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Abstract
Approximate Agreement (AA) is a key consensus primitive that

allows honest parties to achieve close but not necessarily identical

outputs, even in the presence of Byzantine faults. While optimal

round complexity for synchronous AA on real values is well under-

stood, its extension to other input spaces remains an open problem.

We present a protocol achieving AA on trees in the synchronous

model, with round complexity 𝑂

(
log |V(𝑇 ) |

log log |V(𝑇 ) |

)
, where V(𝑇 ) is the

set of vertices in the input space tree 𝑇 . Our protocol non-trivially

reduces the problem of AA on trees to AA on real values.

Additionally, we extend the impossibility result regarding the

round complexity ofAA protocols on real values to trees: we prove a

lower bound of Ω
(

logD(𝑇 )
log logD(𝑇 )

)
rounds, where D(𝑇 ) denotes the di-

ameter of the input space tree. This establishes the asymptotic opti-

mality of our protocol for trees of large diameter D(𝑇 ) ∈ Θ(
��V(𝑇 )��).
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1 Introduction
Ensuring consistency among parties in a distributed system is es-

sential, yet it is a difficult task in the face of potential failures or

malicious behavior. Agreement protocols serve as indispensable
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tools for achieving consensus in such environments. One such

fundamental primitive is Approximate Agreement (AA).
TheAA problem, as defined by [4], considers a setting of𝑛 parties

𝑝1, 𝑝2, . . . , 𝑝𝑛 in a fully connected network where each party holds

a real value as input. Even if up to 𝑡 of the 𝑛 parties are Byzantine

(i.e., malicious), AA enables the honest parties to obtain values

satisfying two conditions. First, Validity: the outputs of the honest
parties must lie within the honest inputs’ range. Second, for any

predefined error 𝜀 > 0, 𝜺-Agreement: the honest parties’ outputs
must be pairwise 𝜀-close. This relaxed form of agreement has proven

effective in scenarios where exact consensus is either unnecessary

or infeasible, such as clock synchronization [13], blockchain oracles

[1], distributed machine learning [6, 7, 20], aviation control systems

[14, 19], or robot gathering [18] on various map structures.

The AA problem is not limited to real-valued inputs. Several

variants have been explored, includingmultidimensional real inputs

[15, 16, 21] and discrete domains such as lattices and various classes

of graphs [17]. In this work, we focus on AA on trees. In this variant,

as presented by Nowak and Rybicki [17], the input space is a labeled

tree 𝑇 that is known to all parties. Then, each party has a vertex of

𝑇 as input, and every honest party must output a vertex of 𝑇 . The

Validity condition generalizes the requirement that honest outputs

lie within the honest inputs’ range to requiring that they lie within

the honest inputs’ convex hull—i.e., the smallest subtree of 𝑇 that

contains all honest input vertices. In addition, the 𝜀-Agreement

requirement becomes simply 1-Agreement: the distance between

any two honest outputs must be at most one.

Regardless of the space considered, the AA problem admits very

elegant solutions that follow a common iteration-based outline.

In each iteration, the parties use some mechanism to distribute

their current values (in the first iteration, these are the inputs) to

all parties within 𝑂 (1) rounds of communication. Afterward, each

party computes a new value such that: the new values are in the

convex hull of the values distributed by the honest parties, and the

new values get closer. This way, sufficient iterations, AA is achieved.

Although this outline is a valuable tool for proving that AA can

be solved for various input spaces and in various communication

models, it leaves open questions regarding efficiency.

In terms of round complexity for real values, this outline in-

curs 𝑂 (log(D/𝜀)) communication rounds if the honest inputs are

D-close [4, 17]. However, Fekete [9] has shown that this is sub-

optimal for protocols designed in the synchronous model (where

all messages are delivered within a publicly known amount of

time, and parties have perfectly synchronized clocks), presenting a

lower bound and an asymptotically matching protocol tolerating

𝑡 < 𝑛/4 corruptions. Fekete’s lower bound was later asymptotically
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matched also for the optimal resilience thresholds 𝑡 < 𝑛/3 [2] and,
with cryptographic setup, 𝑡 < 𝑛/2 [12]. These protocols deviate

from the standard outline by utilizing information from previous

iterations (i.e., identifying corrupted parties that attempt to send

different values to different parties). Hence, optimal round com-

plexity for AA on real values is well-understood, and the results

naturally extend to simple input spaces such as paths. However,

generalizations to more complex spaces remain an open problem.

In this work, we build on the results for real values and extend

them to trees. Specifically, we address the following question:

What is the optimal round complexity for solving AA on trees
in the synchronous model?

Regarding prior solutions for AA on trees, the protocol of [17]

follows the standard iteration-based outline and achieves round

complexity 𝑂 (logD(𝑇 )), where D(𝑇 ) denotes the diameter of the

input space tree 𝑇 . We note that this protocol is designed in the

asynchronous model (where messages get delivered eventually as

opposed to within a publicly known amount of time). While subse-

quent works improved message complexity [8], the round complex-

ity of 𝑂 (logD(𝑇 )) remains the state-of-art in the asynchronous

model, and in the synchronous model as well up to our work.

Our Contribution. We provide a synchronous protocol achieving

AA on trees with round complexity 𝑂

(
log |V(𝑇 ) |

log log |V(𝑇 ) |

)
, where V(𝑇 )

denotes the set of vertices of the input space tree 𝑇 . Our protocol

relies on novel techniques that reduce the problem to AA on real

values, and uses the protocol of [2] as a building block.

In addition, we explain how Fekete’s bound can be adapted to

trees: we show that, under the assumption that a constant fraction

of the parties is corrupted, Ω
(

logD(𝑇 )
log logD(𝑇 )

)
rounds are necessary for

any AA protocol on tree 𝑇 . Hence, our protocol achieves optimal

round complexity for trees 𝑇 of large diameter D(𝑇 ) ∈ Θ( |V(𝑇 ) |).

Open Problems. Our findings highlight promising directions for

further work. First, our protocol achieves optimal round complex-

ity for large-diameter trees, up to constant factors. Improving the

constants in the round complexity of AA for real values would di-

rectly refine our protocol’s efficiency, making it more practical for

real-world applications. Second, it would be valuable to determine

whether our lower bound on round complexity can be matched for

trees 𝑇 with low diameter D(𝑇 ) ∈ 𝑜 ( |V(𝑇 ) |). Finally, it remains an

open question whether similar round-optimal guarantees can be

achieved for synchronous AA on broader classes of graphs.

2 Lower Bound
We recall Fekete’s lower bound for AA on real values regarding how
close the honest values may get after 𝑅 rounds.

Theorem 1 (Theorem 15 of [9]). Let Π denote an arbitrary deter-
ministic 𝑅-round protocol achieving Validity and Termination onR up
to 𝑡 Byzantine corruptions. Then, given 𝑎, 𝑏 ∈ R with 𝑏 −𝑎 ≥ D, there
is an execution of Π where the honest inputs are in {𝑎, 𝑏} and two hon-
est parties output values 𝑣 and 𝑣 ′ satisfying

��𝑣 − 𝑣 ′
�� ≥ D · 𝑡𝑅

𝑅𝑅 · (𝑛+𝑡 )𝑅 .

In the full version of our paper, we explain how the proof tech-

nique of [9] can be adapted to the setting of trees and paths, leading

to the following result:

Theorem 2. Every deterministic protocol achieving AA on tree
𝑇 even up to 𝑡 = 𝜃 (𝑛) Byzantine corruptions has round complexity

Ω
(

logD(𝑇 )
log logD(𝑇 )

)
.

3 Our Protocol
In the following, we present the high-level ideas and intuition

behind our protocol TreeAA, described by the theorem below. For

a complete presentation, see the full version of our paper.

Theorem 3. There is a protocol TreeAA achieving AA even up to
𝑡 < 𝑛/3 Byzantine corruptions on any input space tree 𝑇 with round

complexity 𝑂
(

log

��V(𝑇 )
��

log log

��V(𝑇 )
�� ) .

3.1 Warm-up: Protocol for Paths
Building towards our protocol TreeAA, we first describe a protocol
for paths: the input space tree is a path 𝑃 . We make use of the

protocol of [2], denoted by RealAA, which achieves AA on R with

asymptotically optimal round complexity. We add that the analysis

presented in [2] assumes 𝜀 = 1/𝑛. In the full version of the paper,

we extend their analysis to any 𝜀, obtaining the theorem below.

Theorem 4. There is a protocol RealAA(𝜀) achieving AA on real
values for 𝑡 < 𝑛/3. If the honest inputs areD-close, RealAA(𝜀) ensures
Termination within 𝑅RealAA (D, 𝜀) =

⌈
7 · log

2
(D/𝜀 )

log
2
log

2
(D/𝜀 )

⌉
rounds.

Protocol RealAA can be adapted to paths in a straightforward

manner. The parties denote the 𝑘 vertices in the input space path 𝑃

by (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) (so that 𝑣𝑖 , 𝑣𝑖+1 are adjacent, and 𝑣1 is the endpoint
of 𝑃 with the lowest label in lexicographic order). If a party’s input

𝑣in is the vertex now denoted by 𝑣𝑖 , it joins RealAA(1) with input 𝑖 .

Each party obtains a value 𝑗 ∈ R from RealAA and may output the

vertex denoted by 𝑣int( 𝑗 ) , where int( 𝑗) denotes the closest integer
to 𝑗 . That is, if 𝑧 ≤ 𝑗 < 𝑧+1 for 𝑧 ∈ Z, int( 𝑗) := 𝑧 if 𝑗−𝑧 < (𝑧+1)− 𝑗

and int( 𝑗) := 𝑧 + 1 otherwise. We add the following remarks:

• If 𝑖min, 𝑖max ∈ Z and 𝑗 ∈ [𝑖min, 𝑖max], int( 𝑗) ∈ [𝑖min, 𝑖max].
• If 𝑗, 𝑗 ′ ∈ R satisfy

�� 𝑗 − 𝑗 ′
�� ≤ 1, then

��int( 𝑗) − int( 𝑗 ′)
�� ≤ 1.

As any two honest parties obtain 1-close values 𝑗, 𝑗 ′, we obtain
that

��int( 𝑗) − int( 𝑗 ′)
�� ≤ 1. This implies that the vertices 𝑣int( 𝑗 ) and

𝑣int( 𝑗 ′ ) have distance at most 1, and 1-Agreement holds. Therefore,

we have achieved AA on 𝑃 in 𝑂

(
logD(𝑃 )

log logD(𝑃 )

)
rounds.

3.2 Moving Towards Trees
We reduce the problem of solving AA on trees to AA on R as well.

This section presents a stepping stone towards our final solution:

as shown in Figure 1, we assume that the parties know a path 𝑃 in

the tree that intersects the honest inputs’ convex hull. Then, the

parties may proceed as follows: each party with input 𝑣in ∈ V(𝑇 )
computes the projection of 𝑣in onto 𝑃 , denoted by proj𝑃 (𝑣in). This
is the vertex in 𝑃 that has the shortest distance to 𝑣in. Note that

proj𝑃 (𝑣in) is in the honest inputs’ convex hull.

From this point, we may achieve AA using the approach de-

scribed in Section 3.1. The parties denote the 𝑘 vertices in 𝑃 by

(𝑣1, 𝑣2, . . . , 𝑣𝑘 ), where 𝑣1 is the endpoint with the lower label lexico-

graphically. Each party joins RealAA with input 𝑖 , where the vertex

denoted by 𝑣𝑖 in 𝑃 is the projection proj𝑃 (𝑣in) of the party’s input
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Figure 1: Let 𝑷 be the assumed path, represented by the sequence of vertices 𝒗1, 𝒗2, . . . , 𝒗8. The vertices 𝒖1, 𝒖2, 𝒖3 are the honest
inputs, whose convex hull is highlighted in green. The projections of 𝒖1, 𝒖2, 𝒖3 onto path 𝑷 are vertices 𝒗3, 𝒗4, 𝒗6 respectively.

vertex 𝑣in. Each party obtains an output 𝑗 ∈ R and may output the

vertex denoted by 𝑣int( 𝑗 ) in path 𝑃 . These vertices are 1-close, and

they are in the honest projections’ convex hull, and therefore in

the honest inputs’ convex hull. Consequently, AA is achieved.

3.3 Finding a Path
Intuitively, it may seem that finding a path 𝑃 that intersects the hon-

est inputs’ convex hull comes down to solving Byzantine Agreement.
This would require 𝑡+1 = 𝑂 (𝑛) rounds of communication [5], which

generally prevents us from achieving our round-complexity goal.

Instead, we implement a subprotocol PathsFinder that enables the
honest parties to approximately agree on such a path. Concretely,

each honest party will obtain a subpath 𝑃 of 𝑇 such that (i) 𝑃 inter-

sects the honest inputs’ convex hull, and (ii) if two honest parties

obtain two different paths 𝑃 and 𝑃 ′, then either 𝑃 is 𝑃 ′ with one

additional edge, or 𝑃 ′ is 𝑃 with one additional edge, as described

in Figure 2. Formally, if 𝑃 = (𝑣1, . . . , 𝑣𝑘 ) and 𝑃 ′ = (𝑢1, 𝑢2, . . . , 𝑢𝑘 ′ ),
then either 𝑃 = 𝑃 ′, or 𝑃 ′ = (𝑣1, . . . , 𝑣𝑘 , 𝑢𝑘 ′ ), or 𝑃 = (𝑢1, . . . , 𝑢𝑘 ′ , 𝑣𝑘 ).
This will suffice to use the approach of Section 3.2.

Figure 2: This figure shows a possible input space tree. Ver-
tices 𝒗3, 𝒗5, 𝒗6 are the honest inputs, and the green area
highlights the honest inputs’ convex hull. For this tree,
PathsFinder may allow the honest parties to obtain as out-
put, for instance, paths 𝑷 such that either 𝑷 = (𝒗1, 𝒗2, 𝒗4) or
𝑷 = (𝒗1, 𝒗2, 𝒗4, 𝒗8).

PathsFinder first defines a root vertex 𝑣root for the input space
tree 𝑇 : this is the vertex with the lowest label in lexicographic or-

der. Then, it enables the honest parties to obtain 1-Agreement on

vertices in a subtree rooted at a vertex in the honest inputs’ con-

vex hull. We achieve this using a technique known for efficiently

finding lowest common ancestors [3]. Each party runs a depth-first-

search starting from the fixed root vertex 𝑣root, and writes down

each vertex whenever visited in the depth-first-search. In the ex-

ample displayed in Figure 2, 𝑣root = 𝑣1, and the resulting list is

𝐿 = [𝑣1, 𝑣2, 𝑣3, 𝑣6, 𝑣3, 𝑣7, 𝑣3, 𝑣2, 𝑣4, 𝑣8, 𝑣4, 𝑣2, 𝑣5, 𝑣2, 𝑣1].
Note that, if 𝑖 and 𝑖′ are indices of list 𝐿 that represent two honest

inputs 𝑣 and 𝑣 ′, then vertices occurring in the list at indices 𝑗 ∈ [𝑖, 𝑖′]
are in the subtree rooted at the lowest common ancestor of 𝑣 and 𝑣 ′:
this is a vertex in the honest inputs’ convex hull. Hence, if the honest

parties run RealAA(1) using as input indices 𝑖 representing their

input vertices in list 𝐿, they obtain real values 𝑗 such that: (i) the

indices int( 𝑗) in list 𝐿 correspond to vertices in the subtree rooted

at a vertex in the honest inputs’ convex hull, and (ii) the indices

int( 𝑗) are 1-close and therefore they represent 1-close vertices.

Then, each honest party may output the path connecting 𝑣root to

the vertex obtained through this process, which will ensure our

desired guarantees. We add that each honest party obtains its path

within 𝑅RealAA (2 ·
��V(𝑇 )��, 1) rounds since the list obtained contains

at most 2 ·
��V(𝑇 )�� vertices.

3.4 Putting It All Together
We may now describe our final protocol TreeAA. The parties first
run PathsFinder to approximately agree on paths that intersect the

honest inputs’ convex hull. Afterward, each party 𝑝 proceeds as

described in Section 3.2: it denotes the 𝑘 vertices on its own path

𝑃 by (𝑣1 := 𝑣root, 𝑣2, . . . , 𝑣𝑘 := 𝑣). It joins RealAA(1) with input 𝑖 ,

where the vertex denoted by 𝑣𝑖 in 𝑝’s path 𝑃 is the projection of

𝑝’s input vertex 𝑣in onto 𝑃 : 𝑣𝑖 = proj𝑃 (𝑣in). Then, upon obtaining

output 𝑗 , 𝑝 should output the vertex denoted by 𝑣int( 𝑗 ) in its path 𝑃 .

This is where we need to be careful about honest parties holding

different paths 𝑃 . If an honest party 𝑝 obtains 𝑗 > 𝑘 , then 𝑝 holds

the “shorter” path (𝑣1, . . . , 𝑣𝑘 ), while other honest parties hold the

“longer” path (𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1). In this case, if int( 𝑗) = 𝑘 + 1 and

vertex 𝑣𝑘 has at least three neighbors, 𝑝 is unable to decide which

neighbor is vertex 𝑣𝑘+1, i.e., the last vertex of the “longer path”.

Instead, in this case, 𝑝 may simply output 𝑣𝑘 .

A note on the 𝑡 < 𝑛/2 case. We add that the resilience thresh-

old of TreeAA is given by the underlying RealAA protocol assumed:

wheneverRealAA achievesAA on [1, 2·
��V(𝑇 )��], our protocol TreeAA

achieves AA on the input space tree 𝑇 , and the round complexity

of TreeAA is double that of RealAA. Hence, our reduction also en-

ables asymptotically optimal round complexity for trees of diameter

D(𝑇 ) ∈ Θ(
��V(𝑇 )��) in authenticated settings (assuming digital signa-

tures) up to 𝑡 = (1 − 𝑐)/2 · 𝑛 corruptions for any constant 𝑐 > 0: we

may simply replace RealAA with the Proxcensus protocol of [11].
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