelock of ∆2, and
for that, she is compensated with Bob’s premium ρb.

Alice aborts before redeeming PbPbPb(GF-F4): After construct-
ing, signing, and broadcasting GF-T0, GF-T1, and GF-T2, it
is Alice’s turn to redeem Pb by broadcasting GF-T3. If she
doesn’t do it while time ∆ elapses, Bob claims his refund
back with GF-T7. Alice could claim her own refund back
with GF-T6. In this case, Bob gets Alice’s premium ρa and
Alice gets Bob’s premium ρb. As ρa > ρb, it is Bob who is
compensated here with the premium ρa − ρb because Alice
aborted the swap.

Setup Signatures: During the construction and signing of
GF-T0, GF-T1, and GF-T2, we have Bob signing for his
premium in GF-T1 and Alice signing her premium in GF-T2
(created by GF-T0’s multisig output arm). Bob has to make
sure that Alice has signed GF-T2 and given him a copy before
he signs GF-T1. This ordering solves two separate failure
scenarios.

1) Bob waits for Alice to sign GF-T2 and give him a copy
before signing GF-T1 himself and giving her a copy. So,
we are now either in the scenarios GF-F1, GF-F2, or
GF-S. Bob loses nothing in all of these.

2) Alice signs GF-T2, but does not get Bob’s signature on
GF-T1. Bob has two choices now.

7

a) Bob can either keep GF-T2 without broadcasting it,
and we are in GF-F1 where Alice doesn’t lose any-
thing.

b) Bob can broadcast GF-T2, and risk losing his principal
Pb to Alice as well. To avoid that, he has to sign and
broadcast GF-T1 and we are in GF-F4, or GF-S. Alice
loses nothing in these.

Cost: The griefing costs (in terms of timelocked value of
funds) of GF-swap are:

costF1
= 0 = 0 (11)

costF2
= 0 = 0 (12)

costF3
= f(Pa ·∆2)− ρb = 0 (13)

costF4
= f(Pb ·∆1) + f(ρb ·∆2)− (ρa − ρb) = 0 (14)

As seen in failure scenarios GF-F1 and GF-F2, if parties
abort before committing their principals, no timelocks are
engaged, and we get costF1

= 0 and costF2
= 0 in Equations

11 and 12. Additionally, in failure scenario GF-F3, f(Pa ·∆2)
is compensated by ρb, and therefore costF3

= 0. Here, Alice’s
premium ρa is never committed, and ρb does not have to
compensate for it. In failure scenario GF-F4, both f(ρb ·∆1)
and f(Pb ·∆1) together have to be compensated by ρa − ρb
to get costF4

= 0.

D. Coupling Principal and Premium
Section III-C listed the four shortcomings of previous

premium-based designs. By coupling the premium protocol
and the principal protocol, GF-swap manages to avoid these
shortcomings.

Premium Lockup Compensation: Coupling the principal and
the premium protocols lets us use the same values of the
timelock for both. This ensures that wherever the principal
goes, with whatever delay, the premium also follows. The only
catch here is Alice’s premium, which is locked in GF-T0. But
this specifically avoids a timelock and is hence grief-free.

Bitcoin Compatibility: Decoupling the two protocols forces
the premium protocol to lookup where the principal was sent,
which needs a new Bitcoin opcode OP_LOOKUP_OUTPUT.
Coupling them sends the two: premium and princi-
pal, together to their destination, and we do not need
OP_LOOKUP_OUTPUT. It can otherwise be argued that, from
a software engineering perspective, decoupling the protocols
is better than coupling them. But the moment we decouple
the two protocols, there is no way to construct the premium
protocol without knowing how the principal protocol will play
out in the future. In our opinion, Bitcoin compatibility is as
important as the software engineering decoupling.

Timelock Length: Coupling the protocols lets GF-swap keeps
the timelock values of TN-swap, as the premiums themselves
do not need separate timelocks of larger values. This reduces
the time it takes to make a full swap, when compared to related
work presented earlier.

Number of Transactions: Coupling let’s us go just 1 trans-
action over TN-swap (GF-T0, which sets up Alice’s premium
ρa). It’s an open question whether we can incorporate premi-
ums into a grief-free protocol while keeping the total number
of transactions the same as TN-swap.

E. Disadvantages of Coupling:

As discussed before, we choose to couple the premium
and principal protocols to achieve Bitcoin compatibility. As
expected, this design “anti-pattern” makes it harder to extend
GF-swap to handle other use cases. Examples: Bribing free
atomic swaps [15] [16], Multi-party swaps across more than
2 blockchains [17], atomic swap enabled automated market
makers. Out of these, the bribing-free atomic swap from
[15] can be also made grief-free with minor tweaking of
the transactions involved. Alice’s timelocked refund arm from
GF-T1 has to be made to go through another layer to bring
in the extra fees that Alice needs to commit to make the
combined protocol bribe-free as well.

Payment channels and atomic swaps both use HTLCs as a
building block. The GF-swap has a modified version of the
HTLC. It is an open question whether this modified HTLC
can be used to construct payment channels.

V. CONCLUSION

We have proposed an atomic swap protocol that makes the
classic Tier Nolan swap resilient to griefing while adding just
one extra on-chain transaction. We compensate griefing by
offering a premium to the party that gets griefed. Most of the
heavy-lifting in our swap is done off-chain, where the two
parties communicate to establish the swap in the first place.
Unlike other protocols, in our swap, both parties can abort
the premium protocol off-chain and not on-chain. We also
show that coupling the premium and the principal protocol
makes the swap implementable in Bitcoin, where transaction
execution does not have access to an external global state.
The coupling also reduces transaction costs and the worst-
case timelock. Unfortunately, this coupling makes the GF-
swap non-trivial to extend to other applications without careful
tweaking of transactions.

REFERENCES

[1] R. Cleve, “Limits on the security of coin flips when half the processors
are faulty,” in Proceedings of the eighteenth annual ACM symposium on
Theory of computing, 1986, pp. 364–369.

[2] H. Pagnia and F. C. Gärtner, “On the impossibility of fair exchange
without a trusted third party,” Citeseer, Tech. Rep., 1999.

[3] M. K. Franklin and M. K. Reiter, “Fair exchange with a semi-trusted
third party,” in Proceedings of the 4th ACM Conference on Computer
and Communications Security, 1997, pp. 1–5.

[4] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange
of digital signatures,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1998, pp. 591–
606.

[5] “Atomic Swaps,” https://bitcointalk.org/index.php?topic=193281.
msg2224949, [Accessed: 2020-05-07].

[6] D. Robinson, “HTLCs Considered Harmful,” https://cyber.stanford.
edu/sites/g/files/sbiybj9936/f/htlcs considered harmful.pdf, [Accessed:
2020-05-07].

8

https://bitcointalk.org/index.php?topic=193281.msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf

[7] G. Maxwell, “Zero knowledge contingent payment. 2011,” URl:
https://en. bitcoin. it/wiki/Zero Knowledge Contingent Payment (visited
on 05/01/2016), 2016.

[8] F. K. Maurer, “A survey on approaches to anonymity in bitcoin and
other cryptocurrencies,” Informatik 2016, 2016.

[9] E. Heilman, S. Lipmann, and S. Goldberg, “The arwen trading
protocols,” in Financial Cryptography and Data Security - 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers, ser. Lecture
Notes in Computer Science, J. Bonneau and N. Heninger, Eds.,
vol. 12059. Springer, 2020, pp. 156–173. [Online]. Available:
https://doi.org/10.1007/978-3-030-51280-4 10

[10] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 967–
984.

[11] L. Eckey, S. Faust, and B. Schlosser, “Optiswap: Fast optimistic fair ex-
change,” in Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, 2020, pp. 543–557.

[12] R. Han, H. Lin, and J. Yu, “On the Optionality and Fairness of Atomic
Swaps,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, ser. AFT ’19. Association for Computing
Machinery, pp. 62–75.

[13] Y. Xue and M. Herlihy, “Hedging against sore loser attacks in cross-
chain transactions,” ser. PODC’21, 2021.

[14] G. Avarikioti, O. S. T. Litos, and R. Wattenhofer, “Cerberus channels:
Incentivizing watchtowers for bitcoin,” Cryptology ePrint Archive, Re-
port 2019/1092, 2019, https://ia.cr/2019/1092.

[15] T. Nadahalli, M. Khabbazian, and R. Wattenhofer, “Timelocked Brib-
ing,” in Financial Cryptography and Data Security (FC), Online, March
2021.

[16] I. Tsabary, M. Yechieli, and I. Eyal, “MAD-HTLC: Because HTLC is
Crazy-Cheap to Attack,” 2020.

[17] M. Herlihy, “Atomic Cross-Chain Swaps,” in Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing. ACM, pp.
245–254.

9

https://doi.org/10.1007/978-3-030-51280-4_10
https://ia.cr/2019/1092

	Introduction
	System Model
	Atomic Swap Specification
	Notation

	Atomic Swaps: Prior Work
	Tier Nolan Atomic Swap
	Atomic Swaps with Premiums
	Shortcomings of Atomic Swaps with Premiums

	Grief-free Atomic Swap
	Setup
	Success
	Failures
	Coupling Principal and Premium
	Disadvantages of Coupling:

	Conclusion
	References

