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Abstract

Ad hoc and sensor networks consist of autonomous devices communicating
via radio equipment. Common scenarios for ad hoc networks include surviv-
able, efficient, dynamic communication networks for emergency and rescue op-
erations, disaster relief efforts, and similar tasks where typically no communica-
tion infrastructure is present prior to the deployment of the ad hoc network. In
sensor networks, nodes are additionally equipped with sensors, performing the
task of sensing a certain physical value, such as temperature, humidity, bright-
ness, or motion, and periodically reporting the sensed data to a designated sink
node for monitoring purposes.

Since ad hoc and sensor network nodes are generally assumed to be au-
tonomous and operate for a considerable period of time—in case of sensor net-
works up to several years—, energy conservation is one of the central issues in
this research context. On the other hand, many scenarios assume a high degree
of dynamics, particularly based on node mobility.

This dissertation discusses two major problem fields in the context of ad hoc
and sensor networks. In particular, geographic routing—a local type of routing
inherently well suited for dynamic ad hoc networks—is studied with respect
to both worst-case and average-case networks. Second, topology control based
on transmission power reduction puts the focus on energy conservation as a
consequence of restricted interference among the network nodes.





Zusammenfassung

Ad-Hoc- und Sensornetze bestehen aus unabhängigen über Funk kommuni-
zierenden Geräten. Häufig genannte Szenarien für Ad-Hoc-Netzwerke beschrei-
ben ihren Einsatz als robuste, sparsame und dynamische Kommunikationsnetze
für Notfall- und Rettungseinsätze, Katastrophenhilfe und ähnliche Aufgaben,
wo vor dem Einsatz des Ad-Hoc-Netzwerkes keine Kommunikationsinfrastruk-
tur vorhanden ist. In Sensornetzen sind die Netzwerkknoten zusätzlich mit
Sensoren ausgestattet, die bestimmte physikalische Grössen – wie beispielswei-
se Temperatur, Feuchtigkeit, Helligkeit oder Bewegung – messen; diese Daten
werden periodisch an einen vorbezeichneten Sammelknoten gesendet und zum
Zwecke der Beobachtung oder der Kontrolle ausgewertet.

Da üblicherweise angenommen wird, dass Knoten in Ad-Hoc- und Sensornet-
zen unabhängig von externen Energiequellen sind und trotzdem über eine be-
trächtliche Zeitspanne betrieben werden sollen – in Sensornetzen bis zu mehre-
ren Jahren –, ist Energieeffizienz ein Hauptpunkt dieser Forschungsrichtung.
Andererseits beinhalten viele Szenarien hohe Netzwerkdynamik, insbesondere
aufgrund mobiler Knoten.

Diese Dissertation befasst sich mit zwei zentralen Problemfeldern im Be-
reich von Ad-Hoc- und Sensornetzen. Im Einzelnen wird das Verhalten von
geografischem Routing – einer auf lokal begrenzter Information fussenden Art
von Nachrichtenvermittlung, die speziell gut für den Einsatz in dynamischen Ad-
Hoc-Netzwerken geeignet ist – in schlechtest möglichen und in durchschnittlich
auftretenden Netzwerken untersucht. In einem zweiten Teil der Arbeit wird der
Schwerpunkt auf Topologiekontrolle im Zusammenhang mit gezielt beschränkter
Funksendeleistung gelegt; Energieeffizienz ist hier eine Folge von verringerter
Signalstörung, oder

”
Interferenz“, zwischen den Netzwerkknoten.
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Chapter 1

Introduction:

Of Theory and Practice

In theory, there is no difference between theory and practice;
in practice, there is.

There is nothing more practical than a good theory.

One manifestation of the currently observed and continuing miniaturization
of electronics in general and wireless communication technology in particular
is mobile ad hoc networks. Ad hoc networks are formed by mobile devices
consisting of, among other components, a processor, some memory, a radio
communication unit, and a power source, due to physical constraints commonly
a weak battery or a small solar cell.

Typically, wireless ad hoc networks are intended to be employed where no
communication infrastructure is present before the deployment of the ad hoc
network or where reliance on previously present infrastructure is not desired
or not possible. Common scenarios for ad hoc networks include communica-
tion among rescue teams, police squads, or during fire fighting or other disaster
relief actions. Another often mentioned scenario involves cars forming an ad
hoc network for professional, entertainment, or informational purposes. Car-
mounted radio broadcast warning systems automatically alerting approaching
automobiles of accidents or other unexpected traffic events are frequently en-
visioned. Also for meetings or conferences ad hoc networks may have their
value. Furthermore, ad hoc networks may find their application for security
and—inevitably—for military purposes.1

Sensor networks can be considered a specialization of ad hoc networks in
which nodes are equipped with sensors measuring certain physical values, such
as humidity, brightness, temperature, acceleration, or vibration. Usually, the

1This raises the interesting question whether there actually exists any technology that
cannot be applied for military purposes.
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sensor nodes are designed to report measured information to a data sink node.
Among the most common scenarios for sensor networks are environmental mon-
itoring tasks, for instance to warn of imminent natural disasters or for the pur-
pose of biological or other scientific observations. Typically, sensor networks
will be deployed in areas difficult to access or, more generally, where human
presence or stationary monitoring infrastructure is undesired or impossible.

Ad hoc and sensor networks are “unleashed” in two respects: First, network
nodes communicate via radio technology. Second, nodes are independent of ex-
ternal power sources. As a consequence of this autonomy, ad hoc network nodes
are often assumed to be mobile. Together with the fact that wireless links are
inherently less stable and reliable than wired connections, node mobility leads
to potentially highly dynamic networks. Another implication of the autonomy
of network nodes is that energy is one of the most critical resources in ad hoc
networks.

In this dissertation we will describe two approaches addressing the key issues
of dynamics and energy consumption in ad hoc and sensor networks. In a first
part of the dissertation, geographic routing will be shown to be a type of routing
particularly well suited for application in dynamic networks, mainly due to its
property of being based on completely local operations. A second part of the
dissertation will focus on energy consumption; in particular, interference as one
of the main sources for avoidable energy consumption forms the central aspect
of various topology control techniques.

It is almost a truism that a purely theoretical analysis of a system runs the
risk of producing a method or technique that may prove good in theory but
turns out to be impracticable or at least less favorable in practice. On the other
hand, mere practical evaluation of a proposed method does not necessarily lead
to a satisfying assessment of the quality of the entity under examination. In this
dissertation we attempt to narrow the all too often seemingly insurmountable
gap between theory and practice. We maintain an analytical algorithmic per-
spective in that we propose algorithms with provable guarantees and properties.
We however try to go beyond pure theory by studying average-case behavior of
the proposed algorithms or by avoiding unrealistic assumptions. In the first part
of the dissertation, for instance, we will present a geographic routing algorithm
that is proved by means of theoretical analysis to be asymptotically optimal
with respect to cost in worst-case networks; at the same time, this algorithm
will however be shown to be, to the best of our knowledge, the fastest and cheap-
est known geographic routing algorithm also in average-case networks. A second
example is the lightweight topology control algorithm presented at the begin-
ning of the second part. This algorithm is intended to unify theory and practice
in that it features provable properties while being independent of unrealistic
assumptions and at the same time simple enough to be implemented in practi-
cal networks. The remainder of the second part is dedicated to the attempt of
providing the problem field of interference in wireless ad hoc networks—which
can be expected to be one of the major issues in practical networks—with a
solid theoretical underpinning.



Part I

Geographic Routing





Chapter 2

Geographic Routing:

An Introduction

Philosophy, n. A route of many roads leading from nowhere to nothing.
Ambrose Bierce (1842–1914)

Routing in a communication network is the process of forwarding a message
from a source host to a destination host via intermediate nodes. In wired
networks, routing is commonly a task performed by routers, special fail-safe
network hosts particularly designed for the purpose of forwarding messages with
high performance. In ideal wireless ad hoc networks, in contrast, every network
node may act as a router, as a relay node forwarding a message on its way from
its source node to its destination node. This process is particularly important
in ad hoc networks, as network nodes are assumed to have restricted power
resources and therefore try to transmit messages at low transmission power,
leading to the effect that the destination of a message can typically not be
reached directly from the source. The importance of this task also becomes
manifest in the popular term multihop routing, expressing the essential role of
network nodes as relay stations.

In wired networks, routing almost always takes place in relatively stable
conditions; at least the main neighborhood topology remains identical over
weeks, months, or even years. The main focus of routing in wired networks
is on high-performance forwarding of messages; reaction latency in the face of
network topology changes, caused by failing hosts or connections, is generally
of secondary importance. Considering the stability of wired networks, prompt
reaction to topology changes or rapid propagation of according information is
often not required, as such events are relatively rare.

Wireless ad hoc networks are of a fundamentally different character: To be-
gin with, wireless connections are by nature significantly less stable than wired
connections. Effects influencing the propagation of radio signals, such as shield-
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ing, reflection, scattering, and interference, inevitably require routing systems in
ad hoc networks to be able to cope with comparatively low link communication
reliability. More importantly, many scenarios for ad hoc networks assume that
nodes are potentially mobile. These two factors, above all in high node mobil-
ity, cause ad hoc networks to be inherently more dynamic than wired networks.
Traditional routing protocols designed for wired networks therefore generally
fail to satisfy the requirements of wireless ad hoc networks.

A considerable number of routing protocols specifically devised for oper-
ation in ad hoc networks have consequently been invented. These protocols
are usually classified into two groups: proactive and reactive routing protocols.
Proactive routing protocols resemble protocols for wired networks in that they
collect routing information ahead of time. A request for a message to be routed
can be serviced without any further preparative actions. As every node keeps
a table specifying how to forward a message, information on topology changes
is propagated whenever they occur. Similar to routing protocols in wired net-
works, proactive routing protocols are efficient only if links are stable and node
mobility is low compared to the rate of communication traffic. Already if node
mobility reaches a reasonable degree, the routing overhead incurred by table
update messages can become unacceptably high. Another question is whether
lightweight ad hoc network nodes with scarce resources can be expected to
maintain routing tables potentially for all possible destinations in the network.
Reactive routing protocols, on the other hand, try to delay any preparatory
actions as long as possible. Routing occurs on demand, only. In principle, a
node wishing to send a message has to flood the network in order to find the
destination. Although there are many tricks to restrict flooding or to cache
information overheard by nodes, flooding can consume a considerable portion
of the network bandwidth. Attempting to combine the advantages of both con-
cepts, proposals have also been made to incorporate both approaches in hybrid
protocols, adapting to current network conditions.

Most of these routing protocols have been described and studied from a
system-centric point of view. Simulation appears to be the preferred method of
assessment. It appears, however, that a global evaluation of protocols is difficult.
Ad hoc networks have many parameters, such as transmission power, signal at-
tenuation, interference, physical obstacles, node density and distribution, degree
and type of node mobility, just to mention a few; therefore simulation cannot
cover all the degrees of freedom. For a given set of parameters, certain protocols
appear superior to others; for other parameters, the ranking may be reversed.
One possible answer to this problem may be found in trying to rigorously an-
alyze the efficiency of proposed protocols and algorithms. However, analyzing
the complexity of ad hoc routing algorithms appears to be not only intricate,
but virtually impossible. Accordingly, only few attempts have been made to
analyze ad hoc routing in a general setting from an algorithmic perspective.

One specific type of ad hoc routing, in contrast, appears to be more eas-
ily accessible to algorithmic analysis: geographic routing. Geographic routing,
sometimes also called directional, geometric, location-based, or position-based
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routing, is based on two principal assumptions. First, it is assumed that every
node knows its own and its network neighbors’ positions. Second, the source
of a message is assumed to be informed about the position of the destination.
The former assumption becomes more and more realistic with the advent of
inexpensive and miniaturized positioning systems. It is also conceivable that
position information could be attained by local computation and message ex-
change with stationary devices. In order to come up to the latter assumption,
that is to provide the source of a message with the destination position, several
so-called location services have been proposed. For some scenarios it can also be
sufficient to reach any destination currently located in a given area, sometimes
called “geocasting”. These are only briefly summarized explanations why the
two basic assumptions of geographic routing are reasonable. This issue will be
discussed later in more depth.

Geographic routing is particularly interesting, as it operates without any
routing tables whatsoever. Furthermore, once the position of the destination
is known, all operations are strictly local, that is, every node is required to
keep track only of its direct neighbors. These two factors—absence of neces-
sity to keep routing tables up to date and independence of remotely occurring
topology changes—are among the foremost reasons why geographic routing is
exceptionally suitable for operation in ad hoc networks. Furthermore, in a sense,
geographic routing can be considered a lean version of source routing appropri-
ate for dynamic networks: While in source routing the complete hop-by-hop
route to be followed by the message is specified by the source, in geographic
routing the source simply addresses the message with the position of the desti-
nation. As the destination can generally be expected to move slowly compared
to the frequency of topology changes between the source and the destination, it
makes sense to keep track of the position of the destination instead of maintain-
ing network topology information up to date; if the destination does not move
too fast, the message is delivered regardless of possible topology changes among
intermediate nodes. Finally, from a less technical perspective, it can be hoped
that by studying geographic routing it is possible to gain insights on routing in
ad hoc networks in general, without availability of position information.

We will start our analysis of geographic routing by describing a simple greedy
routing approach in Chapter 4. The main drawback of this approach is that
it cannot guarantee to always reach the destination. Geographic routing al-
gorithms that, in contrast, always reach the destination, are based on faces,
contiguous regions separated by the edges of planar network subgraphs. It may
however happen that these algorithms take Ω(n) steps before arriving at the des-
tination, where n is the number of network nodes. In other words, they basically
do not perform better than an algorithm visiting every node in the network. In
Chapter 5 we will describe the concept of face routing and describe algorithms
that not only always find the destination, but are also guaranteed to do so with
cost at most O

(
c2
)
, where c is the cost of a shortest path connecting the source

and the destination. The next chapter will show that, given an instance of a
class of lower bound graphs, no geographic routing algorithm will be able to
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perform better; in this sense, the presented face routing algorithms are asymp-
totically optimal in worst-case networks. Despite their asymptotic optimality,
these algorithms are relatively inflexible in that they follow the boundaries of
faces also in dense average-case networks where greedy routing would reach the
destination much faster. Chapter 7 will describe how greedy routing and face
routing can be combined, resulting in the GOAFR and GOAFR+ algorithms,
which preserve the worst-case guarantees of their face routing components. In
addition, the comprehensive simulations presented in Chapter 8 will show that
the GOAFR+ algorithm is—to the best of our knowledge—the currently most
efficient geographic routing algorithm also in average-case networks. GOAFR+

particularly outperforms other routing algorithms in a critical node density
range, where the network is just about to become connected and which forms
a challenge to any routing algorithm, also non-geographic routing algorithms.

The results presented up to Chapter 8 are based on the Ω(1)-model, the
assumption that the distance between any pair of nodes cannot be smaller than
a constant value. In Chapter 9 we will show that an equivalent property can
be achieved by computation of a subgraph of the network acting as a routing
backbone. More exactly, this chapter will show that the set of possible cost
metrics falls into two classes; the equivalence of the routing backbone technique
with the Ω(1)-model holds for one class of cost metrics, whereas it will be
shown that for metrics in the other class, networks are constructible in which
no geographic routing algorithm can reach the destination with cost comparable
to the cost of a shortest path between the source and the destination.

If the analytical results discussed so far are based on the unit disk graph
model, where transmission ranges are modeled as disks with radii of one unit
each, centered at the corresponding node, Chapter 10 will present and analyze
a model that goes beyond unit disk graphs.

Two less technical chapters will conclude the first part of the dissertation:
Chapter 11 will discuss and give reasons for the basic assumptions of geographic
routing. Although our analysis assumes that routing occurs significantly faster
than node mobility, graph dynamics—caused by fluctuating edges or moving
nodes—is one of the most important issues in ad hoc networks. Therefore
a number of issues and approaches in the context of mobility models will be
addressed in Chapter 12.

Related Work

As mentioned earlier, routing protocols for ad hoc networks can be classified
as proactive and reactive protocols. Proactive protocols, such as DSDV [88],
TBRPF [84], and OLSR [25], distribute routing information ahead of time in
order to be able to react immediately whenever a message needs to be for-
warded. On the other hand, reactive protocols, such as AODV [89], DSR [55],
or TORA [85] do not try to anticipate communication and initiate route dis-
covery as late as possible, as a reaction to a message requested to be routed.
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As the performance and incurred routing overhead of such protocols highly de-
pends on the type and extent of network mobility, also hybrid protocols, such as
[53, 83, 95] have been proposed. Further reviews of routing algorithms in mobile
ad hoc networks in general can be found in [15] and [98]. Most of these protocols
have been described and studied from a system perspective; performance and
efficiency assessment was commonly carried out by means of simulation. To
date, only few attempts have been made to analyze routing in ad hoc networks
in a general setting from an analytical algorithmic perspective [17, 39, 92].

The early proposals of geographic routing—suggested over a decade ago—
were of purely greedy nature: At each intermediate network node the message
to be routed is forwarded to the neighbor closest to the destination [36, 47, 101].
This can however fail if the message reaches a local minimum with respect to the
distance to the destination, that is a node without any “better” neighbors. Also
a “least deviation angle” approach (Compass Routing in [61]) cannot guarantee
message delivery in all cases.

The first geographic routing algorithm that does guarantee delivery was
Face Routing introduced in [61] (called Compass Routing II there). Face Rout-
ing walks along faces of planar graphs and proceeds along the line connecting
the source and the destination. Besides guaranteeing to reach the destination,
it does so with O(n) messages, where n is the number of network nodes. How-
ever, this is unsatisfactory, since also a simple flooding algorithm will reach the
destination with O(n) messages. Additionally it would be desirable to see the
algorithm cost depend on the distance between the source and the destination.

There have been later suggestions for algorithms with guaranteed message
delivery [14, 28]; at least in the worst case, however, none of them outper-
forms original Face Routing. Yet other geographic routing algorithms have
been shown to reach the destination on special planar graphs without any run-
time guarantees [12]. [13] proposed an algorithm competitive with the shortest
path between source and destination on Delaunay triangulations; this is how-
ever not applicable to ad hoc networks, as Delaunay triangulations may contain
arbitrarily long edges, whereas transmission ranges in ad hoc networks are lim-
ited. Accordingly, [41] proposed local approximation of the Delaunay Graph,
however without improving performance bounds for routing. A more detailed
overview of geographic routing can be found in [103].

In [66] we proposed Adaptive Face Routing AFR. The execution cost of this
algorithm—basically enhancing Face Routing by the employment of an ellipse
restricting the searchable area—is bounded by the cost of the optimal route. In
particular, the cost of AFR is not greater than the squared cost of the optimal
route. We also showed that this is the worst-case optimal result any geographic
routing algorithm can achieve.

Face Routing and also AFR are not applicable for practical purposes due
to their strict employment of face traversal. There have been proposals for
practical purposes to combine greedy routing with face routing [14, 28, 57],
however without competitive worst-case guarantees. In [68] we introduced the
GOAFR algorithm discussed later in Chapter 7; to the best of our knowledge,
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this was the first algorithm to combine greedy and face routing in a worst-
case optimal way; the GOAFR+ algorithm [65] remains asymptotically worst-
case optimal while improving GOAFR’s average-case efficiency by employing
a counter technique for falling back as soon as possible from face to greedy
routing.

The results in the first part of this dissertation partly rely on the Ω(1)-
model, the assumption that the distance between any pair of network nodes is
at least a (possibly small) constant. In Chapter 9 we will show that equivalently
a clustering technique can be employed for graphs that do not comply with the
Ω(1)-model assumption. Clustering for the purpose of ad-hoc routing has been
proposed by various researchers [19, 62]. A closely related approach is the
construction of dominating sets [3, 6, 35, 40, 42, 46, 49, 52, 64, 77, 111], for
instance for employment as routing backbones.

So far, the most popular network structure to model ad hoc networks has
been the unit disk graph. The underlying assumption of this model is that
the nodes are placed in the plane, all of them having the same transmission
range—normalized to a radius of one unit of length. A more general model is
provided by disk graphs where in contrast to unit disk graphs, nodes can have
different transmission ranges. Disk graphs have also been widely used, but,
while for unit disk graphs a number of theoretical results have been achieved,
most of the knowledge on disk graphs is based on simulations. If disk graphs
provide a simple method to analyze unidirectional links, it is not possible to
model any kind of obstacles. In Chapter 10 we will go beyond unit disk graphs
by allowing that certain sufficiently long edges may or may not exist in the
considered network graph [67]. A model has been described in [7] which is—
up to scaling—identical to our quasi unit disk graph model. [7] focused on
geographic routing with guaranteed message delivery for certain instances of
the quasi unit disk graph model. In Chapter 10 we will generalize and extend
these results towards algorithm efficiency.

Flooding—an essential ingredient of many ad hoc routing algorithms—is
one of the main techniques employed in Chapter 10. It is therefore crucial to
reduce the number of messages sent. One way to reduce the cost of flooding is
to lower the complexity of the network by using appropriate topology control
mechanisms. Apart from this, there are other approaches which try to optimize
flooding performance by using geographic information about the destination
[8, 59]. These algorithms differ from the greedy routing/flooding approach pre-
sented in Chapter 10 in that they only try to flood into the right direction
without actually applying geographic routing whenever possible.



Chapter 3

Models and Preliminaries

Models are to be used, not believed.
Henri Theil (1924–2000), in ‘Principles of Econometrics’

At the beginning of every theoretical analysis stands the question of how to
model the considered system. An obvious abstraction of a communication net-
work is a graph with nodes representing networking devices and edges standing
for network connections. The study of ad hoc networks in the geographic rout-
ing part of this thesis assumes that network nodes are placed in the Euclidean
plane. Unless stated otherwise we furthermore model ad hoc networks as unit
disk graphs [24]. A unit disk graph (UDG) is defined as follows:

Definition 3.1. (Unit Disk Graph) Let V ⊂ R2 be a set of points in the
2-dimensional plane. The graph with edges between all nodes with distance at
most 1 is called the unit disk graph of V .

Accordingly, a unit disk graph models a flat environment with network devices
equipped with wireless radio, all having equal transmission ranges. Edges in the
UDG correspond to radio devices positioned in direct mutual communication
range. Clearly, the unit disk graph model forms a highly idealistic abstraction
of ad hoc networks. In Chapter 10 we will discuss routing in a model that more
closely captures the connectivity characteristics of wireless networks.

To measure the quality of a routing algorithm, we attribute to each edge e
a cost which is a function of the Euclidean length of e.

Definition 3.2. (Cost Function) A cost function c: ]0, 1] 7→ R+ is a non-
decreasing function which maps any possible edge length d (0 < d ≤ 1) to a
positive real value c(d) such that d′ > d =⇒ c(d′) ≥ c(d). For the cost of an
edge e ∈ E we also use the shorter form c(e) := c(d(e)).

Note that ]0, 1] really is the domain of a cost function c(·), that is, c(·) has
to be defined for all values in this interval and in particular, c(1) < ∞. The cost
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model thus defined includes all popular cost measures such as the link (or hop)
distance metric (c`(d) :≡ 1), the Euclidean distance metric (cd(d) := d), energy
(cE(d) := d2, or more generally dα for α ≥ 2), as well as hybrid measures which
are positive linear combinations of the above metrics.

For convenience we also define the cost of a path, a sequence of contiguous
edges, and of algorithms. The cost c(p) of a path p is defined as the sum of the
cost values of its edges. Analogously, the cost c(A) of an algorithm A is defined
as the summed up cost of all edges which are traversed during the execution of
an algorithm on a particular graph. The question whether a node can send a
message to several neighbors simultaneously does—unless noted otherwise—not
affect our results, as the considered algorithms do not send messages in parallel
to more than one recipient. An exception to this will be discussed in Chapter 10.

For the sake of simplicity we assume that the distance between any two
nodes may not be arbitrarily small:

Definition 3.3. (Ω(1)-model) If the distance between any two nodes is bounded
from below by a term of order Ω(1), i.e. there is a positive constant d0 such that
d0 is a lower bound on the distance between any two nodes, this is referred to
as the Ω(1)-model.

Graphs with this restriction have also been called civilized [30] or λ-precision
[50] graphs in the literature. As a consequence of the Ω(1)-model, the above-
mentioned three metrics are equivalent up to a constant factor with respect to
the cost of a path. As shown in the following lemma, this holds for all metrics
defined according to Definition 3.2.

Lemma 3.1. Let c1(·) and c2(·) be cost functions according to Definition 3.2
and let G be a unit disk graph in the Ω(1)-model. Further let p be a path in G.
We then have

c1(p) ≤ α · c2(p)

for a constant α.

Proof. Assume without loss of generality that p consists of k edges, that is,
c`(p) = k. As d0 ≤ cd(e) ≤ 1 for all edges e ∈ E and the cost functions being
nondecreasing, we have c1(p) ≤ c1(1) ·k and c2(d0) ·k ≤ c2(p). Since—according
to Definition 3.2—both c1(1) and c2(d0) are constants greater than 0, the lemma
holds with α = c1(1)/c2(d0).

Also the distance in a graph of a pair of nodes u and v—defined to be the
cost of the shortest path connecting u and v—differs only by a constant factor
for the different cost metrics:

Lemma 3.2. Let G be a unit disk graph with node set V in the Ω(1)-model.
Further let s ∈ V and t ∈ V be two nodes and let p∗

1 and p∗2 be optimal paths
from s to t on G with respect to the metrics induced by the cost functions c1(·)
and c2(·), respectively. It then holds that

c1(p
∗
2) ≤ α · c1(p

∗
1) and c1(p

∗
2) ≥ β · c1(p

∗
1)
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u v

Figure 3.1: An edge (u, v) in the Gabriel Graph exists if and only if the shaded
disk (including its boundary) does not contain any third node.

for two constants α and β, that is, the cost values of optimal paths for different
metrics only differ by a constant factor.

Proof. By the optimality of p∗2 we have

c2(p
∗
2) ≤ c2(p

∗
1). (3.1)

Applying Lemma 3.1 we obtain

c1(p
∗
2) ≤ γ · c2(p

∗
2) and c2(p

∗
1) ≤ δ · c1(p

∗
1) (3.2)

for two constants γ and δ. Combining Equations (3.1) and (3.2) yields c1(p
∗
2) ≤

α · c1(p
∗
1) for α = γ · δ. Furthermore, by the optimality of p∗

1, we have c1(p
∗
2) ≥

c1(p
∗
1) and therefore the second equation of the lemma holds with β = 1.

As this equivalence of cost metrics applies not only to the link, the Euclidean,
and the energy metrics, but to all cost functions according to Definition 3.2, we
sometimes refer to the “cost” of an edge and mean any cost metric belonging
to the above class of cost functions. In Chapter 9 we show that employing
clustering techniques a similar result can be achieved without the Ω(1)-model
assumption. Chapter 9 also describes the existence of two classes of cost func-
tions and discusses their implications on routing. In the following chapters we
will however adhere to the Ω(1)-model for simplicity.

For our routing algorithms the network graph is required to be planar, that
is without intersecting edges.1 A planar graph features faces, contiguous regions
separated by the edges of the graph. In order to achieve planarity on the unit
disk graph G, we employ the Gabriel Graph. A Gabriel Graph contains an edge
between two nodes u and v if and only if the disk (including its boundary) having
uv as a diameter does not contain a “witness” node w (cf. Figure 3.1). Besides
being planar, GGG, the Gabriel Graph on the unit disk graph G, features two
important properties:

1More precisely, the considered planar graphs are planar embeddings in the Euclidean
plane.
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v

Figure 3.2: The Gabriel Graph contains an energy-optimal path.

- It can be computed locally: A network node can determine all its incident
nodes in GGG by mere inspection of its neighbors’ locations (since G is a
unit disk graph).

- The Gabriel Graph is a constant-stretch spanner for the energy metric:
The construction of the Gabriel Graph on G preserves an energy-minimal
path between any pair of network nodes. Together with the Ω(1)-model it
follows that the distance in GGG between any pair of nodes is equal (up
to constant factors) to their distance in G for all considered metrics. This
is shown in the following lemma.

Lemma 3.3. In the Ω(1)-model the shortest path for any of the metrics accord-
ing to Definition 3.2 on the Gabriel Graph intersected with the unit disk graph
is only by a constant longer than the shortest path on the unit disk graph for
the respective metric.

Proof. We first show that at least one best path with respect to the energy
metric on the UDG is also contained in GG ∩ UDG. Suppose that e = (u, v) is
an edge of an energy optimal path p on the UDG. For the sake of contradiction
suppose that e is not contained in GG ∩ UDG. Then there is a node w in
or on the circle with diameter uv (see Figure 3.2). The edges e′ = (u, w) and
e′′ = (v, w) are also edges of the UDG and because w lies in the described circle,
we have e′2 + e′′2 ≤ e2. If w is inside the circle with diameter uv, the energy
for the path p′ := p \ {e} ∪ {e′, e′′} is smaller than the energy for p and p is
therefore not an energy-optimal path, contradicting the above assumption. If
w lies exactly on the above circle, p′ is an energy-optimal path as well and the
argument applies recursively.

According to the optimality of p∗GG∩UDG, a shortest path on GG ∩ UDG
with respect to a cost function c(·), we have c(p∗

GG∩UDG) ≤ c(p) ≤ α · cE(p)
for a constant α, the last inequality holding due to Lemma 3.1. Employing
Lemma 3.2, we furthermore obtain cE(p) ≤ β · c(p∗UDG) for a constant β, where
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p∗UDG is a shortest path with respect to c(·) on the unit disk graph, which
concludes the proof.

Unless stated otherwise, we assume that every node locally computes its neigh-
bors in the Gabriel Graph prior to the start of routing algorithms.

The geographic ad hoc routing algorithms we consider in this first part of
the thesis can be defined as follows.

Definition 3.4. (Geographic Ad Hoc Routing Algorithm)Let G = (V, E)
be a Euclidean graph. The task of a geographic ad hoc routing algorithm A is
to transmit a message from a source s ∈ V to a destination t ∈ V by sending
packets over the edges of G while complying with the following conditions:

• All nodes v ∈ V know their geographic positions as well as the geographic
positions of all their neighbors in G.

• The source s is informed about the position of the destination t.

• The control information which can be stored in a packet is limited by
O(log n) bits, that is, only information about a constant number of nodes
is allowed.

• Except for the temporary storage of packets before forwarding, a node is
not allowed to maintain any information.

In the literature, geographic ad hoc routing has been given various other
names, such as O(1)-memory routing algorithms in [13, 12], local routing al-
gorithms in [61], geometric, position-based, or location-based routing. Due to
these storage restrictions, geographic ad hoc routing algorithms are inherently
local. In particular, nodes do not store any routing tables, eliminating a possible
source of outdated information.

Finally, we assume that routing takes place much faster than node move-
ment: A routing algorithm is modeled to run on temporarily stationary nodes.
The issues faced when easing or giving up this assumption will be discussed in
Chapter 12.
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Chapter 4

Greedy Routing

Seek not happiness too greedily, and be not fearful of happiness.
Lao Tse

The probably most straightforward approach to geographic routing—which has
also been studied as the first type of geographic routing algorithms in the related
work—is greedy forwarding : Every node relays the message to be routed to its
neighbor located “best” with respect to the destination. If “best” is interpreted
as “closest to the destination”, greedy forwarding can be formulated as follows:

Greedy Routing GR

0. Start at s.

1. Proceed to the neighbor closest to t.

2. Repeat step 1 until either reaching t or a local minimum with respect to
the distance from t, that is a node v without any neighbor closer to t than
v itself.

This formulation clearly reflects the simplicity of such an approach with respect
to both concept and implementation. However, as indicated in Step 2 of the
algorithm, it shows a big drawback: It is possible that the message runs into a
“dead end”, a node without any “better” neighbor. If backtracking techniques
can overcome local minima in some cases, they fail to serve as a general solu-
tion to this problem, especially together with the strict message size limitations
imposed on geographic routing (cf. Definition 3.4). Also alternative interpre-
tations of “best neighbor” fail to reach the destination; in a “least deviation
angle” approach for instance the message can end up in an infinite path loop
[61].

If greedy routing however reaches the destination, it generally does so effi-
ciently. Informally, this is due to the fact that—except in degenerate cases—the
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message stays relatively close to the line connecting the source and the desti-
nation. As shown later in Chapter 8, employment of greedy routing whenever
possible is beneficial above all in densely populated average-case networks. But
also in worst-case networks the cost expended by greedy routing cannot become
arbitrarily high:

Lemma 4.1. If GR reaches t, it does so with cost O
(
d2
)
, where d := |st|

denotes the Euclidean distance between s and t.

Proof. This lemma has already been proved in [43]. For completeness we give
an outline of a possible proof. Let p := v1, . . . , vk be the sequence of nodes
visited during greedy routing. According to the definition of greedy routing, no
two nodes vi, vj with odd indices i, j are neighbors. Further, since the distance
to t is decreasing along the path p, all nodes vi are inside D(t, d), the disk
with center t and radius d. D(t, d) contains at most O

(
d2
)

nodes with pairwise

distance at least 1. It follows that p consists of O
(
d2
)

nodes.

In the following chapters, greedy routing will be employed as a routing algo-
rithm component for its efficiency in both worst-case and average-case networks.
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Facing Dead Ends With

Faces

I never forget a face, but in your case I’ll be glad to make an exception.
Groucho Marx (1890–1977)

In the previous chapter we observed that greedy routing is not guaranteed to
always reach the destination. This chapter introduces a type of geographic
routing that, in contrast, always finds the destination if the network contains a
connection from the source: routing based on faces.

5.1 Face Routing

The first geographic routing algorithm to be guaranteed to reach the destination
was Face Routing introduced in [61]. Although we will formally describe a
variant of Face Routing slightly adapted for our purposes, we will now give a
brief overview of the original Face Routing algorithm.

At the heart of Face Routing lies the concept of faces, contiguous regions
separated by the edges of a planar graph, that is a graph containing no two
intersecting edges. The algorithm proceeds by exploration of face boundaries
employing the local right hand rule in analogy to following the right hand wall
in a maze (cf. Figure 5.1). On its way around a face, the algorithm keeps
track of the points where it crosses the line st connecting the source s and
the destination t. Having completely surrounded a face, the algorithm returns
to the one of these intersections lying closest to the destination. From here, it
proceeds by exploring the next face closer to t. If the source and the destination
are connected, Face Routing always finds a path to the destination. It thereby
takes at most O(n) steps, where n is the total number of nodes in the network.
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5.2 AFR

Where the Face Routing algorithm can take up to O(n) steps to reach the desti-
nation irrespective of the actual distance between the source and the destination
in the given network, the main contribution of the Adaptive Face Routing algo-
rithm AFR—as we presented it in [66]—consists in limiting the expended cost
with respect to the length of the shortest path between s and t. Although the
results discussed in the subsequent sections of this chapter go beyond AFR, we
will first provide a summary of this algorithm for completeness and to give an
overview of the employed technique.

As mentioned, the main problem with respect to the performance of Face
Routing lies in the necessity of exploring the complete boundary of faces. It is
thus impossible to bound the cost of this algorithm by the cost of an optimal
path between s and t. If, however, we know the length of an optimal path
connecting the source and the destination, Face Routing can be extended to
Bounded Face Routing BFR: The exploration of faces is restricted to a search-
able area, in particular an ellipse whose size is chosen such that it contains a
complete optimal path. If the algorithm hits the ellipse, it has to “turn back”
and continue its exploration of the current face in the opposite direction un-
til hitting the ellipse for the second time, which completes the exploration of
the current face. Briefly put—the details will be explained later—, since BFR
does not traverse an edge more than a constant number of times, and since the
bounding ellipse (together with the Ω(1)-model and graph planarity) does not
contain more than O

(
|st|2

)
edges, the cost of BFR is in O

(
c2(p∗)

)
, where p∗ is

an optimal path connecting s and t.

In most cases, however, a prediction of the length of an optimal path will not
be possible. The solution to this problem finally leads to Adaptive Face Routing
AFR: BFR is started with the ellipse size set to an initial estimate of the optimal
path length. If BFR fails to reach the destination, which will be reported to
the source, BFR will be restarted with a bounding ellipse of doubled size. (It is
also possible to double the ellipse size directly without returning to the source.)
If s and t are connected, AFR will eventually find a path to t. This iteration is
asymptotically dominated by the cost of the algorithm steps performed in the
last ellipse, whose area is at the most proportional to the squared cost of an
optimal path. Consequently, also the cost of AFR is bounded by O

(
c2(p∗)

)
.

Chapter 6 will show that in a lower bound graph no local geographic routing
algorithm can perform better: AFR is asymptotically optimal.

5.3 OAFR

As described in Chapter 4, greedy routing promises to find the destination with
low cost in all cases where it arrives at the destination. A natural approach to
leveraging the potential of greedy routing above all for practical purposes there-
fore consists in combining greedy routing and face routing. In a first attempt
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Figure 5.1: Face Routing starts at s, explores face F1, finds P1 on st, explores
F2, finds P2, and switches to F3 before reaching t. OFR, in contrast, finds P3,
the point on F1’s boundary closest to t, continues to explore F4, where it finds
P4, and finally reaches t via F5.

we can literally combine Face Routing and AFR: Proceed in a greedy manner
and use AFR to escape from potential local minima (an algorithm we will later
call GAFR). We will however show in Chapter 8 that, employing greedy rout-
ing, this algorithm loses AFR’s asymptotic optimality. Nevertheless we found
a variant of AFR (OAFR) whose combination with greedy routing does finally
yield algorithms (GOAFR and GOAFR+) that are both average-case efficient
and asymptotically optimal.

Similarly to the above description of AFR, we will explain our algorithm
OAFR in three steps: OFR, OBFR, and OAFR.

Other Face Routing OFR differs from Face Routing in the following way: In-
stead of changing to the next face at the “best” intersection of the face boundary
with st, OFR returns—after completing the exploration of the boundary of the
current face—to the boundary point (or one of the points) closest to the desti-
nation (Figure 5.1). Conserving the headway made towards the destination on
each face, OFR in a sense uses a more natural approach than Face Routing.

Other Face Routing OFR

0. Begin at s and start to explore the face F containing the connecting line
st in the immediate environment of s.

1. Explore the complete boundary of the face F based on local decisions
employing the right hand rule.

2. Having accomplished F ’s exploration, advance to the point p closest to t
on F ’s boundary. Switch to the face containing pt in p’s environment and
continue with step 1. Repeat these two steps until reaching t.
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The number of steps taken by OFR is bounded as shown in the following
lemma:

Lemma 5.1. OFR always terminates in O(n) steps, where n is the number of
nodes. If s and t are connected, OFR reaches t; otherwise, disconnection will
be detected.

Proof. Let F1, F2, . . . , Fk be the sequence of the faces visited during the execu-
tion of OFR. We will first assume s and t to be connected. Since the switch
between two faces always happens at the point on the face boundary closest to
t and because the next face is chosen such that it always contains points which
are nearer to t, no face is visited twice. Let further p0, p1, p2, ..., pt be the trace
of OFR’s execution, where pi, i ≥ 1 is the point with minimum distance from
t on the boundary of Fi. Because no face is visited more than once, we have
that ∀i > j : |pit| < |pjt|. Hence, if s and t are connected, we eventually arrive
at a face with t on its boundary. (Otherwise, there is an i for which pi = pi+1,
which means that the graph is disconnected.)

Since each face is explored at most once, each edge is visited at most four
times. As every planar graph corresponds to the projection of a polyhedron
on the plane, Euler’s polyhedron formula can be employed: n − m + f = 2,
where n, m, and f stand for the number of nodes, edges, and faces in the
graph, respectively. Furthermore, the observations that (for n > 3) every face
is delimited by at least three edges and that each edge is adjacent to at most
two faces yield 3f ≤ 2m. Using Euler’s formula we have 3m−3n+6 = 3f ≤ 2m
and therefore m ≤ 3n − 6. Thus, OFR terminates after O(n) steps.

If the algorithm detects graph disconnection (finding pi = pi+1 for some
i ≥ 0), this can be reported to the source by again using OFR in the reverse
direction.

Remark (Gabriel Graph) When applying OFR on a Gabriel Graph—as
we will do for the routing on unit disk graphs—OFR can be simplified in the
following way: Instead of changing faces at the point on the face boundary
which is closest to t, it is possible to take the node which is closest to t. This
modification leaves the property described in Lemma 5.1 unchanged, as also
the modified OFR algorithm always switches to a new face in Step 2 if it is
run on the Gabriel Graph. This is illustrated in Figure 5.2. As definitions
and explanations become clearer, we will use this modified form of the OFR
algorithm for the description of the subsequent algorithms. Equivalent results
can be achieved with the original version of the algorithm.

When trying to formulate a statement on OFR’s cost, the main problem
arising is its traversal of complete boundaries of faces: Informally put, OFR can
meet an incredibly big face whose total exploration is prohibitively expensive
compared to an optimal path from s to t. In order to solve this, we borrow
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Figure 5.2: Also OFR modified to switch to the next face at the node closest
to t (instead of the point closest to t) progresses with each face switch if it runs
on the Gabriel Graph. In particular it cannot happen that the algorithm is
caught in an infinite loop: Having arrived at uF , the node of face F located
closest to t, the algorithm always switches to a face other than F . The only
possible way of constructing a counterexample fails: A constellation forcing the
modified OFR algorithm to again select F as the next face at uF has at least one
edge e = (v, w) on F ’s boundary intersecting the line segment uF t; otherwise
t would lie inside F , implying that s and t would be disconnected. The fact
that both v and w are not closer to t than uF —uF is the node on F ’s boundary
closest to t—implies that at least one of uF and t are located within the disk
with diameter vw, which contradicts the existence of the edge e in the Gabriel
Graph.
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s t

Figure 5.3: Execution of OBFR if the ellipse is not chosen sufficiently large.

AFR’s trick to bound the searchable area by an ellipse containing an optimal
path. Consequently we obtain Other Bounded Face Routing OBFR.

For the sake of simplicity we assume for the following description of OBFR
that s and t are connected. If c̃ is an estimate of the Euclidean length of a
shortest path between s and t, let E be the ellipse with foci s and t and with
the length of the major axis being c̃ (in other words, E contains all paths from
s to t of Euclidean length at most c̃).

Other Bounded Face Routing OBFR

0. Step 0 of OFR.

1. Step 1 of OFR, but do not leave E : When hitting E , continue the explo-
ration of the current face F in the opposite direction. F ’s exploration will
afterwards be complete when hitting E for the second time.

2. Step 2 of OFR with one modification: If the node closest to t on F ’s
boundary is the same one as in the previous iteration, that is, no progress
has been made in Step 1, report failure back to s by means of OBFR.

Figures 5.3 and 5.4 illustrate the execution of OBFR if the ellipse is chosen
too small and if the ellipse contains a path from s to t, respectively. The cost
expended by OBFR can be bounded as follows:

Lemma 5.2. If the length c̃ of the major axis of E is at least the length of
a—with respect to the Euclidean metric—shortest path between s and t, OBFR
reaches the destination. Otherwise OBFR reports failure to the source. In any
case, OBFR expends cost at most O

(
c̃2
)
.

Proof. We first assume that c̃ is at least the length of a shortest (Euclidean)
path p∗, that is, p∗ is completely contained in E . Since OBFR stays within E
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s t

Figure 5.4: Execution of OBFR if the ellipse is chosen large enough to contain
a path from s to t.

while routing a message, we only look at the part of the graph which lies inside
E . We define the faces to be those contiguous regions which are separated by the
edges of the graph and by the boundary of E . (Hence, if a face is cut into several
pieces by the boundary of E , now each such piece is denoted a face.) Assume
for the sake of contradiction that OBFR reports failure, that is, the algorithm
does not make progress in Step 2. This is only possible if the currently traversed
face boundary cuts the area enclosed by the ellipse into a region containing s
and a second region containing t (cf. Figure 5.3). In this case however, E does
not contain any path connecting s and t, which contradicts our assumption and
therefore proves the first sentence of the lemma.

If no path connects s and t within E , a face boundary separating s from t as
described in the previous paragraph exists. This is detected by OBFR, making
no progress beyond a node v. As OBFR reached v starting from s, E contains
a path from v to s and OBFR can be restarted in the opposite direction with
the same ellipse, eventually reaching s and reporting failure.

Finally, it remains to be shown that the cost expended does not exceed
O
(
c2
)
. If E contains a path connecting s and t, every face is—for the same

reasons as for OFR—visited at most once. Otherwise, every face is visited at
most twice (the face where failure is detected can be visited an additional time).
Furthermore, during the traversal of a face boundary, each edge can be visited
at most four times. Consequently, any edge is traversed at most a constant
number of times during the complete execution of OBFR.

Due to the planarity of the considered graph, the number of edges is linear
in the number of nodes (cf. proof of Lemma 5.1). Furthermore—according to
the employed Ω(1)-model—the circles of radius d0/2 around all nodes do not
intersect each other. Since the length of the semimajor axis a of the ellipse E is
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c̃/2, and since the area of E is smaller than πa2, the number of nodes n′ inside
E is bounded by

n′ ≤ πa2

π
(

d0

2

)2 =
c̃2

d2
0

∈ O
(
c̃2
)
.

Having thus found an upper bound for the number of messages sent, the last
statement of the lemma follows with Lemma 3.2 for all cost metrics defined
according to Definition 3.2.

Note that the above specification of OBFR omits an important point for
clarity of representation: The algorithm can distinguish between the case where
the chosen ellipse is not sufficiently large to contain a path connecting s with
t and the case where s and t are disconnected. As described above, the first
case is detected if no progress is made after hitting the ellipse. In the second
case there also exists a node beyond which no progress is made; however, this
node is detected as such without hitting the ellipse, that is, after traversing the
complete boundary of the network component containing the source.

Since there is usually no a priori information on the optimal path length,
we—in analogy to AFR—initially use a small estimate for the ellipse size and
iteratively enlarge it until reaching the destination.

Other Adaptive Face Routing OAFR

0. Initialize E to be the ellipse with foci s and t the length of whose major
axis is 2 · |st|.

1. Start OBFR with E .

2. If the destination has not been reached, double the length of E ’s major
axis and go to step 1.

Exploiting that OBFR is able to distinguish between insufficient ellipse size
and graph disconnection between s and t, also OAFR detects graph disconnec-
tion. Furthermore OAFR’s cost is bounded as follows:

Theorem 5.3. If s and t are connected, OAFR reaches the destination with
cost O

(
c2(p∗)

)
, where p∗ is an optimal path. If s and t are disconnected, OAFR

detects so and reports to s.

Proof. We denote the first estimate c̃ on the optimal path length by c̃0 and
the consecutive estimates by c̃i := 2ic̃0. Furthermore, we define k such that
c̃k−1 < cd(p

∗) ≤ c̃k. For c(OBFR[c̃]), the cost of OBFR with the length of E ’s
major axis set to c̃, we have c(OBFR[c̃]) ∈ O

(
c̃2
)

and therefore

c`(OBFR[c̃]) ≤ λ · c̃2
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s tC

1

Figure 5.5: If n′/2 nodes are located in the node cluster C (represented as
a gray disk) and n′/2 nodes form the spike on the left, OAFR executes its
component OBFR Θ(log n′) times, each OBFR execution having cost in Θ(n′)
if the nodes in C are placed in a maze-like structure, before detecting that s
and t are disconnected.

for a constant λ (and sufficiently large c̃). The total cost of OAFR can therefore
be bounded by

c`(OAFR) ≤
k∑

i=0

c`(OBFR[c̃i]) ≤
k∑

i=0

λ
(
2ic̃0

)2

= λc̃0
2 4k+1 − 1

3
<

16

3
λ
(
2k−1c̃0

)2

<
16

3
λ · c2

d(p∗) ∈ O
(
c2
d(p∗)

)
.

Remark It can be shown that for OAFR (and also AFR) the cost of detecting
disconnectivity of s and t is bounded by O(n′ log n′), where n′ is the number of
nodes in the network component containing s: The number of OBFR executions
is at most in O(log n′), while the cost expended by OBFR in each of these
executions is at most linear in n′. As illustrated in Figure 5.5, there are graphs
for which OAFR expends cost Θ(n′ log n′).

Having shown in this chapter that the cost expended by the OAFR algorithm
is asymptotically upper-bounded by the square of the shortest path between the
source and the destination, we will discuss the significance and the quality of
this result in the following chapter.
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Chapter 6

A Lower Bound

Egotist, n. A person of low taste, more interested in himself than in me.
Ambrose Bierce (1842–1914)

As presented in the previous chapter, the OAFR algorithm reaches the desti-
nation with cost O

(
c2
)
, where c is the cost of the shortest path between the

source and the destination. A natural question arising is whether this guaran-
tee is good or if there are algorithms that can perform better. In the following
we will give an answer to this question by showing that no geographic routing
algorithm according to Definition 3.4 can find the destination with lower cost.
In particular we give a constructive lower bound:

Theorem 6.1. Let the cost of a best route for a given source-destination pair
be c. There exist graphs where any deterministic (randomized) geographic ad
hoc routing algorithm has (expected) cost Ω(c2) for any cost metric according to
Definition 3.2.

Proof. We construct a family of networks as follows. We are given a positive
integer k and define a Euclidean graph G (see Figure 6.1): On a circle we evenly
distribute 2k nodes such that the distance between two neighboring points is
exactly 1; thus, the circle has radius r ≈ k/π. For every second node of the
circle we construct a chain of dr/2e − 1 nodes. The nodes of such a chain are
arranged on a line pointing towards the center of the circle; the distance between
two neighboring nodes of a chain is exactly 1. Node w is one arbitrary circle
node with a chain: The chain of w consists of dre nodes with distance 1. The
last node of the chain of w is the center node; the edge to the center node does
not need to have length 1.

The unit disk graph consists of the edges on the circle and the edges on
the chains only. In particular, there is no edge between two chains because all
chains except the w chain end strictly outside radius r/2. The graph has k
chains with Θ(k) nodes each.
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w

Figure 6.1: Lower bound graph.

We route from an arbitrary node on the circle (the source s) to the center
of the circle (the destination t). An optimal route between s and t follows the
shortest path on the circle until it hits node w, and then directly follows w’s
chain to t with link cost c ≤ k +r+1 ∈ O(k). A routing algorithm with routing
tables at each node will find this best route.

A geographic routing algorithm, in contrast, needs to find the “correct”
chain w. Since there is no routing information stored at the nodes, this can
only be done by exploring the chains. Any deterministic algorithm needs to
explore the chains in a deterministic order until it finds the chain w. Thus, an
adversary can always place w such that w’s chain will be explored as the last
one. The algorithm will therefore explore Θ(k2) (instead of only O(k)) nodes.

The argument is similar for randomized algorithms. By placing w accord-
ingly (randomly!), an adversary forces the randomized algorithm to explore
Ω(k) chains before chain w with constant probability. Then the expected link
cost of the algorithm is Ω(k2).

As all edges (but one) in our construction have length 1, the cost values in
the Euclidean distance, the link distance, and the energy metrics are equal. As
for any fixed cost metric c′(·) according to Definition 3.2 c′(1) is also a constant,
the Ω(c2) lower bound holds for all according metrics.

Note that our lower bound holds generally, not only for Ω(1)-graphs. As we
will show in Chapter 9, however, a similar lower bound proves that in general
graphs the cost metrics according to Definition 3.2 fall into two classes.
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Given this lower bound, we can now state that OAFR is asymptotically
optimal for unit disk graphs in the Ω(1)-model.

Theorem 6.2. Let c be the cost of an optimal path for a given source-destination
pair on a unit disk graph in the Ω(1)-model. In the worst case, the cost for ap-
plying OAFR to find a route from the source to the destination is Θ(c2). This
is asymptotically optimal.

Proof. This theorem is an immediate consequence of Theorems 5.3 and 6.1.
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Chapter 7

Combining Greedy and

Face Routing

Skiing combines outdoor fun with knocking down trees with your face.
Dave Barry (*1947)

A greedy routing approach as presented in Chapter 4 is not only worth being
considered due to its simplicity in both concept and implementation. Above all
in dense networks such an algorithm can also be expected to find paths of good
quality efficiently; here, the straightforwardness of a greedy strategy contrasts
highly the inflexible exploration of faces inherent to face routing. For practical
purposes it is inevitable to improve the performance of a face routing variant,
for instance by leveraging the potential of a greedy approach.1

In this chapter we will present two algorithms combining greedy and face
routing. The GOAFR algorithm introduces the principal concept employed to
integrate these two approaches. Later, the GOAFR+ algorithm is not only
proved to be worst-case optimal but—due to its additional improvements—will
be shown in Chapter 8 to outperform all previously proposed geographic routing
algorithms in average-case networks.

7.1 GOAFR: Greedy OAFR

A possible combination of greedy routing and our OAFR algorithm forms Greedy
Other Adaptive Face Routing GOAFR (pronounced as “gopher”). In principle

1Interestingly, simple non-geographic flooding of the network with exponentially increas-
ing time-to-live values achieves the same worst-case efficiency as the face routing algorithms
described in the previous chapter if we allow the network nodes to temporarily store flooding
state information in some additional bits. Only additional average-case assessment as car-
ried out later in Chapter 8 will display the main advantages of routing algorithms combining
greedy and face routing over such simplistic approaches.
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Figure 7.1: Starting at s, GOAFR proceeds in greedy mode until reaching the
local minimum v1. The algorithm switches to face routing mode and explores
the boundary of face F to find v2, the node closest to t on F ’s boundary.
GOAFR falls back to greedy mode and finally reaches t. Note that GOAFR’s
ellipse has been omitted for simplicity.

greedy routing is used as long as possible. Local minima potentially met un-
derway are escaped from by use of OAFR (Figure 7.1). After specifying the
algorithm, we will show that GOAFR retains OAFR’s asymptotic optimality.

The greedy steps taken in the following specification of the GOAFR algo-
rithm correspond to the steps described as the Greedy Routing algorithm in
Chapter 4.

Greedy Other Adaptive Face Routing GOAFR

0. Initialize E to be the ellipse with foci s and t the length of whose major
axis is 2 · |st|; start at s.

1. Perform greedy steps until either reaching t or a local minimum um. If the
next step leads beyond E , double the length of E ’s major axis. If reaching
a local minimum, proceed with step 2 starting at um.

2. Execute OAFR on the first face F only. Double the length of E ’s major
axis as long as necessary.

3. Terminate if OAFR reaches t. If OAFR detects disconnection, report so
to s (by use of GOAFR). Otherwise (OAFR has found—after complete
exploration of F ’s boundary within E in its current size—a node v with
|vt| < |umt|) continue with step 1 at the node closest to t found by OAFR.

In order to show that the cost expended by GOAFR is bounded, we first
prove that the maximal size of the ellipse E is related to the length of a shortest
path between s and t.
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Lemma 7.1. If s and t are connected, the major axis of E in GOAFR will not
exceed 2 ·max(cd(p

∗) , 3|st|), where cd(p
∗) is the Euclidean length of an optimal

path (with respect to the Euclidean metric).

Proof. According to the definition of an ellipse as the locus of all points having
the same sum of distances from the two foci, the ellipse E with major axis length
c contains all paths of Euclidean length at most c. With the doubling strategy
in OAFR, the biggest ellipse employed in this “subalgorithm” of GOAFR will
have a major axis not longer than 2 · cd(p

∗). Additionally the Greedy Routing
part of GOAFR might walk (almost) along the boundary (but is always on the
inside) of D(t, |st|), the disk centered at t and with radius |st|. E with major axis
length 3|st| is the smallest ellipse with s and t as foci which completely contains
D(t, |st|). Combining the OAFR part, the GR part, and the fact that the ellipse
might get twice as big as the smallest possible ellipse, the lemma follows. Note
that these considerations hold with slight modifications for any (sufficiently
small) start value and increment factor for the major axis length of the ellipse.
If these two parameters are chosen as in the definition of GOAFR, the bound
on the length of the major axis can be improved to max(2|p∗|, 4|st|).

In the following lemma we consider the execution of GOAFR within an
ellipse of fixed size.

Lemma 7.2. For an ellipse E with fixed major axis length c, GOAFR traverses
at most O

(
c2
)

edges.

Proof. GOAFR consists of face routing steps (more specifically OBFR) and
of greedy routing steps. Each of these steps (a greedy step or the complete
exploration of a face) brings us to a node closer to the destination t. The
number of greedy steps is bounded by O

(
c2
)

(cf. Lemma 4.1). As in OBFR,
each face is explored at most once and hence each (Gabriel Graph) edge is used
at most four times in a face routing step. Combined, this proves the lemma.

This leads to the conclusion that the cost of GOAFR is bounded by the
squared cost of the optimal path:

Theorem 7.3. If s and t are connected, GOAFR reaches t with cost O
(
c2(p∗)

)
.

This is asymptotically optimal. If s and t are not connected, GOAFR reports
so.

Proof. If s and t are connected, the lemma is a consequence of Lemma 7.1
(using that |st| ≤ cd(p

∗) and Lemma 7.2 combined with the fact that the ellipse
axis lengths form a geometric sequence (cf. proof of Theorem 5.3) and the
asymptotic equivalence of all cost metrics according to Definition 3.2. The
lower bound discussed in Chapter 6 proves the asymptotic optimality. If s and
t are not connected, the node detecting this (after a face routing step which
does not yield a node closer to t) sends the result back to s by means of the
same algorithm.
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Remark Similar to OAFR, GOAFR detects disconnectivity of s and t with
cost at most O(n′ log n′), where n′ is the number of nodes in the network com-
ponent containing s.

7.2 GOAFR+: Improving GOAFR

Having shown the concept of combining greedy and face routing, we will present
in this section the GOAFR+ algorithm (pronounced as “gopher-plus”), which
forms a refinement of the GOAFR algorithm. The primary reason for the modi-
fications resulting in GOAFR+ is their leading to better performance in average-
case networks, which will be shown in Chapter 8. At the same time, however,
the asymptotic optimality of the GOAFR algorithm is preserved, as proved after
the following specification of GOAFR+.

7.2.1 The GOAFR+ Algorithm

Similar to GOAFR, the GOAFR+ algorithm is a combination of greedy routing
and face routing. Whenever possible, the algorithm tries to route in a greedy
manner; in order to overcome local minima with respect to the distance from
the destination, face routing is employed.

In face routing mode, GOAFR+ restricts the searchable area in a similar
way as GOAFR. Our simulations (as discussed later in Chapter 8) showed that
choosing a circle centered at the destination t instead of an ellipse and above
all gradually reducing its radius while the message approaches t improves the
average-case performance.

More importantly, for average-case considerations, the algorithm should fall
back to greedy routing as soon as possible after escaping the local minimum.
This is suggested by the observation that greedy forwarding is—especially in
dense networks—more efficient than face routing in the average case. If GOAFR
traverses the complete boundary of a face—once it is in face routing mode—
, GOAFR+ tries to avoid doing so and to return to greedy routing as early
as possible. As will be illustrated in Chapter 8, this must not be done too
simplistically—such as whenever the algorithm in face routing mode is closer to
the destination than the escaped from local minimum—, as this would happen
at the expense of the algorithm’s asymptotic optimality. In order to preserve
this property, the GOAFR+ algorithm employs two counters p and q to keep
track of how many of the nodes visited during the current face routing phase
are located closer to the destination (counted with p) and how many are at
least as far from the destination (counted with q) than the starting point of
the current face routing phase; as soon as a certain fallback condition holds,
GOAFR+ continues in greedy mode.

Figure 7.2 provides an illustration to the following specification of the GOAFR+

algorithm.
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Figure 7.2: The GOAFR+ algorithm starts from s in greedy mode. At node u,
it reaches a local minimum, a node without any neighbors closer to t. GOAFR+

switches to face routing mode and begins to explore the boundary of face F (in
clockwise direction). At node v the algorithm hits the bounding circle C and
turns back to continue the exploration of F ’s boundary in the opposite direction.
After each step the counters p and q are updated. At node w the fallback
condition p > σ q holds (p = 2, q = 4 with the assumption 1/4 ≤ σ < 1/2);
GOAFR+ falls back to greedy mode and continues to finally reach t. (Gradual
reduction of C’s size during GOAFR+’s execution is not shown.)

GOAFR+ The algorithm parameters ρ0, ρ, and σ are chosen prior to the
start of the algorithm and remain constant throughout the execution. For the
algorithm to work correctly, these parameters have to comply with the condi-
tions 1 ≤ ρ0 < ρ and 0 < σ.2

0. Begin at s. Initialize C to be the circle centered at t with radius rC :=
ρ0 |st|.

1. (Greedy Routing Mode) Repeat taking greedy steps until either reach-
ing t or a local minimum. In the former case the algorithm terminates, in
the latter case continue with step 2. Whenever possible, reduce C’s radius
(rC := rC/ρ) as long as the currently visited node stays within C.

2. (Face Routing Mode) Let ui be the currently visited local minimum.
Start exploring the boundary of Fi, the face containing the connecting line
uit in the immediate environment of ui. When completing Fi’s exploration
and returning to ui, advance to the node visited so far closest to t and
continue with step 1. If—after F ’s complete exploration—no visited node

2In our simulations ρ0 = 1.4, ρ =
√

2, and σ = 1

100
proved to be good choices for practical

purposes.
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is closer to t than ui, report graph disconnection to s (using GOAFR+).
During the exploration of Fi’s boundary use two counters p and q to keep
track of the number of nodes visited on Fi’s boundary: p counts the nodes
closer to t than ui and q the nodes not located closer to t than ui. Take
a special action if one of the following conditions holds:

2a. Hitting C for the first time, turn back and continue exploring Fi’s
boundary in the opposite direction.

2b. C is hit for the second time: If none of the visited nodes is closer
to t than ui, enlarge C (rC := ρ rC) and continue with step 2 as if
having started from ui. Otherwise advance to the node visited so far
closest to t and continue with step 1.

2c. If p > σ q, that is, we have visited (up to a constant factor σ) more
nodes on Fi’s boundary closer to t than nodes not closer to t, advance
to the node seen so far closest to t (if this is not the currently visited
node) and continue with step 1.

With this description of the GOAFR+ algorithm, we can now proceed to
showing that its worst-case performance is asymptotically equivalent to the one
of GOAFR.

7.2.2 GOAFR+ is Asymptotically Optimal

GOAFR+ uses a circle C centered at t to restrict itself to a searchable area.
During the algorithm execution the radius rC is adapted in predefined steps
according to the current distance from t. In particular, the values potentially
assumed by rC form a geometric sequence rCi

= rmax ( 1
ρ )i, i = 0, ..., k, where

rmax depends on the length and the shape of the optimal path from s to t (cf.
proof of Theorem 7.7) and ρ is one of GOAFR+’s predefined constant algorithm
parameters. Since rC can both increase and decrease during algorithm execu-
tion, the steps taken in a circle Ci with radius rCi

need not occur consecutively.
In the following we consider the steps taken by the algorithm in a fixed circle
Ci.

Lemma 7.4. If s and t are connected within the circle Ci, GOAFR+ reaches
t. If s and t are not connected within Ci, GOAFR+ detects so.

Proof. We first assume there is a connection from s to t within Ci. For the
definition of a round we distinguish three cases: According to the current al-
gorithm execution, a round can be either a) a greedy step, b) a face routing
phase terminated by early fallback, or c) a face routing phase terminated after
exploration of the complete boundary of the current face and advancing to the
node closest to t. We show that after every round the algorithm is closer to
t than before that round: This holds in case a) since a greedy step can only
reduce the distance to t, and in case b), as the fallback condition can only hold
immediately after incrementing the counter p (that is after visiting at least one
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node closer to t) and since the algorithm then advances to the node seen so far
closest to t; in case c), the algorithm approaches t since the boundary of the
currently explored face—this face contains in its interior points closer to t than
where this round started—contains a point closer to t if and only if there is
a connection to t. (Note that again the remark made after Lemma 5.1 holds:
Graphs can be constructed where a face F ’s boundary contains points but not
nodes that are closer to t than a given boundary node, in which case the algo-
rithm could fail. Since we employ the Gabriel Graph, such cases can however
not occur: The algorithm can forward to a face boundary’s node closest to t.)
As the algorithm reduces the distance to the destination in each round, it finally
reaches t.

If s and t are not connected within Ci, GOAFR+—in face routing mode—
either hits Ci twice without finding a node closer to t (in which case the algo-
rithm will continue on a bigger circle, which is beyond the scope of this lemma),
or it explores the complete boundary of the current face (cf. above case c))
without finding a node closer to t, which is the case if and only if s and t are
not connected at all.

Having shown that GOAFR+ reaches the destination, we can now prove in
several steps that its cost is bounded. We first consider the cost expended when
traversing the boundary of a given face within a circle of fixed size.

Lemma 7.5. Let c′F (GOAFR+) be the cost of all face routing steps taken when
exploring the boundary of face F within the circle Ci. c′F (GOAFR+) is less
than γ cF for a constant γ and with cF being the total cost of traversing F ’s
boundary once.

Proof. We first show that the lemma holds for the link distance metric, c(e) ≡ 1
for any edge e: The total number of edges traversed by GOAFR+ when exploring
F is less than γc`F

, where c`F
is the number of edges traversed when traveling

around F once.

We assume that the boundary of face F is involved in k face routing rounds,
and that for 1 ≤ j ≤ k, sj is the node where round j is started. Let pj and qj

be the final values of the counters p and q, respectively, in round j. According
to the fallback condition in step 2c of the algorithm we have pj > σ qj . Let Pj

and Qj be the sets of nodes visited in round j closer to t than sj and at least
as far from t as sj , respectively. Since a node can be counted for a second time
after hitting Ci, we have |Pj | ≤ pj ≤ 2 |Pj | and |Qj | ≤ qj ≤ 2 |Qj |. Furthermore
we define Nj to be the set of nodes newly visited in round j. Since after each
round—a greedy step or the exploration of a face—the algorithm is strictly
closer to t than before that round, all nodes closer to t must be newly visited
ones, that is Pj ⊆ Nj . Since we also have to account for the steps taken by the
algorithm possibly proceeding—once the fallback criterion holds—to the node
seen so far closest to t, the number of steps taken in round j is not greater than



52 CHAPTER 7. COMBINING GREEDY AND FACE ROUTING

2 (pj + qj). In summary we obtain for the total cost of the algorithm exploring
F ’s boundary:

k∑

j=1

2 (pj + qj) <

k∑

j=1

2 (1 +
1

σ
) pj ≤

k∑

j=1

4 (1 +
1

σ
) |Pj |

≤
k∑

j=1

4 (1 +
1

σ
) |Nj | ≤ 4 (1 +

1

σ
) c`F

,

the last step following from
∑k

j=1 |Nj | ≤ c`F
.

If the fallback criterion never holds during F ’s exploration (which is only
possible in the final round for F ), the algorithm traverses F ’s complete boundary
and advances to the node closest to t, which incurs additional cost less than
2 c`F

.
The lemma holds for the link distance metric. Since the algorithm is assumed

to run in the Ω(1)-model, the lemma also holds for any other cost metric (cf.
Chapter 3).

With this lemma, the overall cost—in greedy and in face routing mode—
expended in a given circle of fixed size can be bounded:

Lemma 7.6. The total cost of the steps taken by GOAFR+ within the circle
Ci with radius rCi

is in O
(
r2
Ci

)
.

Proof. According to the previous lemma we have c′F (GOAFR+) ≤ γ cF for all
steps performed in face routing mode. Summing up over all faces in Ci, we
obtain ∑

F∈Ci

c′F (GOAFR+) < γ ·
∑

F∈Ci

cF ≤ γ · 2
∑

e∈Ci

c(e),

the last step following from the fact that each edge e is adjacent to at most
two faces. To account for the greedy steps, we add another

∑
e∈Ci

c(e) in order
to obtain the total cost expended in Ci since any edge can be traversed at
most once in greedy mode (each round—a greedy step or the exploration of
a face—taking the algorithm strictly closer to t). Since we employ a planar
graph, with the fact that (in a graph with more than three edges) each face
is adjacent to at least three edges and using the Euler polyhedral formula,
we obtain that |Ei| ∈ O(|Vi|), where |Ei| is the number of edges and |Vi| the
number of nodes in Ci (cf. proof of Lemma 5.1). The lemma finally follows
with

∑
e∈Ci

c(e) ∈ O(|Ei|)—resulting from the equivalence of the link distance
metric with any other metric in the Ω(1)-model (cf. Chapter 3)—and the fact
that in the Ω(1)-model the number of nodes in a given region is proportional to
its size (cf. proof of Lemma 5.2).

As described above, GOAFR+ employs a set of bounding circles whose radii
form a geometric sequence. This together with the fact that the maximum
radius is bounded by the Euclidean length of an optimal path from s to t, leads
to the following theorem.
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Theorem 7.7. Let p∗ be an optimal path from s to t. In the Ω(1)-model,
GOAFR+ reaches t with cost O

(
c2(p∗)

)
if s and t are connected, which is

asymptotically optimal. If s and t are not connected, GOAFR+ reports so to
the source.

Proof. Let cd(p
∗) be the Euclidean length of a shortest path from s to t. If s

and t are connected, the circle centered at t and with radius cd(p
∗) completely

contains p∗. Since GOAFR+ only enlarges the bounding circle if it does not
contain a path from s to t, and according to GOAFR+’s radius update policy
with the constant factor ρ, the maximum radius reached is smaller than ρ cd(p

∗).
In order to compute the total cost of the algorithm, we add up the cost expended
in each used circle. According to Lemma 7.6 it is sufficient to consider the sum
of the squared radii of all employed circles. Let rmax be the radius of the largest
used circle. For some k ≥ 0 the areas of all used circles sum up to

k∑

i=0

[
rmax ·

(1

ρ

)i
]2

=
1 −

(
1
ρ

)2(k+1)

1 −
(

1
ρ

)2 r2
max

<
1 −

(
1
ρ

)2(k+1)

1 −
(

1
ρ

)2 (ρ cd(p
∗))2

∈ O
(
cd(p

∗)2
)
.

With the equivalence of cost metrics—including the Euclidean metric—in the
Ω(1)-model, this holds for any metric. Asymptotic optimality follows from the
lower bound example in Chapter 6.

If s and t are not connected, GOAFR+ detects so (case c) in proof of
Lemma 7.4) and reports back to the source using the same algorithm.

Remark Like OAFR and GOAFR, GOAFR+ detects and reports disconnec-
tivity of s and t with cost at most O(n′ log n′), where n′ is the number of nodes
in the network component containing s.

Having presented different geographic routing algorithms and proved their
asymptotic worst-case properties, we will discuss and compare the performance
of these algorithms and of other heuristic combinations of greedy and face rout-
ing in average-case networks in the following chapter.
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Chapter 8

Greedy and Face Routing

in Average-Case Networks

It is even harder for the average ape
to believe that he has descended from man.

Henry Louis Mencken (1880–1956)

In the previous three chapters we showed that it is not only possible to define a
worst-case-optimal geographic routing algorithm exploiting the concept of face
routing, but also to combine the notions of greedy routing and face routing
in algorithms which conserve worst-case optimality. The approach to combine
greedy and face routing was thereby driven by the observation that—when
moving our focus away from worst-case networks to average-case scenarios—
greedy routing lends itself as an efficient routing concept. In this chapter we
analyze the validity of the hypothesis that a combination with greedy routing
can improve performance in average-case networks.

In particular we describe performance measurements taken in simulations
not only of the algorithms described in the previous chapters but of a variety
of face routing algorithms and their combinations with the greedy approach.
We also present a number of graph characteristics yielding deeper insight in the
behavior of the routing algorithms. Before focusing on our routing algorithms,
we will present a basic observation.

8.1 The Role of Network Density

In this section we will discuss the correspondence between network density and
substantial network properties in the context of routing. In particular we point
out the importance of the chosen density range for the simulation of routing
algorithms.



56 CHAPTER 8. AVERAGE-CASE NETWORKS

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 5 10 15

Network Density [nodes per unit disk]

S
h

o
rt

es
t 

P
at

h
 S

p
an

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

q
u

en
cy

Figure 8.1: Connectivity rate (dashed), greedy success rate (dotted, both plot-
ted against the right y-axis), and mean shortest path span (solid, plotted against
the left y-axis).

Our measurements were carried out on the unit disk graph of networks with
nodes randomly and uniformly placed on a square with 20 units side length.
For each density value (denoted in nodes per unit disk on the x-axis of Fig-
ure 8.1), we generated 2000 such random networks and chose the source s and
the destination t randomly.

In particular we measured three parameters for each density:

- Connectivity rate: In how many cases are s and t connected?

- Greedy success rate: How often does the greedy algorithm GR alone reach
t?

- Shortest path span: The ratio between cd(p
∗), the Euclidean length of

the shortest (Euclidean) path, and |st|, the Euclidean distance between
s and t. Note that the shortest path span is only defined if s and t are
connected.

Figure 8.1 depicts our measured values of these three parameters over a
density range of 0.3 to 20 nodes per unit disk. The connectivity and greedy
success rate values are plotted against the right; the mean of the measured
shortest path span values is plotted against the left y-axis.
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The network connectivity curve (dashed line) shows that the density spans
from one extreme to the other. At very low network densities, nodes are so
sparsely placed that we observe almost no connectivity at all. On the other end
of the scale, s and t are virtually always connected. The transition between
these two extremes takes place in a relatively narrow density range between
approximately 3 and 7 nodes per unit disk. Network connectivity—above all in
this transition range—is one of the main issues in percolation theory [29, 73]. In
the following we will justify why this is a mandatory range for routing algorithm
simulations to take place.

Of high importance for our greedy/face routing combinations is the greedy
success rate (dotted line). Since network connectivity is a requirement for any
routing algorithm, the greedy success rate lies strictly below the connectivity
rate curve. For high network densities on the other hand, a gap big enough to
form a local minimum for greedy routing will only be generated with low prob-
ability; greedy routing can be expected to almost always reach the destination.

The third curve in Figure 8.1 (solid line) represents the mean shortest path
span, that is, for each density the curve value is the mean of the ratio values
between the Euclidean length of the shortest path and the Euclidean distance
between s and t over all generated networks. For very low densities this value
is close to 1 due to low network connectivity: The shortest path span is only
defined if s and t are connected, which is rarely ever the case here. If however
s and t are connected, they are with high probability close together or even
neighbors, in which case the shortest path span is equal to 1. The low values
for high densities, on the other hand, can be explained by the fact that with
increasing density the shortest path will more and more closely follow the direct
connecting line st due to the rising number of nodes in st’s vicinity.

Between these two extremes the shortest path span forms an almost bell-
shaped curve in the network density range approximately between 3 and 6 nodes
per unit disk. Informally put, this is the only density region where the shortest
path is usually much longer than the direct connection between s and t (cf.
Figure 8.2). This specific quality identifies this region as “critical” for routing
algorithms. Here, finding a good path at low cost becomes a nontrivial task
and a real challenge for geographic routing. It also appears that for the crit-
ical density region the effect of introducing “artificiality” by placing network
nodes uniformly remains acceptably low: The density is relatively heteroge-
neous, which reflects the situation to be expected in reality more closely than
a homogeneous placement of nodes that would occur for higher network densi-
ties. Furthermore, it is not astonishing that simulations carried out on dense
networks (such as for the GPSR geographic routing algorithm with approxi-
mately 21.8 nodes per unit disk in [57]) display very good results with respect
to both the quality of the discovered path and algorithm performance.

In the following we will therefore mainly focus on this critical density range
around 4.5 nodes per unit disk in our algorithm simulations.
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Figure 8.2: Example of generated (Gabriel) graph at critical network density
4.71 (≈ 1.5 π) nodes per unit disk (600 nodes on 20 by 20 units field). Most of the
nodes are connected; for most pairs of nodes, however, the shortest connecting
path is significantly longer than their Euclidean distance.

8.2 Algorithm Overview

Before presenting our simulation results we will introduce all simulated algo-
rithms for the sake of clarity. Figure 8.3 contains an “algorithm family tree”,
a graphical representation of the conceptual relations between the single algo-
rithms.

The basis of this algorithm family is formed by two fundamental algorithms:

- FR is the traditional Face Routing algorithm as introduced in [61] and
outlined in Section 5.1. On a planar graph one face after the other is
completely explored in order to find intersections of its boundary with
st, the line connecting s and t. Along this line the algorithm gradually
proceeds and finally reaches t.

- GR proceeds in each step to the neighbor closest to the destination, as
described in Chapter 4. Note that this algorithm—as opposed to all other
simulated algorithms—cannot guarantee to reach t.
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AFR

GAFR

GAFRFI

GOAFR− GAFR−

OAFR

GOAFR

GOAFRFC

GOAFR+

FR
(Face Routing)

(Greedy Routing)
GR

GFR

OFR

FC=GFR

AFRFI

GFG/
GPSR

Figure 8.3: Algorithm relation overview. The basis for all simulated routing
algorithms is formed by FR and GR. Algorithms in elliptic shapes use a bound-
ing ellipse (GOAFR+ using a bounding circle). A double ellipse represents
asymptotic optimality. Algorithms in dashed circles have been introduced for
the concept only, without simulations.

In Section 5.3 we introduced OFR, a variant of FR in the sense that it does
not switch to a new face along the line st, but at the point closest to t on the
boundary of the currently explored face. OFR builds the basis for a complete
line of algorithms; it has however not been implemented for our simulations.
Extending the FR and OFR algorithms by adaptive bounding ellipses, we obtain
AFR and OAFR:

- In AFR (cf. Section 5.2), Face Routing is extended by the concept of a
bounding ellipse whose size is iteratively incremented as required. Note
that—as an improvement over the original description—our implementa-
tion of the AFR algorithm does not return to the source before increment-
ing the ellipse size.

- In OAFR, as described in Section 5.3, face routing is not performed along
the st line. Instead, the algorithm explores a face for the node on its
boundary with the least distance from t, where it proceeds to the next
face.

Introduced as a building block for later use, the algorithm AFRFI uses a heuris-
tic to try to switch to the next face earlier than AFR:



60 CHAPTER 8. AVERAGE-CASE NETWORKS

- AFRFI (AFR + “First Intersection” heuristic)—in contrast to AFR—
does not necessarily explore complete faces but already switches to the
next face when first meeting an intersection with st closer to t than where
the current face’s exploration started.

The remaining algorithms all include greedy routing phases. GOAFR com-
bines GR with OAFR; GAFR employs GR and AFR. The GFR algorithm is
introduced for the concept only, that is without simulations.

- The GOAFR algorithm is described in detail in Section 7.1. It employs GR
as long as possible and overcomes potential local minima by exploration
of one face with OAFR.

- GAFR combines greedy routing and AFR. Local minima are circumvented
using the AFR algorithm for one face before returning to greedy mode.
In analogy to GOAFR, GAFR retains the same ellipse throughout its
execution, apart from enlarging it when necessary.

The algorithms GOAFR– and GAFR– are minor variations of GOAFR and
GAFR, respectively.

- GOAFR–’s only difference compared to GOAFR consists in its use of
a bounding ellipse exclusively when in face routing mode. Each time
starting a face routing phase at node u, the ellipse is initialized around u
and t.

- GAFR– reinitializes its bounding ellipse for each face routing phase around
the new starting point and t; otherwise it is identical to GAFR.

Similarly as in AFRFI , the algorithms GAFRFI , GOAFRFC , and GFG/GPSR
employ heuristics to terminate the exploration of the current face and conse-
quently fall back to greedy mode earlier than GAFR, GOAFR, or GFR, respec-
tively.

- GAFRFI ’s only difference compared to GAFR is its use of AFRFI instead
of AFR: The next greedy phase is started already when meeting the first
intersection with st.

- GOAFRFC (GOAFR + “First Closer” heuristic) uses GR and OAFR, but
falls back to greedy mode even earlier, that is at the first node closer to t
than where the face routing phase started.

- GFG/GPSR was introduced in [14] and [57]. Apart from the fact that it
does not bound its searchable area, it is identical to GOAFRFC.

Finally, the GOAFR+ algorithm also tries to return from face routing to greedy
routing as early as possible, goes however beyond GOAFRFC in that it employs
a counter mechanism.
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Character Stands for Comment

R Routing occurs in all algorithm names
F Face algorithms employing face routing
G Greedy algorithms employing greedy routing
A Adaptive algorithms using a bounding ellipse
O Other algorithms using OFR
– starts face routing phases with small ellipse

. . . RFI First Intersection uses “First Intersection” heuristic
. . . RFC First Closer uses “First Closer” heuristic

+
early fallback with counters; uses circle
with gradually reduced radius (only used
in GOAFR+)

Table 8.1: Algorithm naming system.

- GOAFR+ as described in detail in Section 7.2 applies a node counter
mechanism in order to decide when to fall back to greedy routing and thus
preserves GOAFR’s asymptotic worst-case optimality. Furthermore—in
contrast to the other algorithms using an ellipse—it restricts its searchable
area with a circle centered at t whose size is gradually reduced while
approaching the destination.

In order to distinguish the single algorithms, we introduced a naming sys-
tem in which each character contained in an algorithm name represents a
concept (Table 8.1). Note that the abbreviation GFG/GPSR (Greedy-Face-
Greedy/Greedy Perimeter Stateless Routing) [14, 57] does not correspond with
our naming system. In our system GFG/GPSR would be named GFRFC.

Table 8.2 summarizes all simulated algorithms and compares them with
respect to five characteristics:

- Type: The algorithms fall into three main classes: Pure face routing al-
gorithms (fr), the GR algorithm (gr), and combinations thereof (gr +
fr).

- With Bounding Ellipse: Apart from FR and GFG/GPSR all algorithms
bound their searchable area (by an ellipse or, in the case of GOAFR+, by
a circle).

- With Heuristic: In face routing mode (G)AFRFI, GOAFRFC, and GFG/-
GPSR apply heuristics in order to proceed with greedy routing without
exploring the complete boundary of a face. Doing so, however, these
algorithms lose their asymptotic optimality.

- Retains Ellipse: This property is only applicable to gr + fr algorithms
with a bounding ellipse. Most of these algorithms only use a bounding
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ellipse during their greedy routing phase. GOAFR and GAFR in con-
trast retain—apart from incrementing its size—the same ellipse through-
out their complete execution.

- Asymptotically Optimal: As outlined in Section 5.2, AFR has previously
been proved to be asymptotically optimal. In the subsequent two sections
we showed that also OAFR and GOAFR are asymptotically optimal geo-
graphic routing algorithms. Note the correspondence between algorithms
using heuristics and asymptotic optimality. Only by means of a node
counter scheme can the GOAFR+ algorithm preserve worst-case optimal-
ity while attempting to fall back to greedy routing without traversing the
complete boundary of the currently visited face.

Note that GR is the only algorithm that may fail to reach t. All other simulated
algorithms are guaranteed to find the destination.

8.3 Routing Algorithm Simulations

We are now ready to present the results of our routing algorithm simulations.
As in the measurements presented in Section 8.1, we generated networks on
square fields of side length 20 units by distributing network nodes randomly and
uniformly. For every simulation series, the number of nodes was determined
according to the chosen network density. For each considered network, the
source s and the destination t were also chosen randomly.

In order to judge the practicability of an algorithm we introduced the nor-
malized cost costA(N, s, t) of an algorithm A in a network N given a source s
and a destination t as

costA(N, s, t) :=
sA(N, s, t)

c`(p∗` (N, s, t))
,

where sA(N, s, t) is the number of steps taken by algorithm A in network N
finding a route from s to t (which is in our case, with all simulated algorithms,
equal to the number of sent messages); c`(p

∗
` (N, s, t)) is the (hop) length of the

shortest path (with respect to the hop metric) between the source s and the
destination t in N .

Counting the steps taken by an algorithm A corresponds to the link (or
hop) metric of A’s path. There are two reasons for choosing the link metric for
our simulations. First, the link metric is a model for currently employed radio
network technology: In most communication standards (such as IEEE 802.11),
radio devices transmit with a fixed—at least not dynamically adapted—power
level. Second—assuming that sending a message to a neighboring node takes
a certain period of time independent of its distance—the link length of a path
forms a good measure for the latency of a message traveling along that path.

Our objective was to measure the performance of the routing algorithms
without any interference of possible side effects of other communication layers.
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Algorithm Name Type

With
Bound-

ing
Ellipse

With
Heuristic

Retains
Ellipse

Asympto-
tically

Optimal

Comment

FR fr no no - no Face Routing as described in Section 5.1

AFR fr yes no - yes Adaptive Face Routing (Section 5.2)

AFRFI fr yes yes - no
AFR, but switches to next face at first intersection with
st

OAFR fr yes no - yes Other Adaptive Face Routing (Section 5.3)

GOAFR gr + fr yes no yes yes Greedy Other Adaptive Face Routing (Section 7.1)

GOAFR– gr + fr yes no no no
GOAFR, but starts face routing phases with small el-
lipse

GAFR gr + fr yes no yes no Greedy + AFR

GAFR– gr + fr yes no no no
Greedy + AFR, but starts face routing phases with
small ellipse

GAFRFI gr + fr yes yes no no
GAFR, but falls back to greedy routing when first in-
tersecting st

GOAFRFC gr + fr yes yes no no
GOAFR, but falls back to greedy routing when meeting
first node closer to t than where AFR phase started

GFG/GPSR gr + fr no yes - no
Greedy-Face-Greedy/Greedy Perimeter Stateless
Routing [14, 57]: GOAFRFC without bounding ellipse

GOAFR+ gr + fr yes -* -* yes
GOAFR+ algorithm as defined in Section 7.2. *Uses
counters for early fallback and concentric circles

GR gr no - - - out of competition, since reaching of t not guaranteed

Table 8.2: Classification of simulated routing algorithms. The GOAFR algorithm, for instance, is a greedy/face routing
combination, employs a bounding ellipse, does not use a heuristic for early fallback to greedy mode, keeps the ellipse when
switching from one mode to the other (does not restart with a small ellipse), and is asymptotically optimal. The GR algorithm
is listed for completeness, but runs out of competition, since it does not guarantee to reach the destination.
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Figure 8.4: Algorithm performance overview. Mean cost values of FR (upper
dashed line), AFR (upper solid), OAFR (lower dashed), and AFRFI (lower
solid). All greedy/face routing combinations (including GOAFR, GOAFR+,
and GFG/GPSR) are shown in dotted lines (for details see Figure 8.5). The
network connectivity and greedy success rates (gray) are plotted against the
right y-axis for reference (cf. Section 8.1).

We therefore assumed an ideal environment with collisionless MAC layer and
postulated all position information required by the geographic routing model—
a node’s own and its direct neighbors’ positions as well as information about
the destination position being present at the source—to be available without
additional communication overhead. We furthermore assumed the routing al-
gorithms to execute fast compared to possibly moving network nodes; node
movement was consequently not simulated. The measurements were carried
out on a custom simulation environment.

Figure 8.4 shows for each simulated algorithm A its mean cost value, defined
as

costA :=
1

k

k∑

i=1

costA(Ni, si, ti)

over all k = 2000 generated triples (Ni, si, ti) for network densities ranging from
0.3 to 20 nodes per unit disk. For reference to the density range, the network
connectivity and greedy success rates are plotted against the right y-axis.
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For very low network densities all algorithms perform more or less equally
well, for the same reason that keeps the shortest path span low (see Section 8.1):
The source s and the destination t are rarely ever connected; if however they
happen to be connected, they are very likely direct neighbors.

On the other end of the density scale, two classes of algorithms can be
distinguished.

- The cost values of all algorithms solely employing a variant of face rout-
ing approach a linearly growing curve. The general growth of the cost
of these algorithms towards infinity can be explained by the fact that we
measure the hop metric cost values of the algorithm paths together with
two reasons: FR, AFR, and OAFR route along complete faces; the ex-
pected number of such faces between s and t rises linearly with network
density. Although AFRFI, on the other hand, does not explore complete
faces and will—still for dense networks—stay close to the connecting line
st, its cost increases towards infinity since it proceeds along the Gabriel
Graph, whose mean edge length decreases with rising density.

- All algorithms combining greedy routing with face routing display cost
values approaching 1. For high network densities these algorithms rarely
ever need to change to face routing mode (cf. the greedy success rate
curve). Furthermore the length of the greedy path approaches the length
of the shortest path. Note that in greedy mode all network edges (not
only those of the Gabriel Graph) can be used.

The eye-catching bell-shaped cost curves for all algorithms—including the
greedy/face routing combinations—are centered around the critical density re-
gion as defined in Section 8.1. We observe that—not only in the worst, but also
in the average case—FR is clearly disqualified due to its missing limitation to
a searchable area; AFR and OAFR—both employing this technique—display
much more favorable values, yet cannot compete with AFRFI, which—at least
in the critical region—performs not worse than a number of greedy/face routing
combinations.

In accordance with the considerations from Section 8.1, this critical density
range appears to be the most challenging area for all the simulated algorithms
without exception. Accordingly we will now “zoom” into this area to analyze
the performance results of the algorithms combining greedy and face routing in
more detail.

Figure 8.5 depicts the mean cost values of all simulated greedy/face routing
combinations in the critical density range around 4.5 nodes per unit disk. The
eight algorithms can be split into four groups with respect to their peak cost
values:

- GOAFR, GOAFR–, GAFR, GAFR–,

- GAFRFI, GOAFRFC,
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Figure 8.5: Algorithm performance in critical density range around 4.5 nodes
per unit disk. Mean cost values of GFG/GPSR (upper dash-dotted line),
GOAFR (upper dotted), GAFR (upper dashed), GOAFR– (lower dotted),
GAFR– (lower dashed), GOAFRFC (upper solid), GAFRFI (lower dash-dotted),
and GOAFR+ (lower solid). Again, the network connectivity and greedy success
rates are plotted against the right y-axis for reference.

- GFG/GPSR, and

- GOAFR+.

GOAFR, GOAFR–, GAFR, and GAFR– have more or less comparable peak
cost values. They have in common that they explore complete faces (within the
searchable area) when in face routing mode. It appears that restarting with a
small (reinitialized) ellipse at the beginning of each face routing phase slightly
reduces mean cost; doing so, GOAFR however loses its asymptotic optimality.

With the heuristics employed by GAFRFI and GOAFRFC, on the other
hand, the peaks of the mean cost values are clearly lower. However, in contrast
to GOAFR, these two algorithms cannot guarantee asymptotic optimality (cf.
Figure 8.6).

GFG/GPSR only differs from GOAFRFC by the absence of a bounded
searchable area. Yet this has a dramatic effect on the critical area algorithm
cost: While GOAFRFC displays comparatively low cost values, omission of the
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Figure 8.6: Example graph on which (G)AFRFI and GOAFRFC display asymp-
totic suboptimality. Starting from s, GAFRFI, for instance, will reach the local
minimum m1 in greedy mode, switch to face routing mode and (unluckily) be-
gin to explore the boundary of face F in counterclockwise direction. Only after
traversing the maze-like structure left of s will the algorithm hit the ellipse E ,
return (after again passing s) to m1, and continue to find P , the first intersection
with m1t. After falling back to greedy mode and reaching the local minimum
m2, the algorithm will repeat the above procedure. In total, the maze-like struc-
ture left of s will be traversed Θ(`) times, where ` is the (Euclidean) distance
between s and t. (The size of the maze can be chosen in a way that even after
k ∈ Θ(`) of the above rounds it is contained in the ellipse with foci mk and
t.) Since the maze-like structure is designed such that its traversal takes cost
Θ(`2), the overall algorithm executes with cost Θ(`3), whereas the optimal path
has cost Θ(`). Similar examples can be constructed for all simulated algorithms
which use heuristics, including GFG/GPSR.

bounding ellipse almost doubles the peak mean cost value, throwing GFG/GPSR
back to the last position among the simulated greedy/face routing combinations.

Finally, in order to restrict its searchable area, GOAFR+ employs a circle
centered at t with gradually reduced radius while approaching the destination.
Mainly owing to this improvement—together with its early-fallback technique—
the GOAFR+ algorithm clearly outperforms all other simulated algorithms in
average-case networks. This behavior can be observed not only around the
critical node density, where this gap is most obvious, but over the complete
considered density range. At the same time the GOAFR+ algorithm is, as
proved in Section 7.1, worst-case optimal in contrast to all other simulated
greedy/face routing combinations (with the exception of GOAFR).

Figure 8.7 displays the (normalized) cost value distributions for all algo-
rithms simulated at network density 4.71 nodes per unit disk. Apart from
AFRFI—which also features a significantly smaller mean value at that density
(cf. Figure 8.4)—all pure face routing variants show their distribution peaks for
relatively high cost values (3–5 for FR, 5–7 for AFR and AFRFI). Due to the
lack of a bounding ellipse, FR displays a considerable number of very high cost
values (> 41), which is also reflected in its higher mean value at that density.
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Figure 8.7: Distribution of cost values of the pure face routing algorithms (top)
and the greedy/face routing combinations (bottom) simulated at network den-
sity 4.71 nodes per unit disk. The simulations for GOAFR+, for instance, show
that in approximately 10 percent of all connected graphs cost values greater
than 5 but not greater than 7 were measured.
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With all greedy/face routing combinations, on the other hand, the majority
of the measured cost values are relatively low. Above all GOAFR+ shows
efficient behavior, in over 60 percent of all cases reaching the destination with
cost values of at most 3. In about half of all simulated networks also the
GFG/GPSR, GOAFRFC, and GAFRFI algorithms have cost at most 3. With
the GOAFR–, GAFR–, GOAFR, and GAFR algorithms, finally, roughly half of
the cases result in cost values smaller than 5. GFG/GPSR, although featuring a
significant number of low cost values, does not restrict its searchable area, which
leads to a non-negligible number of large cost values and which consequently
also considerably increases its mean value (cf. Figure 8.5).

Remark (Ellipse Size Implementation) For completeness we carried out
a simulation series dedicated to the question whether the ellipse size doubling
strategy suggested by GOAFR (and AFR)—although compliant with asymp-
totic optimality—can be improved for practical purposes. We achieved best
values initializing the major axis c of the ellipse E to 1.2 · |st| and multiplying
c with the factor

√
2 (that is doubling E ’s area) when E is required to be en-

larged. Employing a circle centered at t for the searchable area, all respective
algorithms consistently displayed worse results than using an ellipse. An excep-
tion to this observation is formed by GOAFR+, which does benefit from using
a circle; the reason for this behavior can be found in GOAFR+—in contrast to
all other algorithms—reducing the size of its restricting area whenever possi-
ble while approaching the destination. The implementations used in the above
simulations were adapted to employ the best parameters found.

8.4 Algorithm Scalability

In the simulation series of Figures 8.4 and 8.5 we analyzed algorithm perfor-
mance over different network densities, but on a fixed network (field) size. For
the following series we considered algorithm performance on different network
sizes at fixed network density 4.71 nodes per unit disk.

Figure 8.8 shows the mean performance results obtained in simulations on
networks generated in square fields of side length 4 to 40 units. Again, the
algorithms fall into different classes with respect to their performance behavior.

The lack of a bounded searchable area results in a fast-growing curve with
increasing network size for FR and GFG/GPSR, although on a lower level for
the latter algorithm. The most important factor for this behavior is formed by
the fact that it can be expected that—for the critical network density—these
algorithms are required to explore a considerable part of the entire network
independent of its size. If GFG/GPSR can compete with most other algorithms
for small networks (up to approximately 12 units side length), this effect clearly
disqualifies the algorithm for large networks.

Although GOAFRFC only differs from GFG/GPSR by using a bounding
ellipse, we find this algorithm almost at the other end of the performance scale



70 CHAPTER 8. AVERAGE-CASE NETWORKS

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32 36 40

Network Side Length [units]

M
ea

n
 A

lg
o

ri
th

m
 C

o
st

Figure 8.8: Algorithm performance at network density 4.71 nodes per unit disk
simulated on networks in square fields with side lengths from 4 to 40 units. Mean
cost values of FR (upper solid line), GFG/GPSR (middle solid), AFR (upper
dotted), OAFR (lower dotted), GOAFR, GAFR, AFRFI, GOAFR–, GAFR–
(dashed lines from top to bottom), GOAFRFC (upper dash-dotted), GAFRFI

(lower dash-dotted), and GOAFR+ (lower solid).

together with GAFRFI, whose cost values grow relatively slowly for all simulated
network sizes.

The results of these two algorithms are only topped by GOAFR+, which
appears to be the most resilient algorithm with respect to network growth. As
our simulations show, this algorithm not only performs well over a wide node
density range, as discussed in the previous sections, but also with increasing
network size, where the measured cost values stay below 6 even for the largest
simulated networks.

The remaining algorithms all display more or less comparable cost curves,
AFR and OAFR—both requiring exploration of complete faces (within the
searchable area) and missing a greedy phase—at a slightly higher level. In-
terestingly AFRFI can compete with GOAFR(–) and GAFR(–); the advantage
gained using the “First Intersection” heuristic appears to be neutralized by the
lack of a greedy phase (cf. AFRFI).

The general cost growth for increasing network sizes of all algorithms, par-
ticularly including the ones using bounding ellipses, can be explained by the
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fact that the mean distance (both Euclidean and shortest path) between ran-
domly chosen s and t rises as well and that consequently the expected number
of network nodes contained in the searchable area grows even faster.
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Chapter 9

On Cost Metrics

What some people mistake for the high cost of living
is really the cost of high living.

Doug Larson

In this chapter we will discuss the properties of cost metrics defined according
to Definition 3.2 in the context of geographic routing. In Chapter 3 we proved
that all possible thus defined cost metrics are asymptotically equivalent in the
Ω(1)-model. In this chapter we will first show that this equivalence of all such
cost metrics also holds on unit disk graphs having their node degrees bounded
from above by a constant. It follows that the geographic routing algorithms
presented in Chapter 7 remain asymptotically optimal also if the Ω(1)-model is
replaced by the assumption that the given network graph is a bounded degree
unit disk graph.

This property will however not just be stated as a result per se, but also as
a fact to be used later in the chapter. In particular we will prove in a second
part of the chapter that considering general unit disk graphs—without bounded
degree—the cost functions are divided into two classes: linearly bounded and
super-linear. We will show that employing a backbone construction with bounded
degree the optimality of the algorithms discussed in Chapter 7 can be extended
to general unit disk graphs for linearly bounded cost functions. With super-
linear cost metrics on the other hand, a lower bound graph proves that there
exists no geographic routing algorithm whose cost is bounded with respect to
the cost of a shortest path.

9.1 Bounded Degree Unit Disk Graphs

In Chapter 3 we showed that in the Ω(1)-model the cost of a given path with
respect to any two cost metrics differ at most by constant factors. In the



74 CHAPTER 9. ON COST METRICS

following lemma we will show that a similar property holds in bounded degree
unit disk graphs.

Lemma 9.1. Let c1(·) and c2(·) be cost functions according to Definition 3.2
and let G be a bounded degree unit disk graph with node set V and maximum
node degree ∆. Further let p be a path from s ∈ V to t ∈ V on G such that no
node occurs more than a constant k times in p. We then have

c1(p) ≤ αc2(p) + β

for two constants α and β. For symmetry reasons, c1(p) ∈ Θ(c2(p)) follows.

Proof. Let cd(x) := x be the cost function of the Euclidean distance metric. We
will show that for any cost function c there exist constants α1, β1, α2, and β2

such that
c(p) ≤ α1cd(p) + β1 and (9.1)

c(p) ≥ α2cd(p) + β2. (9.2)

This means that all cost functions are in Θ(cd(p)) and particularly c1(p) ∈
Θ(cd(p)) and c2(p) ∈ Θ(cd(p)), which proves the lemma.

We start with Inequality (9.1). Let c`(x) :≡ 1 be the cost function of the
link distance metric. Now pick a node u from the path p. As u has at most
∆ neighbors and every node is visited at most k times, we leave the disk with
radius 1 around u after at most k∆ + 1 steps when starting at u and walking
along p. Therefore, the total Euclidean distance of any k∆+1 consecutive edges
of p is at least 1. We then have

c`(p) < (k∆ + 1)dcd(p)e < (k∆ + 1)cd(p) + k∆ + 1.

Because cost functions are nondecreasing, we have c(e) ≤ c(1) for any edge e
and any cost function c(·). Therefore we get

c(p) < c(1) · c`(p) ≤ c(1)(k∆ + 1) (cd(p) + k∆ + 1) ,

which proves Inequality (9.1). Note that as soon as the cost function c(·) is
fixed, c(1) is a constant since we required c(x) to be defined for all x ∈ ]0, 1].
In order to obtain Inequality (9.2) we will observe that a path p′ of length
cd(p

′) ≥ 1 has at least one edge e′ of length cd(e
′) ≥ 1/(k∆+1): If p′ consists of

m < k∆ + 1 edges, the longest edge of p′ has at least length 1/m; if p′ consists
of k∆ + 1 or more edges, we use the fact that k∆ + 1 consecutive edges of p
have a total Euclidean length of at least 1. We now partition p into maximal
consecutive subpaths of Euclidean length at most 2. All but the last of these
subpaths have Euclidean length at least 1, and it therefore follows that

c(p) ≥ c

(
1

k∆ + 1

)
·
⌊

cd(p)

2

⌋

> c

(
1

k∆ + 1

)
·
(

cd(p)

2
− 1

)
,

which concludes the proof.
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Note that the geographic routing algorithms presented in Chapter 7 traverse
every edge in the graph at most a constant number of times. If the given graph
is of bounded degree, also every node is visited at most a constant number of
times. Therefore, Lemma 9.1 also applies to the cost expended by a routing
algorithm during its execution.

In analogy to the Ω(1)-model, Lemma 9.1 can be applied to the cost of
optimal paths.

Lemma 9.2. Let G be a bounded degree unit disk graph with node set V . Further
let s ∈ V and t ∈ V be two nodes and let p∗

1 and p∗2 be optimal paths from s to
t on G with respect to the metrics induced by the cost functions c1(·) and c2(·),
respectively. We then have

c1(p
∗
2) ∈ Θ(c1(p

∗
1)),

that is, the cost of optimal paths for different metrics only differ by multiplicative
and additive constants.

Proof. This proof is analogous to the proof of Lemma 3.2. By the optimality of
p∗2, we have

c2(p
∗
2) ≤ c2(p

∗
1). (9.3)

p∗1 and p∗2 are cycle-free, and we can apply Lemma 9.1 with k = 1. We obtain

c1(p
∗
2) ∈ Θ(c2(p

∗
2)) and c2(p

∗
1) ∈ Θ(c1(p

∗
1)). (9.4)

Combining Equations (9.3) and (9.4) yields c1(p
∗
2) ∈ O(c1(p

∗
1)). According to

the optimality of p∗1, we have c1(p
∗
2) ≥ c1(p

∗
1); consequently, c1(p

∗
2) ∈ Θ(c1(p

∗
1))

holds.

An important property employed in the asymptotic optimality proofs in
Chapters 5 and 7 is the fact that in the Ω(1)-model an ellipse (or a circle)
can contain at most a number of nodes linear in the size of its area. With
the following lemma—showing a similar property for bounded degree unit disk
graphs—the optimality proofs also hold if the routing algorithms are executed
on unit disk graphs with bounded node degree.

Lemma 9.3. Let R ⊂ R2 be a two-dimensional convex region with area A(R)
and perimeter p(R). Further, let V be a set of nodes inside R. If the unit disk
graph of V is a bounded degree unit disk graph with parameter ∆ (all degrees
are at most ∆), the number of points in V is bounded by

|V | ≤ (∆ + 1)
8

π
(A(R) + p(R) + π) .

Proof. In order to prove this lemma, we first consider the disks with diameter
1. All nodes inside such a disk are less than 1 apart and are therefore adjacent
in the unit disk graph. Since the number of neighbors of each node is bounded
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Figure 9.1: Covering a convex region with a grid of equally sized disks.

by ∆, each disk with diameter 1 contains at most ∆ + 1 nodes. In order to
give a bound on the number of nodes inside the region R, we therefore have
to find an upper bound on the number of disks with diameter 1 required to
completely cover R. We can cover the whole plane with disks of diameter 1
by placing the disks on an orthogonal grid such that the horizontal and the
vertical distances between the centers of two neighboring disks are 1/

√
2 (see

Figure 9.1). By counting the number of disks intersecting R, we obtain a bound
on the number of disks needed to cover R. We see that all disks intersecting
R are completely inside the region R′, where R′ is defined as the locus of all
points whose distances from R are at most 1; in other words, we add a border
of width 1 to R. Let A′ be the area covered by R′. The number of disjoint disks
with diameter 1 which can be placed inside R′ is bounded by 4A′/π, as the area
of a disk with diameter 1 is π/4. Since in the above defined grid of disks no
point in R2 is covered by more than 2 disks, the number of disks required to
cover R can be bounded by 8A′/π. Thus, the number of nodes in V is at most
(∆ + 1)8A′/π.

In order to obtain the area A′, it is sufficient to consider the case where R
is a convex polygon. The general case then follows by limit considerations. We
get A′ by adding A(R), the area of R, and the area of the border around R.
As illustrated in Figure 9.1, the border can be broken down into rectangles and
sectors of circles. For each side of the polygon R we obtain a rectangle of width
1; and since all the angles of the sectors add up to 2π, the sectors add up to a
disk of radius 1. For A′ we therefore obtain A′ = A(R) + p(R) + π where p(R)
denotes the perimeter of R. This concludes the proof.
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A smaller constant than 8/π can be obtained by placing the disks on a
hexagonal grid and considering the portion of the area which is only covered by
a single disk.

9.2 General Unit Disk Graphs

In this section we will consider the problem of geographic ad-hoc routing on
general unit disk graphs (that is of unbounded degree). As shown in the fol-
lowing, the behavior around 0 divides the cost functions defined according to
Definition 3.2 into two natural classes. The cost functions lower-bounded by a
linear function are called linearly bounded cost functions; the cost functions
which are not bounded from below by a linear function are called super-linear
cost functions.

linearly bounded: ∃m > 0 : c(d) ≥ m · d, ∀ d ∈ ]0, 1],

super-linear: @ m > 0 : c(d) ≥ m · d, ∀ d ∈ ]0, 1].

Of the standard cost measures the link distance and the Euclidean metric are
linearly bounded, whereas the energy metric is super-linear. The lower bound
example which will be presented in Section 9.2.2 exploits the property that
with super-linear cost functions it is possible to construct chains with nodes of
distance approaching zero which allow to cover a finite Euclidean distance “for
free” in the limit.

We will now describe a geographic routing algorithm which is asymptotically
optimal for any linearly bounded cost function. We subsequently show that there
is no geographic ad hoc routing algorithm whose cost is comparable to the cost
of an optimal path for super-linear cost functions.

9.2.1 Linearly Bounded Cost Functions

First we will describe our geographic routing algorithm as it can be applied
to an arbitrary unit disk graph G and for all linearly bounded cost metrics.
In a precomputation phase, a routing backbone GBG is calculated. GBG is a
subgraph of G such that a) GBG is a bounded degree unit disk graph and b)
the nodes of GBG form a connected dominating set of G.1 Consequently, all
nodes of G have at least one neighbor in GBG. The distributed construction of a
subgraph of G with properties a) and b) is described in a number of publications
(for example [3, 40, 107]). Such a construction can be achieved for instance
by having the nodes elect themselves to be non-neighboring dominators on a
first-come-first-serve basis and then connecting these dominators in a second

1Given a graph G = (V, E), a node set D ⊆ V is a dominating set if every node in V is
either in D or has a direct neighbor in D. A dominating set D is connected if every pair of
nodes in D can be connected by a path only using nodes in D.
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phase by bridges, each containing at most two intermediate nodes added to the
dominating set.2

As the backbone contains a dominating set of the underlying graph, every
regular node (a node not in the backbone) can be associated to one of its dom-
inators. Since this can be regarded as a clustering of all regular nodes around
their dominators, we call this graph the Clustered Backbone Graph GCBG. In
order to route a message from a regular node s to a regular node t, the mes-
sage will first be sent to s’s associated dominator and then routed along the
Backbone Graph to t’s associated dominator before finally being forwarded to
t itself. Note that while the Backbone Graph is bounded in degree, this is not
the case for the Clustered Backbone Graph since a dominator can dominate
arbitrarily many other nodes.

The following lemma shows that the length of a route over the backbone is
comparable with the optimal route in the given graph for the link metric.

Lemma 9.4. The Clustered Backbone Graph is a constant-stretch spanner with
respect to the link metric, that is, a best path between two nodes on the Clustered
Backbone Graph is longer than a path between the same nodes in the underlying
unit disk graph by a constant factor only.

Proof. [107, Lemma 5] proves that the hop length of the shortest path between
any two nodes using the Backbone Graph is at most three times (plus an additive
constant 2) the hop length of the shortest path in the original unit disk graph,
which implies the lemma.

This property of the Clustered Backbone Graph does not only hold for the
link distance metric but for all linearly bounded cost functions.

Lemma 9.5. The Clustered Backbone Graph GCBG is an asymptotic constant-
stretch spanner with respect to any linearly bounded cost metric c(·), that is, the
cost of an optimal path on GCBG is only by a constant factor and an additive
constant greater than the cost of an optimal path on the underlying unit disk
graph G.

Proof. Let c`(·) be the link distance metric. By Lemma 9.4 we have a path p′
` on

GCBG such that c`(p
′
`) ∈ Θ(c`(p

∗
` )), where p∗` is an optimal link distance path on

G. Let p∗ denote an optimal path with respect to the cost c(·) on G. We then
have to show that c(p′`) ∈ O(c(p∗)). The Euclidean length of p∗ is cd(p

∗) where
cd(·) denotes the cost function of the Euclidean distance metric. We partition
p∗ into maximal subpaths of length at most 1. Because two consecutive such
subpaths have a total length greater than 1, we get at most d 2 cd(p

∗)e subpaths.
We define the path p′ by replacing each subpath with a direct edge. Note that
all edges of p′ have length at most 1. The link distance cost c`(p

′) of p′ is
upper-bounded by c`(p

′) ≤ 2cd(p
∗) + 1. By the optimality of p∗` , we also have

2The main concepts of this algorithm will be explained in more detail in Section 10.3.
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c`(p
′) ≥ c`(p

∗
` ) ∈ Θ(c`(p

′
`)). And with respect to the metric c(·), each edge of

p′` has cost at most c(1), leading to c(p′`) ≤ c(1)c`(p
′
`). Together, we get

c(p′`) ∈ O(cd(p
∗)) . (9.5)

Again note that c(1) is a constant because c(x) has to be defined for all x∈ ]0, 1].
Since c(·) is a linearly bounded cost function, we have c(x) ≥ m · cd(x) for a
constant m > 0. Therefore also c(p∗) ≥ m · cd(p

∗) holds. Combining this with
Equation (9.5), we obtain

c(p′`) ∈ O(c(p∗)) .

The routing algorithms described in Chapter 7 operate on planar graphs.
As discussed in Chapter 3, we employ the Gabriel Graph to obtain a planar
subgraph of the unit disk graph. We will now show that the Gabriel Graph
has all required properties to provide for asymptotically optimal routing. In
particular, as also shown in Chapter 3, GG ∩ UDG contains an energy-optimal
path, which is the basis of the following lemma.

Lemma 9.6. Let G be a bounded degree unit disk graph with node set V and let
GGG be the intersection of G and the Gabriel Graph of V . Further, we fix two
nodes s ∈ V and t ∈ V . Let c(·) be a cost function and p∗ and p∗GG be optimal
paths with respect to the metric c(·) on G and on GGG, respectively. We then
have

c(p∗GG) ∈ Θ(c(p∗)),

that is, GGG is a constant-stretch spanner for all cost functions.

Proof. GGG contains an optimal path with respect to the metric corresponding
to the cost function c(d) := d2. Applying Lemma 9.2, we see that the cost of
the optimal energy path p∗E is asymptotically equivalent for all cost functions
c(·), that is, c(p∗E) ∈ Θ(c(p∗)).

With these observations we can now apply the GOAFR and GOAFR+ algo-
rithms on general unit disk graphs. In a precomputation phase, the Clustered
Backbone Graph and its intersection with the Gabriel Graph (on the nodes of
GCBG) are constructed. Then routing from the source s to the destination t
works as follows.

- If s and t are neighbors in G (the unit disk graph), the message is directly
sent from s to t; otherwise, s sends the message to one of its dominators
if s is not a dominator itself.

- Then we use GOAFR+ (or GOAFR) to route the message along the
Gabriel Graph edges of the Clustered Backbone Graph. As soon as we
arrive at a node whose Euclidean distance to t is at most one, the message
is directly sent to t. Note that there must be such a node on the boundary
of one of the faces we visit.
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This application of GOAFR(+) on the Clustered Backbone Graph is asymp-
totically optimal for all linearly bounded cost metrics:

Theorem 9.7. Let the cost of the best path between a given source-destination
pair with respect to a given linearly bounded cost metric be c. The cost of
GOAFR(+) as described above with respect to the same metric then is O(c2).
This is asymptotically optimal among all possible geographic ad-hoc routing al-
gorithms for linearly bounded cost metrics.

Proof. Correctness for the case where s and t are direct neighbors follows from
the fact that the cost function is linearly bounded. For the other cases we use
that the intersection of the Gabriel Graph (on the nodes of GCBG) and the
Clustered Backbone Graph is a constant-stretch spanner for linearly bounded
cost functions (Lemmas 9.5 and 9.6) and that GOAFR(+) expends at most
the required worst-case cost on all bounded degree unit disk graphs (Chapter 7
and Section 9.1). Optimality follows, as the Ω(c2) lower bound graph from
Chapter 6 is also a Clustered Backbone Graph.

If the GOAFR and GOAFR+ algorithms are asymptotically optimal on gen-
eral unit disk graphs for linearly bounded cost metrics, the following section will
show that this is not true for super-linear cost functions.

9.2.2 Super-Linear Cost Functions

In the remainder of this chapter we will consider geographic ad hoc routing
on general unit disk graphs for super-linear cost functions. Unlike for linearly
bounded cost functions, the cost of a geographic ad hoc routing algorithm can-
not be bounded by the cost of an optimal path in this case.

Theorem 9.8. Let the best route with respect to a super-linear cost function
c(·) for a given source-destination pair be p∗. There is no (deterministic or
randomized) geographic ad hoc routing algorithm whose cost is bounded by a
function of c(p∗).

Proof. We construct a family of unit disk graphs in the following way (see
Figure 9.2). We choose a positive integer n and place n + 1 nodes on a straight
(say horizontal) line such that two neighboring nodes have distance 0 < d < 1.
Starting with the first node, we mark every b2/dcth node. For every marked
node ui we then place a node vi such that uivi has length 1 and such that all
the new nodes lie on a line which is parallel to the line on which we put the first
n + 1 nodes. This yields k vertical edges of length one. The distance between
two such edges is D = b2/dcd. Note that 1 < D ≤ 2, as we have chosen d to
be smaller than 1. The number of marked nodes (that is the number of vertical
edges) k is then bounded by

k =

⌊
dn

D

⌋
≥
⌊

dn

2

⌋
>

dn

2
− 1. (9.6)
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Figure 9.2: Lower bound graph for super-linear cost functions.

Now we choose an arbitrary marked node (we call it w) and the corresponding
vi. At vi we add two other vertical edges and arrive at node w′ which has
distance 3 from the line with the original n + 1 nodes. Symmetrically to the
original n+1 nodes, we now place another row of n+1 nodes (including w′) on
a horizontal line with distance 3. Figure 9.2 illustrates this construction. We
choose an arbitrary node of the top n+1 nodes for the source s. The destination
t is also chosen arbitrarily from the bottom n + 1 nodes. The optimal route p∗

from s to t then first goes from s to w, then from w to w′, and finally from w′

to t. The cost of p∗ can be bounded by c(p∗) ≤ 2nc(d) + 3c(1).

We want this cost to be constant and therefore choose c(d) = 1/n, yielding
d = c−1(1/n). Note that since c(·) has to be nondecreasing, c−1(·) is well-defined
as long as there are no intervals where c(·) is constant. For those intervals we
define c−1(·) to take any of the possible values. For the cost of the optimal path
c(p∗) we now obtain a constant value (c(1) is a constant!), that is, c(p∗) ∈ Θ(1).
In order to compute the cost of a geographic ad hoc routing algorithm A, we
observe that A has no information about the location of w and therefore has to
test all possible nodes by using the k edges of length 1. For a deterministic A
we can always place w such that it is the last marked node which is tried. For a
randomized A we can place w such that the expected number of required trials
is at least k/2. For the cost c(A) of any geographic ad hoc routing algorithm, we
therefore obtain c(A) ∈ Ω(k)c(1) = Ω(k). Plugging d = c−1(1/n) into Equation
(9.6), we have

k >
1

2
nc−1(1/n) − 1.
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For n approaching infinity we then obtain

lim
n→∞

k ≥ lim
n→∞

1

2
nc−1(1/n) − 1

=
1

2
lim
y→0

c−1(y)

y
− 1

=
1

2
lim
x→0

x

c(x)
− 1 = ∞,

where we substituted y := 1/n in the first step and x := c−1(y) in the second
step. The last limit is ∞ by the definition of c(·), a super-linear cost function,
which implies that limx→0 c(x)/x = 0 if this limit exists. (For convenience we
assume that the limit exists. Otherwise the same result can be achieved by
“tuning” the graph more closely to the cost function.) Therefore, the cost of
any algorithm A is unbounded with respect to the cost of an optimal path p∗,
which has constant cost.



Chapter 10

Geographic Routing

Beyond Unit Disk Graphs

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

Albert Einstein (1879–1955)

Up to this point of this dissertation the analysis of the geographic routing
algorithms has been based on the assumption that the given communication
network is a unit disk graph. As described in Chapter 3, nodes are located
in the Euclidean plane and are assumed to have identical (unit) transmission
radii. Consequently, an edge between two nodes—representing that they are in
mutual transmission range—exists if and only if their Euclidean distance is not
greater than one. On the one hand, clearly, this is a glaring simplification of
reality, since, even if all network nodes are homogeneous, this model does not
account for the presence of obstacles, such as walls, buildings, mountains—or
also weather conditions—, which might obstruct signal propagation. On the
other hand, unit disk graphs are simple enough to allow of strong theoretical
results, such as the routing guarantees discussed in the previous chapters.

In this chapter we will study a graph model, originally introduced in [7],
which is considerably closer to reality. We will maintain the assumption that
all mobile nodes are placed in the plane (that is, they have coordinates in R2).
In a quasi unit disk graph, two nodes are connected by an edge if their distance
is less than or equal to d, d being a parameter between 0 and 1. Furthermore, if
the distance between two nodes is greater than 1, no edge exists between them.
In the range between d and 1, the existence of an edge is not specified.

In this chapter we will first establish—in analogy to Chapter 6—a construc-
tive lower bound for quasi unit disk graphs showing that basically any algorithm
without routing tables requires sending of Ω

(
( c

d )2
)

messages to route from a
source s to a destination t, where c is the length of the shortest path between s
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and t. We will show that, with the aid of a topology control graph structure, a
restricted flooding algorithm is guaranteed not to perform worse and that this
technique is consequently asymptotically message-optimal.

If we additionally make the basic assumptions of geographic routing—attrib-
uting the network nodes with information about their own and their neigh-
bors’ positions and assuming that the message source knows the position of the
destination—, a more subtle approach than flooding of the network is possible.
We will present a combination of greedy routing and restricted flooding. This
yields a routing algorithm that is still asymptotically optimal in the worst case,
but also efficient in the average case, as suggested by the results on average-
case efficiency of geographic ad hoc routing algorithms presented in the previous
chapters. Finally we will show that, if we assume d to be at least 1/

√
2, it is

possible to locally introduce virtual edges and perform the geographic rout-
ing algorithms discussed so far while preserving performance guarantees known
from unit disk graphs.

In the following section we will specify the models and provide definitions
that go beyond Chapter 3. In Section 10.2 we will establish a lower bound
for the message complexity of so-called volatile memory routing algorithms.
Section 10.3 contains the description of the topology control structure forming
the basis for the subsequent algorithms. Section 10.4 provides the analysis of
flooding algorithms with respect to message and time complexity. Section 10.5
discusses the combination of flooding with a greedy approach for geographic
routing, whereas Section 10.6 shows that for large enough d, geographic routing
as presented in the previous chapters can be employed.

10.1 Model

This section provides definitions of the model employed in this chapter where
they have not been presented in Chapter 3. We will first give a formal definition
of our ad hoc network model:

Definition 10.1. (Quasi Unit Disk Graph) Let V be a set of nodes in the
2-dimensional plane R2 and d ∈ [0, 1] be a parameter. The symmetric Euclidean
graph (V, E), such that for any pair of nodes u, v ∈ V

- (u, v) ∈ E if |uv| ≤ d and

- (u, v) /∈ E if |uv| > 1,

where |uv| is the Euclidean distance between the nodes u and v, is called a quasi
unit disk graph (quasi-UDG) with parameter d.

In the subsequent section we will establish a lower bound for the message
complexity of so-called volatile memory routing algorithms. With this model,
nodes are attributed with a short-term memory in which for each message a
constant number of bits may be stored temporarily.
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Definition 10.2. (Volatile Memory Routing Algorithm) The task of a
volatile memory routing algorithm is to transmit a message from a source s to
a destination t on a graph, where each node of the graph holds a memory in
which O(log n) bits may be stored as long as the message is en route, where n
is the number of network nodes.

In particular, this model allows the nodes to store message identifiers—
having a bit length logarithmic in the number of nodes—required for flooding
(cf. Section 10.4).

The second important algorithm model discussed in this chapter is geo-
graphic routing according to Definition 3.4. As stated there, in original ge-
ographic routing a node is allowed to store messages only temporarily before
relaying them. In order to enable an algorithm to employ flooding, this restric-
tion has to be relaxed:

Definition 10.3. (Geographic Volatile Memory Routing Algorithm) A
geographic volatile memory routing algorithm is a volatile memory routing algo-
rithm additionally observing the first three rules of the definition of geographic
routing algorithms (cf. Definition 3.4).

In the previous chapters we discussed routing algorithms sending not more
than one message at a time. In this chapter we will consider algorithms us-
ing message flooding, where several messages can be sent simultaneously. In
order to account for this modified algorithm behavior, we will provide in the
following a concise overview of basic concepts of distributed computing vital for
the understanding of this chapter. More detailed descriptions can be found in
textbooks, such as in [86].

At certain points of the chapter we have to distinguish between the syn-
chronous and the asynchronous model of distributed computation. In the syn-
chronous model, communication delays are assumed to be bounded. As a con-
sequence, it can also be assumed that all processes running on different network
nodes perform their message sending and receiving operations in simultaneous
and globally clocked rounds. In the asynchronous model, message delays are
unbounded. No assumptions can be made on the duration of single process
operations.

Two fundamental measures in distributed computing are message and time
complexity. The message complexity of a distributed algorithm is the total
number of messages sent during its execution. The definition of time complexity
depends on the synchrony model: In the synchronous model, time complexity
is the total number of rounds elapsed between algorithm start and algorithm
termination. In the asynchronous model, such a simple time model cannot
naturally be obtained since the transmission delay of a message is unbounded.
The common solution to this is the assumption that the message delay is at
most one time unit.

Finally, since we consider message complexities in this chapter, we define
the cost of a path according to the link distance metric, that is, the cost of a
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Figure 10.1: Message complexity lower bound for volatile memory routing al-
gorithms on quasi unit disk graphs.

path is the number of edges on the path. Similarly, we consider spanner graphs
with respect to the link distance metric: A graph G′ = (V, E′) is a spanner of a
graph G = (V, E) with stretch factor k if and only if for any pair of nodes (u, v)
the cost of the shortest path on G′ is at most k times the cost of the shortest
path on G.

10.2 A Lower Bound on Quasi Unit Disk Graphs

Before discussing particular routing algorithms, we will present in this section
a lower bound on the message complexity of any volatile memory routing al-
gorithm. In analogy to Theorem 6.1, this is shown constructing a family of
graphs.

Theorem 10.1. Let c be the cost of a shortest path from s to t. There ex-
ist graphs on which any (randomized) volatile memory routing algorithm has
(expected) message complexity Ω(( c

d)2).

Proof. We provide a constructive proof by describing a class of graphs for which
the theorem holds. The basic element used for the construction of these graphs



10.3. TOPOLOGY CONTROL 87

is formed by k nodes (k to be determined later) equidistantly placed on a line,
such that the distance between two adjacent nodes is d+ ε for a small ε > 0 (cf.
vertical chains in Figure 10.1). There exists an edge between every pair of nodes
(u, v), such that (d 1

de − 1) d < |uv| ≤ 1, that is, the nodes are connected by
all the edges with maximum Euclidean length not greater than 1. In addition
there is a head node having an edge to each one of the first d 1

de − 1 nodes on
the line (the head node is located such that all additional edges have length at
most 1). As shown in Figure 10.1, k such vertical chains are placed side by side
with distance d+ ε such that the nodes form a matrix. The head nodes of these
chains are now interconnected in a way that they among themselves have the
same chain structure (uppermost row in Figure 10.1) with their head node (of
second order) denoted by s. The node t—located near the bottom right corner
of the node matrix—is connected to one of the end nodes of exactly one of the
vertical chains by a simple chain of nodes. Note that the constructed graph is
a quasi unit disk graph.

The main property posing a problem for a routing algorithm is that a matrix
column consists of d 1

de − 1 interleaved chains which are only connected via the
head node. (The same also holds for the first matrix row.) Consequently only
one of the neighbors of s leads to h, the head node of the column connected to
t, and only one of the neighbors of h leads to the bottom node connected to
t. Since a volatile memory routing algorithm has no a priori information about
the graph structure, a deterministic algorithm has to explore every matrix node
before finding the path to t. (For a randomized algorithm, t can be connected
to the matrix such that the algorithm has to explore roughly half of the matrix
nodes in expectation.) A volatile memory routing algorithm therefore has to
send Ω(n) messages, where n is the total number of nodes. The optimal path
on the other hand—almost exclusively using edges of length nearly 1—has cost
about 2 k · d, which—together with k ≈ √

n—establishes the theorem.

10.3 Topology Control

In the previous section we introduced a lower bound graph class in which any
volatile memory routing algorithm cannot find the destination with message
complexity less than Ω(( c

d)2). In this section we will now describe how to
obtain a subgraph of a given quasi unit disk graph which forms the basis for our
algorithms matching the lower bound. Similar to the construction presented in
Section 9.2.1, this Backbone Graph features two important properties exploited
for routing: (1) It contains in a given area A at most O

(
A
d2

)
nodes and (2) it is

a O
(
log( 1

d)
)
-spanner.

Given a quasi unit disk graph G, the Backbone Graph is constructed in three
steps. Steps 1 and 2 can be performed by a standard distributed algorithm
(as already mentioned in Section 9.2.1) by having the nodes send dominator

and connector messages. The details of this algorithm are omitted, as such
discussion would go beyond the scope of this dissertation.
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1. The first step consists of a clustering process. We construct a Maximal
Independent Set MIS of the nodes in G. Note that since MIS is an
independent set in G, any two nodes in MIS have distance greater than d
and consequently a given area A contains at most O

(
A
d2

)
nodes in MIS .

For the purpose of routing, the nodes in MIS will later become cluster
heads: Since the nodes in MIS also form a Dominating Set, any node in
G will have at least one node from MIS within its neighborhood and will
choose one of these as its cluster head.

2. In a second step the cluster heads are linked together by connector nodes,
connecting all pairs of nodes in MIS that are at most three hops apart
in G. This results in the Dense Backbone Graph GDBG. Since MIS is a
Dominating Set, the cluster heads can be connected by bridges consisting
of at most two nodes. Furthermore, GDBG is a constant-stretch spanner
of G.

3. GDBG can contain Ω( A
d4 ) nodes in a given area A, which is too many by

a factor of 1
d2 compared to the lower bound. The size of MIS matching

the lower bound, the third step now reduces the number of connecting

bridges between cluster heads. Let G
(v)
DBG denote the graph with node

set MIS and (virtual) edges between all nodes connected by bridges in

GDBG. Our objective is now to construct a subgraph G
(v)
BG of G

(v)
DBG with

O
(

A
d2

)
(virtual) edges within the area A. It eventually follows that the

final Backbone Graph GBG—where the (virtual) edges in G
(v)
BG have again

been replaced by connector nodes and their adjacent edges—contains at
most O

(
A
d2

)
nodes within the area A.1

In order to obtain a graph G
(v)
BG with the desired property, the plane is

divided by a grid into square cells of side length 6. In each cell z all nodes
and edges completely contained within z temporarily form a local network.
(Note that we assume for this operation that the nodes are informed about
their positions.) The number of nodes contained within z is at most
O
(

1
d2

)
. We now apply an algorithm constructing a sparse spanner [4,

86, 87] to reduce the number of edges contained in z to O
(

1
d2

)
.2 This

procedure is repeated three times on grids with their origins shifted by
(3, 0), (0, 3), and (3, 3), respectively, relative to the origin of the first grid
(cf. Figure 10.2). Note that these are local operations since the subgraphs

are of bounded size. The edge set of graph G
(v)
BG is finally formed by the

union of all edges resulting from the edge reduction steps on all four grids.

1Note that this graph GBG is not identical to the Backbone Graph denoted with the same
symbol in Section 9.2.1.

2The mentioned algorithm constructs for a constant κ ≥ 1 an O(κ)-spanner with at most
n1+1/κ edges. Setting κ = log n and since n = 1

d2
, we obtain a graph with the required

properties.
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Figure 10.2: Grid structure employed in the construction of a sparse spanner.

The following lemma now proves the first essential property of this subgraph
of the given quasi unit disk graph.

Lemma 10.2. In a given area A (with constant extension in each direction),
the number of nodes and the number of edges in the Backbone Graph are both
bounded by O

(
A
d2

)
.

Proof. The grids employed for the edge reduction steps are chosen to have two

properties: (1) Every edge in G
(v)
DBG is completely contained in at least one cell

and (2) any region (with constant extension in each direction) is intersected by
at most a constant number of grid cells (for instance a square of side length 3
can be intersected in total by at most 9 grid cells). Property (1) guarantees
that every edge is considered at least with one of the four grids: Together with
the fact that the edge reduction step does not alter the number of components
in a cell subgraph, it follows that the number of components in the complete
graph is not altered either. Since each resulting subgraph contains at most
O
(

1
d2

)
edges and together with Property (2), it follows that also the union of

all remaining edges—that is the number of edges in G
(v)
BG is not greater than

O
(

1
d2

)
for a constant region. The fact that each edge in G

(v)
BG corresponds to at

most two nodes and three edges in GBG and G
(v)
BG having at most O

(
A
d2

)
nodes

for an area A (the nodes in MIS ) finally leads to the lemma.

The second essential property of GBG is shown in the following lemma.
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Lemma 10.3. The Backbone Graph GBG is a spanner of GDBG with stretch
factor O

(
log( 1

d )
)
.

Proof. Every edge in G
(v)
DBG is contained in at least one grid cell and conse-

quently also considered in at least one of the according subgraphs. Since the
edges retained in each subgraph form a O

(
log( 1

d)
)
-spanner (on the subgraph),

this property also holds for the union of all subgraphs, G
(v)
BG. Finally, each edge

in G
(v)
BG resulting in at most three edges in GBG, the lemma follows.

In distributed computing, a distinction is made between the one-hop broad-
cast model and the point-to-point communication model: In the one-hop broad-
cast model, a node can simultaneously send a message to all its neighbors,
whereas in the point-to-point communication model, a message is sent over an
edge to one distinct neighbor. The algorithms described in the remaining sec-
tions of this chapter are assumed to execute on GBG. Since on this graph the
number of nodes and the number of edges are asymptotically equal in a given
area, the two models can be employed interchangeably, depending on whether
we argue over the number of nodes or edges in the graph.

Similar to the backbone routing process in Section 9.2.1, when routing a
message m from a source s′ to a destination t′, the nodes s′ and t′ will in
general not be cluster heads. The complete process of routing therefore consists
of

1. s′ sending m to its associated cluster head s,

2. routing m from s to t, the cluster head associated to t′, and

3. t sending m to t′.

Since steps 1 and 3 incur only constant cost with respect to both message
and time complexity, we exclusively consider step 2 in the remaining part of
the chapter. Whenever mentioning a source s or a destination t we therefore
assume that s and t are cluster heads.

10.4 Message-Optimal Flooding

In this section we will discuss the message and time complexities of the Echo
algorithm on quasi unit disk graphs. For succinctness we only give a short
outline of the algorithm execution; more detailed information can be found for
instance in [18, 86]. The Echo algorithm consist of a flooding phase and an echo
phase.

- The flooding phase is initiated by the source s by sending a flooding
message—containing a time-to-live (TTL) counter τ—to all its neighbors.
Each node receiving the flooding message for the first time decrements
the TTL counter by one and retransmits the message to all its neighbors
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(with the exception of the neighbor it received the message from). In the
synchronous model, this flooding phase constructs a Breadth First Search
(BFS) tree.

- From the leaves of this tree—the nodes where the τ counter reaches 0—
echo messages are sent back to the source along the BFS tree constructed
during the flooding phase. An inner node in the BFS tree can decide
locally when to send an echo message to its parent in the tree by awaiting
receipt of echo messages from all of its children.

By initiating the first flooding phase with τ set to 1 and relaunching a flooding
phase with doubled τ whenever the echo messages indicate that the destination
has not yet been reached, both time and message complexities can be bounded:

Theorem 10.4. Employed on GBG in the synchronous model, the Echo algo-
rithm reaches the destination with message complexity O

(
( c

d )2
)

and time com-

plexity O
(
c · log( 1

d )
)
, where c is the cost of a shortest path between s and t.

This is asymptotically optimal with respect to message complexity.

Proof. The Echo algorithm floods the complete network with message complex-
ity O(m) and time complexity O(D), where m is the number of edges in the
network and D is the diameter of the network. Since no edge in GBG is longer
than 1, all nodes reached with a certain τ lie within the circle centered at s
with radius τ . The number of edges within this circle is bounded by O

(
( τ

d )2
)
.

Note that the destination is reached at the latest for the maximal τ less than
2 · c. Since τ is doubled after each failure, the total number of visited edges is
formed by a geometric series and consequently asymptotically dominated by the
number of edges in the circle with maximum τ , from which the message com-
plexity follows. Asymptotic optimality follows from the lower bound established
in Section 10.2.

The time complexity follows from the fact that the BFS tree constructed
during the flooding phase contains a shortest path from s to t. Since GBG is
a log( 1

d )-spanner of G, the shortest path on GBG, on which the algorithm is
executed, is c · log( 1

d). The time complexity of a single flooding-echo round
being proportional to τ and again the total time complexity asymptotically
being dominated by the maximum τ used, the time complexity follows.

In the asynchronous model, the synchronizer construction introduced in [5]
can be employed.

Theorem 10.5. When employed on GBG in the asynchronous model, the Echo
algorithm reaches the destination with message complexity O

(
( c

d)2 · log3( c
d)
)

and

time complexity O
(
c · log( 1

d ) · log3( c
d)
)
, where c is the cost of the shortest path

between s and t.

Proof. The synchronizer construction introduced in [5] incurs an additional cost
factor of O

(
log3(n)

)
, where n is the number of involved network nodes, with
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respect to both message and time complexity. As in our case the number of
involved nodes is in O

(
( c

d )2
)
, this cost factor is in O

(
log3( c

d )
)
. Plugging in the

above Echo algorithm for the synchronous model yields the lemma.

For geographic routing as discussed in the following section, a variant of
the Echo algorithm can be defined by replacing the time-to-live counter by
a geometric argument: The flooding message is retransmitted only by nodes
located within a circle centered at s with a certain radius r.

Lemma 10.6. The geographic Echo algorithm reaches t with message and time
complexity O

(
( c

d )2
)
, where c is the link cost of the shortest path. This holds for

both the synchronous and the asynchronous model and is asymptotically optimal
with respect to message complexity.

Proof. In contrast to the above Echo algorithm using TTL, all nodes located
within the restricting circle centered at s with radius r participate in the execu-
tion of the geographic algorithm. This circle containing at most O

(
( r

d)2
)

nodes,
the message complexity follows, where the remaining reasoning is analogous to
the one in the proof of Theorem 10.4. The time complexity follows from the
fact that time complexity cannot be greater than message complexity.

10.5 Greedy Echo Routing

Although asymptotically message-optimal, a flooding-based algorithm is pro-
hibitively expensive in most networks for practical purposes. Chapter 7 showed
how this problem can be tackled by combining a correct routing algorithm
(which is guaranteed to find the destination) with a greedy routing scheme. In
this section we will follow this example by describing a geographic volatile mem-
ory routing algorithm that tries to leverage the advantages of a greedy routing
approach with respect to both conceptual simplicity and message-efficiency: In
order to route a message, a node simply forwards it to its neighbor closest to
the destination. As discussed in Chapter 4, greedy routing can however run into
a local minimum with respect to the distance to the destination, that is a node
without any neighbors closer to t. In the algorithm described below, such a local
minimum is overcome by employment of restricted flooding, in particular by the
aid of the geographic Echo algorithm as described in the previous section. In
this section we will therefore refer by Echo to the geographic Echo algorithm.
We denote with Echor the subalgorithm of geographic Echo consisting of the
flooding and the corresponding echo phases for the radius r.

Similar to the algorithms presented in Chapter 7, our algorithm GEcho
combines both greedy routing and flooding in two modes: Generally the message
is forwarded in greedy mode as long as possible. Whenever running into a local
minimum, the algorithm switches to echo mode. In order to keep the cost
of flooding-based echo low, the algorithm tries to fall back to greedy mode
as early as possible. The fallback criterion is chosen such that the combined
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routing algorithm is asymptotically optimal with respect to message complexity.
In particular, the Echo algorithm does not terminate only when finding t, but
already when finding a node v which is significantly closer to t than the local
minimum, as described in Step 2 of the GEcho algorithm:

GEcho The value q is a constant parameter chosen prior to algorithm execu-
tion such that 0 < q ≤ 1.

0. Start at s.

1. (Greedy Mode) Forward the message to the neighbor in G closest to t.
If t is reached, terminate. If a local minimum is reached, continue with
step 2, otherwise repeat step 1 at the next node.

2. (Echo Mode) Execute algorithm Echo starting at the local minimum u
until either reaching t—in which case the algorithm terminates—or finding
a node v, such that |ut| − |vt| ≥ q · r, where r is the currently chosen
radius in Echor, the subalgorithm of Echo using radius r. Proceed to v
and continue with step 1.

In the following we will obtain a statement on the asymptotic complexity of
the algorithm. We will first show that the number of messages sent in greedy
mode is bounded:

Lemma 10.7. The number of messages sent in greedy mode is bounded by
O
(
( c

d )2
)
.

Proof. Let us exclusively consider the sequence U of nodes sending messages in
greedy mode or receiving messages sent in greedy mode during the execution
of the algorithm. Note that the distance to t is strictly decreasing within U .
Since the algorithm stays in greedy mode until reaching a local minimum, U is
partitioned into subsequences U1, U2, . . . , Uk, k ≥ 1 of nodes by the occurrence
of local minima: A local minimum only receives a greedy message without being
able to send it to a subsequent node in greedy mode. Within a subsequence
Ui = u1, u2, . . . , u`i

, `i ≥ 2, any two nodes uj , uj+2 with 1 ≤ j ≤ `i − 2
have distance greater than d (otherwise uj would have sent the greedy message
directly to uj+2). On the other hand also the distance between a local minimum
u`i

and the first node in the following subsequence Ui+1 have distance greater
than d (otherwise u`i

would be not a local minimum). Together with the fact
that all nodes in U are located within the circle C centered at t with radius |st|,
the number of nodes in the total sequence U is therefore bounded by twice the
maximum number of nodes with relative distance greater than d—or likewise
the maximum number of nonintersecting disks of radius d/2—that can be placed
within C. With |st| ≤ c, the lemma follows.

We will now confine ourselves to the number of messages sent in echo mode.
Note that after each round, defined to be one execution of Step 1 or Step 2, the
algorithm is strictly closer to t than before that round.
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Lemma 10.8. For a given r, the subalgorithm Echor is executed at most d |st|
q r −

1e times.

Proof. According to the criterion described in Step 2, an echo round initiated
at node u terminates—unless arriving at t—only if it finds a node v such that
|ut| − |vt| ≥ q · r. For any r (also if at a particular node Echor fails and r is

doubled) such a progress can be made at most d |st|
q r − 1e times, since after each

round the algorithm is strictly closer to t than before.

With this property we can obtain the total number of messages sent in echo
mode during algorithm execution.

Lemma 10.9. The total number of messages sent in echo mode is at most
O
(
( c

d )2
)
.

Proof. We obtain the total number of messages sent in echo mode by summing
up over all nodes ever contained in a circle bounding Echor. Since the number
of nodes contained in a given circular area is asymptotically proportional to
the size of this area, it is sufficient to compute the total area covered by all
Echor bounding circles. Let ri = 2i, i = 1, 2, 3, . . . denote the radii of the
echo-bounding circles. The maximum ri can be found by the observation that
(1) all echo-restricting circles have their centers at a node not farther from
t than s and (2) the circle centered at any node not farther from t than s
having radius 2 c completely contains the shortest path. Since the value of r in
Echor is obtained by doubling, the maximum ri used overall is less than 4 c; the
maximum i reached is consequently dlog(4 c)e. With Ri being the total number
of bounding circles used with radius ri, we obtain

A =

dlog(4 c)e∑

i=0

Ri · πr2
i

for the total covered area A. Using Lemma 10.8 we obtain

A ≤ π ·
dlog(4 c)e∑

i=0

d |st|
q ri

− 1e · r2
i

< π ·
dlog(4 c)e∑

i=0

|st|
q

· ri ≤
(|st|≤c)

π c

q
·
dlog(4 c)e∑

i=0

2i

=
π c

q
·
(
2dlog(4 c)e+1 − 1

)
∈ O

(
c2
)

.

The area A containing at most O
(

A
d2

)
nodes (cf. Section 10.3), the lemma fol-

lows.

In total, the complexity of the GEcho algorithm can be bounded as follows:
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Theorem 10.10. The algorithm GEcho finds the destination with both message
and time complexity O

(
( c

d )2
)
, where c is the link cost of the shortest path.

Proof. The message complexity bound follows directly from the previous two
lemmas. The time complexity bound follows from the fact that time complexity
cannot be greater than message complexity.

Corollary 10.11. The algorithm GEcho is asymptotically optimal with respect
to message complexity.

Proof. Follows from Theorem 10.10 and Section 10.2.

10.6 Large d-Values

This section treats the special case where the parameter d of the quasi unit
disk graph G is d ≥ 1/

√
2. This case has already been considered by in [7].

It is shown there that for d ≥ 1/
√

2, standard geographic routing is possible.
Here we extend their results and present a geographic routing algorithm which is
asymptotically optimal, that is whose cost is quadratic in the cost of an optimal
path (cf. Chapter 6).

The structural difference between quasi-UDGs for d < 1/
√

2 and quasi-
UDGs for d ≥ 1/

√
2 lies in the local environment of intersecting edges. If

d ≥ 1/
√

2, all intersections can be detected locally. This is shown by the
following two lemmas.

Lemma 10.12. Let e = (u, v) be an edge and w be a node which is in the disk
with diameter (u, v). Either u and w or v and w are connected by an edge.

Proof. The following proof is illustrated by Figure 10.3. Because |uv| ≤ 1, the
regions of the points whose distances to u and v are greater than 1/

√
2 do not

intersect inside C (shaded areas in Figure 10.1). Thus either |uw| ≤ 1/
√

2 or
|vw| ≤ 1/

√
2. In the figure this holds for u and w, implying that G contains an

edge between these two nodes.

Lemma 10.13. Let e1 = (u1, v1) and e2 = (u2, v2) be two intersecting edges
in a quasi-UDG G with parameter d ≥ 1/

√
2. Then at least one of the edges

(u1, u2), (u1, v2), (v1, u2), or (v1, v2) exists in G.

Proof. We have to show that one of the four sides of the quadrangle (u1, u2, v1, v2)
is shorter than 1/

√
2. Because the sum of the interior angles of the quadrangle

is 2π, at least one of the angles has to be greater or equal to π/2. Assuming
without loss of generality that this is the angle at node u2, u2 lies in the disk
with diameter (u1, v1), and the lemma follows from Lemma 10.12.

We will now give an overview of the results of [7]. The algorithm consists of
three steps. In a first step, the quasi-UDG G is extended by adding virtual edges.
Whenever there is an edge (u, v) and a node w which is inside the circle with
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Figure 10.3: For d ≤ 1/
√

2, w is either connected to u or to v (cf. proof of
Lemma 10.12.

diameter (u, v), for at least one of the nodes u and v—without loss of generality
let it be u—the distance to w is smaller than or equal to 1/

√
2 (Lemma 10.12),

and therefore u has a connection to w. If there is no edge between v and w,
a virtual edge is added. Sending a message over this virtual edge is done by
sending the message via node u. This process is done recursively, that is, also
if (u, v) is a virtual edge. The graph obtained by adding the virtual edges to G
is called the super-graph S(G). Barrière et al. prove that on S(G) the Gabriel
Graph GG(S(G)) can be constructed yielding a planar subgraph of S(G) (cf.
Chapter 3). Then any geographic routing algorithm guaranteed to reach the
destination is applied on GG(S(G)).

In order to obtain an optimal geographic routing algorithm, we have to
change the algorithm of [7] in two ways: i) The planar graph which we need
for geographic routing should be a constant-stretch spanner and the number of
nodes in a given area A should not exceed O(A). ii) We have to replace the
geographic routing algorithm by a more elaborate variant such as the algorithms
presented in Chapter 7.

One of the bounding factors for the spanning property is given by the re-
cursive depth of the virtual edge construction, that is the length of paths cor-
responding to virtual edges. From [7] we have the following result.
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Lemma 10.14. Let λ be the minimum Euclidean distance between any two
nodes. If d ≥ 1/

√
2, the length of the route in G corresponding to a virtual edge

in S(G) is at most 1 + 1
2λ2 .

Proof. The lemma follows directly from Property 1 in Section 5 of [7].

As shown later in the section, the assumption that there is a minimum
Euclidean distance λ between any two nodes would be sufficient to allow for the
formulation of asymptotically optimal geographic routing algorithms. However,
even without this assumption, but employing the Backbone Graph GBG (cf.
Section 10.3), we obtain a quasi-UDG with bounded degree, a property which
we will prove to be equivalent to the minimum distance assumption.

Precisely, we start by constructing GBG. This gives us a set of dominator
nodes D = MIS and a set of connector nodes C. We transform GBG into a
quasi-UDG G′

BG = (V ′, E′) by setting V ′ = D∪C and by including all possible
edges of E in E′ (all edges between nodes of V ′).3

Lemma 10.15. The degree of each node in the quasi-UDG G′
BG is bounded by

a constant.

Proof. Because the dominator nodes D have distance at least 1/
√

2 from each
other, the number of dominators which are within three hops from a node
v ∈ V ′ is bounded by a constant. Only these dominators can add connector
nodes which are neighbors of v. Each of them can only add a constant number
of connector nodes; therefore the degree of node v is constant.

G′
BG is now used for the Gabriel Graph construction. First, virtual edges

are added as in the algorithm of [7], resulting in a super-graph S(G′
BG). Then

GG(S(G′
BG)) is constructed. In analogy to Lemma 10.14, we can state a bound

on the maximum route length for any virtual edge.

Lemma 10.16. Let G = (V, E) be a quasi-UDG with maximum node degree
∆. If d ≥ 1/

√
2, the length of the route in G corresponding to a virtual edge in

S(G) is at most O
(
∆2
)
.

Proof. Let (u, v) ∈ E be an edge of G. Further let w1, . . . , wk be a sequence
of nodes which recursively force the creation of new virtual edges ei for which
the corresponding route contains (u, v). Let `0 := |uv| and `i be the Euclidean
length of the virtual edge ei (see Figure 10.4 as an explanation). λi is the length
of the edge which together with ei−1 provides the route for ei (λi ≤ d). For the
length `i of the ith virtual edge ei we obtain

`i ≤
√

`2
i−1 − λ2

i =

√
1 − λ2

i

`2
i−1

· `i−1 ≤
√

1 − λ2
i · `i−1.

3Note that G′

BG can contain more edges than GDBG introduced in Section 10.3, as G′

BG
contains all edges between nodes in V ′.
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Figure 10.4: Recursive depth of virtual edges in S(G) (cf. proof of
Lemma 10.16).

The last inequality follows from `i−1 ≤ 1. We therefore have

`k ≤
k∏

i=1

√
1 − λ2

i · `0 ≤
k∏

i=1

√
1 − λ2

i . (10.1)

We define λ := 1/k
∑k

i=1 λi to be the average length of the edges corresponding
to the λi. As we will show in Lemma 10.17, the expression of Equation (10.1)
can be upper-bounded by replacing each λi by λ:

`k ≤
(√

1 − λ2
)k

=
(
1 − λ2

)k/2
. (10.2)

In a quasi-UDG all nodes in a disk with radius d/2 are direct neighbors. There-
fore, when starting at a node u, after at most ∆ + 1 hops, a cycle-free path
must leave the disk with radius d/2 around u. Thus, the sum of the lengths of
∆ + 1 successive edges on a cycle-free path is greater than d/2; in particular,
for d ≥ 1/

√
2 this is a constant. The average edge length of any cycle-free

path is thus at least Ω(1/∆). As illustrated in Figure 10.4, the λi form two
paths. Therefore, the average λi must be in the order of λ ∈ Ω(1/∆). As
(1 − 1/n)n ≤ 1/e, we can set k = 2/λ2 ∈ O

(
∆2
)

in (10.2) and obtain

`k ≤ (1 − λ2)1/λ2 ≤ 1/e ≤ 1/
√

2.

According to the definition of a virtual edge, the length of such an edge ek is
at least `k ≥ 1/

√
2. Accordingly, k cannot be chosen greater than in O

(
∆2
)
,

which concludes the proof.

In Equation (10.2) we used that `k can be upper-bounded by replacing each
λi by the average edge length λ. This is proved in the following lemma:
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Lemma 10.17. Given k real numbers λ1, . . . , λk with |λi| ≤ 1,

k∏

i=1

√
1 − λ2

i ≤
(√

1 − λ2
)k

holds, where λ := 1/k
∑k

i=1 λi.

Proof. To prove this lemma, it is sufficient to show that the inequality holds
for replacement of two values λi and λj by their average. It then follows that
replacing λmin := min λi and λmax := maxλi by λavg := (λmin + λmax)/2

does not make the product
∏k

i=1

√
1 − λ2

i smaller. Repeated application of this
substitution of λavg for λmin and λmax to the newly obtained set of λi values
results in a chain of inequalities in which λmin and λmax (in every respectively
updated set of λi values) converge to λ (defined to be the average of all initial

λi values) and at the end of which stands . . . ≤
(√

1 − λ2
)k

.
We will first show that

√
1 − λ2

i

√
1 − λ2

j ≤ 1 − λ
′2

ij , (10.3)

where λ
′

ij :=
√

(λ2
i + λ2

j )/2. In other words—setting xi := λ2
i and xj := λ2

j—

we show that
√

1 − xi

√
1 − xj ≤ 1 − (xi + xj)/2. Squaring this equation and

subtracting the left hand side from the right hand side, we obtain

0 ≤ x2
i

4
− xixj

2
+

x2
j

4
=

(xi − xj)
2

4
,

which holds for any real xi and xj and therefore implies the correctness of
Equation (10.3).

Defining λij := (λi + λj)/2, subtraction of λ
2

ij from λ
′2

ij leads to

λ
′2

ij − λ
2

ij =
λ2

i

4
− λiλj

2
+

λ2
j

4
=

(λi − λj)
2

4
≥ 0,

the last inequality holding again for all real λi and λj , which implies λ
2

ij ≤ λ
′2

ij .
Together with Equation 10.3,

√
1 − λ2

i

√
1 − λ2

j ≤ 1− λ
′2

ij ≤ 1 − λ
2

ij

holds, which proves that the product
∏k

i=1

√
1 − λ2

i does not become smaller af-
ter replacement of both λi and λj by λij . Consequently this also holds for λmin,
λmax, and λavg , which—together with the observation made at the beginning
of the proof—establishes the lemma.

Having thus completely proved the correctness of Lemma 10.16, it can now
be employed to show that shortest paths are longer on GG(S(G′

BG)) than on
G by at most a constant factor.
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Lemma 10.18. The Gabriel Graph GG(S(G′
BG)) is a spanner for the quasi-

UDG G.

Proof. From Lemma 10.16 we see that the virtual edges only impose a constant
factor on the cost of a path. We can therefore proceed as if all virtual edges
were normal edges of G. Further, the Gabriel Graph construction retains an
energy-optimal path (see Lemma 3.3). As the average edge length of S(G′

BG) is
constant (cf. proof of Lemma 10.16), the number of hops and the energy cost of
a path only differ by a constant factor. Therefore, the minimum energy path is
only by a constant factor longer than the shortest path connecting two nodes.
Further details are analogous to the considerations in the previous chapters
concerning cost metric equivalence on unit disk graphs.

We can now state the main result of this section.

Theorem 10.19. Let G be a quasi unit disk graph with d ≥ 1/
√

2. Applying
OAFR, GOAFR, or GOAFR+ (cf. Chapters 5 and 7) on GG(S(G′

BG)) yields
a geographic routing algorithm whose cost is O

(
c2
)
, where c is the cost of an

optimal path. This is asymptotically optimal.

Proof. As G can be the unit disk graph—setting d := 1—, the lower bound
follows from the lower bound for unit disk graphs in Chapter 6. The number
of nodes as well as the number of edges of GG(S(G′

BG)) in a given area A
is proportional to A; therefore the O

(
c2
)

cost also directly follows from the
respective analyses in Chapters 5 and 7.

10.6.1 Alternative Construction

We conclude the section on quasi unit disk graphs for d ≥ 1/
√

2 with the
description of an alternative construction of a planar graph which can be used to
perform geographic routing. By Lemma 10.13, all edge intersections of a quasi-
UDG with d ≥ 1/

√
2 can be detected locally (in one communication round).

Instead of the virtual edges/Gabriel Graph construction, we can define virtual
nodes at all intersections of two edges. These virtual nodes are managed by
the endpoints of the intersecting edges; sending a message from or to a virtual
node means sending a message from or to a (non-virtual) neighbor of the virtual
node. If this is applied on G′

BG, we obtain a planar graph (by definition!) with
only O(A) nodes in any given area A. Because this planar graph is a spanner,
we obtain a geographic routing algorithm with cost O

(
c2
)

by applying AFR,
GOAFR, or GOAFR+.



Chapter 11

How to Learn About the

Destination Position

A sailor without a destination cannot hope for a favorable wind.
Leon Tec

If you don’t know where you are going, any road will take you there.
Lewis Carroll (1832–1898), in ‘Alice’s Adventures in Wonderland’

The two fundamental assumptions made for geographic routing are (1) that
every node is informed about its own and its neighbors’ positions and (2) that
the source of a message knows the position of the destination.

Depending on the considered scenario, the first assumption is more or less
justified. Considering the rescue team scenario, for instance, it is very likely that
rescuers are equipped with Global Positioning System (GPS) receivers, as the
availability of position information is crucial in rescue and emergency situations
regardless of its potential use for geographic routing. In car fleet networks, a
second frequently proposed scenario for ad hoc networks, a node’s own position
information can be considered present almost for free, a currently increasing
number of cars being equipped with GPS receivers present as a component of
built-in navigation systems. Where employment of GPS is not possible—GPS
requires an unobstructed line-of-sight to a considerable portion of the sky—or
where dependence on an external system is not desired, a second approach to
the acquisition of position information is worth mentioning: There have been
numerous proposals for systems which aim at estimating the relative position of
nodes based on the presence of certain anchor nodes which are informed about
their positions [79, 82, 99]. These approaches employ trilateration—a node de-
termining its position based on distance estimates obtained from received signal
strengths or from measured signal arrival time differences—or triangulation—
position inference based on measured signal arrival angles. In the absence of
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anchor nodes knowing their positions, a similar approach computes “virtual co-
ordinates” of the nodes such that embedding the nodes in the Euclidean plane
according to these coordinates results in a network whose neighborhood struc-
ture corresponds (as closely as possible) to the topology in the given network
graph [9, 76, 96].

In general, it can be stated that there exist important scenarios where the
scenario itself implies the presence of information about the position of a net-
work node’s own position. In such scenarios information about a node’s own
position—and, assuming that this information can be exchanged among neigh-
boring nodes, also about the position of neighbors in the network—the first
assumption appears to be legitimate.

The second fundamental assumption of geographic routing—the source of a
message being informed about the position of the destination—appears to be a
more intricate issue. In the following we will discuss a selection of perspectives
and approaches with respect to this second assumption.

Again, certain scenarios are conceivable where assuming the presence of
knowledge about the destination position appears to be unproblematic. In par-
ticular in “geocasting” [60, 81], the destination of a message is not addressed
as a specific network node, but as a geographic region; depending on the cir-
cumstances, all or a subset of the nodes located in that region are the intended
message recipients. In this sense, the second basic assumption of geographic
routing holds as a consequence of the chosen scenario.

In most scenarios, however, the destination of a message is required to be
addressable as an individual entity. In a generic sense, the task of providing
node location information in an ad hoc network is subsumed under the term
“location service”. Location services in principle offer the two operations of
publishing and looking up the location of a given node.

A simple location service could consist in an initial phase—launched if the
message source has no or outdated information about the position of the in-
tended destination—where the network is flooded with a request message by
having every node receiving that message for the first time rebroadcast it among
its neighbors. When the message arrives at the destination, it can reply by send-
ing its current position to the original source (whose position is included in the
request message). In order not to unnecessarily flood the whole network, a
technique with exponentially increasing time-to-live values—similar to the pro-
cedure described in Section 10.4—can be applied. After this initial request-reply
cycle, both the source and the destination are mutually informed about their
positions. If nodes are moving, position updates can later be piggybacked to
messages exchanged between the source and the destination in order to refresh
the position information stored at the respective communication partners. In
the presence of moving network nodes and provided that a given pair of nodes
exchanges messages frequently enough, this piggybacking technique can be em-
ployed as an optimization regardless of the initial position lookup approach.

Another location service could be designed along the lines of the solution
chosen for Mobile IP [90, 91], where, simply put, communication with a mobile
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station takes place via a home agent, which is informed and regularly updated
about how and in which physical network the mobile node can currently be
reached. Similarly, for every node in an ad hoc network, a fixed physical loca-
tion can be defined which later acts—for instance adopted by the node currently
nearest to that location—as a rendezvous point both for position publication
or updates sent by the mobile node and for position lookup requests issued by
message sources trying to contact the considered mobile node. As the “home
location” is fixed and known in advance, both the publish and lookup opera-
tions can employ geographic routing. In contrast to Mobile IP, where due to
several reasons not only connection setup but also subsequent communication
takes place via the home agent, with geographic routing—once the source is
informed about the destination position—actual communication will proceed
directly between the source and the destination.

The problem of a fixed home location attributed to a node is that the route
distance between the source and the home agent as well as the distance between
the home agent and the destination can happen to be much longer than the
distance between the source and the destination. In other words, the cost of both
the publish and the lookup operations may stand in no relation to the actual
distance between the source and the destination. This issue is addressed in the
GLS Grid Location System [69]. GLS defines a set of globally known hierarchical
grids overlaid on the network area, where every grid cell of a given hierarchy
level contains four cells of the next lower hierarchy level. Every node publishes
its position to a specific node in each of the three nearest sibling cells on every
hierarchy level. This publishing process takes place using geographic routing
via intermediate nodes whose positions are known owing to the grid structure.
Also as a consequence of this structure, position information is distributed less
and less densely with increasing distance from the considered node. The lookup
operation takes place in a similar manner as publishing, starting from the source
and searching—by means of geographic routing—specific nodes in neighboring
sibling cells on increasing hierarchy levels until finding a node informed about
the destination position. The main benefit of the Grid Location System is that
in many cases the effort expended for the lookup operation corresponds to the
distance between the source and the destination.

Bounding the cost of the publish and lookup operations even in worst-case
node configurations and motion patterns has been achieved by the Locality-
Aware Location Service LLS [1]. Similar to GLS, LLS itself employs geographic
routing and uses sets of hierarchical grids. In contrast to GLS, however, every
destination is attributed its own set of aligned hierarchical grids. On every hi-
erarchy level, a node stores position pointers at the four corners of the grid cell
in which it is located, or more precisely at the node nearest to the respective
corner. As in GLS, the density of informed nodes decreases with growing dis-
tance from the destination. The lookup operation proceeds in a similar way as
the publish operation, by querying the corners of the cells in which the source is
located on increasing hierarchy levels until a position pointer to the destination
is found; the destination can subsequently be found by following the previously
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published position pointers. LLS provides two cost guarantees: First, the cost
of the lookup operation is proportional to the distance between the source and
the destination. Second, (except for initialization) the cost of the publish oper-
ation is proportional to the distance a moving node has covered since its latest
publishing.

If node mobility incurs additional cost in the above systems and is gener-
ally considered a negative factor, last encounter routing [45] aims at leveraging
the effect of node mobility. In particular, it exploits the fact that information
can be diffused within the network by moving nodes. Unlike the above loca-
tion services, last encounter routing does not publish position information by
sending messages to specific storage nodes. Instead, every node keeps a local
database storing for every other node the place and time it has last encountered
that node. The Exponential Age SEarch algorithm EASE is based on this en-
counter information. Starting at the source—and assuming for succinctness of
explanation that the source met the destination some period of time T ago—,
EASE searches the nodes around its current position until finding a node v that
met the destination significantly later than the source, particularly at most a
period of time T/2 ago. Using geographic routing, the message proceeds to the
position where v has last met the destination, in an optimization of the original
algorithm trying to collect newer encounter information on its way there. Once
the message reaches a node without any newer destination position information,
this procedure is iterated by restarting a search around the current location of
the message. Notably, last encounter routing does not incur transmission of
information distribution messages but is exclusively based on the information
diffusing effect of node mobility. Notably, applicability of the principle of last
encounter routing is not restricted to geographic routing, this approach also
being practicable in networks where no position information is available [31].

It can be summarized that not only there exist various scenarios whose
condition themselves justify the basic assumptions of geographic routing, but
that numerous approaches have been proposed and analyzed with the goal of
explicitly legitimizing these assumptions.



Chapter 12

Geographic Routing and

Mobility

Never confuse movement with action.
Ernest Hemingway (1899–1961)

The dynamic characteristics of ad hoc networks are based on two important
factors: On the one hand, wireless links are inherently less stable than wired
ones; on the other hand, network nodes are in many scenarios potentially mo-
bile. The analysis of the geographic routing algorithms in the previous chapters
assumes that routing occurs much faster than network dynamics. Technically,
the consequence of this assumption is that the network graph remains static
throughout the execution of the considered routing algorithm. While it appears
reasonable to assume so for networks consisting of relatively few nodes, mobil-
ity and edge dynamics can become a non-negligible issue in large-scale ad hoc
networks.

As in the previous chapters, differentiation between average-case and worst-
case considerations appears to be reasonable also in the context of mobility
and dynamics of ad hoc networks. If it is almost always difficult to formulate
what should be understood by “average-case” behavior of a system, this inher-
ent difficulty is particularly obvious as regards edge dynamics or node mobility
patterns in ad hoc networks. What is a typical link quality characteristic of a
wireless connection? What does typical motion of a network node look like?
These are questions that need to be answered for the study of average-case net-
works. While some answers can be given to the first of these questions based on
physical models of signal propagation, finding an answer to the second question
appears to be more difficult, particularly as no large-scale ad hoc networks are
in operation yet. A common approach to this problem is the definition of a node
movement pattern, such as the random waypoint model—where nodes choose
a random destination and move there on a straight line with an also randomly
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chosen velocity, repeating this procedure as soon as reaching the destination—,
a Brownian motion model—where nodes repeatedly take small steps in random
directions—, or a random walk on a grid or a similar discretization of the Eu-
clidean plane. A different approach could consist in focusing on scenarios where
real-world motion patterns are available, although not (yet) in the context of
ad hoc networks. A typical example for such an approach would be the car fleet
ad hoc network scenario, where car motion patterns are present from traffic
analysis and where the cars could later be “equipped” with radio devices, for
instance for the purpose of simulation.

Greedy Routing as described in Chapter 4 not only promises to be an effi-
cient routing technique in dense networks, but particularly in ad hoc networks
with average-case node mobility. Greedy Routing can to a certain extent be
compared with source routing, the source addressing the message with the des-
tination position. Compared to traditional source routing—where the source
specifies the complete route to be taken by the message and where absence of
a single node therefore breaks the route—, Greedy Routing can be expected
to be significantly more resilient to moving intermediate nodes: As long as
the destination remains relatively static, it will be reached (almost) regardless
of mobility of nodes located between the source and the destination. In this
sense, also the GOAFR and GOAFR+ algorithms discussed in Chapter 7 can
be made more resilient to average-case node mobility—while worst-case node
mobility is an issue of its own and will be discussed later. These algorithms,
as they are described in Chapter 7, rely on a visited face boundary to remain
topologically static throughout its traversal. In particular this means that—in
a degenerate case—a single node, having transferred the message along a face
boundary when moving slightly and consequently leaving the considered face
boundary, can prevent any of the above algorithms from operating correctly. In
many cases the algorithm will succeed in continuing towards the destination if
the notion of “visiting a node for a second time” is replaced by “visiting a re-
gion around a node for a second time”, albeit not always being able to preserve
its performance guarantees. In a similar spirit, restricted flooding (cf. Chap-
ter 10) can be combined with GOAFR(+), for instance to find a destination
having recently changed its location. The necessity and effectiveness of such
measures can however not be assessed in a general sense and highly depend on
the considered node mobility pattern.

The aim when considering worst-case graph dynamics—in contrast to average-
case dynamics—would be to guarantee that a routing algorithm always reaches
the destination, in a first attempt even regardless of its cost. Closer consid-
eration however shows that worst-case node mobility can bring about a host
of virtually unsolvable problems. Not only “unreasonably degenerate” cases
such as arbitrarily fast nodes “abducting” the message from the remainder of
the network, but also less artificial examples, such as island forming processes
as illustrated in Figure 12.1, have to be excluded in order to make worst-case
mobility accessible to analysis. Furthermore, models traditionally employed for
the analysis of dynamic graph structures [32] do not lend themselves to the pur-
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Figure 12.1: If the bridge node v moves north after being traversed by the
routed message (also in northern direction), the dashed edge may disappear
due to its increasing length, and consequently the message will be isolated on
the newly formed network island containing v.

pose of modeling dynamic ad hoc networks, as these models study insertion and
deletion of single nodes or edges and thus only insufficiently reflect the charac-
teristics of ad hoc networks. It appears that the study of ad hoc networks with
worst-case node mobility forms a classic instance of the dilemma of finding a
model which on the one hand reflects reality and on the other hand admits of
an analysis beyond trivialities.

At first sight, a model where network nodes are static and exclusively edges
can dynamically appear or disappear during the execution of an algorithm seems
to be a good first step towards a dynamic ad hoc network model.1 A more
careful consideration of this model however leads to the conclusion that similar
effects as the above island forming can occur. To allow of reasonable analysis,
graph dynamics, be it edge dynamics or node mobility, have to be described in a
restrictive manner. For instance, it could be demanded that edge dynamics are
such that a subset of all edges remain in the graph for a certain period of time
during algorithm execution. This however does not appear to solve the problem.
Requiring for example that at all times the current location of the message is
connected to the part of the network containing the destination does not avoid
island forming, as the message can be isolated with alternatingly appearing and
disappearing “bridge” edges connecting the (virtual) island to the remainder of
the graph. Strengthening this requirement, demanding a spanning tree of the
network to remain in the graph throughout algorithm execution, on the other
hand helps to ensure that the message reaches the destination, appears however
to be an unrealistic assumption.

1Interestingly, this corresponds to a possible model for an urban area automobile ad hoc
network scenario on a higher level of abstraction, where network nodes reflect street intersec-
tions and edges stand for streets connecting the intersections for communication depending
on the current traffic, that is the presence of communication relay nodes.
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In summary, modeling of mobility in ad hoc networks appears to currently be
an issue with many yet unanswered questions. While scenario-driven simulation
based on real-world mobility patterns is probably the most reasonable approach
for the study of average-case mobility in ad hoc networks, it appears to be
unclear what a model should look like which reflects the characteristics of a
mobile ad hoc network and simultaneously admits of algorithm analysis with
worst-case mobility.
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Topology Control





Chapter 13

Topology Control:

An Introduction

The national budget must be balanced. The public debt must be reduced; the
arrogance of the authorities must be moderated and controlled. Payments to

foreign governments must be reduced if the nation doesn’t want to go bankrupt.
People must again learn to work instead of living on public assistance.

Cicero (106 BC – 43 BC)

In a very general sense, topology control can be considered the task of—given
a communication network graph—constructing a subgraph with certain desired
properties. This type of topology control was employed in several occasions in
the first part of the dissertation, for instance constructing a planar subgraph for
geographic routing, generating a routing backbone with bounded degree, and
controlling the number of nodes or edges in a given area. The XTC algorithm
presented in Chapter 14 adopts this notion of topology control, analyzing the
question of how a subgraph structure with provable properties, such as graph
connectivity, low node degree, planarity, or the spanner property, can be con-
structed by means of a light-weight algorithm, particularly attempting to do
without worrisome unrealistic assumptions.

The subsequent chapters will move their focus to a more specific understand-
ing of topology control. In particular, energy being among the most critical
resources in ad hoc networks, topology control will be considered a method to
reduce energy consumption. The basic mechanism employed to this end con-
sists in having the network nodes reduce their transmission power levels in a
coordinated and controlled manner. On the one hand, nodes can thus save en-
ergy directly, by transmitting messages with lowered power and reducing the
energy thereby consumed. Also from a more collaborative perspective, the total
energy consumed when sending a message over several short edges is lower than
when transmitting it directly from the source to the destination, as the energy
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required to send a message over a wireless link grows at least quadratically with
the length of the link. More importantly, however, reducing transmission power
and thus the extension of transmission ranges can contribute to reduction of in-
terference in the network. Topology control in this sense also indirectly lowers
energy consumption by reducing interference, the probability of message colli-
sion, and consequently the number of retransmissions. At the same time, the
transmission ranges may not be made too small, as the network could lose con-
nectivity and prevent proper communication. Topology control can therefore
be considered a trade-off between energy conservation and the preservation of
vital network properties.

A third perspective is reflected in that sometimes also the construction of
node clusters and dominating sets of nodes is considered topology control. Apart
from Chapter 14, however, this second part of the dissertation will be restricted
to the study of topology control based on transmission power reduction.

If interference reduction has often been mentioned as one of the main goals
of topology control, previous work (with few exceptions) has generally stated
interference to be lowered implicitly, in particular as a consequence of low node
degree of the constructed topology. In this dissertation we will attempt to
analyze this statement in depth. Specifically, a first step towards this end
consists in defining clearly what is understood by interference. Chapter 15
comprises such a definition of an explicit interference model and a discussion
showing that almost all previously proposed topology control algorithms—even
if constructing topologies with bounded degree—do not always effectively reduce
interference.

The interference model defined in Chapter 15 is based on the number of
nodes affected by communication over a given link. In other words, this model
focuses on the sending process of message transmission. It can be argued that
such a perspective puts the cart before the horse, as interference and in particu-
lar message collisions actually occur at the intended receiver of a message. Such
a receiver-centric interference model will be discussed in Chapter 16 in the con-
text of data gathering in sensor networks and will be extended for application
in general ad hoc networks in Chapter 17.

A different approach to the issue of interference reduction will be taken
in Chapter 18. Besides defining a model of interference in cellular networks,
this chapter will formalize the task of lowering interference as a combinatorial
optimization problem tackled by linear programming. Although the context of
cellular networks go beyond the scope of this dissertation in a strict sense, we
believe that this approach deserves being discussed, as it augments the previous
chapters by a new perspective on interference reduction.

Interference models forming a key point of this second part of the disserta-
tion, Chapter 19 will try to admit a “look behind the scenes”, showing that a
plethora of interference models can be defined, the most reasonably justifiable
ones of which having been analyzed in the preceding chapters.

Finally, it is to be emphasized that this part of the dissertation will present
various approaches to the task of reducing interference in ad hoc and sensor
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networks, particularly focusing on interference models in graph representations
of networks. Many questions remain yet unanswered. In particular, the conse-
quences and effects of our theoretical models and analytical studies with respect
to practical networks is predictable with difficulty only. We consider our work
to be a first step towards understanding the complex interplay between inter-
ference and energy efficiency in sensor networks.

Related Work

The assumption that nodes are distributed randomly in the plane according to
a uniform probability distribution formed the basis of pioneering work in the
field of topology control in ad hoc networks [47, 101].

Later proposals adopted constructions originally studied in computational
geometry, such as the Delaunay Triangulation [48], the minimum spanning
tree [94], the Relative Neighborhood Graph [11], or the Gabriel Graph [97].
Most of these contributions mainly considered energy-efficiency of paths pre-
served by the resulting topology, whereas others exploited the planarity prop-
erty of the proposed constructions for geographic routing.

The Delaunay Triangulation and the minimum spanning tree not being com-
putable locally and thus not being practicable, a next generation of topology
control algorithms emphasized locality. The CBTC algorithm [109] was the first
construction to simultaneously focus on several desired properties, in particular
being an energy spanner with bounded degree. This process of developing local
algorithms featuring more and more properties was continued, partly based on
CBTC, partly based on local versions of classic geometric constructions such
as the Delaunay Triangulation [71] or the minimum spanning tree [70]. One of
the most recent such results is a locally computable planar constant-stretch dis-
tance (and energy) spanner with constant-bounded node degree [108]. Another
thread of research takes up the average-graph perspective of early work in the
field; [10] for instance shows that the simple algorithm choosing the k nearest
neighbors works surprisingly well on such graphs.

Yet another aspect of topology control is considered by algorithms trying to
form clusters of nodes. Most of these proposals are based on (connected) domi-
nating sets (cf. Related Work in Chapter 2) and focus on locality and provable
properties. Cluster-based constructions are commonly regarded a variant of
topology control in the sense that energy-consuming tasks can be shared among
the members of a cluster.

Topology control having so far mainly been of interest to theoreticians, first
promising steps are being made towards exploiting the benefit of such techniques
also in practical networks [58].

Where the XTC algorithm [110] discussed in Chapter 14 focuses on topol-
ogy construction based on minimal assumptions about the capabilities of nodes
and signal propagation characteristics, the subsequent chapters turn their at-
tention to interference. As mentioned earlier, reducing interference—and its
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energy-saving effects on the medium access layer—is one of the main goals of
topology control besides direct energy conservation as a consequence of trans-
mission power restriction. Astonishingly however, all the above topology control
algorithms at the most implicitly try to reduce interference. Where interference
is mentioned as an issue at all, it is maintained to be confined at a low level as
a consequence of sparseness or low degree of the resulting topology graph.

A notable exception to this is [74] defining an explicit notion of interference.
Based on this interference model between edges, a time-step routing model and
a concept of congestion is introduced. It is shown that there are inevitable trade-
offs between congestion, power consumption and dilation (or hop-distance). For
some node sets, congestion and energy are even shown to be incompatible.

The interference model proposed in [74] is based on current network traffic.
The amount and nature of network traffic however highly depends on the chosen
application. Since usually no a priori information about the traffic in a network
is available, a static model of interference depending solely on node constella-
tions is consequently desirable. Such a traffic-independent notion of interference
was introduced in [16] and will be presented in Chapter 15. As we will show,
the above statement that graph sparseness or small degree implies low inter-
ference is misleading. The interference model described in Chapter 15—further
analyzed in [75]—builds on the question of how many nodes are affected by
communication over a given link. As will also be discussed in more depth, this
sender-centric perspective can however be accused to be somewhat artificial and
to poorly represent reality, interference occurring at the intended receiver of a
message. Furthermore, this interference measure will be shown to be susceptible
to drastic effects even if single nodes are added to or removed from a network.

An attempt to correct for this deficiency was made in [37], which will
be presented and discussed in Chapter 16. As we will show, this work de-
fines a receiver-centric concept of interference in the context of data-gathering
structures in sensor networks. The issue of energy efficiency in sensor net-
works [2, 20, 27]—particularly extending network lifetime—has been mainly
studied with respect to optimal sensor placement and energy-efficient routing.
Recently also the fact that certain types of sensed data allow for aggrega-
tion at sensor nodes [44] and the existence of redundancy in acquired infor-
mation [21, 105]—for instance correlation between sensed data depending on
the distance between sensors—has been considered.

The approach originally presented in [104] and discussed in Chapter 17 goes
beyond sensor networks by defining and employing a suitable robust interference
model for the analysis of topology control in ad hoc networks in general.

Chapter 18 will address interference in cellular networks by formulating and
attempting to solve a combinatorial optimization problem [63]. Interference is-
sues in cellular networks have been studied since the early 1980s in the context
of frequency division multiplexing: The available network frequency spectrum
is divided into narrow channels assigned to cells in a way to avoid interference
conflicts. In particular, two types of conflicts can occur, adjacent cells using
the same channel (cochannel interference) and insufficient frequency distance
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between channels used within the same cell (adjacent channel interference).
Maximizing the reuse of channels avoiding these conflicts was generally studied
by means of the combinatorial problem of conflict graph coloring using a mini-
mum number of colors. The settings in which this problem was considered are
numerous and include hexagon graphs, geometric intersection graphs (such as
unit disk graphs), and planar graphs, but also (non-geometric) general graphs.
In addition, both static and dynamic (or on-line) approaches were studied [80].
The fact that channel separation constraints can depend on the distance of cells
in the conflict graph was studied by means of graph labeling [51]. The prob-
lem of frequency assignment is tackled in a different way in [33] exploiting the
observation that in every region of an area covered by the communication net-
work it is sufficient that exactly one base station with a unique channel can be
heard. As mentioned, all these studied models try to avoid interference conflicts
occurring when using frequency division multiplexing. In contrast, the problem
described in Chapter 18 assumes a different approach in aiming at interference
reduction by having the base stations choose suitable transmission power levels.

The problem of reducing interference is formalized in Chapter 18 in a com-
binatorial optimization problem named Minimum Membership Set Cover. As
suggested by its name, at first sight its formulation resembles closely the long-
known and well-studied Minimum Set Cover (MSC) problem, where the number
of sets chosen to cover a collection of given elements is to be minimized [54].
That the MMSC and the MSC problems are however of different nature can
be concluded from the following observation: For any MSC instance consisting
of n elements, a greedy algorithm approximates the optimal solution with an
approximation ratio at most H(n) ≤ ln n + 1 [54], which has later been shown
to be tight up to lower order terms unless NP ⊂ TIME(nO(log log n)) [34, 72]
(cf. Chapter 18 for details). For the MMSC problem in contrast, there ex-
ist instances where the same greedy algorithm fails to achieve any nontrivial
approximation of the optimal solution.
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Chapter 14

Lightweight Topology

Control

He who would travel happily must travel light.
Antoine de Saint-Exupéry (1900–1944)

The currently best proposals of topology control structures feature an impressive
collection of properties. Maybe the foremost drawback of these algorithms is
however that they require many unrealistic assumptions: First, most algorithms
assume that all the nodes know their exact positions. Second, the algorithms
assume that the world is flat and without obstacles to the propagation of radio
signals. In this chapter we will present the XTC1 topology control algorithm
that works i) without position knowledge and ii) even in a mountainous and
obstructed environment. Surprisingly, the XTC algorithm features many of the
relevant properties of topology control while being simpler than most previ-
ous proposals. Not being based on unrealistic assumptions, XTC is probably
among the topology control algorithms lending themselves most for practical
implementation.

For two communicating ad hoc network nodes u and v, the energy con-
sumption of their communication grows at least quadratically with their dis-
tance. Having one or more relay nodes between u and v therefore helps to
save energy. Among the primary targets of a topology control algorithm is to
abandon long-distance communication links and instead route a message over
several small (energy-efficient) hops. For this purpose, each node in the ad hoc
network chooses a ”handful” of ”close-by” neighbors ”in all points of the com-
pass” (the details being explained later). Clearly, nodes cannot abandon links

1To date, the inventors of the algorithm have not yet been able to agree on the meaning
of the letter “X” in “XTC”. The candidate list comprises terms such as “exotic”, “extreme”,
“exceptional”, or “exemplary”, but also “extravagant” or even “extraterrestrial”. Consensus
has however been achieved concerning the pronunciation of the algorithm name.
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to ”too many” far-away neighbors in order to prevent the ad hoc network from
being partitioned or the routing paths from becoming non-competitively long.
In general, there is a trade-off between network connectivity and sparseness.

Let the graph G = (V, E) denote the ad hoc network before running the
topology control algorithm, with V being the set of ad-hoc nodes, and E repre-
senting the set of communication links. There is a link (u, v) in E if and only if
the two nodes u and v can communicate directly. Running the topology control
algorithm will yield a sparse subgraph Gtc = (V, Etc) of G, where Etc is the
set of remaining links. The resulting topology Gtc should have the following
properties:

Property 1 (Symmetry) The resulting topology Gtc should be symmetric, that
is, node u is a neighbor of node v if and only if node v is a neighbor of node u.

Asymmetric communication graphs are impractical because many communi-
cation primitives become unacceptably complicated. A simple acknowledgement
message confirming the receipt of a message, for example, is already a nightmare
in an asymmetric graph [92].

Property 2 (Connectivity) Two nodes u and v are connected if there is a path
from u to v, potentially through multiple hops. If two nodes are connected in
G, then they should still be connected in Gtc.

Although a minimum spanning tree (MST) is a sparse connected subgraph,
it is often not considered a good topology since close-by nodes in the original
graph G might end up being far away in Gtc (G being a ring, for instance).
Therefore Property 2 is usually strengthened:

Property 2+ (Spanner) For any two nodes u and v, if the optimal path between
u and v in G has cost c, then the optimal path between u and v in Gtc has cost
f(c). If f(c) is bounded from above by a linear function in c, the graph Gtc is
called a spanner with linearly bounded stretch.

As described in Chapter 3, different cost metrics can be studied in the con-
text of ad hoc networks. In this chapter the Euclidean distance and the energy
metric will be considered as introduced in Definition 3.2. Remember that for
both metrics the cost of a path is defined to be the summed up cost of all links
in the path.

As mentioned, the primary target of a topology control algorithm is to aban-
don long-distance neighbors, or more formally:

Property 3 (Sparseness) The remaining graph Gtc should be sparse, that is, the
number of links should be in the order of the number of nodes: |Etc| ∈ O(|V |).

This reflects that not too many close-by nodes must be chosen, which can
be expected to reduce interference and thus to save energy in average-case net-
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works. Since there still might be some nodes with many neighbors (for instance
a star graph), also Property 3 features an improved version.

Property 3+ (Low Degree) Each node in the remaining graph Gtc has a small
number of neighbors. In particular, the maximum degree in the graph Gtc

should be bounded from above by a constant.

Since connectivity and sparseness run against each other, topology control
has been a thriving research area. In addition to the properties 1, 2, and 3,
often secondary targets can be found. For instance it is popular (and often for
free) to require the resulting graph to be planar in order to allow for geographic
routing as discussed in the first part of this dissertation.

This chapter features three major contributions. First, it is agreed upon
that the subgraph Gtc should not be computed by a heavyweight global al-
gorithm, but instead with a distributed algorithm. It is often argued that an
algorithm—in order to be able to cope with mobility—should not only be dis-
tributed but even local : Each node is allowed to exchange messages with its
neighbors a few times whereafter it must decide which links it wants to keep.
Many naive topologies, such as the minimum spanning tree, can provably not be
computed locally and are therefore not realistic. To the best of our knowledge,
we present the fastest algorithm so far, where each node only communicates
with its neighbors twice.

A second often made assumption is that the ad hoc network nodes are repre-
sented by points in a Euclidean plane. Two nodes are connected in the original
graph G if and only if their Euclidean distance is at most 1 (a normalized trans-
mission radius), resulting in a unit disk graph (cf. Definition 3.1). As good a
first step towards understanding ad hoc network algorithms the employment of
unit disk graphs may be, this model is not practical, as it is based on several
assumptions:

i) All nodes are homogeneous.

ii) Antennas are perfect isotropic radiators, such that all transmission radii
are equal.

iii) Attenuation is uniform, that is, the Euclidean plane is flat and free of
blocking objects, such as walls. Radio propagation is as in vacuum.

Especially Assumption iii) is questionable in any realistic environment. We be-
lieve that ad hoc network algorithms should work, or in other words be correct,
also in a more realistic environment that goes beyond the unit disk graph. While
Chapter 10 displays an attempt to generalize the unit disk graph, this chapter
even allows the original communication graph G not to comply with any of
the above assumptions. Instead, G is a general graph without any geometric
assumptions. For instance—as opposed to many other algorithms—XTC also
works correctly if nodes are located in three-dimensional space, as in a building.
When studying efficiency (not correctness), analytically and by simulation, we
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will make geometric assumptions to prove stronger results that compare better
to related work. To the best of our knowledge we present the first topology
control algorithm that works for general graphs.

A third assumption that is commonly made is that the nodes have detailed
information about their neighbors. It is often assumed that all the nodes know
their exact coordinates in the plane, for instance by means of a global posi-
tioning system (GPS). The most notable exception is the cone-based topology
control (CBTC) algorithm [109], where nodes conclude information about their
neighbors merely based on their relative signal strength and the signal arrival
angle. It is in this third respect that this chapter’s main contribution lies. For
the correctness of the algorithm it is sufficient that the network nodes order
their neighbors according to a general concept of link quality.

In a sense, the results presented in this chapter can be considered a paradigm
shift in topology control. Where recent research tried to improve existing algo-
rithms by enhancing them with various new features (and thus rendering the
algorithms more complicated), we will present an algorithm that is simpler,
faster, and works without unrealistic assumptions.

This chapter is organized as follows: After providing preliminary definitions
in Section 14.1, we will describe the XTC algorithm in Section 14.2. For illus-
tration, Section 14.3 will prove XTC’s properties when employed on Euclidean
and unit disk graphs. The behavior of the algorithm on general weighted graphs
is the subject of Section 14.4. The subsequent section will provide an evaluation
of XTC on average-case random graphs.

14.1 Preliminaries

This section will provide formal definitions of basic concepts essential for the
understanding of this chapter.

In a weighted graph G = (V, E), every edge (u, v) ∈ E is attributed a weight
ωuv. When referring to a weighted graph, we assume throughout this chapter
that the weights are symmetric: ωuv = ωvu.

The nodes of a Euclidean graph are assumed to be located in a Euclidean
plane. Furthermore the edge weight of an edge (u, v) is defined to be ωuv = |uv|,
where |uv| is the Euclidean distance between the nodes u and v. Note that the
definition of Euclidean graphs does not contain a statement on the existence of
certain edges.

Strongly related to edge weights is the cost of an edge. The cost of an edge
c(u, v) can be considered to represent the effort an algorithm is required to
expend in order to send a message over (u, v). The cost metrics we will study in
this chapter correspond to the cost definition in Chapter 3, including the most
popular link, Euclidean, and energy metrics as well as the definition of the cost
of a path.
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14.2 XTC Algorithm

In this section we will describe our topology control algorithm XTC. The algo-
rithm consists of three main steps:

I) Neighbor ordering,

II) neighbor order exchange, and

III) edge selection.

In the first step, each network node u computes a total order ≺u over all its
neighbors in the network graph G. From an abstract point of view, this order
is intended to reflect the quality of the links to the neighbors. A node u will
consider its neighbors in G (in the third step of the algorithm) according to
≺u ordered with respect to decreasing link quality: The link to a neighbor
appearing early in the order ≺u is regarded as being of higher quality than the
link to a neighbor placed later in ≺u. A neighbor w appearing before v in order
≺u is denoted as w ≺u v. For illustration we will assume in Section 14.3 that
≺u corresponds to the order of the neighbors’ Euclidean distances from u. It
is however conceivable that the neighbor order reflects a much more general
notion of link quality, such as signal attenuation or packet arrival rate.

In the second step, the neighbor order information is exchanged among all
neighbors. Typically, a node u broadcasts its own neighbor order while receiving
the orders established by all of its neighbors.

During the third step, which does not require any further communication,
each node locally selects those neighboring nodes which will form its neigh-
borhood in the resulting topology control graph, based on the previously ex-
changed neighbor order information. For this purpose, a node u traverses ≺u

with decreasing link quality: “Good” neighbors are considered first, “worse”
ones later. Informally speaking, a node u only builds a direct communication
link to a neighbor v if u has no “better” neighbor w that can be reached more
easily from v than u itself.

Although the XTC algorithm is executed at all nodes, the detailed descrip-
tion as shown in the above box assumes the point of view of a node u. Lines 1
and 2 correspond to Steps I) and II). Lines 3-11 define Step III) in more detail:

First the two neighbor sets Nu and Ñu are initialized to be empty. Now the
neighbor ordering ≺u established in Line 1 is traversed in increasing order. In
Line 7, the neighbor order ≺v of the currently considered neighbor v is exam-
ined: If any of u’s neighbors w already processed appears in v’s order before u
(w ≺v u), node v is included in Ñu (Line 8); otherwise v is added to Nu (Line
10).

After completion of the algorithm, the set Nu contains u’s neighbors in the
topology control graph GXTC . More formally, the edge set EXTC of the graph
GXTC = (V, EXTC) is EXTC = {(u, v)| ∃u : v ∈ Nu}.

In the algorithm as described above, each node constructs in Step I) a total
order over all its neighbors in G. In a variant of the algorithm a node u could
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XTC Algorithm

1: Establish order ≺u over u’s neighbors in G

2: Broadcast ≺u to each neighbor in G; receive orders from all neighbors

3: Select topology control neighbors:
4: Nu := {}; Ñu := {}
5: while (≺u contains unprocessed neighbors) {
6: v := least unprocessed neighbor in ≺u

7: if (∃w ∈ Nu ∪ Ñu : w ≺v u)

8: Ñu := Ñu ∪ {v}
9: else

10: Nu := Nu ∪ {v}
11: }

apply a growing radius technique—starting with the “best” neighbor—to decide
on a neighbor v’s inclusion in Nu or Ñu—based on ≺v—immediately when iden-
tifying v as the next “worse” neighbor found so far. Applying such interleaving
of steps I), II) and III), u could terminate earlier, that is, as soon as having
found “enough” neighbors (where Theorem 14.3 would provide a termination
criterion in the case of G being a unit disk graph).

Property 1 as described in the introduction of this chapter, that is symmetry
of the resulting graph, often has to be enforced by topology control algorithms
(for instance by a propose-accept cycle) [106, 109]. The following theorem shows
that, in contrast, XTC is guaranteed to “automatically” compute a graph with
Property 1 without any assumptions whatsoever on the neighbor orders:

Theorem 14.1 (Symmetry). The edges in GXTC are symmetric: A node u
includes a neighbor v in Nu if and only if v includes u in Nv.

Proof. Assume for the sake of contradiction that u includes v in Nu (Assump-
tion 1), whereas v does not include u in Nv (Assumption 2). According to

Assumption 2, there exists a node w ∈ Nv ∪ Ñv when v decides to include u
in Ñv in Line 8 (w ≺v u), such that w ≺u v (Line 7). Since w ≺u v holds,

w ∈ Nu ∪ Ñu at the point of time when u decides about v’s inclusion in Nu; to-
gether with w ≺v u, it follows that v is included in Ñu, which is a contradiction
to Assumption 1.

14.3 XTC on Euclidean Graphs

The main purpose of this section is to provide an illustration of the graph
resulting from the topology control algorithm. We make three assumptions:

i) Every node u has a unique identifier idu. The identifiers are comparable,
that is, there exists a total order “<” defined over the set of all identifiers.
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ii) The nodes are placed in a Euclidean plane.

iii) Every edge (u, v) is attributed a weight defined to be the triple

(|uv|, min(idu, idv), max(idu, idv)),

where |uv| is the Euclidean distance between nodes u and v. The neigh-
bor orders computed in Step I) of the XTC algorithm are based on the
lexicographic order2 of these edge weights, that is

w ≺u v ⇐⇒ (|uw|, min(idu, idw), max(idu, idw))

< (|uv|, min(idu, idv), max(idu, idv))

Assumption i) is common in the context of distributed algorithms and viable
for practical networks. Assumption ii)—although often made in order to model
ad hoc networks—is less realistic; nevertheless we adopt this assumption in this
section for the sake of illustration.

Assumption iii) can for instance be realized by having each node initially
transmit a control signal together with a message containing information on
the control signal transmission power. With the additional assumption that
the employed antennas are isotropic and that the signal can propagate without
obstruction, the control signal receivers can compute an order over the Euclidean
distances to the senders from the receive and transmission power levels. If all
nodes send with equal transmission power, the order ≺u is even equivalent to
the relative order of the received signal strengths sensed at a node u.

The following theorem proves Property 2 as defined in the introduction of
this chapter, that is connectivity of the topology control graph GXTC . Note that
this theorem does not require G to be a unit disk graph; G being a Euclidean
Graph is sufficient.

Theorem 14.2 (Connectivity). Given a Euclidean Graph G, two nodes u and
v are connected in GXTC if and only if they are connected in G. Consequently,
the graph GXTC is connected if and only if G is connected.

Proof. Since XTC exclusively considers edges in G, u and v can only be con-
nected if they are connected in G. In order to prove the opposite direction of the
above equivalence, we assume for contradiction that GXTC contains at least one
pair of non-connected nodes that are connected in G. Consider the pair u, v with
minimum value (cd(p

∗(u, v)) , min(idu, idv), max(idu, idv))—where cd(p
∗(u, v))

is the Euclidean cost of the shortest path connecting u and v on G—among all
pairs of nodes u and v that are not connected in GXTC but connected in G. The
nodes u and v must be connected directly by the edge (u, v) in G; otherwise a dif-
ferent pair of nodes w, x lying on the path connecting u and v would have a value

2The lexicographic order of two triples is defined according to the order of the first compo-
nents, or—if the first components are equal—according to the second components, or—if both
the first and the second components, respectively, are equal—according to the third compo-
nents. Formally: (a1, b1, c1) < (a2, b2, c2) ⇐⇒ (a1 < a2) ∨ ((a1 = a2) ∧ (b1 < b2)) ∨ ((a1 =
a2) ∧ (b1 = b2) ∧ (c1 < c2)).
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u v

πα 3<

w

Figure 14.1: As described in the proof of Theorem 14.3, if α < π/3 and |uv| ≤
|uw|, it follows that |vw| < |uw|.

cd(p
∗(w, x)) less than cd(p

∗(u, v)), and u, v would not be the pair with minimum
cd(p

∗(u, v)). Since the edge (u, v) is in G, the cost of the shortest path connect-
ing u and v is their Euclidean distance: cd(p

∗(u, v)) = |uv|. According to the

assumption, u includes v in Ñu, that is, at the moment u decides so, there is a
node w ∈ Nu∪Ñu such that w ≺v u. Since w ∈ Nu∪Ñu, we also have w ≺u v, or
(|uw|, min(idu, idw), max(idu, idw)) < (|uv|, min(idu, idv), max(idu, idv)). Since
(|uv|, min(idu, idv), max(idu, idv)) is the least such value for any pair of non-
connected nodes in GXTC , and as u and w are connected in G (w is contained
in ≺u), u and w must also be connected in GXTC . For the same reason and
since w ≺v u, also v and w must be connected in GXTC , which contradicts the
assumption that u and v are not connected in GXTC .

For the remainder of this section we will now assume that G is a unit disk
graph. The following theorem proves that in this case GXTC does not only
feature sparseness (Property 3 as described in the introduction of this chapter),
but even bounded degree (Property 3+):

Theorem 14.3 (Bounded Degree). Given a unit disk graph G, GXTC has
node degree at most 6.

Proof. We prove that no two adjacent edges in GXTC enclose an angle less
than π/3, from which the theorem follows. Assume for contradiction that the
two edges (u, v) and (u, w) enclose an angle α < π/3 at node u. Furthermore
let v be u’s neighbor that was included in Nu before w, that is v ≺u w or
(|uv|, min(idu, idv), max(idu, idv)) < (|uw|, min(idu, idw), max(idu, idw)). Since
|uv| ≤ |uw| and α < π/3, it follows that |vw| < |uw| (cf. Figure 14.1). G being
a unit disk graph, also the edge (v, w) is in G, as |vw| < |uw| ≤ 1. Consequently

v ≺w u, implying that u included w in Ñu, which is however a contradiction to
the assumption that the edge (u, w) is in GXTC .

As an additional property, GXTC contains no two intersecting edges, which
allows its employment for geographic routing as discussed in the first part of
this dissertation.
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Figure 14.2: The quadrangle uvwx in the proof of Theorem 14.4 contains at
least one angle β ≥ π/2. It follows that if G is a unit disk graph, the edge (u, w)
is not contained in GXTC .

Theorem 14.4 (Planarity). Given a unit disk graph G, GXTC is planar, that
is, it contains no two intersecting edges.

Proof. Suppose for the sake of contradiction that the two edges (u, w) and
(v, x) intersect in GXTC (cf. Figure 14.2). Of the quadrangle uvwx at least one
angle has size not less than π/2. Let this angle be without loss of generality β
adjacent to node v. Since β ≥ π/2, |uv| < |uw| and |vw| < |uw|. When node

u considered the inclusion of w in Nu, v was consequently already in Nu ∪ Ñu

and v ≺w u, causing u to include w in Ñu, which is however a contradiction to
the assumption that the edge (u, w) is in GXTC .

In the following theorem we will describe the relationship between GXTC

and the Relative Neighborhood Graph of G [102]. The Relative Neighborhood
Graph is defined to contain all edges (u, v) ∈ G, such that there exists no node
w with |uw| < |uv| ∧ |vw| < |uv| (cf. Figure 14.4(a)).

Theorem 14.5. Given a unit disk graph G, GXTC is a subgraph of the Relative
Neighborhood Graph computed on G. If G contains no node having two or
more neighbors at exactly the same distance, GXTC is identical to the Relative
Neighborhood Graph.

Proof. The subgraph relationship follows from the fact that if GXTC contains
an edge (u, v), there exists no node w with |uw| < |uv| ∧ |vw| < |uv|, which
implies that (u, v) is also contained in the Relative Neighborhood Graph RNG.
Furthermore XTC excludes an edge (u, v) that is preserved in RNG—there is
no w with |uw| < |uv| ∧ |vw| < |uv|—only if there exists a node w with
w ≺u v∧w ≺v u, which is in total possible only if |uw| = |uv| and the enclosing
angle ∠vuw ≤ π/3 or |vw| = |uv| and the enclosing angle ∠uvw ≤ π/3.
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v

u

w

Figure 14.3: The edge weights ωuv , ωuw, and ωvw reflect that signal propagation
between u and w is impaired by a physical obstacle (wall, building, hill): ωuv <
ωuw and ωvw < ωuw. In contrast to typical topology control algorithms based
on node positions, XTC does not include the edge (u, w) in its resulting graph,
but exploits that a better connection exists via node v.

14.4 XTC on General Weighted Graphs

In realistic ad hoc networks, nodes are not located in a plane and received signal
strength does not only depend on the distance to the sender, but above all on
physical obstacles between sender and receiver. As one of the main properties
of such real ad hoc networks, however, symmetry of physics is preserved: The
attenuation factor of a link between two network nodes is identical to signal
propagation in either direction. Accordingly, an ad hoc network can be mod-
eled by a weighted graph, where each edge is attributed a (symmetric) weight
(cf. Section 14.1) representing the corresponding signal attenuation factor (see
Figure 14.3). More abstractly, the edge weights can be considered qualities of
links between node pairs. Assuming isotropic antennas, a node can obtain its
neighbor order with a technique similar to the one described in Section 14.3
by sending a control signal. If the edge weights are considered link quality in-
dicators in a more general sense, these weights and consequently the neighbor
ordering can be established by exchange of probe messages.

In this section we will show that the XTC algorithm computes a connected
topology even in general weighted graphs (with symmetric edge weights) mod-
eling realistic ad hoc networks. We assume that the neighbor order of a node
u—as employed in the algorithm—corresponds to the order over the weights of
the edges adjacent to u.

Theorem 14.6 (Connectivity). Given a general weighted graph G, two nodes
u and v are connected in GXTC if and only if they are connected in G. Conse-
quently, the graph GXTC is connected if and only if G is connected.

Proof. This theorem can be proved in analogy to the proof of Theorem 14.2,
substituting edge weights for Euclidean distances.
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(b)

v u vu

(a)

Figure 14.4: Definitions of the Relative Neighborhood Graph (a) and the Gabriel
Graph (b). In the Relative Neighborhood Graph, the edge (u, v) exists if and
only if the shaded lune (excluding its boundary) does not contain a third node.
In the Gabriel Graph, the edge (u, v) exists if and only if the shaded circle
(including its boundary) does not contain a third node (cf. Figure 3.1).

What furthermore can be stated with respect to GXTC ’s sparseness (Prop-
erty 3)—if G is a general weighted graph—is that GXTC cannot contain cycles
of length three:

Theorem 14.7. Given a general weighted graph G, GXTC has girth 4, that is,
the shortest cycle in GXTC is of length 4.

Proof. It is sufficient to show that GXTC does not contain any cycles of length
3. We suppose for contradiction that there exists such a cycle through the
nodes u, v, and w, that is, all three edges (u, v), (v, w), and (u, w) are contained
in GXTC . Let us further assume without loss of generality that w ≺u v, or
ωuw < ωuv. At the point of time when u considered the inclusion of v in Nu, w
had already been processed. This means that—since (u, v) is in GXTC—u ≺v w
must hold, and consequently also ωuv < ωvw. Applying the same argument from
v’s perspective yields that also v ≺w u or ωvw < ωuw must hold, which provokes
a contradiction.

Although GXTC has girth 4, it does not feature sparseness: Constructed on
a general weighted graph G, GXTC can have degree Θ(n) and contain Θ(n2)
edges. An example for such a graph is Kn/2,n/2, the complete bipartite graph
with n/2 nodes in each partition set, in which each node has degree n/2 and
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which consequently contains n2/4 edges in total. Presumably, network graphs
resulting from real ad hoc networks will however be considerably sparser.

14.5 Average-Case Evaluation

In this section we will present the properties of the topology control graph GXTC

on average-case Euclidean graphs, that is on graphs generated by randomly
and uniformly placing nodes in a given field. In particular, we will study the
spanner and bounded degree properties—Properties 2+ and 3+ as stated in the
introduction of this chapter—in the context of average graphs. The bounded
degree property having been shown to hold for GXTC in Section 14.3, we will
demonstrate in this section that also the spanner property holds on average
graphs. Since GXTC , being a planar graph, lends itself to geographic routing,
we will furthermore examine the influence of GXTC on such routing algorithms.

In order to model the physical network in our average-case evaluation, we
will adopt the unit disk graph definition, in which an edge exists if and only if
its Euclidean length is less than one unit. To assess the average-case properties
of GXTC , we will compare it with the Gabriel Graph [38]. Being one of the most
prominent topology control structures on the one hand, the Gabriel Graph is
on the other hand particularly well suited for comparison with respect to the
spanner property since it is not only a spanner (with constant stretch factor)
with respect to the energy metric, but even contains the energy-minimal path
between any pair of nodes.

As already described in Chapter 3, the Gabriel Graph is—similarly to the
Relative Neighborhood Graph—defined such that the presence of an edge (u, v)
depends on whether a certain geometric region contains a third node w or not.
In the case of the Gabriel Graph this geometric region is the disk (including its
boundary) having the line segment uv as a diameter (cf. Figure 14.4(b) opposing
the Gabriel Graph definition to the Relative Neighborhood Graph).

Figure 14.5 illustrates the Gabriel Graph and GXTC constructed from a
sample unit disk graph. The figure shows well that, informally speaking, areas
with high edge density in the unit disk graph are thinned out by topology
control while connectivity of the graph is preserved. This tendency can be
observed even more clearly for GXTC than for the Gabriel Graph.

As studied in percolation theory and also addressed in Section 8.1, network
density is an important parameter influencing the properties of average-case
networks. The transition between the two extremes with respect to network
density—very low densities, where hardly any pair of nodes is connected, and
very high densities, where disconnection of the network is extremely improbable—
takes place in a relatively narrow critical density range roughly around 5 nodes
per unit disk. In order to account for this effect, we acquired our measurements
and simulation results over a spectrum of network densities. For each consid-
ered network density, the number of nodes corresponding to the density was
randomly and uniformly placed on a square field with side length 20 units.
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Figure 14.5: The unit disk graph G (top), the Gabriel Graph of G (center),
and GXTC of 1400 nodes placed randomly and uniformly on a square field of
20 units side length.



130 CHAPTER 14. LIGHTWEIGHT TOPOLOGY CONTROL

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15

Network Density [nodes per unit disk]

S
tr

et
ch

 F
ac

to
r

Figure 14.6: Stretch factors of GXTC with respect to the energy (solid) and the
Euclidean (dotted) metric as well as the stretch factor of the Gabriel Graph with
respect to the Euclidean metric (dashed), all over a network density spectrum.
Mean values are plotted in black, maximum values in gray. The Gabriel Graph
contains the energy optimal path; its stretch factor curve (≡ 1, light gray) is
plotted for reference.

14.5.1 Spanner Property

In order to study the spanner property of GXTC on randomly generated net-
works, we calculated the stretch factor of a pair of nodes u, v

s(u, v) :=
c(p∗tc(u, v))

c(p∗(u, v))
,

that is the ratio between the cost of the shortest path between u and v on the
topology control graph and of the shortest path on the unit disk graph G. For
each considered network density, we generated 2000 networks and also randomly
selected a pair of nodes u, v to calculate s(u, v). GXTC and the Gabriel Graph
were employed as topology control graphs. Edge and correspondingly path cost
measures were considered with respect to Euclidean edge length cd(·) and to
energy cE(·) with an attenuation exponent 2.

Figure 14.6 depicts our results over the considered network density range.
Since the Gabriel Graph contains the energy-minimal path connecting any pair
of nodes, its stretch factor with respect to the energy metric s(u, v) ≡ 1 is
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Figure 14.7: Node degree of GXTC (solid), the Gabriel Graph (dashed), and
the unit disk graph (dotted) over network density spectrum. Mean values are
plotted in black, maximum values in gray.

plotted for reference. Although GXTC is not an energy spanner with constant
stretch in a strict sense, the results show that this graph has a good energy-
spanning property on average graphs: The corresponding mean values of the
stretch factor do not exceed 1.06, while even the maximum values stay below
1.9. With respect to the Euclidean metric, the mean value curves for both
the Gabriel Graph and GXTC remain—throughout the density range—almost
constant at low values of below 1.1 and 1.25, respectively; the corresponding
maximum curve for GXTC is less stable than for the Gabriel Graph, but only
rarely reaches values above 3.

In summary, the results show that GXTC is a good average-case spanner
with respect to the Euclidean metric, but especially for the energy metric.

14.5.2 Bounded Degree Property

GXTC being shown to have degree at most 6 in Theorem 14.3, we will study
here its average-case behavior with respect to its node degree by comparison
with the corresponding behavior of the Gabriel Graph. The results for this
comparison were obtained similarly as for the spanner property. From each of
the 2000 random networks—generated for each considered network density—, a
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randomly chosen node was examined regarding its degree in the unit disk graph,
the Gabriel Graph G, and GXTC .

Figure 14.7 shows the computed results. Mean and maximum degree values
for the unit disk graph rise in accordance with network density. The mean
degree curves for GXTC and the Gabriel Graph increase slowly for very low
densities, remain however—once beyond the critical density range—constant
at approximately 2.5 and 3.9, respectively. Although inherently less stable,
the maximum degree numbers for GXTC and the Gabriel Graph stay within a
narrow range from 4 to 5 and between 7 and 9. The low degree values of GXTC

suggest its suitability to reduce interference in average-case ad hoc networks.

14.5.3 Performance of Geographic Routing

GXTC ’s planarity property enables it to be employed for geographic routing.
We will study its influence on geographic routing again by comparison with the
Gabriel Graph.

For this purpose, the results were obtained by simulation of the GOAFR+

algorithm (cf. Chapter 7) on GXTC and the Gabriel Graph of 2000 randomly
generated networks for each considered network density. As in Section 8.3,
the performance measure for the algorithm A routing from a source s to a
destination t on a network G (s and t having been chosen randomly from G) is
defined as

costA(G, s, t) :=
sA(G, s, t)

c`(p∗` (G, s, t))
,

that is the number of steps taken by the algorithm normalized by the hop length
of the shortest path from s to t on G.

Figure 14.8 shows the typical bell-shaped characteristic of the mean algo-
rithm cost curves around the critical density range (cf. Chapter 8). The critical
network density range is additionally identified by the sharp increase of the
network connectivity rate, that is the frequency with which a randomly chosen
node pair at a given network density is connected. The figure depicts that above
all in the critical density range the performance of the GOAFR+ algorithm on
GXTC is slightly worse than on the Gabriel Graph. In light of the cost curve of
the well-known GFG/GPSR routing algorithm (see Section 8.3), however, the
degradation of GOAFR+ employed on GXTC compared to the Gabriel Graph
can be considered negligible.

14.6 Concluding Remarks

In this chapter we introduced the XTC topology control algorithm. Compared
to previous proposals for topology control, XTC has three main advantages.
First, it is not only simple, but also local: Every node communicates with
its neighbors in the network not more than twice. Second, unlike many other
topology control algorithms, XTC does not require the network graph to be a
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Figure 14.8: Mean cost of the GOAFR+ routing algorithm on GXTC (solid), on
the Gabriel Graph (dotted), and of the GFG/GPSR algorithm on the Gabriel
Graph (dashed). For reference, the network connectivity rate is plotted against
the right y axis.

Euclidean Graph, let alone a unit disk graph. Also for the global case of the net-
work graph being a general weighted graph, XTC proves correct and computes a
resulting subgraph maintaining connectivity. Third, while previously proposed
topology control algorithms commonly assumed that exact node and neighbor
position information is available, XTC does not require this assumption. The
algorithm works with the general notion of a quality order over a node’s neigh-
bors. Whereas correctness of the algorithm can be shown even without any
strict assumptions on this neighbor order, the resulting topology features the
bounded degree property provided that the neighbor order corresponds to Eu-
clidean distances and that the network is a unit disk graph. On average-case
random unit disk graphs, the resulting graph also shows good spanner proper-
ties, above all with respect to the energy metric. Being planar, the proposed
topology is finally also suitable for geographic routing.

In this introductory topology control chapter, we discussed a lightweight
topology control algorithm which tries to operate independently of unrealistic
assumptions. The XTC algorithm can be considered to follow the example of
“classic” topology control in that it provably features several beneficial prop-
erties. In the next and subsequent chapters we will go beyond this approach
and focus explicitly on one fundamental issue in wireless networks, often main-
tained to be solved or at least tackled implicitly by previously proposed topology
control structures: interference.
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Chapter 15

Does Topology Control

Reduce Interference?

I have never let my schooling interfere with my education.
Mark Twain (1835–1910)

As already mentioned in the introduction of this second part of the dissertation,
one very general definition of topology control is to—given a communication
network—construct a subgraph with certain beneficial properties. The previous
chapter forms an example of a topology control algorithm following these lines,
while specially considering omission of unrealistic assumptions and simplicity
of construction.

In this and the subsequent chapters we will focus on an equally popular con-
ception of topology control: Very simply put, the main goal of topology control
is often understood to be reduction of energy consumed by the network nodes in
order to extend network lifetime. Since the amount of energy required to trans-
mit a message increases at least quadratically with distance, it makes sense to
replace a long link by a sequence of short links. On the one hand, energy can
therefore be conserved by abandoning energy-expensive long-range connections,
thereby allowing the nodes to reduce their transmission power levels. On the
other hand, confining transmission ranges also reduces interference, which in
turn lowers node energy consumption by reducing the number of collisions and
consequently packet retransmissions on the media access layer. Dropping com-
munication links however clearly takes place at the cost of network connectivity:
If too many edges are abandoned, connecting paths can grow unacceptably long
or the network can even become completely disconnected. As illustrated in Fig-
ure 15.1, topology control can therefore be considered a trade-off between energy
conservation and interference reduction on the one hand and connectivity on
the other hand.
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Topology Control
Conserve Energy

Reduce Interference

Network Connectivity

Spanner Property

Figure 15.1: Topology control constitutes a trade-off between node energy con-
servation and network connectivity.

The interference aspect is often maintained by developers of topology con-
trol algorithms to be solved by sparseness or low node degree of the resulting
topology graph, without providing rigorous justification or proofs. The foremost
contribution of this chapter is to disprove this assertion.

In contrast to most of the related work—where the interference issue is seem-
ingly solved by sparseness arguments—, we will start out by precisely defining
our notion of interference. This definition of interference is based on the natu-
ral question of how many nodes are affected by communication over a certain
link. By prohibiting specific network edges, the potential for communication
over high-interference links can then be confined.

We will employ this interference definition to formulate the trade-off between
energy conservation and network connectivity. In particular we will state certain
requirements that need to be met by the resulting topology. Among these
requirements are connectivity (if two nodes are—possibly indirectly—connected
in the given network, they should also be connected in the resulting topology)
and the constant-stretch spanner property (the shortest path between any pair
of nodes on the resulting topology should be longer at most by a constant factor
than the shortest path connecting the same pair of nodes in the given network).
After stating such requirements, an optimization problem can be formulated to
find the topology meeting the given requirements with minimum interference.

For the requirement that the resulting topology retain connectivity of the
given network, we will show that most of the currently proposed topology con-
trol algorithms—already by having every node connect to its nearest neighbor—
commit a substantial mistake: Although certain proposed topologies are guar-
anteed to have low degree yielding a sparse graph, interference becomes asymp-
totically incomparable with the interference-minimal topology. We will also
show that there exist graphs for which no local algorithm can approximate
the optimum. With respect to the sometimes desirable requirement that the
resulting topology should be planar, we will show that planarity can increase
interference.

Furthermore we will propose a centralized algorithm (LIFE) that computes
an interference-minimal connectivity-preserving topology. For the requirement
that the resulting topology be a spanner with a given stretch factor, we will
present (based on a centralized variant of the algorithm) a distributed local al-
gorithm (LLISE) that computes a provably interference-optimal spanner topol-
ogy.
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Our results are not confined to worst-case considerations; we will also show
by simulation that on average-case graphs traditional topology control algorithms—
in particular the Gabriel Graph and the Relative Neighborhood Graph—fail to
effectively reduce interference. Moreover, we will show that these constructions
are outperformed by the LLISE algorithm, which therefore appears average-case
effective in addition to its worst-case optimality.

In the following section we will introduce the interference model discussed
in this chapter. Focusing on the drawbacks of currently proposed topology
control algorithms with respect to interference in Section 15.2, we will present
interference-optimal algorithms in the subsequent section. Section 15.4 will
assess our algorithms as well as previously proposed topologies regarding their
interference on average-case graphs.

15.1 Model

As in several previous places in this dissertation, an ad hoc network is modeled
as a graph G = (V, E) consisting of a set of nodes V ⊂ R2 in the Euclidean plane
and a set of edges E ⊆ V 2. Nodes represent mobile hosts, whereas edges stand
for links between nodes. In order to prevent already basic communication be-
tween directly neighboring nodes from becoming unacceptably cumbersome [92],
it is required that a message sent over a link can be acknowledged by sending
a corresponding message over the same link in the opposite direction. In other
words, only undirected (symmetric) edges are considered.

We assume that a node can adjust its transmission power to any value
between zero and its maximum power level. The maximum power levels are
not assumed to be equal for all nodes. An edge (u, v) may exist only if both
incident nodes are capable of sending a message over (u, v), in particular if the
maximum transmission radius of both u and v is at least |uv|, their Euclidean
distance. A pair of nodes u, v is considered connectable in the given network
if there exists a path connecting u and v provided that all transmission radii
are set to their respective maximum values. The task of a topology control
algorithm is then to compute a subgraph of the given network graph with certain
properties, reducing the transmission power levels and thereby attempting to
lower interference and energy consumption.

With a chosen transmission radius—for instance to reach a node v—a node
u affects at least all nodes located within the circle centered at u and with radius
|uv|. D(u, r) denoting the disk centered at node u with radius r and requiring
edge symmetry, we consequently define the coverage of an (undirected) edge
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Figure 15.2: Nodes covered by a communication link.

e = (u, v) to be the cardinality of the set of nodes covered by the disks1 induced
by u and v:

Cov(e) :=
∣∣{w ∈ V |w is covered by D(u, |uv|)}∪

{w ∈ V |w is covered by D(v, |vu|)}
∣∣.

In other words, the coverage Cov(e) represents the number of network nodes
affected by nodes u and v communicating with their transmission powers chosen
such that they exactly reach each other (cf. Figure 15.2).

The edge level interference defined so far is now extended to a graph inter-
ference measure as the maximum coverage occurring in a graph:

Definition 15.1. The interference of a graph G=(V,E) is defined as

I(G) := max
e∈E

Cov(e).

Since interference reduction per se would be senseless (if all nodes simply set
their transmission power to zero, interference will be reduced to a minimum),
the formulation of additional requirements to be met by a resulting topology is
necessary. A resulting topology can for instance be required

- to maintain connectivity of the given communication graph (if a pair of
nodes is connectable in the given network, it should also be connected in
the resulting topology graph),

1The results of this chapter can also be adapted to the case where transmission ranges
are not perfect circles centered at the sending node. We adhere to this simplified model for
clarity of representation.
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Figure 15.3: Low degree does not guarantee low interference.

- to be a spanner with constant stretch of the underlying graph (the shortest
path connecting a pair of nodes u, v on the resulting topology is longer
by a constant factor only than the shortest path between u and v on the
given network), or

- to be planar (no two edges in the resulting graph intersect).

Finding a resulting topology which meets one or a combination of such require-
ments with minimum interference constitutes an optimization problem.

15.2 Interference in Known Topologies

It is often argued that sparse topologies with small or bounded degree are well
suited to minimize interference. In this section we will show that low degree does
not necessarily imply low interference. Moreover, we will demonstrate that most
of the currently known topology control algorithms can perform badly compared
to the interference optimum, that is a topology which minimizes interference in
the first place.

In particular, we will consider in this section the basic problem of construct-
ing an interference-minimal topology maintaining connectivity of the given net-
work.

The following basic observation states that—although often maintained—
low degree alone does not guarantee low interference. Figure 15.3, for instance,
shows a topology graph with degree 2 whose interference is however roughly
n, the number of network nodes. A node can interfere with other nodes that
are not direct neighbors in the chosen topology graph. Whereas the maximum
degree of the underlying communication graph of the given network (with all
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i + 1i

2i

Figure 15.4: Exponential node chain with interference Ω(n).

nodes transmitting at full power) is an upper bound for interference, the degree
of a resulting topology graph is only a lower bound.

There exist instances where also the optimum exhibits interference Ω(n), for
instance a chain of nodes with exponentially growing distances (cf. Figure 15.4,
proposed in [74]), whose large interference is caused as a consequence of the re-
quirement that the resulting topology is to be connected. Every node ui (except
for the leftmost) is required to have an incident edge, which covers all nodes
left of ui. Assessing the interference quality of a topology control algorithm
therefore implies its interference on a given network needs to be compared to
the optimum interference topology for the same network.

To the best of our knowledge, all currently known topology control algo-
rithms constructing only symmetric connections have in common that every
node establishes a symmetric connection to at least its nearest neighbor. In
other words, all these topologies contain the Nearest Neighbor Forest con-
structed on the given network. In the following we will show that owing to
the inclusion of the Nearest Neighbor Forest as a subgraph, the interference of
a resulting topology can become incomparably bad with respect to a topology
with optimum interference.

Theorem 15.1. No currently proposed topology control algorithm establish-
ing only symmetric connections—required to maintain connectivity of the given
network—is guaranteed to yield a nontrivial interference approximation of the
optimum solution. In particular, interference of any proposed topology can be
Ω(n) times larger than the interference of the optimum connected topology,
where n is the total number of network nodes.

Proof. Figure 15.5 depicts an extension of the example graph shown in Fig-
ure 15.4. In addition to a horizontal exponential node chain, each of these nodes
hi has a corresponding node vi vertically displaced by a little more than hi’s
distance to its left neighbor. If di denotes this vertical distance, the inequality
di > 2i−1 holds. These additional nodes form a second (diagonal) exponential
line. Between two of these diagonal nodes vi−1 and vi, an additional helper
node ti is placed such that |hi, ti| > |hi, vi|.

The Nearest Neighbor Forest for this given network (with the additional
assumption that the transmission radius of each node can be chosen sufficiently
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hi

vi

di

ti

vi−1

Figure 15.5: Two exponential node chains.

Figure 15.6: The Nearest Neighbor Forest yields interference
Ω(n).

Figure 15.7: Optimal tree with constant interference.
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Figure 15.8: Worst-case graph for which no local algorithm can approximate
optimum interference.

large) is shown in Figure 15.6. Roughly one third of all nodes being part of
the horizontally connected exponential chain, interference of any topology con-
taining the Nearest Neighbor Forest amounts to at least Ω(n). An interference-
optimal topology, however, would connect the nodes as depicted in Figure 15.7
with constant interference.

In other words, already by having each node connect to the nearest neigh-
bor, a topology control algorithm makes an “irrevocable” error. Moreover, it
commits an asymptotically worst possible error since the interference in any
network cannot become larger than n.

As roughly one third of all nodes are part of the horizontal exponential node
chain in Figure 15.5, the observation stated in Theorem 15.1 would also hold
for an average interference measure, averaging interference over all edges.

The following theorem even shows that for connectivity-preserving topolo-
gies no local algorithm can approximate optimum interference for every given
network. Thereby the definition of a distributed local algorithm assumes that
each network node is informed about its network neighborhood only up to a
given constant distance.

Theorem 15.2. For the requirement of maintaining connectivity of the given
network, there exists a class of graphs for which no local algorithm can approx-
imate optimum interference.

Proof. In Figure 15.8 the maximum transmission radius of a node is |uv|. n
being the number of nodes in the graph, let the shaded area contain Ω(n)
evenly distributed nodes which can be connected with constant interference.
For each such node w, the inequalities |wv| < |uv| and |uw| > |uv| hold. It
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follows that the edge (u, v) has interference in Ω(n) since it covers all nodes in
the shaded area. In addition, there is a chain of nodes (dashed path) connecting
node u with node v indirectly through the nodes located in the shaded area.
The nodes in the chain are located in such a way that it is possible to connect
them with constant interference. For such a graph, O(1) interference can be
achieved by connecting u to the rest of the graph through the chain of nodes
and not directly through edge (u, v), which would cause Ω(n) interference.

A local algorithm at node u has to decide if it can drop edge (u, v). This is
only possible if u knows about the existence of an alternative path from u to v
in order to maintain connectivity. By elongating the chain sufficiently, the local
algorithm can thus be forced to include edge (u, v), pushing up interference to
O(n) whereas the optimum is Ω(1).

As mentioned in Section 15.1, another popular requirement for topology
control algorithms besides bounded degree is planarity of the resulting topology,
meaning that no two edges of the resulting graph intersect. This is often desired
for the application of geographic routing algorithms that are only applicable to
planar graphs. But topology control algorithms enforcing planarity are not
optimal in terms of interference:

Theorem 15.3. There exist graphs on which interference-optimal topologies—
required to maintain connectivity—are not planar.

Proof. In Figure 15.9, the maximum transmission radius of a node is |ab|. All
eligible edges are depicted together with the coverage areas for the edges whose
incident nodes are both in {a, b, c, d}. The indicated weight of an edge e cor-
responds to its coverage Cov(e). V and W represent sets of 3 and 4 nodes,
respectively, which can be connected among themselves with interference 3. A
topology control algorithm can only reduce interference by removing all edges
with maximum interference (here (a, c) and (b, c)) from the graph. Thereafter,
no further edge can be removed without breaking connectivity since the graph
without (a, c) and (b, c) is a tree. Thus, the resulting tree is interference-optimal
and non-planar, as both edges (a, b) and (c, d) have to remain in the resulting
topology.

15.3 Low-Interference Topologies

In this section we will present three algorithms that explicitly reduce interference
of a given network. The first algorithm is capable of finding an interference-
optimal topology maintaining connectivity of the given network. The other
two algorithms compute an interference-optimal topology under the additional
requirement of constructing a spanner of the given network. Whereas the first
spanner algorithm assumes global knowledge of the network, the second can be
computed locally.
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Figure 15.9: Node set whose interference-optimal topology is not planar.

15.3.1 Interference-Optimal Spanning Forest

In the following we again require the resulting topology to maintain con-
nectivity of the given network. A topology graph meeting this requirement can
therefore consist of a tree for each connected component of the given network
since additional edges do not contribute to graph connectivity while poten-
tially unnecessarily increasing interference. A Minimum Interference Forest is
therefore a set of trees maintaining the connectivity of the given network with
least possible interference. As the following theorem shows, the LIFE algorithm
computes such a forest.

Theorem 15.4. The forest constructed by LIFE is a Minimum Interference
Forest.

Proof. The LIFE algorithm computes a minimum spanning forest (MSF) of the
graph G = (V, E), where E is the set of all eligible edges, if every edge e ∈ E is
attributed the weight Cov(e). With its greedy strategy, it follows the lines of
Kruskal’s MSF algorithm [26]. To prove the theorem, it is therefore sufficient
to show that the MSF is optimal with respect to interference. Optimality of
LIFE then follows from the fact that a minimum spanning forest also minimizes
the maximum edge weight in any spanning forest. (Assuming for contradiction
that G∗ is an MSF with maximum weight edge e∗, whereas GLIFE is a spanning
forest with lower maximum edge weight, e∗ could be replaced by a corresponding
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Low Interference Forest Establisher (LIFE)

Input: a set of nodes V , each v ∈ V having attributed a maximum transmission
radius rmax

v

1: E = all eligible edges (u, v) (rmax
u ≥ |uv| and rmax

v ≥ |uv|)
// E will contain all unprocessed edges

2: ELIFE = ∅
3: GLIFE = (V, ELIFE)
4: while E 6= ∅ do
5: e = (u, v) ∈ E with minimum coverage
6: if u, v are not connected in GLIFE then
7: ELIFE = ELIFE ∪ {e}
8: end if
9: E = E \ {e}

10: end while
Output: Graph GLIFE

edge from GLIFE , yielding a spanning forest with total edge weight smaller than
G∗’s, which contradicts the assumption that G∗ is an MSF.)

With an appropriate implementation of the connectivity query in Line 6, the
running time of the algorithm LIFE is O

(
n2 log n

)
. If the given network is known

to consist of only one connected component, Prim’s minimum-spanning-tree
algorithm can be employed with running time O

(
n2
)
. Algorithms computing

a minimum spanning tree in a distributed way—as particularly suitable for ad
hoc networks—are described in detail in [86].

15.3.2 Low-Interference Spanners

LIFE optimizes interference for the requirement that the resulting topology has
to maintain connectivity. In addition to connectivity it is often desired that
the resulting topology should be a spanner with constant stretch of the given
network. A spanner with stretch factor t can be formally defined as follows:

Definition 15.2 (t-Spanner). A t-spanner of a graph G = (V, E) is a subgraph
G′ = (V, E′) such that for each pair (u, v) of nodes c(p∗

G′(u, v)) ≤ t · c(p∗G(u, v)),
where c(p∗G′(u, v)) and c(p∗G(u, v)) denote the length of the shortest path between
u and v in G′ and G, respectively.

In this chapter we consider Euclidean spanners, that is, the length of a path is
defined as the sum of the Euclidean lengths of all its edges (cf. Chapter 3). With
slight modifications, our results are however also extendable to hop spanners,
where the length of a path corresponds to the number of its edges.

Algorithm LISE is a topology control algorithm that constructs a t-spanner
with optimum interference. LISE starts with a graph GLISE = (V, ELISE)
where ELISE is initially the empty set. It processes all eligible edges of the
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Low Interference Spanner Establisher (LISE)

Input: a set of nodes V , each v ∈ V having attributed a maximum transmission
radius rmax

v ; a stretch factor t ≥ 1
1: E = all eligible edges (u, v) (rmax

u ≥ |uv| and rmax
v ≥ |uv|)

// E will contain all unprocessed edges
2: ELISE = ∅
3: GLISE = (V, ELISE)
4: while E 6= ∅ do
5: e = (u, v) ∈ E with maximum coverage
6: while c(p∗(u, v) in GLISE) > t |uv| do
7: f = edge ∈ E with minimum coverage
8: move all edges ∈ E with coverage Cov(f) to ELISE

9: end while
10: E = E \ {e}
11: end while
Output: Graph GLISE

given network G = (V, E) in descending order of their coverage. For each edge
(u, v) ∈ E not already in ELISE , LISE checks whether there exists a path from
u to v in GLISE with Euclidean length at most t |uv|. As long as no such
path exists, the algorithm keeps inserting all unprocessed eligible edges with
minimum coverage into ELISE .

To prove the interference optimality of GLISE , we introduce an additional
lemma, which shows that GLISE contains all eligible edges whose coverage is
less than I(GLISE).

Lemma 15.5. The graph GLISE = (V, ELISE) constructed by LISE from a
given network G = (V, E) contains all edges e in E whose coverage Cov(e) is
less than I(GLISE).

Proof. We assume for the sake of contradiction that there exists an edge e in E
with Cov(e) < I(GLISE) which is not contained in ELISE . Consequently, LISE
never takes an edge with coverage Cov(e) in Line 7 since the algorithm would
insert all edges with Cov(e) into ELISE in Line 8 instantly (thus also e). There
exists however an edge f in ELISE with Cov(f) = I(GLISE) eventually taken
in Line 7. Therefore the inequality Cov(e) < Cov(f) holds. At the time the
algorithm takes f in Line 7, all edges taken in Line 5 must have had coverage
greater than or equal to Cov(f) since the maximum of an ordered set can only
be greater than or equal to the minimum of the same set. Hence e has never
been taken in Line 5 and therefore has never been removed from E in Line 10.
Consequently, e is still in E when f is taken as the edge with minimum coverage
in E. Thus Cov(f) ≤ Cov(e) holds, which leads to a contradiction.

With Lemma 15.5 we are ready to prove that the resulting topology con-
structed by LISE is an interference-optimal t-spanner.
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Theorem 15.6. The graph GLISE = (V, ELISE) constructed by LISE from a
given network G = (V, E) is an interference-optimal t-spanner of G.

Proof. In order to show that GLISE meets the spanner property, it is sufficient
to prove that for each edge (u, v) ∈ E there exists a path in GLISE with length
not greater than t |uv|. This holds since for a shortest path p∗(u, v) in G a
path p′(u, v) in GLISE with c(p′) ≤ t c(p) can be constructed by substituting
for each edge on p the corresponding spanner path in GLISE. For edges in E
which also occur in ELISE , the spanner property is trivially true. On the other
hand an edge (u, v) can only be in E but not in ELISE if a path from u to v
in GLISE with length not greater than t |uv| exists (see if-condition in Line 6).
Thus, GLISE is a t-spanner of G.

Interference optimality of LISE can be proved by contradiction. We therefor
assume, that GLISE is not an interference-optimal t-spanner. Let G∗ = (V, E∗)
be an interference-optimal t-spanner for G. Since GLISE is not optimal, it
follows that I(GLISE) > I(G∗). Thus all edges in E∗ have coverage strictly less
than I(GLISE). It follows from Lemma 15.5 that E∗ is a nontrivial subset of
ELISE. Let T be the set of edges in ELISE with coverage I(GLISE) and let
G̃ = (V, Ẽ) be the graph with Ẽ = ELISE \ T . G̃ is a t-spanner since E∗ is
still a subset of Ẽ, and I(G̃) ≤ I(GLISE) − 1 holds. Because T is eventually
inserted into ELISE in Line 8, there exists an edge (u, v) ∈ E that was taken in
Line 5 and for which no path p(u, v) exists in G̃ with c(p) ≤ t |uv|. Thus, G̃ is
no t-spanner (and therefore neither G∗), which contradicts the assumption that
G∗ is an interference-optimal t-spanner.

As regards the running time of LISE, it computes for each edge at most
one shortest path. This holds since multiple shortest path computations for the
same edge in Line 6 cause at least as many edges to be inserted into ELISE

in Line 8 without computing shortest paths for them. Since finding a shortest
alternative path for an edge requires O

(
n2
)

time and as the network contains
at most the same amount of edges, the overall running time of LISE is as well
polynomial in the number of network nodes.

In contrast to the problem of finding a connected topology with optimum
interference, the problem of finding an interference-optimal t-spanner is locally
solvable. The reason for this is that finding an interference-optimal path p(u, v)
for an edge (u, v) with c(p) ≤ t |uv| can be restricted to a certain neighborhood
of (u, v).

In the following we will describe a local algorithm similar to LISE that is
executed at all eligible edges of the given network. In reality, algorithm LLISE
(Local LISE) is executed for each edge by one of its incident nodes (for instance
the one with the greater identifier). The description of LLISE assumes the point
of view of an edge e = (u, v). The algorithm consists of three main steps:

1) Collect ( t
2 )-neighborhood,

2) compute minimum interference path for e, and



148 CHAPTER 15. TOPOLOGY CONTROL AND INTERFERENCE

LLISE

1: collect ( t
2 )-neighborhood GN = (VN , EN ) of G = (V, E)

2: E′ = ∅
3: G′ = (VN , E′)
4: repeat
5: f = edge ∈ EN with minimum coverage
6: move all edges ∈ EN with coverage Cov(f) to E ′

7: p = shortestPath(u− v) in G′

8: until c(p) ≤ t |uv|
9: inform all edges on p to remain in the resulting topology.

Note: GLL = (V, ELL) consists of all edges eventually informed to remain
in the resulting topology.

3) inform all edges on that path to remain in the resulting topology.

In the first step, e gains knowledge of its ( t
2 )-neighborhood. For a Euclidean

spanner, the k-neighborhood of e is defined as all edges that can be reached (or
more precisely at least one of their incident nodes) over a path p starting at u
or v, respectively, with c(p) ≤ k c(e). Knowledge of the ( t

2 )-neighborhood at all
edges can be achieved by local flooding (cf. Chapter 10).

Theorem 15.7. The graph GLL = (V, ELL) constructed by LLISE from a given
network G = (V, E) is an interference-optimal t-spanner of G.

During the second step, a minimum-interference path p from u to v with
c(p) ≤ t c(e) is computed. LLISE starts with a graph GLL = (V, ELL) consisting
of all nodes in the ( t

2 )-neighborhood and an initially empty edge set. It inserts
edges consecutively into ELL—in ascending order according to their coverage—,
until a shortest path p∗(u, v) is found in GLL with c(p∗) ≤ t c(e).

In the third step, e informs all edges on the path found in the second step
to remain in the resulting topology. The resulting topology then consists of all
edges receiving a corresponding message. In the following we will show that
it is sufficient for e to limit the search for an interference-optimal path p(u, v)
meeting the spanner property to the ( t

2 )-neighborhood of e.

Lemma 15.8. Given an edge e = (u, v), no path p from u to v with c(p) ≤ t c(e)
contains an edge which is not in the ( t

2 )-neighborhood of e.

Proof. For the sake of contradiction we assume that a path p from u to v with
c(p) ≤ t c(e) contains at least one edge (w, x) not in the ( t

2 )-neighborhood of e.
Without loss of generality we further assume that, traversing p from u to v, we
visit w before x. Since (w, x) is not in the ( t

2 )-neighborhood, by definition, no
path from u to w with length less than or equal to ( t

2 )|e| exists (the same holds
for any path from v to x). Consequently, the inequality c(p) > t c(e) + |wx|
holds, which contradicts the assumption that c(p) ≤ t c(e).
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With Lemma 15.8 we are now able to prove that the topology constructed
by LLISE is a t-spanner with optimum interference.

Proof. The spanner property of LLISE can be proved similar to the first part
of the proof of Theorem 15.6, where LISE is shown to be a t-spanner.

In order to show interference optimality, it is sufficient to prove that the
spanner path constructed for any edge e = (u, v) ∈ G by LLISE is interference-
optimal, where interference of a path is defined as the maximum interference
of an edge on that path. The reason for this is that only edges that lie on
one of these paths remain in the resulting topology; non-optimality of GLL

would therefore imply non-optimality of at least one of these spanner paths.
In the following we look at the algorithm executed by e = (u, v). In Line 6,
edges in E are consecutively inserted into E ′, starting with E′ = ∅, until a
spanner path p from u to v is found in Line 8. Since LLISE inserts the edges
into E′ in ascending order according to their coverage and since p is the first
path meeting the spanner property, p is an interference-optimal t-spanner path
from u to v in the ( t

2 )-neighborhood. From Lemma 15.8 we know that the
( t
2 )-neighborhood of e contains all spanner paths from u to v and therefore also

the interference-optimal one. Thus it is not possible that LLISE does not see
the global interference-optimal t-spanner path due to its local knowledge about
G. Consequently, p is the global interference-optimal t-spanner path of e.

15.4 Average-Case Interference

In this section we will consider interference of topology control algorithms in
average-case graphs, that is in graphs with randomly placed nodes.

In particular, networks were constructed by placing nodes randomly and
uniformly on a square field of size 20 by 20 units and subsequently computing
for each node set the unit disk graph (cf. Definition 3.1). The resulting unit disk
graphs were then employed as input networks for topology control. Since node
density is a fundamental property of networks with randomly placed nodes, the
networks were generated over a spectrum of node densities.

15.4.1 Connectivity-Preserving Topologies

To evaluate connectivity-preserving topologies on average-case graphs, two well-
known topology control structures are considered, in particular the Gabriel
Graph [38] and the Relative Neighborhood Graph [102]. The interference-
reducing effect of these two constructions is considered by comparison with
the interference value of the given unit disk graph network on the one hand
and with the interference-optimal connectivity-preserving topology on the other
hand. The interference-optimal topology was constructed by means of the LIFE
algorithm presented in Section 15.3.
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Figure 15.10: Interference values of the unit disk graph without topology control
(dotted), the Gabriel Graph (dash-dotted), the Relative Neighborhood Graph
(dashed), and the interference-optimal connectivity-preserving topology (solid).

Figure 15.10 shows the interference mean values over 1000 networks for each
simulated network density. While the resulting interference curves behave sim-
ilarly for very low network densities, they fall into three groups with increasing
density: At a density of roughly 5 network nodes per unit disk, the interference-
optimal curve levels off and remains at a value of approximately 11.5. On the
other hand the interference curve of the unit disk graph without topology control
rises almost linearly. Between these two extremes the Gabriel Graph and Rela-
tive Neighborhood Graph values increase clearly more slowly than the unit disk
graph curve, but show significantly higher values than the interference-optimal
topology.

The simulation results show that the edge reduction performed by the Gabriel
Graph and Relative Neighborhood Graph constructions reduce interference of
the given network; this effect is clearer with the Relative Neighborhood Graph
due to its stricter edge inclusion criterion and consequently its being a sub-
graph of the Gabriel Graph (see also Figure 14.4). However, the interference
values of these two constructions are considerably higher than the results of the
interference-optimal connectivity-preserving topology. Furthermore, although
(unless in special cases) the Relative Neighborhood Graph has degree at most
6, it is not even clear whether with increasing network density the respective
interference curve remains around the maximum value found so far or whether
it would increase further for densities beyond the simulated spectrum. It can



15.4. AVERAGE-CASE INTERFERENCE 151

0

5

10

15

20

25

0 5 10 15

Network Density [nodes per unit disk]

In
te

rf
er

en
ce

Figure 15.11: Interference values of LLISE for stretch factors 2 (dotted), 4 (dash-
dot-dotted), 6 (dash-dotted), 8 (dashed), and 10 (solid). Interference values of
the Relative Neighborhood Graph (upper gray) and the interference-optimal
connectivity-preserving topology (lower gray) are plotted for reference.

therefore be concluded that also for average-case graphs sparseness does not
imply low interference.

15.4.2 Low Interference Spanners

Going beyond connectivity-preserving topologies, we will consider in this sec-
tion constant-stretch spanners, that is topologies guaranteeing that the shortest
paths on the resulting topology are only by a constant factor longer than on
the given network (cf. Section 15.3.2).

Figure 15.11 depicts simulation results—in particular the mean interference
values over 100 networks at each simulated network density—of the topology
constructed by the LLISE algorithm introduced in Section 15.3 for different
stretch factors t. The simulation results show that by increasing the requested
stretch factor it is possible to achieve interference values close to the optimum
interference values caused by connectivity-preserving topologies as described in
the previous section. Moreover, even with a low stretch factor of 2, LLISE
does not perform worse than the Relative Neighborhood Graph, which is not
a constant-stretch spanner. In summary, the simulation results show that the
LLISE algorithm performs well with respect to interference also on average-case
graphs. An illustration of the simulation graphs is provided in Figure 15.12.
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Figure 15.12: The unit disk graph G (top left, interference 50), the Relative
Neighborhood Graph of G (top right, interference 25), GLL computed by LLISE
with stretch factors 2 (bottom left, interference 23) and 10 (bottom right, in-
terference 12) at a network density of 20 nodes per unit disk on a square field
of 10 units side length. Note that, for instance in the western region of the
graph, LLISE—depending on the chosen stretch factor—omits high-interference
“bridge” edges if alternative spanning paths exist.
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15.5 Concluding Remarks

In this chapter we disprove the widely advocated assumption that sparse topolo-
gies automatically imply low interference. In contrast to most of the related
work we provide an intuitive definition of interference. With this interfer-
ence model we show that currently proposed topology control constructions—
although claiming so—do not in the first place focus on reducing interference.

In addition, we propose provably interference-minimal connectivity-preserving
and spanner constructions. A locally computable version of the interference-
minimal spanner construction can even be considered practicable since it is
shown to significantly outperform previously suggested topology control algo-
rithms also on average-case graphs.

As important as an explicit definition of interference is for its analysis, a
clear drawback of the definition presented in this chapter is that it assumes the
perspective of the sender of a message. Formally, this notion is reflected by the
definition of the coverage of an edge, which counts the number of network nodes
affected by communication over the considered edge. This stands in opposition
to the fact that signal disturbance and message collisions actually occur at
the intended receiver of a message. This characteristic of interference forms the
core of the following chapters discussing approaches to model interference which
assume the signal receiver’s perspective.
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Chapter 16

Receiver-Centric

Interference in Sensor

Networks

When a book and a head collide and there is a hollow sound,
is it always from the book?

Georg Christoph Lichtenberg (1742–1799)

The previous chapter states two main points. First, an implicit notion of
interference—as advocated by most of the previous work—can lead to topol-
ogy control algorithms that fail to effectively reduce interference. Second, it
introduces an explicit definition of interference, based on the number of nodes
potentially disturbed by communication over a link.

In contrast to this approach, we will assume in this chapter a receiver-
centric perspective. Particularly, we will formulate an interference definition
at the heart of which lies the question by how many other nodes a given
network node can be disturbed. Compared to the sender-centric interference
definition proposed in the previous chapter, the definition of interference pre-
sented in this chapter reflects intuition more closely in the sense that inter-
ference is considered at the receiver, where message collisions prevent proper
reception. Informally, our interference definition can also be considered to cor-
respond to the effort required to avoid collisions, be it by means of time division
multiplexing—assigning transmission time slots such that no two messages col-
lide at a receiving node—, by means of frequency division multiplexing—having
messages sent in different assigned frequency bands—, or by means of code divi-
sion multiplexing—where small interference allows for reduced coding overhead.

In this chapter, we will consider interference in sensor networks. A sensor
network consists of sensors deployed in a given region with the task of sensing a
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certain physical value (such as temperature, humidity, brightness, or motion).
The sensors are equipped with radio devices and—in the popular monitoring
scenario model—periodically transfer the sensed data to a designated data sink
node. To allow all data to be gathered at the sink, a topology control algorithm
therefore constructs a sink tree, a directed tree with all arcs (directed edges)—
modeling unidirectional communication links—pointing towards the sink node.
In the context of interference reduction, the task of the topology control algo-
rithm is to find such a sink tree with least possible interference. Thereby we
account for the fact that in the monitoring scenario, communication from the
sink to the sensors occurs rarely and can therefore be neglected with respect to
interference.

Assuming a worst-case perspective, we will show that there are network
instances in which any topology control algorithm will construct a resulting
network with interference at least log n− 1. We furthermore propose the Near-
est Component Connector (NCC) algorithm, which provably produces at most
O(log n) interference in any network in polynomial time. In this sense, the NCC
algorithm is asymptotically optimal. In a second part of this chapter we will
compare the NCC algorithm with previously proposed structures in average
networks. On the one hand we will show that—besides being asymptotically
worst-case optimal—NCC also in the average case produces interference re-
sults comparable with previously proposed structures. On the other hand, a
minimum-spanning-tree-based structure not originally designed to reduce in-
terference interestingly appears to outperform NCC in average-case networks,
while it cannot guarantee to produce low interference in worst-case examples.

The chapter is organized as follows: We will first introduce our receiver-
centric interference model and a formulation of the considered interference min-
imization problem in the following section. While Section 16.2 shows that there
exist network instances in which any topology control algorithm will produce
interference at least log n − 1, the subsequent section presents the NCC algo-
rithm and proves that it matches this lower bound. Section 16.4 finally discusses
interference generated by NCC and other algorithms in average-case networks.

16.1 Model and Notation

In this section we will describe our model of a sensor network and formally
define interference and interference minimization in the context of our model.

Our model of a sensor network is a directed graph G(V, E) where nodes
v1, . . . , vn placed in the plane represent the set of sensors including the sink.
Communication links between sensors are modeled as (directed) arcs. We as-
sume that the transmission power of each node can be adjusted. Higher trans-
mission power allows a node to send messages over a longer distance. We
assume that the covered area of a sending node vi is a disk with vi in its center.
Furthermore we assume that a node can reach another node only if it is at
most 1 distance unit away. In other words, the graph consisting of all eligible
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arcs if all nodes set their transmission power to the maximum possible values
corresponds to the unit disk graph constructed given the node set V (cf. Defini-
tion 3.1). Finally we only consider connectable graphs, which means that—with
all transmission radii set to their maximum values—a path from any node to
any other node in the network is constructible or—more technically—the unit
disk graph given the node set V consists of one connected component.

If we want to minimize interference in sensor networks, we have to look
at topologies in which each node sends its data to at most one other node,
and a valid graph contains a path from every sensor to the sink. These two
requirements result in a tree with the sink as its root and all arcs pointing
towards the root. We call such a tree a sink tree. Figure 16.1 shows a sample
sink tree with 6 nodes.

Definition 16.1. Given a set of nodes V and a sink s, a sink tree is a tree
spanning V with all arcs pointing towards s.

We use an explicit model of interference. We explicitly count the number of
nodes potentially disturbing reception of a message. This definition reflects the
fact that interference is a problem occurring at the receiver. Minimizing the
interference at each possible receiver (each node in the network) reduces the
number of potential message collisions in the network and therefore lowers the
probability of required retransmission. This approach intends to save energy
and extend the lifetime of sensors equipped with batteries.

In particular, the interference value of a single node is defined to be the
number of transmission circles by which the node is covered.

Definition 16.2. The interference value of a single node v is defined as

I(v) := |{u|u 6= v ∧ v ∈ D(u, ru)}|

where D(u, ru) stands for the transmission circle with node u in its center and
radius ru.

The interference of a whole network is defined as the maximum of all inter-
ference values in the graph (see Figure 16.1).1

Definition 16.3. The interference of a Graph G(V, E) is defined as

I(G) := max
v∈V

I(v).

The problem we study in this chapter consists in finding a sink tree with
least possible interference for a given sensor network.

1It can be argued similarly that the interference of a whole network can be defined as
the average of the node interference values. Such a definition is not considered in this chap-
ter. Note that with this alternative definition of interference, the problem of finding a valid
data-gathering structure with minimum interference can be solved optimally constructing a
Minimum Directed Spanning Tree with arc weights corresponding to the number of nodes
covered by each edge.
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Figure 16.1: A sink tree with 6 nodes, the uppermost node being the sink node.
Each node is labeled with its interference value. The interference of the whole
network is 3.

Definition 16.4. The Minimum-Interference Sink Tree (MIST) problem is de-
fined as the problem of finding a sink tree for a given node set with minimal
interference.

In the remainder of this chapter we will consider topology control algorithms
with the goal of solving the MIST problem.

16.2 A Lower Bound

In this section we will show that n nodes in a sensor network can be arranged in a
way that there exists no algorithm able to construct a sink tree with interference
less than log(n)− 1. The existence of such examples constitutes a lower bound
with respect to interference.

Theorem 16.1. There exist sensor networks with nodes arranged in a way that
no algorithm can construct a sink tree with interference less than log(n) − 1.

Proof. To prove this theorem, we present an arrangement of n = 2s nodes which
cannot be connected to the given sink in the described way with interference
less than log(n)− 1. The nodes are arranged on a horizontal line, as illustrated
in Figure 16.2. The first k = 4 nodes v1, v2, v3, and v4, are positioned at
coordinates 0, 1·ν, 3·ν, and 4·ν, where ν = 1/(4·3s−2) is a normalization factor.
Then a copy of the already positioned nodes is placed in distance d = |v1vk| to
the right of node vk. This construction is recursively repeated until 2s nodes
are placed on the horizontal line. Note that due to normalization of the node
positions every node can reach any other node in the network.
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Figure 16.2: A recursive arrangement of 16 nodes on a horizontal line. The
labels indicate distances without normalization by the factor 1/(4 · 3s−2).

After the execution of any possible algorithm, there has to exist a directed
path from each node in the set to the global sink. Let G1 be the node group
{v1, . . . , v2s−1} and G2 := {v2s−1+1, . . . , v2s}. If we assume without loss of gener-
ality that the node group G2 contains the global sink, the result of an algorithm
has to contain an arc from G1 to G2. According to the special arrangement of
the nodes in our example, the gap between G1 and G2 has length equal to the
(Euclidean) diameter of the two groups. The arc between G1 and G2 cannot
be shorter than this gap and therefore interferes with all nodes but one in G1.
Figure 16.3 illustrates the idea of the proof.

If, in a next step, we look into G1, there are 2s−1 nodes partitioned into two
subgroups G1.1 and G1.2. Assuming, again without loss of generality, that the
above arc from G1 to G2 originates in G1.2, we can observe that there must exist
an arc leading out from G1.1, which—bridging G1.1’s adjacent gap—interferes
with all nodes in G1.1 (except for the node at which this arc originates). The
existence of such an arc is a consequence of the required directed path from
each node to the sink. The same argument recursively holds for all node levels
in the arrangement.

This all together proves that at least one node is affected on every level of
recursion. And as the node set is of size 2s, we obtain a maximum interference
of at least s − 1 or log(n) − 1.

16.3 NCC Algorithm

Having presented a lower bound on interference in the previous section, we will
introduce in this section the Nearest Component Connector algorithm (NCC)
matching this lower bound and being described in detail in Algorithms 16.1 and
16.2.

The general idea of this algorithm is to connect components to their nearest
neighbors. This is done in several rounds and leads to a sink tree. A component
can be a single node or a group of previously connected nodes. When the
algorithm starts, each node in the given sensor network forms a component of
its own. First, the predefined global sink is treated exactly as a normal node.
Whenever two or more components are connected in one round, they form
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Figure 16.3: Illustration of the proof of Theorem 16.1. The numbers stand for
the number of nodes in each group. The dark fields represent the unaffected
nodes in the last step and the hollow node (bottom) is the one whose interference
value is incremented in each step.

a single component in the following round of NCC. Considering an arbitrary
component at any point of time of the algorithm execution, we observe that
this component has exactly one node all other component members have a
directed path to. This means that there is one node which gathers all sensed
data of the component. We call this node the local sink of its component.

Whenever a new arc is established during the execution of NCC, it goes from
a local sink of a component C to the nearest node not in C. However, due to the
fact that all nodes have maximum transmission range 1, it is possible that the
current sink s of a component C cannot connect to any node outside C. In this
case another node s′ is designated to become the new sink of C, particularly
the nearest node to s (with respect to the number of hops) capable of reaching
any node outside C. This is accomplished by removing all arcs originating at
nodes on the shortest path p∗(s, s′) from s to s′ and subsequently adding the
arcs along p∗(s, s′) (cf. Algorithm 16.2). Note that every component contains
at least one node capable of reaching another node outside its component since
we only consider connectable networks.

If a round—connecting every sink to its nearest neighbor outside its compo-
nent—produces a cycle, this cycle is broken by removing one of its arcs at the
end of the round. This leads to the construction of a valid sink tree topology. It
is possible that, after the last round of NCC, the root of the resulting tree is not
necessarily the global sink. In this case, the root of the resulting tree is moved
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Input: V : a set of nodes placed in the plane
sg ∈ V : a predefined global sink

1: G := (V, E := ∅)
2: lsinks := V // set of local sinks
3: while |lsinks| > 1 do
4: for all s ∈ lsinks do
5: E′ := ∅
6: C := component containing s
7: if s cannot reach any node outside C then
8: s′ := nearest node to s (hop metric) capable of reaching a node

outside C
9: movesink(G, s, s′)

10: s := s′

11: end if
12: E′ := E′ ∪ {e}, where e is the arc from s to its nearest neighbor (Eu-

clidean distance) outside C
13: end for
14: if G′ := (V, E ∪ E′) contains cycles then
15: remove one of the arcs in each cycle from E ′

16: end if
17: G := G′

18: lsinks := sinks in G // sinks are nodes having no outgoing arc
19: end while
20: s := only remaining sink in lsinks
21: if s 6= sg then
22: movesink(G, s, sg)
23: end if
Output: G

Algorithm 16.1: Nearest Component Connector Algorithm NCC

Input: Graph G = (V, E)
s1: a local sink in G
s2: a node in the same component as s1

1: sp := shortest path from s1 to s2 according to the hop metric
2: remove all arcs originating at nodes on sp (including s2) from E
3: add arcs on sp to E

Algorithm 16.2: Procedure movesink(G, s1, s2)

to the global sink again by means of the movesink procedure (Algorithm 16.2).
Figure 16.4 shows a sample execution of the NCC algorithm.

We will now prove that the presented NCC algorithm constructs a valid
sink tree topology for a given sensor network consisting of n nodes with an
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Figure 16.4: A sample execution of NCC on a given set of 5 nodes. Situation 0
shows the given nodes and the predefined sink (top right node) In each of the
following two rounds, every local sink connects to the nearest node not in its
own component. In Round 2, a cycle is produced. It is broken at the end of
the round by removing one of the involved arcs (dashed arrow). After the last
round (Situation 3) the arc originating from the global sink is removed and an
arc is added from the only remaining local sink to the predefined global sink.
For clarity of representation, the node distances are assumed to be sufficiently
small such that execution of the movesink procedure is not required.

interference value in O(log n). We will also see that the execution of NCC takes
polynomial time only.

Theorem 16.2. The NCC Algorithm constructs a sink tree on a given Graph
G = (V, E) with |V | = n producing an interference value of at most O(log n) in
polynomial time.

Proof. This proof has three parts. In the first part we show that NCC does not
need more than log n rounds (while-loop iterations) to build the sink tree. In
the second part we show that in each of these rounds the interference value of a
node will not be incremented by more than a constant value. In part three we
show that NCC terminates in time polynomial in the total number of nodes.

To show the first part, we use the fact that in each round a local sink s
either establishes an arc to the nearest node of another component or that
another component establishes an arc to the component s is part of. The two
or more connected components together form one component in the next round.
Therefore the number of components in round i is at most half the number of
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Figure 16.5: An illustration of the second part of the proof of Theorem 16.2. An
arc from the local sink li to vj only interferes with nodes in li’s component and
vj (and nodes in other components only if they are exactly at distance livj).

the components in round i − 1. This implies that after at most log n rounds
only one component is left and the algorithm terminates.

In the second part of the proof we show that each round increases the in-
terference value at most by a constant. First, the movesink(G, s, s′) procedure
only increases the interference values of nodes in C, the component of s and s′,
since none of the nodes on the shortest path from s to s′ can reach any node
outside C; furthermore, introduction of the arcs on the shortest path from s to
s′ increases the interference value by at most 3. (A node v suffering interference
increase of at least 4 would contradict the fact that only arcs on a shortest path
are added to the graph; the shortest path could be shortcut via v, exploiting
that in the unit disk graph model all arcs of length up to one unit are eligible.)
Second, once the sink of a component C can reach another node outside C, we
use the fact that each sink connects to the nearest node in a component different
from its own, as illustrated in Figure 16.5. If a local sink li being contained in
component Ci connects to a node vj , its distances from all nodes not in Ci are at
least |livj |. Therefore only nodes which are members of component Ci or nodes
with the same distance from li as vj are affected by the new arc. Furthermore,
a component establishes at most one new arc in a single round and maximally
6 local sinks can establish an arc to the same node.2 All this shows that the
interference value of a node is incremented at most by a constant in a single
round of NCC.

2This is the so-called “kissing number.” It is defined as the number of equivalent spheres
that touch an equivalent sphere without intersections. The kissing number in the two-
dimensional plane is 6. In three dimensions it is 12.
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Together with part one of the proof and the fact that the movesink pro-
cedure is applied at most one more time, it follows that the interference value
of any node is incremented at most log(n) + 1 times and each time by at most
a constant value. This proves that the interference of the whole network is in
O(log n).

The remaining part of Theorem 16.2 to be proved states that NCC termi-
nates in polynomial time. Every node vi is a sink in one iteration of the while
loop. (Actually it can be a sink in more than one loop iteration if a cycle is
broken by removing the arc originating at that node. The fact however that for
every such removed arc at least one other arc is added to the tree in the same
round entails only an additional factor 2.) A sink has to find its nearest neigh-
bor in a foreign component. This can be implemented using a list of neighbors,
sorted according to their distances for each node and a union-find structure to
check if a node is in a foreign component. The n lists of sorted neighbors can be
constructed in time O(n · n log(n)). Maintaining the union-find structure and
component membership lookups during the execution of NCC can also be per-
formed in time O

(
n2 log(n)

)
, while the total cost for shortest path computation

is in O
(
n · n2

)
. These observations prove that NCC terminates in polynomial

time.

We present NCC in a centralized manner. This reflects the fact that in a
sensor network we have an instance (the sink) commonly assumed to have much
more computing power and energy than all other nodes (sensors). Therefore the
sink can run NCC and distribute the topology information of the constructed
sink tree in an initialization phase.

Nevertheless a distributed variant of NCC without the coordination of a
central instance is feasible. This variant would require counters in each node
which keep track of the number of component unions the node has been in-
volved in since the start of the algorithm. These counters then guarantee that
only components in the same “round” can establish new arcs between each
other. Also computation of shortest paths and the movesink procedure are
implementable in a distributed way using a variant of flooding and by sending
according messages over the shortest path thereby found.

16.4 Interference in Average-Case Networks

We have so far seen that the NCC algorithm has asymptotically optimal worst-
case behavior in the sense that it produces interference not greater than O(log n)
for all possible node arrangements. In this section we will have a closer look
at the average-case behavior of our algorithm. We do this by simulation. The
nodes in our simulations are distributed randomly and uniformly in a square
field. Also the sink is chosen randomly. To see how our algorithm behaves in
average-case networks, we compare it to two other construction methods for
sink trees which have been proposed previously as data gathering structures.
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Figure 16.6: Simulation results for the Shortest Path Tree algorithm (dashed),
the Nearest Component Connector algorithm (solid) and the Minimum Span-
ning Tree algorithm (dotted) over network sizes ranging from 10 to 500 nodes.

These two methods are:

1. The Minimum Spanning Tree algorithm (MST) with weights equal to the
Euclidean edge lengths, all edges pointing towards the global sink.

2. The Shortest Path Tree algorithm (SPT) with respect to the energy metric
cE(·) (cf. Chapter 3). (The SPT contains the shortest paths from all nodes
to the sink.) All edges point towards the global sink.

In order to allow for evaluation in different conditions, all three algorithms
constructed sink trees for networks with different node densities. We simulated
networks from 10 to 500 nodes distributed in a square with its side length chosen
such that all nodes are mutually visible (in order to emphasize the differences
between the simulated algorithms without restricting the set of eligible arcs by
introduction of the unit disk graph model). Plotted in the diagram are the
averaged values over 100 runs for each simulated node density.

Figure 16.6 shows that all three algorithms produce increasing interference
with rising node densities. Closer observation yields that our NCC algorithm
performs better than the Shortest Path Tree algorithm but worse than the
Minimum Spanning Tree algorithm. This is quite intriguing, as the very simple
MST algorithm, which was not explicitly designed to reduce interference, seems
to outperform our NCC algorithm in average-case networks. Note however that
the MST is not asymptotically worst-case optimal and can produce interference
of n − 2 for a sensor network consisting of n nodes. A sample of such an
arrangement is shown in Figure 16.7.
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Figure 16.7: Nodes arranged on a horizontal line with exponentially increasing
distances, the rightmost node chosen as the global sink. Applied to this setting,
the MST algorithm produces interference n − 2.

16.5 Concluding Remarks

The approach we assume in this chapter in order to study interference in wire-
less and particularly sensor networks differs from most of the previous work in
two ways: First, we introduce an explicit definition of interference. Second,
in contrast to the interference model presented in the previous chapter, our
definition of interference is receiver-centric and reflects the fact that message
collisions prevent proper message reception only if they occur at the receiving
node.

With this formalized notion of interference, we show on the one hand that
there exist instances of sensor networks with n nodes in which it is impossi-
ble to construct a sink tree—a valid data gathering structure—with interfer-
ence less than log n − 1. On the other hand, we describe the NCC algorithm
asymptotically matching this lower bound in that it provably builds a sink
tree with interference at most O(log n) on any given sensor network. In ad-
dition to these worst-case observations, we also evaluate the NCC algorithm
in average networks. Intriguingly, the latter results show that—although the
interference values produced by NCC fall roughly in the same range as those
of other constructions—a simple minimum-spanning-tree-based structure keeps
interference at a lower level than NCC in average-case networks.

The considerations presented in this chapter are restricted to sensor net-
works. Technically, this is reflected in the formulation of the Minimum-Interfer-
ence Sink Tree problem. In the following chapter we will endeavor a first step
towards extending a receiver-centric approach to the modeling of interference
in more general ad hoc networks, particularly dropping the requirement of con-
structing a sink tree and instead focusing on graph connectivity.



Chapter 17

A Robust Interference

Model for Ad Hoc

Networks

Thanks to the Interstate Highway System,
it is now possible to travel from coast to coast without seeing anything.

Charles Kuralt (1934–1997)

The definition of interference introduced in Chapter 15 is problematic in two
respects. First, it is based on the number of nodes affected by communication
over a given link. In other words, interference is considered to be an issue at
the sender instead of at the receiver, where message collisions actually prevent
proper reception. It can therefore be argued that such sender-centric perspective
hardly reflects real-world interference. Chapter 16 presents an approach to the
modeling of interference from a receiver-centric perspective in the context of
sensor networks.

The second weakness of the model introduced in Chapter 15 is of more
technical nature. According to its definition of interference, adding a single
node to a given network can dramatically influence the interference measure.
In the network depicted in Figure 17.1, addition of the rightmost node to the
cluster of roughly homogeneously distributed nodes entails the construction of a
communication link covering all nodes in the network; accordingly—merely by
introduction of one additional node—the interference value of the represented
topology is pushed up from a small constant to the maximum possible value,
that is the number of nodes in the network. This behavior contrasts to the
intuition that a single additional node also represents but one additional packet
source potentially causing collisions.
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Figure 17.1: In the interference model presented in Chapter 15, addition of
a single node increases interference from a small constant to the maximum
possible value, the total number of network nodes.

In contrast to this sender-centric interference definition, we will adopt in
this chapter the model presented in the previous chapter, explicitly considering
interference at its point of impact, particularly at the receiver. Informally,
the definition of interference considered in this chapter is based on the natural
question by how many other nodes a given network node can be disturbed. In
this chapter we will adapt the concept of interference—introduced in Chapter 16
for sensor networks—to be suitable also in general ad hoc networks. Technically,
we will consider arbitrary undirected networks as opposed to the directed data
gathering trees studied in Chapter 16.

Interestingly, our interference definition not only reflects intuition due to its
receiver-centricity. This definition also results in a robust interference model in
terms of measure increase due to the arrival of additional nodes in the network.
Particularly, an additional node causes an interference increase of at most one
at other nodes of the network. In clear contrast to the sender-centric model
from Chapter 15, this corresponds to reality, where one added node contending
for the shared medium constitutes only one additional possible collision source
for nearby nodes in the network.

As already mentioned earlier, interference reduction as an end of its own
is meaningless—every node setting its transmission power to a minimum value
trivially minimizes interference—without the formulation of additional require-
ments to be met by the resulting topology. In this chapter we will study the
fundamental requirement that the considered topology control algorithms pre-
serve connectivity of the given network. Similar as in Chapter 15, we will show
that for this requirement most of the currently proposed topology control algo-
rithms trying to implicitly reduce interference commit a substantial mistake—
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even by having every node connect to its nearest neighbor. Based on the intu-
ition that already one-dimensional networks exhibit most of the complexity of
finding minimum-interference topologies, we will precisely anatomize networks
restricted to one dimension—a model also known as the highway model. We
will first look at a particular network where distances between nodes increase
exponentially from left to right. [74] introduces this network as a high interfer-
ence example yielding interference O(∆), where ∆ is the maximum node degree.
We will show that it is intriguingly possible to achieve interference O(

√
∆) in

our model for this network, which matches a lower bound also presented in this
chapter. Based on the insights thereby gained, we will then consider general
highway instances where nodes can be distributed arbitrarily in one dimension.
For the problem of finding a minimum-interference topology while maintaining
connectivity, we will propose an approximation algorithm with approximation
ratio O( 4

√
∆).

The chapter is organized as follows: Section 17.1 formally introducing the
model studied in this chapter, Section 17.2 will focus on the drawbacks of cur-
rently proposed topology control algorithms with respect to interference. In
the subsequent section we will consider the important case where nodes are
distributed in one dimension by providing a lower bound for the interference in
such networks and presenting an algorithm that matches this lower bound.

17.1 Network and Interference Model

Also in this chapter we model the wireless network with the unit disk graph
G, where ∆ refers to the maximum node degree in G. Again, in order to pre-
vent already basic communication between neighboring nodes from becoming
unacceptably cumbersome, we require that a message sent over a link can be
acknowledged by sending a corresponding message over the same link in the
opposite direction. In other words, only undirected (symmetric) edges are con-
sidered.

We assume that each node can adjust its transmission power to any value
between zero and its maximum transmission power level. The main goal of a
topology control algorithm is then to compute a subgraph of the given network
graph G that maintains connectivity even if reducing transmission power levels
of the nodes in V and thereby attempting to reduce interference and energy
consumption.

Let Nu denote the set of all neighbors of a node u ∈ V in the resulting
topology. Then, each node u features a value ru defined as the distance from u
to its farthest neighbor. More precisely ru = maxv∈Nu

|uv|, where |uv| denotes
the Euclidean distance between nodes u and v. Since we assume the nodes
to use omnidirectional antennas, D(u, ru) denotes the disk centered at u with
radius ru covering all nodes that are possibly affected by message transmission
of u to one of its neighbors. The transmission radii of the network nodes having
been fixed, the definition of interference corresponds to the definition in the
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v

u

Figure 17.2: A sample topology consisting of five nodes with their corresponding
interference radii (dashed circles). Node u experiences interference I(u) = 2
since it is covered not only by its direct neighbor but also by node v.

previous chapter. In particular, the interference of a node v is defined as the
number of other nodes that potentially affect message reception at node v:

Definition 17.1. Given a graph G′ = (V, E′), the interference of a node v ∈ V
is defined as

I(v) = |{u|u ∈ V \ {v}, v ∈ D(u, ru)}|.
In other words, the interference I of a node v represents the number of nodes
covering v with their disks induced by their transmission ranges set to a value
as to reach their farthest neighbors in G′. Note that although each node is also
covered by its own disk, we do not consider this kind of self-interference. The
node-level interference defined so far is now extended to a graph interference
measure as the maximum interference occurring in a graph:

Definition 17.2. The interference of a graph G′ = (V, E′) is defined as

I(G′) = max
v∈V

I(v).

Note that ∆, the maximum node degree of the given UDG G = (V, E),
is an upper bound for the interference of any subgraph G′ of the given graph
since in G each node is directly connected to all potentially interfering nodes.
However, in arbitrary subgraphs of G the degree of a node only lower-bounds
the interference of that node because a node can be covered by non-neighboring
nodes (cf. Figure 17.2).

In this chapter we will study the combinatorial optimization problem of find-
ing a resulting topology which maintains connectivity of the given network with
minimum interference. Throughout the chapter we will only consider topologies
consisting of a tree for each connected component of the given network since
additional edges might unnecessarily increase interference.
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17.2 Interference in Known Topologies

As justified in the previous section, we restrict our considerations to resulting
topologies consisting exclusively of symmetric links (edges). To the best of our
knowledge, all currently known topology control algorithms (with the exception
of the algorithms presented in Chapter 15) constructing only symmetric connec-
tions have in common that every node establishes a link to at least its nearest
neighbor. As also mentioned in Chapter 15, this means in a technical sense that
these topologies contain the so-called Nearest Neighbor Forest as a subgraph. In
this section, we will show that this is already a substantial mistake, as thus in-
terference becomes asymptotically incomparable with the interference-minimal
topology.

Theorem 17.1. Any algorithm containing the Nearest Neighbor Forest can have
Ω(n) times larger interference than the interference of the optimum connected
topology.

Proof. Our proof uses a node distribution for which the Nearest Neighbor Forest
yields interference Ω(n) while the optimum interference is in O(1). This example
has already been studied in Chapter 15, however for a different model.

The Nearest Neighbor Forest for the node distribution depicted in Fig-
ure 15.5—assuming that the transmission radius of each node can be chosen
sufficiently large—is shown in Figure 15.6. In order to compute the interfer-
ence, we first observe that an edge from hi—the ith node in the horizontal node
chain—to hi+1—the node directly to its right—covers all nodes to the left, that
is all nodes hj for j < i. In particular, the leftmost node h0 in the horizontal
chain is covered by all nodes hi with i > 0. As roughly one third of all nodes
are part of the horizontally connected exponential chain, h0 is covered by at
least Ω(n) nodes.

The optimal tree on the other hand does not connect the horizontal node
chain, as depicted in Figure 15.7. The resulting graph has constant interference.

Although the topology control algorithms presented in Chapter 15 do not
necessarily include the Nearest Neighbor Forest, it can be shown that also those
algorithms perform badly for our interference model.

17.3 Analysis of the Highway Model

In this section we will study interference for the highway model, in which the
node distribution is restricted to one dimension. After analyzing an impor-
tant artificially constructed problem instance, we will provide a lower bound for
interference of general problem instances in the highway model as well as an
asymptotically optimal algorithm matching this bound. Finally, an approxima-
tion algorithm will be presented.
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3 3 2 2 1

Figure 17.3: Connecting the exponential node chain linearly yields interference
n−2 at the leftmost node since each node connected to the right covers all nodes
to its left. The nodes are labeled according to their experienced interference.

17.3.1 The Exponential Node Chain

How can n nodes arbitrarily distributed in one dimension connect to each other
minimizing interference while maintaining connectivity? [74] introduces an in-
stance which seems to yield inherently high interference: The so called expo-
nential node chain is a one-dimensional graph G = (V, E) where the distance
between two consecutive nodes grows exponentially from left to right as de-
picted in Figure 15.4. The distance between two nodes vi and vi+1 in V is thus
2i. Throughout the discussion of the exponential node chain, we furthermore
assume that the whole node configuration is normalized in a way that the dis-
tance between the leftmost and the rightmost node is not greater than 1: Each
node can potentially connect to all other nodes in V and therefore ∆ = n − 1,
where n = |V |. The nodes are termed linearly connected if each node—except
for the leftmost and the rightmost—maintains an edge to its nearest neighbor
to the left and to the right; in other words, node vi is connected to node vi+1 for
all i = 1, . . . , n− 1 in the resulting topology. In addition to the disks D(vi, rvi

)
for each node vi ∈ V , Figure 17.3 depicts their interference values I(vi). Since
all disks but the one of the rightmost node cover v1, interference at the leftmost
node is n − 2 ∈ Ω(n); consequently also interference of the linearly connected
exponential node chain is in Ω(n).

As we will show in the following, the exponential node chain can surprisingly
be connected in a significantly better way. According to the construction of the
exponential node chain, only nodes connecting to at least one node to their right
increase v1’s interference. We call such a node a hub and define it as follows:

Definition 17.3. Given a connected topology for the exponential node chain
G = (V, E), a node vi ∈ V is defined to be a hub in G if and only if there exists
an edge (vi, vj) with j > i.

The following algorithm Aexp constructs a topology for the exponential node
chain G which yields interference O(

√
n). The algorithm starts with a graph

Gexp = (V, Eexp), where V is the set of nodes in the exponential node chain and
Eexp is initially the empty set. Following the scan-line principle, Aexp processes
all nodes in the order of their occurrence from left to right. Initially, the leftmost



17.3. ANALYSIS OF THE HIGHWAY MODEL 173
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Figure 17.4: The interference of the exponential node chain—shown in a loga-
rithmic scale—is bounded by O(

√
n) by the topology control algorithm Aexp.

Only hubs (hollow points) interfere with the leftmost node. For clarity of rep-
resentation, some edges are depicted as curved arcs.

node is set to be the current hub h. Then, for each node vi, Aexp inserts an edge
(h, vi) into Eexp. This is repeated until I(Gexp) increases due to the addition
of such an edge. Now node vi becomes the current hub and subsequent nodes
are connected to vi as long as the overall interference I(Gexp) does not increase.
Figure 17.4 depicts the resulting topology if Aexp is applied to the exponential
node chain. The exponential node chain is thereby depicted in a logarithmic
scale.1 For clarity of representation, some edges in Eexp are drawn as curved
arcs. In addition, Figure 17.4 shows the individual interference values at each
node.

In the following we show that Aexp reduces interference in the exponential
node chain.

Theorem 17.2. Given the exponential node chain G, applying Aexp results in
a connected topology with interference I(Gexp) ∈ O(

√
n).

Proof. The topology resulting to application of Aexp shows a clear structure (cf.
Figure 17.4). Each hub, with the exception of the first two, is connected to one
more node to its right than its predecessor hub to the left. This follows from the
fact that if the current topology leads to interference I(Gexp) = I immediately
after the determination of a new hub, this hub can be connected to I − 1 nodes
to its right until I(Gexp) is again increased by one. Therefore the minimum
number of nodes n required in an exponential node chain such that interference
I(Gexp) = I is obtained, results in

n ≥
I−1∑

i=1

i + 2 =
1

2
I2 − 1

2
I + 2.

Solving for I , with n ≥ 2, we have

I ≤
⌊√

8n − 15 + 1

2

⌋
∈ O

(√
n
)
.

This is an intriguing result, since, as we will show in the sequel,
√

n is a lower
bound for the interference of the exponential node chain. In particular, we will

1In other words, the exponential node chain is viewed through a pair of glasses with
“logarithmic cut”.
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now prove that there exist network instances where every possible topology
exhibits interference at least

√
n. We therefor again consider the exponential

node chain introduced in Section 17.3.1 normalized such that all n nodes are
located within the line segment of length one.

Theorem 17.3. Given an exponential node chain G = (V, E) with n = |V |,√
n is a lower bound for the interference I(G).

Proof. Let H denote the set of hubs (cf. Definition 17.3) in G and let S be
the nodes in G \ H . In order to prove the theorem, we state two properties
for I(G) in the exponential node chain G. First, it holds that I(G) is at least
|H | − 1, since the leftmost node is interfered with by exactly all hubs except
itself (Property 1). On the other hand, I(G) is at least the maximum degree
of the resulting topology (Property 2). This holds since a node with maximum
degree is covered by at least all disks of its neighboring nodes. We assume
for the sake of contradiction that there exists a connected graph that yields
interference less than

√
n for the exponential node chain G. In other words, the

degree of any node is required to be at most
√

n − 1, and the number of hubs
must not exceed

√
n, including the leftmost node. By the definition of H and

S, each node in the graph is either in H or in S, and therefore |H | + |S| = n
holds. Due to Property 1, it follows that |H | ≤ √

n. Without loss of generality
we assume that the hubs are linearly connected among themselves in order to
guarantee connectivity of the graph. Consequently, with Property 2, each hub
can connect to at most

√
n− 3 nodes in S (the leftmost and the rightmost hub,

respectively, to
√

n − 2). Furthermore, by the definition of a hub, nodes in S
are only connected to hubs and not among themselves. Therefore we obtain
|S| ≤ √

n (
√

n − 3) + 2. Consequently, |H | + |S| results in n − 2
√

n + 2, which
is less than n for n ≥ 2 and thus leads to a contradiction.

From Theorems 17.2 and 17.3 it follows that the Aexp algorithm from Sec-
tion 17.3.1 is asymptotically optimal in terms of interference in the exponential
node chain.

17.3.2 The General Highway Model

We considered an important artificially constructed instance in the highway
model in the previous section, yielding a lower bound for the interference in ar-
bitrary network graphs. In this section we will go beyond the study of particular
network instances and consider arbitrarily distributed nodes in one dimension.

A straightforward question is whether there are instances in the general
highway model that are asymptotically worse than the exponential node chain,
that is, where a minimum-interference topology exceeds Ω(

√
∆). We answer

this question in the negative by introducing the Agen algorithm, which yields

interference in O(
√

∆) for any given node distribution.
In a first step, the algorithm determines the maximum degree ∆ of the given

unit disk graph G = (V, E) and partitions “the highway” into segments of unit
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segment

interval

Figure 17.5: Agen partitions the highway into segments of length 1. In each

segment, every
⌈√

∆
⌉
-th node becomes a hub (hollow points). While the hubs

are connected linearly, each of the remaining nodes in the interval between two
hubs is connected to its nearest hub.

length 1. Within such a segment σ, each node can potentially connect to every
other node in σ.

In a second step, Agen considers each segment independently as follows:

Starting with the leftmost node of the segment, every
⌈√

∆
⌉
-th node (according

to their appearance from left to right) becomes a hub. A hub is thereby redefined
along the lines of Definition 17.3 as a node that has more than one neighboring
node, in contrast to regular nodes, which are connected to exactly one hub.
In order to avoid boundary effects, the rightmost node of each segment is also
considered a hub. Then the Agen algorithm connects the hubs of a segment
linearly. That is, each hub, except the leftmost and the rightmost, establishes
an edge to its nearest hub to its left and to its right. Two consecutive hubs
enclose an interval. Agen connects all regular nodes in a particular interval to
their nearest hub—ties are broken arbitrarily. Figure 17.5 depicts one segment of
an example instance after the application of Agen. The nodes within a segment
form one connected component.

Finally, the Agen algorithm connects every pair of adjacent segments by
connecting the rightmost node of the left segment with the leftmost node of the
right segment. This yields a connected topology provided that the correspond-
ing unit disk graph is also connected. Note that with this construction, the
hubs may have a comparatively high transmission range (smaller than one unit
though). However, the interference range of regular nodes is restricted to their
corresponding intervals. This is due to the fact that regular nodes are connected
to their nearest hub only, which determines their transmission ranges.

To prove that the resulting topology of Agen yields O(
√

∆) interference, we
introduce an additional lemma, which shows that the interference of a node
caused by other nodes in the same segment constructed by Agen is in O(

√
∆).

Lemma 17.4. Each node in a segment σ of the Agen algorithm experiences at

most O(
√

∆) interference in the resulting topology of Agen caused by nodes in
σ.

Proof. By definition of a segment, ∆ is an upper bound on the number of nodes
in the segment. The Agen algorithm nominates only every

⌈√
∆
⌉
-th node a
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hub. Thus, the number of hubs in σ is upper-bounded by ∆/d
√

∆e ∈ O(
√

∆).
Let hub hl delimit the interval of a regular node v to the left, and hub hr to
the right, respectively. Furthermore, we can assume without loss of generality
that |hlv| < |vhr|. Therefore Agen establishes a connection between hl and v.
As this is the only connection of v, it follows that rv = |hlv|. Consequently,
a regular node only interferes with nodes in the same interval. Since a node
v is in at most two intervals—hubs are in two intervals—with at most

⌈√
∆
⌉

nodes, v exhibits interference of at most O(
√

∆) regular nodes. Furthermore, v
is interfered with by at most O(

√
∆) hubs.

With this lemma we are ready to prove that the topology constructed by
Agen results in O(

√
∆) interference.

Theorem 17.5. The resulting topology constructed by the Agen algorithm from

a given graph G = (V, E) yields interference O(
√

∆).

Proof. By Lemma 17.4, the interference of a detached segment constructed by
Agen is bounded by O(

√
∆). However, interference at node v in segment σ

depends also on nodes in the adjacent segments of σ, referred to as σl for the
segment to the left of σ and σr for the segment to the right, respectively. Nodes
in other segments do not interfere with v, as the length of a segment is chosen
according to the maximum transmission range and thus the interference range of
a node is limited to two adjacent segments. We know that at most O(

√
∆) nodes

of σ interfere with v. On the other hand, by Lemma 17.4, the rightmost node v′

of σl is also covered by at most O(
√

∆) disks of nodes in σl. This implies that at
most O(

√
∆) nodes of σl interfere with v since all nodes interfering with v must

also cover v′ with their disks. By symmetry, the same holds for segment σr.
Consequently, Agen results in interference at most three times the interference

of an individual segment at each node, which is in O(
√

∆).

17.3.3 Approximation Algorithm

The Agen algorithm discussed in the previous section achieves interference in

O(
√

∆) for any network instance. This section in contrast introduces an algo-
rithm that approximates the optimum solution for the given network instance.
Particularly, it yields interference at most a factor in O( 4

√
∆) times the in-

terference value resulting from an interference-minimal connectivity-preserving
topology.

The Agen algorithm is in a sense designed for the worst case. This is best
displayed with an instance where the distances between consecutive nodes are
identical. Connecting these nodes linearly, that is connecting each node to its
nearest neighbor in each direction, yields constant interference. The Agen al-

gorithm however constructs a topology resulting in O(
√

∆) interference since
a hub connects to one half of the nodes in its corresponding interval for this
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instance and an interval contains
⌈√

∆
⌉

nodes. Based on this observation, we in-
troduce the Aapx algorithm, a hybrid algorithm which detects high interference
instances and applies Agen or otherwise connects the nodes linearly.

In the following, we will first present a suitable criterion to identify ”high-
interference” instances. Given a network graph G = (V, E) in the highway
model, let the graph Glin = (V, Elin) denote the graph where all nodes in V are
linearly connected. For the considered instance to result in high interference at
a node v in Glin, many nodes are required to cover v with their corresponding
disks. However, with increasing distance to v, these nodes require to have
increasing distances to their nearest neighbors in the opposite direction of v in
order to interfere with the latter. This leads to an exponential characteristic of
these nodes since the edges in Elin accounting for the interference at v form a
fragmented exponential node chain. Consequently, the critical nodes of v are
defined as follows:

Definition 17.4. Given a linearly connected graph Glin = (V, Elin), the critical
node set of a node v is defined as

Cv = {u|u 6= v, |uw| ≥ |vu|, {u, w} ∈ Elin}.

In other words, the critical nodes of a node v are those nodes interfering with
v if the graph G is connected linearly. Based on the results from Section 17.3.1,
we are able to lower-bound the interference of a minimum-interference topology
of G as follows.

Lemma 17.6. Given a graph G = (V, E), let γ = maxv∈V |Cv | be the maxi-
mum number of critical nodes over all network nodes. A minimum-interference
topology for G yields interference in Ω(

√
γ).

Proof. Let v ∈ V be the node with maximum interference in Glin. Thus,
|Cv| = γ, as all nodes interfering with v are in Cv . Without loss of generality,
we assume that at least half of the nodes in Cv are to the right of v. Let Cr

v be the
set of all nodes in Cv to the right of v. We number the nodes ci ∈ Cr

v according
to their occurrence from left to right. Note that the nodes in Cr

v constitute
a virtual exponential node chain, as the distance to their nearest neighbor to
the right must at least double from ci to ci+1. Therefore, Theorem 6.1 applies
directly to the nodes in Cr

v . Due to the fact that |Cr
v | ≥ |Cv |/2 and together

with Theorem 6.1, we obtain Ω(
√
|Cv |) as a lower bound for the interference at

v.

The Aapx algorithm makes use of Lemma 17.6 in order to decide whether
the existing instance inherently exhibits high interference. In particular, the
Aapx algorithm works as follows: Aapx first computes γ. If γ >

√
∆, Agen is

applied to the graph. Otherwise, if γ ≤
√

∆, Aapx connects all nodes of the
given graph linearly.

Theorem 17.7. Given a graph G, the Aapx algorithm computes a topology

which approximates the optimal interference of G up to a factor in O( 4
√

∆).
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Proof. We analyze the two possible cases in Aapx. In the case γ >
√

∆, accord-

ing to Theorem 17.5, Agen yields interference in O(
√

∆). On the other hand, by
Lemma 17.6, a minimum-interference topology produces at least Ω(

√
γ) interfer-

ence. We therefore obtain an approximation ratio in O(
√

∆)/Ω(
√

γ) ∈ O( 4
√

∆).

In the case γ ≤
√

∆, by Lemma 17.6, the minimum-interference topology
results in interference of at least Ω(

√
γ). Connecting G linearly, we obtain

interference γ by definition. Consequently, the approximation ratio of Aapx is

in γ/Ω(
√

γ) ∈ O( 4
√

∆).

17.4 Concluding Remarks

The results presented in this chapter extend the receiver-centric approach to
interference modeling—as studied in the context of sensor networks in Chap-
ter 16—to the analysis of connectivity in general ad hoc networks. The advan-
tages of this interference model are twofold: On the one hand, this definition
corresponds to intuition, owing to its receiver-centricity, particularly modeling
interference as an effect occurring at the intended receiver of a message, where
collisions actually prevent proper reception. On the other hand, this interfer-
ence model is robust with respect to addition or removal of single nodes, in
contrast to the sender-centric interference model proposed in Chapter 15.

Based on this interference model we show that there exist network instances
where, to the best of our knowledge, all currently known topology control algo-
rithms (establishing exclusively symmetric connections) fail to effectively confine
interference at a low level if required to maintain network connectivity. Led by
the observation that already one-dimensional networks exhibit the main com-
plexity of finding low-interference connectivity-preserving topologies, we then
focus on the so-called highway model. Starting out to study the special case of
the exponential node chain, we finally obtain an algorithm that is guaranteed
to always compute a 4

√
∆-approximation of the optimal connectivity-preserving

topology in the highway model in general. Adaptation of our approach to higher
dimensions remains an open problem and is left for future work.

This receiver-centric approach to the modeling of interference in wireless
networks will now be reformulated in a more abstract and at the same time
more general way. In particular, the following chapter will formalize interfer-
ence reduction in cellular networks as a set-based combinatorial optimization
problem.



Chapter 18

Interference in Cellular

Networks: The Minimum

Membership Set Cover

Problem

I don’t want to belong to any club that will accept me as a member.
Groucho Marx (1890–1977)

This chapter adopts the same receiver-centric approach to interference modeling
as the previous two chapters, particularly counting the number of nodes whose
transmissions disturb a given network node. It goes beyond those models by
accounting for the fact that, typically, transmission ranges—measured in exist-
ing wireless networks as the region where the received signal strength lies above
a certain threshold—do not resemble perfect circles centered at the sender. On
the contrary, effects such as shielding, reflection, and scattering caused by obsta-
cles to signal propagation can lead to observed transmission ranges that barely
have anything in common with such an idealistic geometric model. In order to
reflect this behavior, transmission ranges will be modeled in this chapter in a
general way as sets of affected nodes, considering a sender node and its chosen
transmission power level. Based on this model, a combinatorial optimization
problem will be formulated to reduce interference in wireless cellular networks.

Strictly speaking, it can be argued that cellular networks—forming the appli-
cation of the considered problem—lie outside the core scope of this dissertation.
We believe however that the presented approach considers the issue of interfer-
ence from a new perspective and that—interference forming a central issue for
wireless networks in general—this approach therefore deserves being discussed
in this context.
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Cellular networks are heterogeneous networks consisting of two different
types of nodes: base stations and clients. The base stations—acting as servers—
are interconnected by an external fixed backbone network; clients are connected
via radio links to base stations. The totality of the base stations forms the infras-
tructure for distributed applications running on the clients, the most prominent
of which probably being mobile telephony. Cellular networks can however more
broadly be considered a type of infrastructure for distributed tasks in general.

Since communication over the wireless links takes place in a shared medium,
interference can occur at a client if it is within transmission range of more
than one base station. In order to prevent such collisions, coordination among
the conflicting base stations is required. Commonly, this problem is solved by
segmenting the available frequency spectrum into channels to be assigned to the
base stations in such a way as to prevent interference, in particular such that
no two base stations with overlapping transmission range use the same channel.

In this chapter we will assume a different approach to interference reduc-
tion. The basis of our analysis is formed by the observation that interference
effects occurring at a client depend on the number of base stations by whose
transmission ranges it is covered. In particular for solutions using frequency
division multiplexing as described above, the number of base stations covering
a client is a lower bound for the number of channels required to avoid conflicts;
a reduction in the required number of channels, in turn, can be exploited to
broaden the frequency segments and consequently to increase communication
bandwidth. On the other hand, also with systems using code division multi-
plexing, the coding overhead can be reduced if only a small number of base
stations cover a client.

The transmission range of a base station—and consequently the coverage
properties of the clients—depends on its position, obstacles hindering the prop-
agation of electromagnetic waves, such as walls, buildings, or mountains, and
the base station transmission power. Since due to legal or architectural con-
straints the former two factors are generally difficult to control, we assume a
scenario in which the base station positions are fixed, where each base station
can however adjust its transmission power. The problem of minimizing interfer-
ence then consists in assigning a transmission power level to every base station
such that the number of base stations covering any node is minimal (cf. Fig-
ure 18.1). At the same time, it has to be guaranteed that every client is covered
by at least one base station in order to maintain availability of the network.

In Figure 18.1 the area covered by a base station b transmitting with a given
power level is represented by a disk centered at b and having a radius correspond-
ing to the chosen transmission power. Practical measurements however show
that this idealization is far from realistic. Not only mechanical and electronic
inaccuracies inevitable in the construction of antennas, but more importantly
the presence of obstacles to the propagation of electromagnetic signals—such as
buildings, mountains, or even weather conditions—can lead to areas covered by
signal transmission that hardly resemble disks in practice. These considerations
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c

Figure 18.1: If the base stations (hollow points) are assigned identical transmis-
sion power levels (dashed circles), client c experiences high interference since it
is covered by all base stations. Interference can be reduced by assigning appro-
priate power values (solid circles) such that all clients are covered by at most
two base stations.

suggest that, in order to study the described interference reduction problem, we
abstract from network node positions and circular transmission areas.

In our analysis, we will formalize the task of reducing interference as a combi-
natorial optimization problem. For this purpose we will model the transmission
range of a base station having chosen a specific transmission power level as a
set containing exactly all clients covered thereby. The totality of transmission
ranges selectable by all base stations is consequently modeled as a collection
of client sets. More formally, this yields the Minimum Membership Set Cover
(MMSC) problem: Given a set of elements U (modeling clients) and a collec-
tion S of subsets of U (transmission ranges), choose a solution S ′ ⊆ S such that
every element occurs in at least one set in S ′ (maintain network availability)
and that the membership M(e, S ′) of any element e with respect to S ′ is min-
imal, where M(e, S′) is defined as the number of sets in S ′ in which e occurs
(interference).

Having defined this formalization, we will show in this chapter—by reduc-
tion from the related Minimum Set Cover problem—that the MMSC problem is
NP-complete and that no polynomial-time algorithm exists with approximation
ratio less than ln n unless NP ⊂ TIME(nO(log log n)).1 We additionally present

1TIME(t) denotes the set of languages that have a deterministic algorithm running in
time t.
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a probabilistic algorithm based on linear programming relaxation asymptoti-
cally matching this lower bound, particularly yielding an approximation ratio
in O(log n) with high probability. Furthermore we study how the presented
algorithm performs in practical network instances.

The remainder of the chapter is organized as follows: The MMSC prob-
lem being formally defined in Section 18.1, the subsequent section contains a
description of the lower bound with respect to approximability of the MMSC
problem. In the following section we will describe how the MMSC problem can
be formulated as a linear program and will provide a O(log n)-approximation
algorithm for the problem. The behavior of the proposed algorithm in practical
networks is the subject of Section 18.4.

18.1 Minimum Membership Set Cover

As described in the introduction to this chapter, the problem considered in
this chapter is to assign to each base station a transmission power level such
that interference is minimized while all clients are covered. For our analysis we
formalize this problem by introducing a combinatorial optimization problem re-
ferred to as Minimum Membership Set Cover. In particular, clients are modeled
as elements and the transmission range of a base station given a certain power
level is represented as the set of thereby covered elements. In the following, we
will first define the membership of an element given a collection of sets:

Definition 18.1 (Membership). Let U be a finite set of elements and S be
a collection of subsets of U . Then the membership M(u, S) of an element u is
defined as |{T | u ∈ T, T ∈ S}|.

Informally speaking, MMSC is identical to the MSC problem apart from the
minimization function. Where MSC minimizes the total number of sets, MMSC
tries to minimize element membership. Particularly, MMSC can be defined as
follows:

Definition 18.2 (Minimum Membership Set Cover). Let U be a finite
set of elements with |U | = n. Furthermore let S = {S1, . . . , Sm} be a collection
of subsets of U such that

⋃m
i=1 Si = U . Then Minimum Membership Set Cover

(MMSC) is the problem of covering all elements in U with a subset S ′ ⊆ S such
that maxu∈U M(u, S′) is minimal.2

Note that—as discussed in the introduction of the chapter—the problem
statement does not require the collection of subsets S to reflect geometric posi-

2Besides minimizing the maximal membership value over all elements, also minimization
of the average membership value can be considered a reasonable characterization of the in-
terference reduction problem. The fact however that—given a solution S ′—the sum of all
membership values equals the sum of the cardinalities of the sets in S ′ shows that this min-
average variant is identical to the Weighted Set Cover [22] problem with the set weights
corresponding to set cardinalities.
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tions of network nodes. For a given problem instance to be valid,
⋃m

i=1 Si = U
is sufficient.

18.2 Problem Complexity

In this section we will address the complexity of the Minimum Membership Set
Cover problem. We will show that MMSC is NP -complete and therefore no
polynomial time algorithm exists that solves MMSC unless P = NP .

Theorem 18.1. MMSC is NP-complete.

Proof. We will prove that MMSC is NP -complete by reducing MSC to MMSC.
Consider an MSC instance (U, S) consisting of a finite set of elements U and
a collection S of subsets of U . The objective is to choose a subset S ′ with
minimum cardinality from S such that the union of the chosen subsets of U
contains all elements in U .

We now define a set Ũ by adding a new element u to U , construct a new
collection of sets S̃ by inserting u into all sets in S, and consider (Ũ , S̃) as an

instance of MMSC. Since the element u is in every set in S̃, it follows that u is
an element with maximum membership in the solution S ′ of MMSC. Moreover,
the membership of u in S′ is equal to the number of sets in the solution. There-
fore MMSC minimizes the number of sets in the solution by minimizing the
membership of u. Consequently we obtain the solution for MSC of the instance
(U, S) by solving MMSC for the instance (Ũ , S̃) and extracting the element u
from all sets in the solution.

We have shown a reduction from MSC to MMSC, and therefore the latter
is NP -hard. Since solutions for the decision problem of MMSC are verifiable in
polynomial time, it is in NP , and consequently the MMSC decision problem is
also NP -complete.

Now that we have proved MMSC to be NP-complete and therefore not to
be optimally computable within polynomial time unless P = NP , the question
arises, how closely MMSC can be approximated by a polynomial time algorithm.
This is partly answered with the following lower bound.

Theorem 18.2. There exists no polynomial time approximation algorithm for
the MMSC problem with an approximation ratio less than ln n unless NP ⊂
TIME(nO(log log n)).

Proof. The reduction from MSC to MMSC in the proof of Theorem 18.1 is
approximation-preserving, that is, it implies that any lower bound for MSC
also holds for MMSC. In [34] it is shown that ln n is a lower bound for the
approximation ratio of MSC unless NP ⊂ TIME(nO(log log n)). Thus, ln n is
also a lower bound for the approximation ratio of MMSC.
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18.3 Approximating MMSC by LP Relaxation

In the previous section, a lower bound of ln n for the approximability of the
MMSC problem by means of polynomial time approximation algorithms has
been established. In this section we will show how to obtain a O(log n)-approxi-
mation with high probability3 using LP relaxation techniques. For an introduc-
tion to linear programming see for instance [23].

18.3.1 LP Formulation of MMSC

We will first derive the integer linear program which describes the MMSC prob-
lem and then formulate the linear program that relaxes the integrality con-
straints.

Let S′ ⊆ S denote a subset of the collection S. To each Si ∈ S we assign
a variable xi ∈ {0, 1} such that xi = 1 ⇔ Si ∈ S′. For S′ to be a set cover, it
is required that for each element ui ∈ U at least one set Sj with ui ∈ Sj is in
S′. Therefore, S′ is a set cover of U if and only if for all i = 1, . . . , n it holds
that

∑
Sj :ui∈Sj

xj ≥ 1. For S′ to be minimal in the number of sets that cover a
particular element, we need a second set of constraints. Let z be the maximum
membership over all elements caused by the sets in S ′. Then for all i = 1, . . . , n
it follows that

∑
Sj :ui∈Sj

xj ≤ z. The MMSC problem can consequently be
formulated as the integer program IPMMSC:

minimize z

subject to
∑

Sj :ui∈Sj

xj ≥ 1 i = 1, ..., n

∑

Sj :ui∈Sj

xj ≤ z i = 1, ..., n

xj ∈ {0, 1} j = 1, ..., m

By relaxing the constraints xj ∈ {0, 1} to x′
j ≥ 0, we obtain the following linear

program LPMMSC:

3Throughout this chapter, an event E occurring “with high probability” stands for Pr[E] =
1 − O

`

1

n

´

.
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minimize z

subject to
∑

Sj :ui∈Sj

x′
j ≥ 1 i = 1, ..., n

∑

Sj :ui∈Sj

x′
j ≤ z i = 1, ..., n

x′
j ≥ 0 j = 1, ..., m

The integer program IPMMSC yields the optimal solution z∗ for an MMSC prob-
lem. The derived linear program LPMMSC therefore obtains a fractional solu-
tion z′ with z′ ≤ z∗ since we allow the variables x′

j to be in [0,1].

18.3.2 Algorithm and Analysis

We will now present a O(log n)-approximation algorithm, referred to as AMMSC,
for the MMSC problem. Given an MMSC instance (U, S), the algorithm first
solves the linear program LPMMSC corresponding to (U, S). In a second step,
AMMSC performs randomized rounding (see [93]) on a feasible solution vector x′

for LPMMSC in order to derive a vector x with xi ∈ {0, 1}. Finally it is ensured
that x is a feasible solution for IPMMSC and consequently a set cover.

Algorithm AMMSC

Input: an MMSC instance (U, S)
1: compute solution vector x′ to the linear program LPMMSC corresponding to

(U, S)
2: pi := min{1, x′

i · log n}

3: xi :=

{
1 with probability pi

0 otherwise

4: for all ui ∈ U do
5: if

∑
Sj :ui∈Sj

xj = 0 then
6: set xj = 1 for any j such that ui ∈ Sj

7: end if
8: end for

Output: MMSC solution S′ corresponding to x

For the analysis of AMMSC the following two mathematical facts are required.
Their proofs are omitted and can be found in mathematical text books.

Fact 18.1. (Means Inequality) Let A ⊂ R+ be a set of positive real numbers.
The product of the values in A can be upper-bounded by replacing each factor
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with the arithmetic mean of the elements of A:

∏

x∈A

x ≤
(∑

x∈A x

|A|

)|A|

.

Fact 18.2. For all n, t, such that n ≥ 1 and |t| ≤ n,

et

(
1 − t2

n

)
≤
(

1 +
t

n

)n

≤ et.

We will prove AMMSC to be a O(log n)-approximation algorithm for IPMMSC

in several steps. We first show that the membership of an element in U after
the randomized rounding step of AMMSC is bounded with high probability.

Lemma 18.3. The membership of an element ui after Line 3 of AMMSC is at
most 2e logn · z∗ with high probability.

Proof. The optimal solution of LPMMSC leads to fractional values x′
j and does

not admit a straightforward choice of the sets Sj . Using randomized rounding,
AMMSC converts the fractional solution to an integral solution S ′. In Line 3,
a set Sj is chosen to be in S′ with probability x′

j · log n. Thus, the expected
membership of an element ui is

E[M(ui, S
′)] =

∑

Sj :ui∈Sj

x′
j · log n ≤ log n · z′. (18.1)

The last inequality follows directly from the second set of constraints of LPMMSC.
Since z′ ≤ z∗, it follows that the expected membership for ui is at most log n·z∗.
Now we need to ensure that, with high probability, ui is not covered too often.
Since randomized rounding can be modeled as Poisson trials, we are able to use
a Chernoff bound [78]. Let Yi be a random variable denoting the membership
of ui with expected value µ = E[M(ui, S

′)]. Applying the Chernoff bound, we
derive

Pr [Yi ≥ (1 + δ) µ] <

(
eδ

(1 + δ)
(1+δ)

)µ

.

Choosing δ ≥ 2e− 1, the right hand side of the inequality simplifies to

(
eδ

(1 + δ)(1+δ)

)µ

≤
(

eδ

(2e)(1+δ)

)µ

<

(
eδ

(2e)
δ

)µ

= 2−δµ. (18.2)

Since the above Chernoff bound corresponds to the upper tail of the probability
distribution of Yi and as µ is at most log n · z∗, it follows that

Pr [Yi ≥ (1 + δ) log n · z∗] ≤ Pr [Yi ≥ (1 + δ) µ] .
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However, for this inequality to hold, only (1+δ)µ ≤ c log n ·z∗ for some constant
c is required. Thus, by setting (1+δ)µ = c log n ·z∗ and using Inequality (18.1),
we obtain

δµ ≥ (c − 1) log n · z∗. (18.3)

Using Inequalities (18.2) and (18.3), we can then bound the probability that
the membership of ui is greater than c log n · z∗ as follows:

Pr [Yi ≥ c log n · z∗] < 2−δµ ≤ 2−(c−1) log n·z∗

=
1

n(c−1)z∗
.

In order to compute c, we again consider the equation (1 + δ)µ = c log n · z∗.
Solving for δ, we derive

δ =
c logn · z∗

µ
− 1.

As a requirement for Inequality (18.2) we demand δ to be greater or equal to
2e − 1. Furthermore, the right hand side of the inequality is minimal if µ is
maximal. Thus, using Inequality (18.1), we obtain

c log n · z∗
log n · z∗ − 1 ≥ 2e − 1

or c ≥ 2e. Taking everything together and using z∗ ≥ 1, it follows that

Pr [Yi ≥ 2e logn · z∗] <
1

n(2e−1)z∗
∈ O

(
1

n4

)
.

Now we are ready to show that after randomized rounding all elements have
membership at most 2e logn · z∗ with high probability.

Lemma 18.4. The membership of all elements in U after Line 3 of AMMSC is
at most 2e logn · z∗ with high probability.

Proof. Let Ei be the event that the membership of element ui after Line 3 of
AMMSC is greater than 2e logn · z∗. Then the probability that the membership
for all elements in U is less than 2e logn · z∗ equals

Pr[

n∧

i=1

Ei ].

We know from Lemma 18.3 that the probability Pr[Ei] is less than 1/n(2e−1)z∗

.
Since the events are clearly not independent, we cannot apply the product rule.
However, it was shown in [100] that

Pr[
n∧

i=1

Ei ] ≥
n∏

i=1

Pr[ Ei ]. (18.4)
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We can make use of this bound, as IPMMSC features the positive correlation
property assumed in [100]. Consequently, setting α = (2e − 1)z∗ and using
Inequality (18.4), it follows that

Pr[

n∧

i=1

Ei ] ≥
(

1 − 1

nα

)n

=

(
1 − 1

nα

) nα
−1

nα−1−
1

n

≥ e
− 1

nα−1−
1

n > 1 − 1

nα−1 − 1
n

.

For the third inequality we use Fact 18.2 with t = −1, which leads to the
inequality

e−1 ≤ (1 − 1/n)n−1.

The last inequality is derived by Taylor series expansion of the left hand term.
Consequently, using α = (2e − 1)z∗ and z∗ ≥ 1, we obtain

Pr[

n∧

i=1

Ei ] = 1 − O

(
1

n3

)
.

Since AMMSC uses randomized rounding, we do not always derive a feasible
solution for IPMMSC after Line 3 of the algorithm. That is, there exist elements
in U that are not covered by a set in S ′. But we can show in the following
lemma that each single element is covered with high probability.

Lemma 18.5. After Line 3 of AMMSC, an element ui in U is covered with high
probability.

Proof. For convenience we define Ci to be the set {Sj | ui ∈ Sj}. From LPMMSC

we know that
∑

Sj∈Ci
x′

j ≥ 1. Thus, it follows that

∑

Sj∈Ci

pj ≥ log n. (18.5)

Let qi be the probability that an element ui is contained in none of the sets in
S′ obtained by randomized rounding, that is, qi = Pr [M(ui, S

′) = 0]. Conse-
quently we have

qi =
∏

Sj∈Ci

(1 − pj) ≤
(

1 −
∑

Sj∈Ci
pj

|Ci|

)|Ci|

≤ e
−

P

Sj∈Ci
pj ≤ e− log n =

1

n
.

The first inequality follows from Fact 18.1, the second inequality is a conse-
quence of Fact 18.2, and the third step is derived from Inequality (18.5).
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Lines 4 to 8 of AMMSC ensure that the final solution S ′ is a set cover. This
is achieved by consecutively including sets in S ′ until all elements are covered.
In the following we show that the additional maximum membership increase
caused thereby is bounded with high probability.

Lemma 18.6. In Lines 4 to 8 of AMMSC, the maximum membership in U is
increased by at most O(log n) with high probability.

Proof. In order to bound the number of sets added in the considered part of the
algorithm, again a Chernoff bound is employed. Let Z be a random variable
denoting the number of uncovered elements after Line 3 of AMMSC. From
Lemma 18.5 we know that an element is uncovered after randomized rounding
with probability less than 1/n. Consequently, the expected value µ for Z is less
than 1. Using a similar analysis as in Lemma 18.3, we obtain

Pr [Z ≥ c] < 2−c+1,

where c ≥ 2e is required. Setting c = log n + 2e, it follows that

Pr [Z ≥ log n + 2e] <
2

n · 4e
∈ O

(
1

n

)
.

The proof is concluded by the observation that each additional set added in the
second step of AMMSC increases the maximum membership in U by at most
one. Since only O(log n) elements have to be covered with high probability and
as it is sufficient to add one set per element, the lemma follows.4

Now we are ready to prove that AMMSC yields a O(log n)-approximation for
IPMMSC and consequently also for MMSC.

Theorem 18.7. Given an MMSC instance consisting of m sets and n elements,
AMMSC computes a O(log n)-approximation with high probability. The running
time of AMMSC is polynomial in m · n.

Proof. The approximation factor in the theorem directly follows from Lemmas
18.4 and 18.6. The running time result is a consequence of the existence of
algorithms solving linear programs in time polynomial in the program size [56]
and to the fact that LPMMSC can be described using −1, 0, and 1 as coefficients
only.

18.3.3 Alternative Algorithm

In an alternative version of the algorithm, the values x′ obtained by solving
LPMMSC can be directly employed as probabilities for randomized rounding

4Since in the above Chernoff bound µ is at most a constant, a more careful analysis
would yield that the maximum membership in U is increased—with high probability—by
O(log n/ log log n) only. This improvement has however no impact on the main result of this
chapter.
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(without the additional factor of log n). In this case, randomized rounding is
repeated for all sets containing elements not yet covered until resulting in a set
cover. With similar arguments as for AMMSC, it can be shown that this modified
algorithm achieves the same approximation factor and that it terminates after
repeating randomized rounding at most log n times, both with high probability.

18.4 Average-Case Networks

While the previous section showed that AMMSC approximates the optimal solu-
tion up to a factor in O(log n), this section will discuss average-case networks.

In particular, the algorithms AMMSC and ÃMMSC—the alternative algorithm
described in Section 18.3.3—are considered. Since the approximation perfor-
mance of algorithms is studied, we will denote by the membership of a solution
the minimization function value—that is the maximum membership over all
clients—of the corresponding MMSC solution.

The studied algorithms were executed on instances generated by placing
base stations and clients randomly according to a uniform distribution on a
square field with side length 5 units. Adaptable transmission power values were
modeled by attributing to each base station circles with radii 0.25, 0.5, 0.75,
and 1 unit; each such circle then contributes one set containing all covered
clients to the problem instance thereafter presented to the algorithms. The
fact that the AMMSC and ÃMMSC algorithms can choose more than one circle
attributed to the same base station would imply the necessity of an additional
post-processing step to eliminate these cases. Since this however appears to oc-
cur rarely given the generated instances, such post-processing has been omitted
in our implementations.

As shown in the previous section, the approximation factor of the algorithms
depends on the number of clients. For this reason the simulations were carried
out over a range of client densities. Since the membership value obtained by
solving LPMMSC lies below the optimal solution and therefore the gap between
the algorithm result and the solution of the linear program is an upper bound
for the obtained approximation ratio, the LPMMSC result z′ is also considered.

For a base station density of 2 base stations per unit disk, Figure 18.2(a)
shows the mean membership values over 200 networks—for each simulated client
density—for the results computed by AMMSC, ÃMMSC, and the values obtained
by solving LPMMSC. The results depict that for this relatively low base station
density all measured values are comparable and increase with growing client
density. In contrast, for a higher base station density of 5 base stations per unit
disk (cf. Figure 18.2(b)), a gap opens between the AMMSC and LPMMSC results.
Whereas the ratio between these two result series—as mentioned before, an up-
per bound for the approximation ratio—rises sharply for low client densities, its
increase diminishes for higher client densities, which corresponds to the O(log n)
approximation factor described in the theoretical analysis. Additionally, it can
be observed that ÃMMSC performs significantly better than AMMSC. The reason
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Figure 18.2: Mean values of the membership results obtained by AMMSC (dot-

ted), ÃMMSC (dashed), and the LPMMSC solution with 2 (a), 5 (b), and 10 (c)
base stations per unit disk.
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for this effect lies in the fact that AMMSC multiplies the x′ values resulting from
LPMMSC by the factor log n to obtain the probabilities employed for random-
ized rounding, whereas this multiplication is not performed by ÃMMSC. The
approximation gap becomes even wider for higher base station densities, such as
10 base stations per unit disk (Figure 18.2(c)). Our simulations showed however
that beyond this base station density no significant changes in the membership
results can be observed.

The increasing gap between the simulated algorithms and the LPMMSC so-
lution with growing base station density can be explained by the following
observation: For low base station densities—where problem instances contain a
small number of sets—a relatively large number of clients are covered by only
one set, which consequently will have to be chosen in both the LPMMSC and
the algorithm solutions; for high base station densities, in contrast, the solution
weights x′ computed by LPMMSC can be distributed more evenly among the
relatively high number of available sets, and the potential of “committing an
error” during randomized rounding increases.

In summary, the simulations show that the considered algorithms approx-
imate the optimum solution well in average-case networks. As regards com-
parison of AMMSC and ÃMMSC, it can be observed that, in practice, the latter
algorithm performs even better than the former.

18.5 Concluding Remarks

Interference reduction in cellular networks is studied in this chapter by means
of formalization with the Minimum Membership Set Cover problem. To the
best of our knowledge, this combinatorial optimization problem has not been
studied before. In particular, we show in this chapter, using an approximation-
preserving reduction from the Minimum Set Cover problem, that MMSC is
not only NP-hard, but also that no polynomial-time algorithm can approxi-
mate the optimal solution more closely than up to a factor ln n unless NP ⊂
TIME(nO(log log n)). In a second part of the chapter, this lower bound is shown
to be asymptotically matched by a randomized algorithm making use of linear
programming relaxation techniques. The third part of the chapter discusses
the behavior of the algorithm in average-case networks. In particular, it shows
that the algorithm can be modified to perform well not only in the worst case
but also in the average case. Finally, the question remains as an open prob-
lem whether there exists a simpler greedy algorithm—considering interference
increase during its execution—with the same approximation quality.

Although the application of the problem discussed in this chapter goes be-
yond the scope of this dissertation in a strict sense, this approach to interference
reduction in wireless networks has been presented owing to its character differing
from the techniques presented in the previous chapters. Besides this approach,
we have studied in this second part of the dissertation different models and
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problem formulations for the task of reducing interference in various types of
wireless networks. Although the different models of interference are all justi-
fied where they are introduced, it is true, at least certain definition details may
sometimes appear arbitrary. Indeed,—even if restricting oneself to model defi-
nitions independent of network traffic and where message transmission does or
does not interfere with other nodes in a simplistic binary manner—many more
models for interference exist, some more natural, others less reasonable. The
following chapter will present and discuss a systematic overview of different
interference models in the context of topology control based on transmission
power control.
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Chapter 19

On Modeling Interference

The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct which,

with the addition of certain verbal interpretations, describes observed
phenomena. The justification of such a mathematical construct is solely and

precisely that it is expected to work.
John von Neumann (1903–1957)

The core issue considered in Chapters 15 to 18 is interference. In contrast to
most of the previous work, we thereby study interference as an explicit network
property. Such explicitness, in turn, requires exact definition of what is un-
derstood by interference. We have restricted our studies to interference models
with the following idealizations:

- Interference is binary in the sense that for every transmitted signal a
subset of the network nodes (or edges, as explained later) is interfered
with, whereas the remaining nodes are not affected.

- Interference is independent of network traffic. Instead it is based on chosen
transmission ranges.

- Transmission ranges reflect selected connections in the network.

The first assumption is clearly a stark simplification of reality; nevertheless,
as the previous chapters show, such a binary model can allow for intuitive re-
sults and can be considered a first step towards understanding interference.
Independence of network traffic, as stated in the second assumption, is desir-
able, since network traffic highly depends on the chosen application and as its
characteristics are commonly not known prior to network operation. The third
assumption does not imply that transmission ranges have a certain geometric
shape. In Chapters 15, 16, and 17, transmission ranges correspond to chosen
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edges in the resulting network graph; in Chapter 18, transmission ranges reflect
potential links between mobile nodes and base stations.

Based on these model assumptions, this chapter aims at providing an overview
and comparison of various interference models, some of which are more reason-
able, others less intuitive, some allow for problems which are optimally solvable
in polynomial time, others are inherently difficult. While the most intuitive and
best justifiable interference models have been adopted for analysis in the pre-
vious chapters, this chapter is intended to provide an overview from a “model
architect’s” perspective.

As mentioned earlier, interference reduction per se is meaningless, as the
trivial solution of having all nodes send with least possible power (or have them
shut down their radio devices) minimizes interference. The problem of inter-
ference minimization only becomes reasonable if certain properties are stated
as requirements to be fulfilled by the resulting topologies. As shown in the
previous chapters, typical requirements to be met by resulting topologies are
network connectivity, the spanner property, or planarity, while, in principle, any
network property is possible to be stipulated. In this chapter, we will consider
interference independent of any required network property. In other words,
interference is regarded as a measure given a resulting network topology with
specified connections—or more exactly a graph with specified edges.

One of the first questions that should be asked when modeling interfer-
ence is who interferes with whom. Is it mainly nodes interfering with other
nodes or do links disturb other links? Is there a significant difference between
the two perspectives? At first sight it may seem clear that nodes—sending
messages—are the sources for interference. On the other hand it can also be
argued that communication along a link imposes interference to all nodes within
the vicinity of the link and hence interference from edges onto nodes should be
considered. But then again, what is prevented by interference is communica-
tion over links. Partitioned into four sections corresponding to the categories
node-to-node, edge-to-edge, edge-to-node, and node-to-edge interference, several
more questions will be discussed. Where shall interference be measured, at the
originators or rather at the affected nodes? Does it make a difference at all?
How do we derive a measure for the entire network from local measures?

19.1 Node-to-Node Interference

Network nodes are the physical entities that eventually emit radio signals and
are disturbed by signals of other stations. It can therefore be argued that
interference should best be defined to occur between nodes. Focusing on nodes
as causing interference, this section discusses directed links—or directed edges
in terms of graphs—, as a transmitted message is considered to be independent
of a possible reply.

Figure 19.1 shows an overview of several additional decisions that are re-
quired along the way to a model of interference. The displayed interference
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Figure 19.1: Node-to-node interference.

models are defined according to the three parameters direction, transmission
radius, and network interference. Choosing the out branch at the direction node
corresponds to measuring interference at the originators counting the affected
nodes (outgoing interference), whereas the in branch corresponds to measuring
interference at the affected nodes counting the nodes by which a considered
node is affected (incoming interference).

The next decision parameter—transmission radius—is concerned with the
way interference at a node is defined. We will first look at the out subtree, that
is, for each node, the impact its activity has onto other nodes is considered. A
message sent along an edge e interferes with all nodes lying within the trans-
mission range corresponding to the edge e, or in an idealized way, with all nodes
contained in the disk of radius |e| centered at the sending node. But how can
the interference of a node with several incident edges be defined? Figure 19.1
provides three possibilities of assigning a value to a node v:

max A disk with its radius corresponding to the longest incident edge of v is
chosen. The number of nodes covered by this disk is the value for v.

sum For all incident edges of v, the quantities of nodes covered by the corre-
sponding disks are summed up.

avg Similar to the sum case, but the value is finally divided by the number of
edges incident to v.

Regardless of the definition of the interference measure of a node, when step-
ping onwards to the entire network graph, some pooling of the individual node
interference values is required. This can for instance be done by taking the
maximum (m) or the average (a) of all nodes, as shown in the figure. The first
option tries to reflect interference in worst-case regions of the network, whereas
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the second aims at modeling how much the network as a whole is exposed to
interference. Alternatively, the sum over all nodes could be computed, which
would however lead to a counter-intuitive model having a direct dependency on
the number of nodes in the graph.

For the in subtree, the transmission radius parameter offers two options:

max As in the max case of the out subtree, a disk of maximum radius (over
all incident edges) is considered for each node in the graph. The value
assigned to a node v is now the number of disks that cover v.

all Not only the longest edge incident to a node is considered, but every edge
e is represented by a disk with its radius equal to |e|. Again the number
of disks covering v is counted.

At the bottom of the decision tree we also have the maximum (m) and average
(a) pooling options.

Node-to-node interference models based on incoming interference are stud-
ied in Chapters 16 and 17, particularly Iimm (defined as in-max-m) in sensor
networks and general ad hoc networks, respectively. As Chapter 16 considers
minimum-interference sink trees, where every node has exactly one outgoing
directed edge, the Iiam or also an edge-to-node interference model as discussed
below would lead to the same interference values. Although the problem of
interference reduction in cellular networks studied in Chapter 18 is not based
on network graphs, also the model considered there can in a way be regarded
as a node-to-node interference model: Base stations choose their transmission
ranges, which affect mobile nodes.

Certain interference models defined above do not reflect intuition of what
interference is. Interference values in the models contained in the out-sum and
the in-all subtrees can for instance reach Ω(n2), n being the number of network
nodes; such behavior can hardly be justified if—intuitively—a basic property
of interference is that, considering a given node v, at most all other nodes can
interfere with v or can be affected by v. The values in all other presented
models cannot exceed n. Another family of questionably defined models is
contained in the out-avg subtree. The interference value of a node is computed
by averaging—over the number of incident edges—the sum of the cardinalities of
all disks induced by incident edges, where the cardinality of a disk is the number
of nodes it covers. With this measure, a node with a high interference value
can reduce its interference by initiating connections to near-by nodes. That a
node can diminish its interference by means of additional connections cannot
be considered a reasonable property of an interference model. Nevertheless, the
out-avg subtree is depicted in Figure 19.1 for illustration.

Furthermore, certain models yield identical interference values although hav-
ing differing definitions. The Ioma and Iima models produce identical values
given the same graph. The reason for this identity is that every occurrence of a
node covered by a disk is counted exactly once in both models, at the respective



19.2. EDGE-TO-EDGE INTERFERENCE 199

interference originators in Ioma and at the nodes affected in Iima. The same
identity holds for the Iosa and Iiaa models.

As regards solvability of interference minimization problems in the discussed
models, it appears that, in most cases, the measures based on incoming inter-
ference result in problems of more complex nature than those based on outgo-
ing interference. Informally, one of the main reasons for this difference lies in
the following observation: In an outgoing interference model, the interference
caused by a node choosing an edge to be included in the resulting topology is a
static property of that edge independent of the selection of other edges; in con-
trast, such a static correlation between interference values and single network
entities does not exist in models with incoming interference. This apparently
fundamental difference in complexity between problems based on outgoing and
incoming interference can also be observed in the problems discussed in the pre-
vious chapters, although not all of these problems are based on node-to-node
interference.

19.2 Edge-to-Edge Interference

A prominent example of a model where edges in the network graph are con-
sidered to interfere with other edges is [74]. Such a model can be justified by
arguing that it is communication over links producing interference and thus
preventing communication intended to take place over other links.

Like node-to-node interference, edge-to-edge interference models can be clas-
sified according to a set of parameters. The most fundamental such parameter
is again the distinction between outgoing and incoming interference, counting
how many other edges a given edge affects or by how many other edges a given
edge is affected, respectively.

A parameter that only occurs in connection with edge-based interference
models is edge symmetry. An edge can be considered to cause interference in
one direction, that is around the sender only, or in both directions, around both
incident nodes, according to how the question is answered whether communi-
cation over a link in one direction is inevitably (or forcedly) linked to commu-
nication in the opposite direction. Similarly, a link affected by interference can
be considered either directed or symmetric in the following sense: On the one
hand, interference can prevent reception only of a message, while the sending
process of a message remains in principle unaffected by interfering signals; on
the other hand it can be argued that communication over a link is always bidi-
rectional and therefore an edge is interfered with if any of the incident nodes is
affected. The interference model introduced in [74] for instance considers edges
to be symmetric with respect to both causation and suffering of interference.

A final definition parameter is, as in the previous section, the question how
to arrive, once the interference of a single edge is specified, at the interference
of a whole graph. Again, standard options include maximizing and averaging
over all edge interference values in the graph.
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19.3 Edge-to-Node Interference

Another perspective on interference modeling is that edges interfere with nodes,
as communication takes place over links and the network entities affected by
interference are the nodes. The model studied in Chapter 15 is of this type (and
also the model considered in Chapter 16 can be regarded as such).

Also the edge-to-node interference models can be defined with several pa-
rameters. Again, the principal choice is whether outgoing or incoming interfer-
ence is to be considered, counting the nodes affected by an edge or the edges
affecting a node. A second parameter is edge directionality, the question also
posed in the previous section whether communication over an edge causes in-
terference around both incident nodes or around the sender only. Finally, again
for instance the maximum or average aggregation functions can be employed to
compute network interference from node interference values. The model studied
in Chapter 15, as an example, considers outgoing interference with symmetric
edges and uses maximization to arrive at graph interference. Similarly, the
interference definition discussed in Chapter 16 can be regarded as modeling
incoming interference with asymmetric edges and maximizing over node inter-
ference values.

Comparing these two models, the complexity difference also mentioned at
the end of Section 19.1 between problems based on outgoing interference and
such based on incoming interference becomes particularly apparent. The prob-
lems discussed in Chapter 15 can be solved optimally with relatively simple
greedy algorithms while the problems based on incoming interference in the sub-
sequent chapters apparently have to be tackled using more complex approaches.
It again appears that this difference in complexity is due to the fact that—for
instance using maximization for the purpose of aggregation—with outgoing in-
terference the resulting network interference value is attributed to a single node
or edge causing that interference value, whereas no such correspondence of the
resulting value with a single network entity exists if the considered measure is
based on incoming interference.

19.4 Node-to-Edge Interference

Due to symmetry, also the fourth type of interference—nodes interfering with
edges—is conceivable, arguing that network nodes, the entities sending sig-
nals and thus producing interference, prevent proper communication over links.
Again, the models can be classified with respect to a set of parameters, particu-
larly along the three parameters concerning outgoing or incoming interference,
directionality of edges, and network-level interference pooling. The edges be-
ing the targets of interference, their directionality is considered to answer the
question whether only the receiving node of a directed edge or both nodes in-
cident to a symmetric edge can be affected by interference. Although this type
of interference models can be justified, they are probably less intuitive than
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those discussed in the previous sections; the node-to-edge interference type is
therefore mentioned for completeness, mainly.

19.5 Concluding Remarks

After introducing a selection of interference models and studying interference
reduction problems based on these models in the previous chapters, we intend
in this chapter to allow the reader to take a look “behind the scenes”, showing
that a systematic exploration of the interference model “design space”—even if
confined by the idealizing assumptions made at the beginning of the chapter—
yields a host of possible measures, some of which can well be justified, while
others contradict intuition, and of which those that can most reasonably be
justified to reflect the notion of interference in wireless networks have been
chosen for further analysis.
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Chapter 20

Conclusion

A conclusion is the place where you got tired of thinking.
Martin H. Fischer (1879–1962)

Ad hoc and sensor network nodes are “unleashed” in two respects: They commu-
nicate using wireless connections, and they are independent of external power
sources. The foremost consequences of this autonomy consist in potentially
highly dynamic networks—caused by the inherent instability of radio links and
by node mobility—and in energy constituting a critical resource. In the first
part of this dissertation we analyzed geographic routing, a type of routing par-
ticularly promising for dynamic networks, mainly due to its strictly local na-
ture. Topology control playing an important role already in this first part, the
second part of the dissertation emphasized energy-aware topologies. In partic-
ular, interference was discussed as one of the crucial energy-consuming issues
in ad hoc networks. The task of reducing interference among network nodes
was approached by first identifying the notion of interference and subsequently
proposing low-interference topologies.

Clearly, the discussed techniques, methods, and solutions are of heteroge-
neous maturity. Our geographic routing protocols—having been shown to be
both optimal in worst-case networks and efficient on average—have reached a
degree of design that suggests their being taken one stage further towards im-
plementation in practical networks, even if some important issues with respect
to node mobility have yet to be solved. On the other end of the spectrum, the
exploration of interference-aware topology control algorithms may be considered
but a first step on the long journey towards understanding interference in wire-
less ad hoc networks. The effect these considerations might have on practical
networks is yet unclear. Above all an analytical characterization of the concept
of signal-to-noise ratio, based on graph representations of networks, would help
to move this approach forward. The lightweight topology control algorithm
can be regarded as situated between these two extremes in the sense that it
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not only features certain theoretical properties but also forms a reasonable ba-
sis for experimentation and exploration of interference and energy in practical
networks.

At the end of this dissertation, it may be justified to ask what we can learn
from this work. Technically, the geographic routing algorithms may stand as an
example that it is possible to design algorithms with theoretically proved worst-
case guarantees and more practically relevant average-case efficiency. Maybe,
the general conclusion can be drawn that accounting for worst-case behavior
before studying the average case appears to be easier than conversely, which
may serve as a design principle beyond the scope of ad hoc and sensor networks.
From a less technical perspective, the second part of the dissertation showed that
sometimes questioning a seemingly trivial statement—low node degree implies
low interference—can open up a new field full of fascinating problems, questions,
and answers. Whether the main goal of this thesis, helping to narrow the gap
between theory and practice, however has been reached, only time will show.
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