
Multidimensional Approximate Agreement with Asynchronous
Fallback

Diana Ghinea

ghinead@ethz.ch

ETH Zürich

Zürich, Switzerland

Chen-Da Liu-Zhang

chen-da.liuzhang@ntt-research.com

NTT Research

Sunnyvale, USA

Roger Wattenhofer

wattenhofer@ethz.ch

ETH Zürich

Zürich, Switzerland

ABSTRACT

Multidimensional Approximate Agreement considers a setting of 𝑛

parties, where each party holds a vector in R𝐷 as input. The honest

parties are required to obtain very close outputs in R𝐷 that lie

inside the convex hull of their inputs.

Existing Multidimensional Approximate Agreement protocols

achieve resilience against 𝑡𝑠 < 𝑛/(𝐷 + 1) corruptions under a

synchronous network where messages are delivered within some

time Δ, but become completely insecure as soon as a single message

is further delayed. On the other hand, asynchronous solutions do

not rely on any delay upper bound, but only achieve resilience up

to 𝑡𝑎 < 𝑛/(𝐷 + 2) corruptions.
We investigate the feasibility of achieving Multidimensional

Approximate Agreement protocols that achieve simultaneously

guarantees in both network settings: We want to tolerate 𝑡𝑠 corrup-

tions when the network is synchronous, and also tolerate 𝑡𝑎 ≤ 𝑡𝑠
corruptions when the network is asynchronous. We provide a pro-

tocol that works as long as (𝐷 + 1) · 𝑡𝑠 + 𝑡𝑎 < 𝑛, and matches several

existing lower bounds.
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1 INTRODUCTION

Agreement primitives constitute fundamental building blocks in

the distributed systems literature. They allow a set of 𝑛 parties with

possibly distinct input values to agree on a value subject to some

validity condition, even when 𝑡 of these parties are Byzantine and

exhibit malicious behavior.

We need to distinguish the synchronous and the asynchronous

network model. In the synchronous model, it is guaranteed that

the messages sent are delivered within a known amount of time Δ.
In contrast, the asynchronous model does not assume any upper

bound on the network delay (only that the messages get delivered

eventually). From a practical perspective, both models make sense,

as they reflect stable network conditions (synchronous) or networks

in distress and possibly under attack (asynchronous).

In many agreement protocols, asynchronous networks pose sig-

nificant limitations. For example, the seminal result of Fischer,

Lynch and Paterson [17] shows that the problem of Byzantine

Agreement, where parties must agree on the exactly same output

value, cannot be achieved deterministically even under the presence

of a single crash failure.

Because of this fundamental limitation, Dolev et al. [13] intro-

duced the Approximate Agreement (AA) problem. AA relaxes the

agreement requirement by allowing the parties to obtain 𝜀-close

outputs that lie within the range of their real-valued inputs. AA is

of great interest in several practical applications, such as in clock

synchronization [21, 23, 33], or for robots gathering on a line [8].

In this paper, we study the more general case ofMultidimensional
Approximate Agreement, or 𝐷-dimensional Approximate Agreement
(𝐷-AA) with 𝐷 > 1, introduced independently by Mendes and

Herlihy [26] and Vaidya and Garg [32]. Here, each party holds a

vector in R𝐷 as input, and the honest parties try to converge to

𝜀-close outputs in R𝐷 that lie in the convex hull of their inputs.

Considering higher dimensions turns out to be useful in several

practical applications, including scenarios where robots need to

converge to close locations in a 2 or 3-dimensional space [30], in

distributed voting where the preferences are described by assigning

weights, or in optimization problems, and maybe most prominently

in machine learning [14, 31]: In federated machine learning, 𝑛 par-

ties (e.g., companies, hospitals) want to (or, must) keep their training

data private, but they agree to improve their model based on the

data of other parties. So each party runs its own machine learning

model, and learns with its own data. From time to time, the parties

exchange their learning parameters (in particular gradients, which

are vectors). The parties try to approximately agree on a gradient,

while being resilient to Byzantine faults. This is a 𝐷-AA problem,

with 𝐷 being the dimension of the model.

Previous works on 𝐷-AA have shown that when the network is

synchronous, and when requiring the honest parties to agree on

exactly the same values, the optimal resilience is (𝐷 +1) · 𝑡 < 𝑛 [32].

However, these protocols assume a stable synchronous network,

and completely fail as soon as the synchrony assumption is violated.

On the other hand, asynchronous protocols remain secure even

when the network is unstable, but have to settle for the lower

resilience of (𝐷 + 2) · 𝑡 < 𝑛 [26, 32].

A natural question is to investigate whether there is a protocol

that simultaneously achieves the best guarantees from both set-

tings. That is, tolerating a high corruption threshold 𝑡𝑠 when the

network is synchronous, and at the same time a possibly lower

number of corruptions 𝑡𝑎 ≤ 𝑡𝑠 when the network is asynchronous.

Indeed, primitives with such hybrid security guarantees have re-

ceived increased attention in the last few years [3, 5, 7, 12, 20, 28].

Concretely, we ask the following question:

Is there a 𝐷-dimensional Approximate Agreement
(𝐷-AA) protocol that tolerates up to 𝑡𝑠 corruptions
when the network is synchronous, and at the same
time tolerates 𝑡𝑎 ≤ 𝑡𝑠 corruptions when the network
is asynchronous?

Our Contributions. This question was completely solved recently

by Ghinea, Liu-Zhang andWattenhofer [20] for the uni-dimensional
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(𝐷 = 1) case, showing that this is possible if and only if 2𝑡𝑠 + 𝑡𝑎 < 𝑛.

We study the problem for higher dimensions in the affirmative by

presenting a 𝐷-AA protocol that is secure as long as (𝐷 + 1) · 𝑡𝑠 +
𝑡𝑎 < 𝑛. This trade-off matches previous lower bounds: By setting

𝑡𝑎 = 0, this is an optimal-resilience synchronous 𝐷-AA protocol

[32], by setting 𝑡𝑠 = 𝑡𝑎 , we match the necessary condition in the

asynchronous model 𝑛 > (𝐷 + 2) · 𝑡𝑎 [26, 32], and when 𝐷 = 1, the

lower bound matches that of [20].

1.1 Related Work

Approximate Agreement. AA was introduced in the seminal

work of Dolev et al. in [13] for the uni-dimensional case, and has

been studied in both synchronous and asynchronous networks. The

authors showed a synchronous protocol secure up to 𝑡 < 𝑛/3 cor-
ruptions and an asynchronous variant secure up to 𝑡 < 𝑛/5 corrup-
tions. The asynchronous variant was later improved by Abraham et

al. [1] to the optimal corruption threshold 𝑡 < 𝑛/3. A sequence of

works focused on improving the convergence speed of AA protocols

[4, 15, 16].

Theworks byMendes andHerlihy [26], and Vaidya andGarg [32]

extended the problem of AA to the multidimensional case (see also

the journal version [27]), where they showed that for dimension

𝐷 , the resilience (𝐷 + 1) · 𝑡 < 𝑛 (resp. (𝐷 + 2) · 𝑡 < 𝑛) is optimal in

synchronous (resp. asynchronous) networks. Other works, such as

Függer et al. [19], focus on improving the convergence rate in the

multidimensional asynchronous case.

AA has been generalized in different directions as well: a line of

works [2, 24, 29] focuses on a variant where the input values are

vertices of a finite graph𝐺 and the metric distance as well as the

convex hull properties hold within the graph 𝐺 .

The problem of uni-dimensional AA in the hybrid network set-

ting was studied by Ghinea, Liu-Zhang and Wattenhofer in [20],

where the protocol simultaneously achieves a resilience 𝑡𝑠 for a

synchronous network, and 𝑡𝑎 for an asynchronous network. The

authors show that the trade-off 2𝑡𝑠 + 𝑡𝑎 < 𝑛 is achievable and

optimal.

Additional related work. Designing protocols that achieve simul-

taneously security guarantees in both synchronous and asynchro-

nous networks has been a subject that attracted increased attention

in the recent years. Indeed, there has been a line of works study-

ing such protocols for Byzantine agreement [5, 12], state-machine

replication [6] and also multi-party computation [3, 7, 12]. Another

recent work [28] introduced a refinement of hybrid protocols for

the problem of Byzantine Fault Tolerance, where they also split the

security guarantees (safety and liveness) for different thresholds,

see also [22, 25].

1.2 Comparison to previous works

Our result integrates techniques from previous works in a non-

trivial manner.

The protocol proceeds in iterations, where at each iteration par-

ties distribute their current values to all other parties. In order to

ensure that the parties’ values stay within the convex hull of the

honest inputs, we follow the approach in [26], which computes a

safe area of the values received: by intersecting the convex hulls of

each 𝑛 − 𝑡 subsets of values out of the values received. However,

in contrast to their setting which only tolerates 𝑡 < 𝑛/(𝐷 + 2)
corruptions, our protocol still needs to give guarantees when up

to 𝑡𝑠 < 𝑛/(𝐷 + 1) parties may be corrupted and the network is

synchronous. In this case, the safe area may be empty. We solve this

using the so-called Overlap All-to-All Broadcast primitive, which

was initially introduced in [20], in the context of uni-dimensional

AA in the hybrid network setting.

Next, in order to prove that the values obtained by the honest

parties in each iteration converge, we need to adapt the conver-

gence arguments into the multidimensional setting. It turns out

that achieving this requires a non-trivial set of novel combinatorial

results (see Lemmas 5.8–5.12), which constitute one of our main

technical contributions.

Another technical contribution of our work is to provide a mech-

anism that enables the honest parties to decide when to output a

value, i.e., estimate a sufficient number of iterations. This is achieved

by allowing the honest parties to estimate the honest inputs’ convex

hull, using a mechanism based on techniques initially introduced

in [26], but with a novel witness technique that is adapted to the

hybrid-network setting. This is in contrast to the protocol in [20],

which assumes that some bounds on the honest inputs’ range are

initially known.

Finally, also note that in contrast to the work in [20] which needs

to assume a public-key infrastructure to achieve optimal resilience

in the uni-dimensional case, our protocols show that this is not

required in the multidimensional case. Intuitively, this is because

the necessary condition 𝑛 > (𝐷 + 1) · 𝑡𝑠 when 𝐷 > 1 is enforced by

the Helly number of R𝐷 [29], and then, important building blocks,

such as reliable broadcast, can be achieved without any setup.

2 MODEL AND DEFINITIONS

We consider a setting of 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 running a proto-

col over a network. The parties are pair-wise connected through

authenticated channels.

The network may be either synchronous or asynchronous, and

the parties are not aware of the type of network in which they are

running the protocol. In a synchronous network, every message is

delivered within a publicly known amount of time Δ, and the parties
have access to synchronized clocks. In an asynchronous network,

the messages are only guaranteed to be delivered eventually, and

no assumption is made about the clocks.

We consider an adaptive adversary that may corrupt at any point

of the protocol’s execution at most 𝑡𝑠 parties if the network is syn-

chronous, and at most 𝑡𝑎 parties if the network is asynchronous.

The corrupted parties become Byzantine, meaning that they may

deviate arbitrarily from the protocol, and may even be malicious.

Additionally, the adversary may schedule the delivery of the mes-

sages, with the condition that, if the network is synchronous, the

messages are delivered within Δ time.

The messages sent over the network are provided with identifica-

tion numbers ensuring that the parties can identify which messages

correspond to which sub-protocol instances. For simplicity of pre-

sentation, we omit these identification numbers.
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2.1 Useful Definitions and Notations

The first definition that we require is the euclidean distance between

two values in R𝐷 .

Definition 2.1 (Euclidean Distance). For any 𝑣, 𝑣 ′ ∈ R𝐷 , the eu-
clidean distance between 𝑣 and 𝑣 ′ is 𝛿 (𝑣, 𝑣 ′) =

√︃∑𝐷
𝑑=1

(𝑣𝑑 − 𝑣 ′𝑑 )2,
where 𝑣𝑑 is the projection of 𝑣 on coordinate 1 ≤ 𝑑 ≤ 𝐷 .

We use 𝛿max (𝑉 ) = max{𝛿 (𝑣, 𝑣 ′) : 𝑣, 𝑣 ′ ∈ 𝑉 } to denote the diam-

eter of 𝑉 ⊆ R𝐷 .
Below we provide the definitions of a convex set and the convex

hull of a set. Roughly, 𝑉 ⊆ R𝐷 is convex if, for any 𝑣, 𝑣 ′ ∈ 𝑉 , the

segment between 𝑣 and 𝑣 ′ is also included in 𝑉 .

Definition 2.2 (Convex Set). A set of values 𝑉 ⊆ R𝐷 is convex if

for any 𝑣1, 𝑣2, . . . , 𝑣𝑘 ∈ 𝑉 and 𝜆1, 𝜆2, . . . , 𝜆𝑘 ≥ 0 such that

∑𝑘
𝑖=1 𝜆𝑖 =

1, it holds that

∑𝑘
𝑖=1 𝜆𝑖𝑣𝑖 ∈ 𝑉 .

Definition 2.3 (Convex Hull). The convex hull of𝑉 ⊆ R𝐷 , denoted
by convex(𝑉 ), is the smallest convex set 𝑉 ′

such that 𝑉 ⊆ 𝑉 .

To avoid working with multisets instead of sets in our 𝐷-AA

protocol, we will consider sets of value-party pairs M ⊆ R𝐷 ×
{𝑃1, 𝑃2, . . . 𝑃𝑛}, and we define val(M) = {{𝑣 : (𝑣, 𝑃) ∈ M}} (as a
multiset). We also extend the definition of the convex hull to such

sets: convex(M) = convex(val(M)).

2.2 𝑫-dimensional Approximate Agreement

We include the definition of 𝐷-AA, as presented in [26, 32].

Definition 2.4. (𝐷-dimensional Approximate Agreement) Let Π
be a protocol where initially each party 𝑃 holds an input in R𝐷 and

may output 𝑣𝑃 ∈ R𝐷 . We consider the following properties:

• 𝑡-Validity: If at most 𝑡 of the parties involved are corrupted,

and an honest party 𝑃 obtains output 𝑣𝑃 , then 𝑣𝑃 is within

the convex hull of the honest inputs.

• (𝑡, 𝜀)-Agreement: If at most 𝑡 of the parties involved are

corrupted, and two honest parties 𝑃 and 𝑃 ′ obtain outputs

𝑣𝑃 and 𝑣𝑃 ′ , then 𝛿 (𝑣𝑃 , 𝑣 ′𝑃 ) ≤ 𝜀.

• 𝑡-Liveness: If at most 𝑡 of the parties involved are corrupted,

then every honest party eventually obtains an output 𝑣𝑃 .

Then, Π is a 𝑡-secure 𝐷-dimensional Approximate Agreement pro-

tocol if it achieves 𝑡-Validity (𝑡, 𝜀)-Agreement for any given 𝜀 > 0,

and 𝑡-Liveness.

3 LOWER BOUNDS ON RESILIENCE

In the synchronous setting, Vaidya and Garg [32] show that 𝑛 >

(𝐷 + 1) · 𝑡𝑠 parties are necessary to achieve 𝐷-AA for 𝜀 = 0. We

state their argument for any 𝜀 > 0.

Theorem 3.1. There is no synchronous 𝐷-AA protocol that is 𝑡𝑠 -
secure when 𝑛 ≤ (𝐷 + 1) · 𝑡𝑠 .

Proof. We assume that 𝑛 = (𝐷 + 1) · 𝑡𝑠 , and that there is a

protocol Π achieving 𝐷-AA in this setting. We fix an arbitrary

𝜀 > 0, and we partition the set of 𝑛 parties into 𝐷 + 1 sets of size 𝑡𝑠
each: 𝑆0, 𝑆1, . . . 𝑆𝐷 . For 1 ≤ 𝑑 ≤ 𝐷 , the parties in set 𝑆𝑑 have input

𝑒𝑑 such that 𝑒𝑑 = 𝜀 and all other components are 0. The parties in

set 𝑆0 have input 𝑒0 = 0𝐷 .

If the parties in set 𝑆𝑑 are honest, they cannot distinguish be-

tween the following scenarios:

Scenario d.i, where 𝒊 ≠ 𝒅: The 𝑡𝑠 parties in 𝑆𝑖 are corrupted, and
execute protocol Π correctly with input 𝑒𝑖 . Then, since Π achieves

𝑡𝑠 -Validity and 𝑡𝑠 -Liveness, the honest parties in 𝑆𝑑 obtain outputs

in convex({𝑒 𝑗 : 𝑖 ≠ 𝑗}), as shown in Figure 1.

Then, the output of any honest party in 𝑆𝑑 is in

⋂
𝑖≠𝑑 convex({𝑒 𝑗 :

𝑖 ≠ 𝑗}) = {𝑒𝑑 }, meaning that each honest party outputs its own

input in Π. The diameter of the output set is 𝛿max ({𝑒𝑑 : 0 ≤ 𝑑 ≤
𝐷}) =

√
𝜀2 + 𝜀2 = 𝜀

√
2 > 𝜀, hence Π does not achieve 𝜀-Agreement.

□

Figure 1: This figure shows an example 𝑫 = 2, 𝒕𝒔 = 1 and

𝒏 = (𝑫 + 1) · 𝒕𝒔 = 3. The first picture shows the convex hull of

the honest inputs 𝒆0, 𝒆1, 𝒆2, as described in Theorem 3.1. The

second and third pictures highlight the convex hull of the

honest inputs in Scenarios 0.1 (where the party with input 𝒆1
is corrupted) and resp. 0.2 (where the party with input 𝒆2 is
corrupted). The last figure shows that the intersection of the

valid convex hulls is 𝒆0.

The necessary condition for achieving 𝐷-AA in asynchronous

networks was proven in previous works [26, 32] by using a similar

argument to that of Theorem 3.1. The parties are split into 𝐷 + 2

sets 𝑆0, 𝑆1, . . . , 𝑆𝐷+1 of 𝑡𝑎 parties each, and the parties in set 𝑆𝑑 with

0 ≤ 𝑑 ≤ 𝐷 have inputs 𝑒𝑑 as described in the proof of Theorem

3.1. Parties in 𝑆𝐷+1 do not send any messages. Since the network is

asynchronous, the honest parties cannot decide whether the parties

in 𝑆𝐷+1 are corrupted, or the parties in 𝑆𝐷+1 are honest, but their
messages are delayed, and any other 𝑡𝑎 parties are corrupted. As

they have to output a value, the honest parties in 𝑆𝑑 with 0 ≤ 𝑑 ≤ 𝐷

simply output 𝑒𝑑 , which breaks 𝜀-Agreement.

Theorem 3.2. There is no asynchronous 𝐷-AA protocol that is
𝑡𝑎-secure when 𝑛 ≤ (𝐷 + 2) · 𝑡𝑎 .

4 COMMUNICATION PRIMITIVES

In this section, we provide formal definitions and constructions for

the communication primitives we use to achieve 𝐷-AA.

4.1 Reliable Broadcast

Below we include the definition of Reliable Broadcast [9, 10]. Simi-

larly to [20], we make the concrete running time and simultaneous
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termination properties explicit, as they will be used to keep the

honest parties synchronized if the network is synchronous.

Definition 4.1. Let Π be a protocol where a designated party 𝑆

(called the sender) holds a value 𝑣𝑆 , and every party 𝑃 may output

a value 𝑣𝑃 . We consider the following properties, where 𝑡 denotes

the number of corrupted parties involved:

• 𝑡-Validity: If an honest party obtains an output 𝑣𝑃 , then

𝑣𝑃 = 𝑣𝑆 .

• 𝑡-Consistency: If 𝑃 and 𝑃 ′ are honest and output 𝑣𝑃 and

resp. 𝑣𝑃 ′ , then 𝑣𝑃 = 𝑣𝑃 ′ .

• (𝑡, 𝑐)-Honest Liveness: If 𝑆 is honest, parties obtain outputs

eventually. In addition,if the network is synchronous and

the parties start executing the protocol at the same time 𝜏 ,

every honest party obtains output by time 𝜏 + 𝑐 · Δ.
• (𝑡, 𝑐′)-Conditional Liveness: If an honest party obtains out-

put at time 𝜏 , then all honest parties obtain outputs even-

tually. In addition, if the network is synchronous and the

honest parties start executing the protocol at the same time

𝜏 , then all honest parties obtain output by time 𝜏 + 𝑐′ · Δ.
We say that Π is a (𝑡, 𝑐, 𝑐′)-secure Reliable Broadcast protocol if
it achieves 𝑡-Validity and 𝑡-Consistency even when not all honest

parties join the execution of the protocol, (𝑡, 𝑐)-Honest Liveness,
and (𝑡, 𝑐′)-Conditional Liveness.

The following theorem is achieved from Bracha’s Reliable Broad-

cast protocol [9] in a straightforward manner (see Appendix 6.1).

Theorem 4.2. There is a (𝑡, 𝑐rBC, 𝑐′rBC)-secure Reliable Broadcast
protocol ΠrBC for 𝑛 > 3𝑡 , 𝑐rBC = 3, and 𝑐′rBC = 2.

4.2 Overlap All-to-All Broadcast

Overlap All-to-All Broadcast [20] allows every party 𝑃 to distribute

its input 𝑣𝑃 to every party. Each party obtains a set of value-party

pairs M𝑃 ⊆ 𝐼 × {𝑃1, 𝑃2, . . . , 𝑃𝑛}, where 𝐼 denotes the input space.
Overlap All-to-All Broadcast provides some strong properties on

the honest parties’ outputs. We list these properties below, parame-

terized by 𝑡 , denoting the number of corrupted parties involved.

Firstly, honest parties’ inputs are distributed reliably:

• 𝑡-Validity: If an honest party 𝑃 outputsM𝑃 with (𝑣, 𝑃 ′) ∈
M𝑃 for an honest party 𝑃 ′, then 𝑣 = 𝑣𝑃 ′ .

• 𝑡-Consistency: If two honest parties 𝑃 and 𝑃 ′ outputM𝑃

and M𝑃 ′ respectively, and (𝑣, 𝑃 ′′) ∈ M𝑃 and (𝑣 ′, 𝑃 ′′) ∈
M𝑃 ′ , then 𝑣 = 𝑣 ′.

When the network is synchronous, we expect that honest values

are always included in the output sets, since they are received

within a known amount of time. In the asynchronous model, we

only require that honest parties receive a minimum number of

common values.

• 𝑡-Synchronized Overlap: If the network is synchronous and

an honest party 𝑃 obtains outputM𝑃 , then (𝑣𝑃 ′ , 𝑃 ′) ∈ M
for every honest party 𝑃 ′.

• (𝑇, 𝑡)-Overlap: If two honest parties 𝑃 and 𝑃 ′ obtain outputs
M𝑃 andM𝑃 ′ , then

��M𝑃 ∩M𝑃 ′
�� ≥ 𝑛 −𝑇 .

Then, if the network is synchronous, we expect the honest parties

to obtain outputs within a known amount of time, so they can

synchronize for further steps in a larger protocol.

• (𝑡, 𝑐)-Synchronized Liveness: If the network is synchronous
and the honest parties start executing the protocol at time

𝜏 , then all honest parties obtain output by time 𝜏 + 𝑐 · Δ.
• 𝑡-Liveness: All honest parties obtain output eventually.

We provide the definition of Overlap All-to-All Broadcast below.

Definition 4.3 (Overlap All-to-All Broadcast). Let Π be a protocol

where every party 𝑃 holds an input 𝑣𝑃 and may output a set of

value-sender pairsM𝑃 . Π is a (𝑡𝑠 , 𝑡𝑎, 𝑐)-secure Overlap All-to-All

Broadcast protocol if:

• when running in a synchronous network, where the hon-

est parties start executing Π simultaneously, it achieves:

𝑡𝑠 -Validity, 𝑡𝑠 -Consistency, 𝑡𝑠 -Synchronized Overlap and

(𝑡𝑠 , 𝑐)-Synchronized Liveness.

• when it runs in an asynchronous network, it achieves 𝑡𝑎-

Liveness. In addition, even if not all honest parties join the

execution of the protocol, 𝑡𝑎-Validity, 𝑡𝑎-Consistency, and

(𝑡𝑠 , 𝑡𝑎)-Overlap must hold.

Overlap All-to-All Broadcast can be achieved by following the

outline of [20], which makes use of a so-called witness technique
[1]. At a high level, the protocol proceeds as follows:

The parties first share their inputs via ΠrBC. If the network is

synchronous, the values sent by the honest parties are received

within 𝑐rBC · Δ time, hence the honest parties collect at least the

𝑛−𝑡𝑠 honest values by time 𝑐rBC ·Δ. Every value received is collected
in a set of value-sender pairsM.

After 𝑐rBC · Δ time has passed, if 𝑃 has collected at least 𝑛 − 𝑡𝑠
values via ΠrBC, 𝑃 reports the values it has received so far by send-

ing its setM to all the other parties. If the network is synchronous,

this set is received within Δ time.

When receiving M𝑃 ′ from 𝑃 ′, 𝑃 checks whether it has received

every value in M𝑃 ′ via ΠrBC. If this is the case, 𝑃 marks 𝑃 ′ as
a witness. Note that any value in M𝑃 ′ is eventually received by

every party, and, if the network is synchronous, within 𝑐′
rBC

> 1

communication rounds, hence by time (𝑐rBC + 𝑐′
rBC

) · Δ. Therefore,
𝑃 ′ can become a witness for every party and, if the network is

synchronous, at time (𝑐rBC + 𝑐′
rBC

) · Δ.
Then, at time (𝑐rBC + 𝑐′

rBC
) · Δ, an honest party checks if has

marked 𝑛 − 𝑡𝑠 parties as witnesses. If this is the case, it can safely

output its set M. This ensures that every two honest parties have

an honest witness in common even if the network is asynchronous,

and hence at least 𝑛 − 𝑡𝑠 common values in their output sets. We

formally present the code below.

Protocol 𝚷oBC

Code for party 𝑷 with input 𝒗

1: 𝜏start := 𝜏now

2: M := ∅,𝑊 := ∅
3: Invoke ΠrBC with input 𝑣

4: Upon receiving a value 𝑣 from 𝑃 ′
via ΠrBC, add (𝑣′, 𝑃 ′ ) to M

5: When 𝜏now ≥ 𝜏start + 𝑐rBC · Δ and

��M�� ≥ 𝑛 − 𝑡𝑠 :

6: Send M to all the parties

7: When receiving M𝑃 ′ from 𝑃 ′
such that

��M𝑃 ′
�� ≥ 𝑛 − 𝑡𝑠 and

M𝑃 ′ ⊆ M:

8: Add 𝑃 ′
to𝑊

9: When 𝜏now ≥ 𝜏start + (𝑐rBC + 𝑐′
rBC

) · Δ and

��𝑊 �� ≥ 𝑛 − 𝑡𝑠 :
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10: Output M

The proof of the following theorem is enclosed in the appendix.

Theorem 4.4. ΠoBC is a (𝑡𝑠 , 𝑡𝑎, 𝑐oBC)-secure Overlap All-to-All
Broadcast protocol for 𝑐oBC = 𝑐rBC + 𝑐′rBC.

5 ALGORITHM

ManyAAprotocols in the literature, whether theyworkwith scalars

[1, 4, 13, 20], multiple dimensions [26, 32], or even graphs or lattices

[29], follow a similar structure: they operate in multiple iterations.

In each iteration, the parties first distribute their current values.

Then, the parties discard the outliers out of the values received, and
compute a new value based on the values remaining.

To achieve AA, each iteration should satisfy a few properties.

Firstly, the values obtained by the honest parties should be in the

convex hull of the values they started the iteration with, to ensure

Validity. Secondly, the values obtained by the honest parties should

get closer, to ensure that 𝜀-Agreement is eventually achieved. In

our model, or even in the purely synchronous model, it is also

essential to maintain the honest parties synchronized, similarly to

[20]. These properties roughly ensure that, after a sufficient number

of iterations, 𝐷-AA is achieved. For our AA protocol, we implement

the steps taken in a single iteration in a subroutine called ΠAA-it.

It is also important to define the sufficient number of iterations.

While some known AA protocols [20, 29] predefine this number

(by assuming that some bounds on the input space are known),

others allow the parties to estimate the range of honest inputs on

their own [1, 26]. Our algorithm will extend this latter approach to

the hybrid network model.

Then, our protocol proceeds as follows: the parties first run a

subroutine Πinit, which enables each honest party to obtain a value

𝑣0 (within the convex hull of the honest inputs) and an estimation

𝑇 (computed accordingly to the convergence guarantees of ΠAA-it).

Πinit ensures that 𝑇 iterations of ΠAA-it, starting from the values

𝑣0 it provides instead of the honest parties’ inputs, are enough to

achieve 𝐷-AA. This is the case even if 𝑇 is the smallest honest

estimation.

Hence, honest parties join the first iteration using 𝑣0 as their

initial values. In each iteration it, they run the subroutine ΠAA-it

with input 𝑣it−1, defined below, and obtain a new value 𝑣it.

When a party 𝑃 reaches iteration it = 𝑇 , matching its own

estimation for when it is safe to output a value, it sends a halt

message for iteration it. 𝑃 outputs when it receives 𝑡𝑠 + 1 halting

messages for previous iterations, hence at least one honest halting

message.

We formally present the code of our protocol below. The constant

𝑐AA-it = 5 represents the number of communication rounds required

by the subroutine ΠAA-it when running in a synchronous network.

Protocol 𝚷AA

Code for party 𝑷 with input 𝒗

1: Run Πinit with input 𝑣 and obtain (𝑇, 𝑣0 ) .
2: it = 1

3: while true do

4: Join ΠAA-it with input 𝑣it−1

5: After at least 𝑐AA-it · Δ time has passed within this iteration:

6: Upon obtaining output 𝑣it from ΠAA-it:

7: If it = 𝑇 , send (halt, it) via ΠrBC to all parties

8: If 𝑡𝑠 + 1 messages (halt, it′ ) with it
′ < it were received:

9: itℎ := (𝑡𝑠 +1)-th smallest iteration number received

10: Output 𝑣itℎ and break

11: it = it + 1

12: end while

Wenote that using this estimation-based approach for a sufficient

number of iterations may force honest parties to output values at

different times. That is, once the first honest party outputs a value,

it does not participate in any further iterations. In our protocol, we

make sure that this is not an issue. If the network is synchronous,

we will show that ΠAA-it does not need to offer any guarantees

on these further iterations, since the honest parties end up with

outputs obtained when every honest party was still participating. If

the network is asynchronous, ΠAA-it will still ensure that, if honest

parties obtain new values, they will be in line with the sufficient

requirements for obtaining 𝐷-AA.

In the following, we describe each of the pieces of our protocol

ΠAA in detail: we first describe ΠAA-it, which focuses on a single

iteration, and then Πinit. Afterwards, we prove that ΠAA indeed

achieves (𝑡𝑠 , 𝑡𝑎)-secure 𝐷-AA.

Iterations.We describe the subroutine ΠAA-it, which is executed

in each iteration of our 𝐷-AA protocol.

Honest parties first distribute their values via ΠoBC, similarly to

[20]. To ensure validity, the parties discard the outliers out of the
values received. In the pure asynchronous unidimensional setting

(where 𝑡𝑠 = 𝑡𝑎 = 𝑡 ), discarding the lowest 𝑡 and the highest 𝑡 values

received in each iteration is enough [1, 4, 13]: there is at least

one value remaining, and any corrupted value remaining is in the

range of honest values. Then, the parties compute the new values

by taking the average between the lowest and the highest values

remaining. The multidimensional case generalizes this approach: if

a party obtains a setM of value-sender pairs of size at least 𝑛−𝑡 via
ΠoBC in some iteration, then at least

��M��− 𝑡 of the values inM are

honest. Hence, one can obtain a safe area by computing the convex

hull of each subset of

��M��− 𝑡 values, and then by intersecting these

convex hulls, as shown in Figure 2. This intersection is guaranteed

to be included in the convex hull of the honest values in M. We

formally define the safe area [26] below.

Definition 5.1 (Safe Area). Let M denote a set of value-sender

pairs with values in R𝐷 . For a given 𝑡 , the safe area of M is

safe𝑡 (M) =
⋂

𝑀∈restrict𝑡 (M)
convex(𝑀),

where restrict𝑡 (M) = {𝑀 ⊆ M :

��𝑀 �� = ��M�� − 𝑡}.

In the pure asynchronous model, safe𝑡 (M) ≠ ∅ even whenM
only contains 𝑛 − 𝑡 values. In our model, however, we are facing

the same challenge as [20]: when 𝑛 > (𝐷 + 1) · 𝑡𝑠 + 𝑡𝑎 , it is possible
that safe𝑡𝑠 (M) = ∅. As an example, consider the two-dimensional

case, and let 𝑛 = 4, 𝑡𝑠 = 1 and 𝑡𝑎 = 0. Assume that the network is

synchronous and the Byzantine party does not distribute its value.

Let the values of the three honest parties be (0, 0), (0, 1) and (1, 0).
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Figure 2: This figure shows an example for computing the

safe area of four points 𝒂, 𝒃, 𝒄, 𝒅, given 𝒕 = 1. We intersect the

convex hulls of each subset of three points. In the first picture,

we highlight the convex hull of 𝒂, 𝒃, and 𝒅. In the second

image, we intersect convex({𝒂, 𝒃, 𝒅}) with convex({𝒂, 𝒃, 𝒄})
and we highlight their intersection convex({𝒂, 𝒗, 𝒄}). Then,
we add convex({𝒂, 𝒄, 𝒅}) to the intersection and we obtain

the highlighted segment [𝒂, 𝒗]. Finally, when intersecting

this segment with convex({𝒃, 𝒅, 𝒄}), we obtain the safe area,

which contains a single point 𝒗. Regardless of which of the

four points is held by a corrupted party, 𝒗 is included in the

convex hull of the three honest points.

Then, an honest party that only receives the three honest values

would compute its safe area as

safe1 ({(0, 0), (0, 1), (1, 0)}) = convex({(0, 0), (0, 1)}) ∩
convex({(0, 0), (1, 0)}) ∩
convex({(0, 1), (1, 0)}) = ∅.

To overcome this issue, hence to ensure that the parties obtain

non-empty safe areas, we use an approach similar to [20]. If the

network is synchronous, and all honest parties start executing the

iteration at the same time, thenΠoBC guarantees every honest value

is added to the output setM. This means that, ifM has size𝑛−𝑡𝑠+𝑘 ,
where 0 ≤ 𝑘 ≤ 𝑡𝑠 , only 𝑘 of these values are sent by corrupted

parties. If the network is asynchronous, ΠoBC still guarantees that��M�� ≥ 𝑛 − 𝑡𝑠 . In this setting however, ΠoBC does not ensure that

all honest values are received. Instead, at most 𝑡𝑎 values in M are

sent by corrupted parties. Then, to ensure that the newly computed

values are within the convex hull of honest parties’ inputs in ΠAA-it,

we compute the safe area as 𝑆 := safe
max(𝑘,𝑡𝑎 ) (M). This way, in

the previous example, the safe area obtained by the honest parties

is convex({(0, 0), (0, 1), (1, 0)}).
The new values are then computed as in [18]: each party picks

the two points 𝑎 and 𝑏 realizing the diameter of its safe area. The

two points are chosen deterministically (i.e. R𝐷 is totally ordered,

so, if there are multiple options, we can simply pick the pair with the

lowest 𝑎, and, in case of equality, with the lowest 𝑏). Then, it com-

putes its new value by taking their midpoint, which is guaranteed

to be in the safe area, since it is convex.

With the help of a technical lemma, we will show that the safe

areas obtained by any two honest parties intersect. This will enable

us to prove that the values obtained by the honest parties in each

iteration via ΠAA-it get closer by a convergence factor of

√︃
7

8
.

We formally present the code of ΠAA-it below.

Protocol 𝚷AA-it

Code for party 𝑷 with input 𝒗

1: Join ΠoBC with input 𝑣

2: Upon obtaining output M in ΠoBC:

3: 𝑘 :=
��M�� − (𝑛 − 𝑡𝑠 )

4: 𝑆 := safe
max(𝑘,𝑡𝑎 ) (M)

5: 𝑎,𝑏 := argmax𝑎,𝑏∈𝑆×𝑆 (𝛿 (𝑎,𝑏 ) )
6: Output (𝑎 + 𝑏 )/2

Estimating a sufficient number of iterations. We now present

our subroutine Πinit, which allows the honest parties to obtain

estimations on the sufficient number of iterations for ΠAA.

Similarly to ΠoBC, our protocol Πinit employs the witness tech-
nique [1]. Parties distribute their inputs via ΠrBC, and add any value

received and its sender to a set of value-sender pairsM. When at

least 𝑐rBC · Δ time has passed (and hence every honest value was

received if the network is synchronous), and when

��M�� ≥ 𝑛 − 𝑡𝑠
(since at most 𝑡𝑠 parties are corrupted), the parties reliably broad-

cast their setM. This step is almost identical to reporting values in

ΠoBC – the main difference so far is that the sets of reported values

are sent reliably and not through best-effort broadcast.

Then, as in ΠoBC, if 𝑃 receives a set of reported valuesM𝑃 ′ from

𝑃 ′ such that each of the reported values was also received by 𝑃

(M𝑃 ′ ⊆ M), 𝑃 marks 𝑃 ′ as a witness.
At this point, Πinit starts to differ from ΠoBC. Similarly to the

estimation mechanism of [1, 26], when 𝑃 marks 𝑃 ′ as a witness, 𝑃
computes an estimated new input value for 𝑃 ′, based on M𝑃 ′ . We

ensure that these estimations are consistent – if a third party also

marks 𝑃 ′ as a witness, it estimate the same value for 𝑃 ′. This is
ensured since the set of reports is sent via ΠrBC, and the estimated

values are computed deterministically.

We also need to ensure that these estimated values are in the hon-

est inputs’ convex hull. Hence, the estimated values are computed

identically to new values in ΠAA-it.

At this point, since the converge factor of ΠAA-it is known, each

party could derive a sufficient number of iterations 𝑇 based on the

set 𝐼𝑒 containing the estimations it has obtained for its witnesses.

This is the case in the pure asynchronous (when 𝑡𝑠 = 𝑡𝑎 = 𝑡 ) 𝐷-AA

protocol of [26]. Note that the number of iterations 𝑇 is sufficient

for the estimated values, and not necessarily for the true honest

inputs. Then, each honest party 𝑃 should join the first iteration

with a value that is in convex(𝐼 ′𝑒 ) of any honest 𝑃 ′. If the network
is asynchronous, it could be that 𝑃 ′ has not marked 𝑃 as a witness.

However, the pure asynchronous setting gives a strong guarantee

on the sets of witnesses𝑊𝑃 and𝑊𝑃 ′ obtained by 𝑃 and 𝑃 ′ respec-
tively:𝑊𝑃 \𝑊𝑃 ′ ≤ 𝑡 (Lemma 4.14 of [26]). Then, 𝑃 computes its

own estimation by picking a point in the safe area of its own set 𝐼𝑒 ,

which is in convex(𝐼 ′𝑒 ).
Our setting, on the other hand, comes with a different challenge.

If the network is asynchronous, and 𝑃 and 𝑃 ′ obtain 𝑛−𝑡𝑠 witnesses
each, meaning that𝑊𝑃 \𝑊𝑃 ′ ≤ 𝑡𝑠 . Then, using the same approach
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would imply that 𝑃 has to pick its new initial value from safe𝑡𝑠 (𝐼𝑒 ),
which may be an empty set. We overcome this issue by ensuring

that every two honest parties have 𝑛− 𝑡𝑠 common estimations. This

is already ensured in the synchronous setting, where parties wait

long enough to mark each honest party as a witness. To obtain

𝑛 − 𝑡𝑠 common estimations in the asynchronous setting as well, we

introduce double-witnesses: each party sends its set of witnesses

𝑊 to all the parties. If 𝑃 receives𝑊𝑃 ′ from 𝑃 ′ such that𝑊𝑃 ′ ⊆𝑊 ,

it marks 𝑃 ′ as a double-witness. When 𝑃 gathers 𝑛 − 𝑡𝑠 double-

witnesses, it has 𝑛− 𝑡𝑠 common estimations with every party. Then,

𝑃 picks its new value 𝑣 from the safe area of its set of estimations 𝐼𝑒 .

Since now 𝑃 and any honest party 𝑃 ′ have 𝑛 − 𝑡𝑠 estimated values

in common, 𝑃 ’s safe area is included in the convex hull of these

common estimations. This is enough to ensure that the estimated

number of iterations is indeed sufficient.

We formally present the code of our subroutine Πinit below.

Protocol 𝚷init

Code for party 𝑷 with input 𝒗

1: 𝜏start := 𝜏now; M = ∅; 𝐼𝑒 = ∅;𝑊 := ∅,𝑊2 := ∅
2: Send 𝑣 to every party via ΠrBC

3: Upon receiving a value 𝑣 from 𝑃 ′
via ΠrBC, add (𝑣′, 𝑃 ′ ) to M

4: When 𝜏now ≥ 𝜏start + 𝑐rBC · Δ and

��M�� ≥ 𝑛 − 𝑡𝑠 :

5: Send M to all the parties via ΠrBC

6: When receiving M𝑃 ′ from 𝑃 ′
such that

��M𝑃 ′
�� ≥ 𝑛 − 𝑡𝑠 and

M𝑃 ′ ⊆ M:

7: 𝑘𝑃 ′ :=
��M𝑃 ′

�� − (𝑛 − 𝑡𝑠 )
8: 𝑆𝑃 ′ := safe

max(𝑡𝑎 ,𝑘𝑃 ′ ) (M𝑃 ′ )
9: 𝑎,𝑏 := argmax𝑎,𝑏∈𝑆𝑃 ′ ×𝑆𝑃 ′ (𝛿 (𝑎,𝑏 ) )
10: 𝑣𝑃 ′ := (𝑎 + 𝑏 )/2
11: Add (𝑣𝑃 ′ , 𝑃 ′ ) to 𝐼𝑒 and 𝑃 ′

to𝑊

12: When 𝜏now ≥ 𝜏start + 2𝑐rBC · Δ and

��𝑊 �� ≥ 𝑛 − 𝑡𝑠 :

13: Send𝑊 to every party

14: When receiving 𝑊𝑃 ′ from 𝑃 ′
such that

��𝑊𝑃 ′
�� ≥ 𝑛 − 𝑡𝑠 and

𝑊𝑃 ′ ⊆𝑊 :

15: Add 𝑃 ′
to𝑊2

16: When 𝜏now ≥ 𝜏start + (2𝑐rBC + 𝑐
rBC

′ ) · Δ and

��𝑊2

�� ≥ 𝑛 − 𝑡𝑠 :

17: 𝑘 :=
��𝑊 �� − (𝑛 − 𝑡𝑠 )

18: 𝑆 := safe
max(𝑡𝑎 ,𝑘 ) (𝐼𝑒 )

19: 𝑎,𝑏 := argmax𝑎,𝑏∈𝑆×𝑆 (𝛿 (𝑎,𝑏 ) )
20: 𝑣𝑃 ′ := (𝑎 + 𝑏 )/2
21: 𝑇 :=

⌈
log

√
7/8 (𝜀/𝛿max (𝐼𝑒 ) )

⌉
22: Output (𝑇, 𝑣0 )

5.1 Properties of the safe area

In order to prove that our protocol ΠAA indeed achieves 𝐷-AA, we

need to explore the properties of the safe area.

Helly’s Theorem. Since the safe area is computed as an intersec-

tion of convex hulls, our proofs heavily use the theorem included

below, which comes from discrete geometry [11].

Theorem 5.2 (Helly’s Theorem). Consider any finite collection
of closed convex sets 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑚} onR𝐷 , with𝑚 ≥ 𝐷+1. If the
intersection of any 𝐷 + 1 members of 𝑆 is non-empty,

⋂
𝑆𝑖 ∈𝑆 𝑆𝑖 ≠ ∅.

Note that, in order to use Theorem 5.2 to prove that a collection of

closed convex sets 𝑆 indeed has a non-empty intersection, we need

to ensure that 𝑆 has size at least 𝐷 + 1. Lemma 5.3, presented below,

provides us with this guarantee in our proofs. For completeness,

we have included its proof in the appendix.

Lemma 5.3. Let M denote a set of 𝑛 − 𝑡𝑠 + 𝑘 value-party pairs,
where 𝑘 ≤ 𝑡𝑠 . Then,

��restrict
max(𝑘,𝑡𝑎 ) (M)

�� ≥ 𝐷 + 1.

Lemma 5.4, presented below, is a more general form of one of

the technical lemmas of [26] (Lemma 3.5), and gives us some lower

bound on the size of the intersection of convex sets used to compute

safe areas. It will help us show the main sufficient condition in

Theorem 5.2 holds when proving that an honest party’s safe area is

non-empty. The additional set 𝑌 in the lemma’s statement will be

useful when showing that the honest parties’ safe areas intersect,

which will later imply that their values get closer. We include the

proof of this lemma in the appendix.

Lemma 5.4. Assume that 𝑋 is a finite set, 𝑚 ≤ 𝐷 + 1, and let
𝑋1, . . . , 𝑋𝑚 ∈ restrict𝑡 (𝑋 ). Then,

��⋂𝑚
𝑖=1 𝑋𝑖

�� ≥ ��𝑋 �� −𝑚𝑡 .
In addition, given a finite set 𝑌 ,

��𝑋 ∩𝑌 ∩⋂𝑚
𝑖=1 𝑋𝑖

�� ≥ ��𝑋 ∩𝑌
��−𝑚𝑡 .

Valid values.We can now use Theorem 5.2 to show that the safe

areas obtained by the honest parties are non-empty.

Lemma 5.5. Let M denote a set of 𝑛 − 𝑡𝑠 + 𝑘 value-sender pairs
with values in R𝐷 , where 0 ≤ 𝑘 ≤ 𝑡𝑠 . Then, safemax(𝑘,𝑡𝑎 ) (M) ≠ ∅.

Proof. Since

��
restrict

max(𝑘,𝑡𝑎 ) (M)
�� ≥ 𝐷 + 1 by Lemma 5.3, we

only need to show that any 𝐷 + 1members of restrict
max(𝑘,𝑡𝑎 ) (M),

denoted by𝑀1, 𝑀2, . . . , 𝑀𝐷+1, intersect.
Lemma 5.4 shows that

��⋂𝐷+1
𝑖=1 𝑀𝑖

�� ≥ 𝑛−𝑡𝑠 +𝑘−(𝐷+1) ·max(𝑘, 𝑡𝑎).
If 𝑘 ≥ 𝑡𝑎 , we obtain that

��⋂𝐷+1
𝑖=1 𝑀𝑖

�� ≥ 𝑛 − (𝐷 + 1) · 𝑡𝑠 ≥ 1.

Otherwise, if 𝑘 < 𝑡𝑎 , we obtain that

��⋂𝐷+1
𝑖=1 𝑀𝑖

�� ≥ 𝑛 − 𝑡𝑠 + 𝑘 − (𝐷 +
1)·𝑡𝑎 ≥ 1, since 𝑡𝑎 ≤ 𝑡𝑠 . Therefore, in both cases,

⋂𝐷+1
𝑖=1 𝑀𝑖 ≠ ∅. This

result carries to the intersection of the convex hulls, and hence we

can apply Theorem 5.2 and obtain that safe
max(𝑘,𝑡𝑎 ) (M) ≠ ∅. □

Now that the safe areas are guaranteed to be non-empty, we

ensure that the values 𝑣 computed by the honest parties are well-

defined. The result below follows immediately from the convexity

of the safe area.

Lemma 5.6. Assume M is a set of 𝑛 − 𝑡𝑠 + 𝑘 value-party pairs,
with 0 ≤ 𝑘 ≤ 𝑡𝑠 , and let 𝑆 = safe

max(𝑘,𝑡𝑎 ) (M) denote its safe area.
Then, if 𝑎, 𝑏 = argmax𝑎,𝑏∈𝑆×𝑆 (𝛿 (𝑎, 𝑏)), 𝑣 = (𝑎 +𝑏)/2 is well-defined
and is in 𝑆 .

Finally, Lemma 5.7 will help us show that the values obtained

by the honest parties are within the convex hull of their inputs.

Lemma 5.7. Assume M is a set of 𝑛 − 𝑡𝑠 + 𝑘 value-party pairs,
with 0 ≤ 𝑘 ≤ 𝑡𝑠 , and let 𝐼 ⊆ M denote an arbitrary subset of size
𝑛 − 𝑡𝑠 + 𝑘 −max(𝑘, 𝑡𝑎). Then, safemax(𝑘,𝑡𝑎 ) (M) ⊆ convex(𝐼 ) .

Proof. Since 𝐼 ∈ restrict
max(𝑘,𝑡𝑎 ) (M), convex(𝐼 ) is one of the

members in the intersection defining safe
max(𝑘,𝑡𝑎 ) (M). Therefore,

safe
max(𝑘,𝑡𝑎 ) (M) ⊆ convex(𝐼 ).

□

Intersection of safe areas. We now focus on showing that the

safe areas obtained by every pair of honest parties in each iteration



Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer

intersect. This will be a sufficient argument when proving that

the values obtained by the honest parties get closer. We note that

this argument provides the same challenge as in the 1-dimensional

case in the hybrid-network model [20] when compared to the pure

asynchronous case [1]: in the pure asynchronous case, where 𝑡 =

𝑡𝑠 = 𝑡𝑎 , every two honest parties receive at least 𝑛 − 𝑡 common

values. Then, the safe area of the common values is non-empty, and

is included in the safe areas of the two honest parties. In our model,

this argument does not necessarily hold, We show that the two

honest parties’ safe areas still intersect, using a different argument,

based on Theorem 5.2.

Lemma 5.8. LetM1,M2 denote two sets of value-sender pairs such
that

��M1 ∪M2

�� ≤ 𝑛 and
��M1 ∩M2

�� ≥ 𝑛 − 𝑡𝑠 . Then,

safe
max(𝑘1,𝑡𝑎 ) (M1) ∩ safe

max(𝑘2,𝑡𝑎 ) (M2) ≠ ∅,

where 𝑘1 =
��𝑀1

�� − (𝑛 − 𝑡𝑠 ) and 𝑘2 =
��𝑀2

�� − (𝑛 − 𝑡𝑠 ).
The proof of this lemma is split into three cases. The case when

both 𝑘1 ≥ 𝑡𝑠 and 𝑘2 ≥ 𝑡𝑠 hold is covered by Lemma 5.9, where we

show that the safe area of M1 ∪M2 is non-empty and included

in both safe𝑘1 (M1) and safe𝑘2 (M2). Although the union contains

more value-party pairs thanM1 andM2, its safe area is intuitively

smaller than safe𝑘1 (M1) and safe𝑘2 (M2). This is because the safe
area of M1 ∪ M2 takes into account in its intersection at least

every convex hull considered in safe𝑘1 (M1), and every convex hull
considered in safe𝑘2 (M2).

Afterwards, Lemma 5.11 covers the case when both 𝑘1 < 𝑡𝑎
and 𝑘2 < 𝑡𝑎 . This case is similar to the convergence proofs for

protocols achieving purely asynchronous 𝐷-AA [26]. Lemma 5.11

shows that the safe𝑡𝑎 (M1 ∩ M2) is non-empty and included in

both safe𝑡𝑎 (M1) ∩ safe𝑡𝑎 (M2).
The last case, when 𝑘1 < 𝑡𝑎 ≤ 𝑘2 is more difficult, and we cover

it with the help of Lemma 5.12. In this case, Lemma 5.9 shows that

the safe area ofM1 ∪M2 is included in safe𝑘2 (M2). Then, Lemma

5.12 guarantees that the safe area ofM1∪M2 and safe𝑡𝑎 (M1) have
a non-empty intersection, which concludes the proof of Lemma 5.8.

We provide the formal statements and proofs of Lemmas 5.9, 5.11,

and 5.12 below.

Lemma 5.9. Let M1,M2 denote two sets of value-sender pairs
such that

��M1 ∪M2

�� ≤ 𝑛, and
��M1 ∩M2

�� ≥ 𝑛 − 𝑡𝑠 . If 𝑘1 =
��M1

�� −
(𝑛 − 𝑡𝑠 ) ≥ 𝑡𝑎 , then, safe𝑘1 (M1) ⊇ safe𝑘∪ (M1 ∪ M2) ≠ ∅, where
𝑘∪ =

��M1 ∪M2

�� − (𝑛 − 𝑡𝑠 ).

Proof. Note that 𝑡𝑎 ≤ 𝑘∪ ≤ 𝑡𝑠 . Lemma 5.5 immediately implies

that safe𝑘∪ (M1 ∪M2) ≠ ∅.
Then, note that restrict𝑘1 (M1) = {𝑀 ⊆ M1 :

��𝑀 �� = 𝑛 − 𝑡𝑠 } ⊆
{𝑀 ⊆ M1 ∪M2 :

��𝑀 �� = 𝑛 − 𝑡𝑠 } = restrict𝑘∪ (M1 ∪M2). It follows
that safe𝑘1 (M1) ⊇ safe𝑘∪ (M1 ∪M2).

□

In the second case, we make use of a technical property which

follows directly from [26]. We include its proof in the appendix.

Lemma 5.10. Let 𝑚 denote a value-party pair, and M a set of
value-party pairs. Then, safe𝑡 (M) ⊆ safe𝑡 (M ∪ {𝑚}).

Lemma 5.11. LetM1,M2 denote two sets of value-party pairs such
that

��M1∪M2

�� ≤ 𝑛, and
��M1∩M2

�� ≥ 𝑛−𝑡𝑠 . If
��M1

��− (𝑛−𝑡𝑠 ) ≤ 𝑡𝑎 ,
then, safe𝑡𝑎 (M1) ⊇ safe𝑡𝑎 (M1 ∩M2) ≠ ∅.

Proof. Since 𝑛 − 𝑡𝑠 ≤
��M1 ∩M2

�� ≤ ��M1

�� ≤ 𝑛 − 𝑡𝑠 + 𝑡𝑎 , Lemma

5.5 implies that safe𝑡𝑎 (M1 ∩M2) ≠ ∅. Afterwards, Lemma 5.10

implies that safe𝑡𝑎 (M1 ∩M2) ⊆ safe𝑡𝑎 (M1). □

Lemma 5.12. Let M1,M2 denote two sets of value-party pairs
such that

��M1 ∪M2

�� ≤ 𝑛, and
��M1 ∩M2

�� ≥ 𝑛 − 𝑡𝑠 . Assume that��M1

�� − (𝑛 − 𝑡𝑠 ) < 𝑡𝑎 and
��M2

�� − (𝑛 − 𝑡𝑠 ) ≥ 𝑡𝑎 . Then, safe𝑡𝑎 (M1) ∩
safe𝑘∪ (M1 ∪M2) ≠ ∅, where 𝑘∪ =

��M1 ∪M2

�� − (𝑛 − 𝑡𝑠 ).

Proof. Note that 𝑡𝑎 ≤ 𝑘∪ ≤ 𝑡𝑠 , hence safe𝑘∪ (M1 ∪M2) ≠ ∅
according to Lemma 5.5.

We show that safe𝑡𝑎 (M1) ∩ safe𝑘∪ (M1 ∪M2) ≠ ∅. This is the
intersection of the members of a collection containing the con-

vex sets convex(𝑋 ) with 𝑋 ∈ restrict𝑡𝑎 (M1) and convex(𝑌 ) with
𝑌 ∈ restrict𝑘∪ (M1 ∪M2). Lemma 5.3 implies that this collection

contains at least 2𝐷 + 2 convex sets, which enables us to apply

Theorem 5.2.

Then, it suffices to show that for any 𝑎, 𝑏 ≥ 0 such that 𝑎 +
𝑏 = 𝐷 + 1, the intersection of any 𝑋1, 𝑋2, . . . , 𝑋𝑎 ∈ restrict𝑡𝑎 (M1)
and 𝑌1, 𝑌2 . . . , 𝑌𝑏 ∈ restrict𝑘∪ (M1 ∪M2) is not empty, which also

applies to the intersection of the corresponding convex hulls.

We provide a lower bound for M1 ∩
⋂𝑎

𝑖=1 𝑋𝑖 ∩
⋂𝑏

𝑖=1 𝑌𝑖 , with

the help of Lemma 5.4: we obtain that

��M1 ∩
⋂𝑏

𝑖=1 𝑌𝑖 ∩
⋂𝑎

𝑖=1 𝑋𝑖
�� ≥��M1 ∩

⋂𝑏
𝑖=1 𝑌𝑖

�� − 𝑎 · 𝑡𝑎 , since 𝑋𝑖 ∈ restrict𝑡𝑎 (M1).
Lemma 5.4 also implies that

��⋂𝑏
𝑖=1 𝑌𝑖

�� ≥ ��M1 ∪ M2

�� − 𝑏 · 𝑘∪.
Then, since

��(M1 ∪M2) \ M1

�� ≤ 𝑡𝑠 and
⋂𝑏

𝑖=1 𝑌𝑖 ⊆ (M1 ∪M2),
we obtain that

��⋂𝑏
𝑖=1 𝑌𝑖 ∩M1

�� ≥ ��M1 ∪M2

�� − 𝑏 · 𝑘∪ − 𝑡𝑠 .

Since 𝑛 ≥ (𝐷 + 1) · 𝑡𝑠 + 𝑡𝑎 + 1, we have obtained the lower

bound below, and that the intersection of these sets, and hence the

intersection of their corresponding convex hull is non-empty. Then,

Theorem 5.2 guarantees that safe𝑡𝑎 (M1) ∩ safe𝑘∪ (M1 ∪M2) ≠ ∅.�� 𝑎⋂
𝑖=1

𝑋𝑖 ∩
𝑏⋂
𝑖=1

𝑌𝑖
�� ≥ ��M1 ∩

𝑎⋂
𝑖=1

𝑋𝑖 ∩
𝑏⋂
𝑖=1

𝑌𝑖
�� ≥ ��M1 ∩

𝑎⋂
𝑖=1

𝑌𝑖
�� − 𝑎 · 𝑡𝑎

≥
��M1 ∪M2

�� − 𝑏 · 𝑘∪ − 𝑡𝑠 − 𝑎 · 𝑡𝑎 ≥ 1.

□

5.2 Analysis of 𝚷AA-it
In this subsection, we prove a few properties for ΠAA-it. We use

𝐼it−1 to denote the multiset of values the honest parties join ΠAA-it

with. Then, the multiset 𝐼it denotes the multiset of outputs obtained

by the honest parties.

In the lemmas below, we assume that either the network is

asynchronous, or the network is either synchronous and all honest

parties start executingΠAA-it at the same time (meaning thatΠoBC’s

properties hold).

We first ensure that the values obtained by the honest parties are

indeed in the convex hull of 𝐼it−1. The result below follows from

Lemma 5.7, which shows that the safe area obtained by each honest

party is included in convex(𝐼it−1).

Lemma 5.13. If an honest party 𝑃 obtains an output 𝑣 , then 𝑣 ∈
convex(𝐼it−1).

We now focus on showing that the honest parties’ new values

indeed get closer. We make use of the technical result below, which

comes directly from [18].
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Lemma 5.14. Let 𝑎, 𝑏, 𝑎′, 𝑏′ ∈ R𝐷 and some 𝛾 ≥ 0 such that
𝛿max ({𝑎, 𝑏, 𝑎′, 𝑏′}) ≤ 𝛾 ≤ 𝛿 (𝑎, 𝑏) + 𝛿 (𝑎′, 𝑏′). Then, setting 𝑣 = (𝑎 +
𝑏)/2 and 𝑣 ′ = (𝑎′ + 𝑏′)/2, we have 𝛿 (𝑣, 𝑣 ′) ≤

√︃
7

8
𝛾 .

Lemma 5.8, which shows that the safe areas obtained by honest

parties intersect, will now enable us to prove that honest values

indeed get closer.

Lemma 5.15. If two honest parties 𝑃 and 𝑃 ′ obtain outputs 𝑣 and

𝑣 ′, then 𝛿 (𝑣, 𝑣 ′) ≤
√︃

7

8
· 𝛿max (𝐼it−1).

Proof. Let 𝑆 and 𝑆 ′ denote the safe areas obtained by 𝑃 and

𝑃 ′ respectively. Then, let 𝑎, 𝑏 ∈ 𝑆 such that 𝑣 = (𝑎 + 𝑏)/2, and
𝑎′, 𝑏′ ∈ 𝑆 ′ such that 𝑣 ′ = (𝑎′ + 𝑏′)/2. We prove the statement with

the help of Lemma 5.14.

Note that ΠoBC’s properties guarantee that

��M ∩M′�� ≥ 𝑛 − 𝑡𝑠

and

��M ∩ M′�� ≤ 𝑛. Then, Lemma 5.7 guarantees that 𝑆 and 𝑆 ′

are included in convex(𝐼it−1). This enables us to obtain an upper

bound on the diameter of {𝑎, 𝑏, 𝑎′, 𝑏′}: 𝛾 := 𝛿max ({𝑎, 𝑏, 𝑎′, 𝑏′}) ≤
𝛿max (𝐼it−1). In order to apply Lemma 5.14, it remains to show that

the condition 𝛾 ≤ 𝛿 (𝑎, 𝑏) + 𝛿 (𝑎′, 𝑏′) holds.
We need to provide an upper bound on 𝛿 (𝑎, 𝑎′) and 𝛿 (𝑏, 𝑏′). The

properties of ΠoBC also enable us to use Lemma 5.8, which implies

that 𝑆 and 𝑆 ′ have a non-empty intersection. Then, let 𝑐 denote an

arbitrary point in 𝑆 ∩𝑆 ′. Since 𝑎, 𝑏 have the maximum distance in 𝑆 ,

𝛿 (𝑎, 𝑐), 𝛿 (𝑏, 𝑐) ≤ 𝛿 (𝑎, 𝑏). Analogously, 𝛿 (𝑎′, 𝑐), 𝛿 (𝑏′, 𝑐) ≤ 𝛿 (𝑎′, 𝑏′).
Using the triangular inequality, we obtain that 𝛿 (𝑎, 𝑎′) ≤ 𝛿 (𝑎, 𝑐) +
𝛿 (𝑐, 𝑎′) ≤ 𝛿 (𝑎, 𝑏) +𝛿 (𝑎′, 𝑏′). Analogously, we obtain that 𝛿 (𝑏, 𝑏′) ≤
𝛿 (𝑎, 𝑏) + 𝛿 (𝑎′, 𝑏′).

Hence, we have shown that 𝛿max ({𝑎, 𝑏, 𝑎′, 𝑏′}) = 𝛾 ≤ 𝛿 (𝑎, 𝑏) +
𝛿 (𝑎′, 𝑏′). We can now conclude from Lemma 5.14 that 𝛿 (𝑣, 𝑣 ′) ≤√︃

7

8
𝛾 ≤

√︃
7

8
· 𝛿max (𝐼it−1). □

Finally, we focus on the liveness properties of ΠAA-it. The results

below follow from ΠoBC’s (𝑡𝑠 , 𝑐oBC)-Synchronized Liveness and

𝑡𝑎-Liveness, along with the fact that the values computed by honest

values are well defined, as ensured by Lemma 5.6.

Lemma 5.16. Assume that the network is synchronous, and the
honest parties start executing ΠAA-it at the same time 𝜏 . Then, every
honest party obtains an output by time 𝜏 + 𝑐AA-it · Δ, where 𝑐AA-it =
𝑐oBC.

Lemma 5.17. If the network is asynchronous and every honest
party participates in ΠAA-it until it obtains an output, then every
honest party obtains an output.

5.3 Analysis of 𝚷init
Before focusing on ΠAA, we will need the result included below.

We defer its proof to the appendix.

Theorem 5.18. Every honest party outputs (𝑇, 𝑣0) in Πinit such
that 𝑣0 is within the convex hull of honest inputs and, if 𝐼0 denotes
the multiset of outputs 𝑣0, 𝑇 ≥ log

√
7/8 (𝜀/𝛿max (𝐼0)). In addition, if

the network is synchronous, the honest parties obtain outputs at time
𝑐init · Δ, where 𝑐init = 2𝑐rBC + 𝑐′rBC.

5.4 Analysis of 𝚷AA
We now show that our protocol ΠAA achieves (𝑡𝑠 , 𝑡𝑎)-secure 𝐷-AA.

Theorem 5.19 follows directly from Lemma 5.23, which focuses

on the synchronous setting, and Lemma 5.26, which focuses on the

asynchronous setting.

Theorem 5.19. Let 𝐷 > 1 and 0 ≤ 𝑡𝑎 ≤ 𝑡𝑠 such that 𝑛 > (𝐷 +
1) · 𝑡𝑠 + 𝑡𝑎 . Then, ΠAA achieves:

• 𝑡𝑠 -secure 𝐷-AA when it runs in a synchronous network;
• 𝑡𝑎-secure 𝐷-AA when it runs in an asynchronous network.

Synchronous Network.We first analyze ΠAA in a synchronous

network, where 𝑡𝑠 of the parties involved are corrupted.

Firstly, we ensure that, until the first honest party outputs, honest

parties stay synchronized and complete ΠAA-it successfully in each

iteration.

Lemma 5.20. If no honest party outputs until time 𝜏 = (𝑐init + it ·
𝑐AA-it) · Δ, then the honest parties complete iteration it at time 𝜏 , and
start every iteration it′ ≤ it synchronously.

Proof. We prove the statement using induction on it ≥ 0.

The base case is for it = 0: Every honest party completes the

execution of Πinit at time 𝑐init · Δ according to Lemma 5.18, and

starts the first iteration immediately.

For the induction step, we assume that the statement holds for

iteration it, and we show that it also holds for iteration it + 1. Ev-

ery honest party completes iteration it at time (𝑐init + it · 𝑐AA-it) ·
Δ, and the honest parties start iteration it + 1 immediately. As

no honest party outputs before 𝑐AA-it · Δ time passes, Lemma

5.16 ensures that every honest party obtains an output by time

(𝑐init + (it + 1) · 𝑐AA-it) · Δ. □

Then, when the first honest party 𝑃 outputs, if it does so in some

iteration it, the remaining honest parties may try to execute ΠAA-it

one more time, in iteration it+ 1. Whether this additional execution

of ΠAA-it is successful is irrelevant – all honest parties output by

iteration it + 1, and their outputs are values obtained when ΠAA-it

still offered guarantees.

Lemma 5.21. If the first honest party 𝑃 that outputs does so in
iteration it, then every honest party outputs by iteration it + 1 a value
computed by the end of iteration it.

Proof. According to Lemma 5.20, every iteration it
′ ≤ it is

completed by every honest party, and every honest party reaches

the end of iteration it at the same time as 𝑃 . As 𝑃 has obtained 𝑡𝑠 + 1
halting messages for previous iterations via ΠrBC by the end of

iteration it, ΠrBC’s (𝑡𝑠 , 𝑐′
rBC

)-Conditional Liveness guarantees that
every honest party receives 𝑡𝑠 + 1 halting messages for iterations

it
′ < it + 1 within 𝑐′

rBC
< 𝑐AA-it communications rounds, hence in

iteration it + 1 the latest, and outputs a value computed in iteration

it
′ < it + 1. □

We now show that honest parties indeed obtain outputs.

Lemma 5.22. Every honest party outputs a value obtained in an
iteration completed by all honest parties.
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Proof. Let𝑇min denote the (𝑡𝑠+1)-th smallest honest estimation

𝑇 obtained in Πinit and assume that no honest party obtains output

by time 𝜏 = (𝑐init + (𝑇min + 1) · 𝑐AA-it) · Δ. Otherwise, Lemma 5.21

proves the statement.

Then, according to Lemma 5.20, the honest parties complete the

execution of ΠAA-it in each iteration it ≤ 𝑇min + 1 synchronously.

Hence, at least 𝑡𝑠 + 1 honest parties send (halt, it) messages for

it ≤ 𝑇min by time (𝑐init + 𝑇min · 𝑐AA-it) · Δ via ΠrBC. As ΠrBC

achieves (𝑐rBC, 𝑡𝑠 )-Honest Liveness, these messages are received

within 𝑐rBC < 𝑐AA-it communication rounds. At this point, every

honest party is in iteration 𝑇min + 1, and then checks whether it

has received 𝑡𝑠 + 1 halting messages for iterations it < 𝑇min + 1 at

time (𝑐init + (𝑇min + 1) · 𝑐AA-it) · Δ > (𝑐init +𝑇min · 𝑐AA-it + 𝑐rBC) · Δ.
Therefore, all honest parties output. □

So far, we have shown that all honest parties obtain outputs, and

their outputs are obtained in iterations where ΠAA-it’s guarantees

hold. We can now prove that ΠAA indeed achieves 𝐷-AA when it

runs in a synchronous network.

Lemma 5.23. When it runs in a synchronous network, ΠAA is a
𝑡𝑠 -secure 𝐷-AA protocol.

Proof. Lemma 5.22 ensures that every honest party outputs

a value computed in an iteration where every honest party has

completed ΠAA-it. Then, 𝑡𝑠 -Liveness is immediately implied.

The 𝑡𝑠 -Validity property follows from Lemma 5.13: the honest

parties’ outputs in ΠAA are obtained via ΠAA-it, hence within the

convex hull of the values 𝑣0 that honest parties start the first itera-

tion with. Then, Lemma 5.18 ensures that these values 𝑣0 are in the

convex hull of the honest inputs.

It remains to show that (𝑡𝑠 , 𝜀)-Agreement also holds. The values

the honest parties output may be computed in different iterations.

Let itℎ denote the smallest such iteration. Additionally, let 𝐼0 denote

the set of values 𝑣0 the honest parties obtain via Πinit, and let 𝐼itℎ
denote the set of values obtained by the honest parties in iteration

itℎ . With an inductive argument, and with the help of Lemma 5.15,

we obtain that 𝛿max (𝐼itℎ ) ≤
(√︁

7/8
)
itℎ

· 𝛿max (𝐼0).
Note that itℎ is the (𝑡𝑠 + 1)-th smallest iteration considered by

the honest party for its output, and there are only 𝑡𝑠 corrupted

parties involved. This implies that itℎ is greater than or equal to

the smallest estimation 𝑇 obtained by the honest parties via Πinit.

Lemma 5.18 then ensures that itℎ ≥ log
√
7/8 (𝜀/𝛿max (𝐼0)). Then,

we obtain that 𝛿max (𝐼itℎ ) ≤ 𝜀.

Therefore, the values computed by the honest parties in iteration

itℎ are already 𝜀-close. If honest parties output values obtained in

later iterations, Lemma 5.13 ensures that these values are included

in convex(𝐼itℎ ), which means that (𝑡𝑠 , 𝜀)-Agreement is achieved.

□

Asynchronous Network. We now analyze ΠAA when it runs in

an asynchronous network and at most 𝑡𝑎 parties are corrupted.

The following lemma shows that once the first honest party
outputs, all parties can output. As opposed to the proof of Lemma

5.20, the first honest party is not necessarily the fastest to obtain

an output. Instead, it is the honest party who obtains output in the

earliest iteration.

Lemma 5.24. If the earliest iteration when an honest party obtains
output is iteration it, then all honest parties advance to iteration it
and eventually obtain outputs.

Proof. Since no honest party has obtained output before it-

eration it, all honest parties have joined the previous iterations’

executions of ΠAA-it. Then, Lemma 5.17 guarantees that each of

these executions is eventually completed, and therefore all honest

parties eventually advance to iterations it.

Since an honest party obtains output in iteration it, it has received

𝑡𝑠 + 1 halting messages for previous iterations. These messages are

sent via ΠrBC, hence all other honest parties receive these messages

as well. Since all other honest parties advance to iteration it, they

eventually fulfil the condition for obtaining an output. □

Similarly to the synchronous case, we have to ensure that there

is such a first honest party.

Lemma 5.25. Every honest party eventually obtains an output.

Proof. Let𝑇min denote the (𝑡𝑠+1)-th smallest honest estimation

obtained in Πinit. If an honest party outputs within these first 𝑇min

iterations, then Lemma 5.24 ensures that all honest parties obtain

outputs eventually.

Otherwise, assume that no honest party outputs within the first

𝑇min iterations. Lemma 5.17 ensures that the parties successfully

complete every iteration up to and including 𝑇min, and advance to

iteration 𝑇min + 1.

Then, at least 𝑡𝑠 + 1 honest parties send halt messages during

these 𝑇min iterations, and these messages are eventually received.

Since honest parties advance to iteration 𝑇min + 1, they fulfil the

conditions to output.

□

We can now show that ΠAA indeed achieves 𝑡𝑎-secure 𝐷-AA.

Lemma 5.26. When it runs in an asynchronous network, ΠAA is a
𝑡𝑎-secure 𝐷-AA protocol.

Proof. Lemma 5.25 shows that each honest party eventually

outputs a value in ΠAA, hence the 𝑡𝑎-Liveness property is satis-

fied. Afterwards, the arguments proving that 𝑡𝑎-Validity and (𝑡𝑠 , 𝜀)-
Agreement hold are analogous to the proof of Lemma 5.23.

□
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6 APPENDIX

6.1 Protocol 𝚷rBC
We prove the theorem below.

Theorem 4.2. There is a (𝑡, 𝑐rBC, 𝑐′rBC)-secure Reliable Broadcast
protocol ΠrBC for 𝑛 > 3𝑡 , 𝑐rBC = 3, and 𝑐′rBC = 2.

Consider Bracha’s Reliable Broadcast protocol below [9], as pre-

sented in [10].

Protocol 𝚷rBC

Code for sender 𝑺 on input 𝒗

1: Send 𝑣 to all the parties

Code for party 𝑷

1: Upon receiving 𝑣 from 𝑆 :

2: Send (echo, 𝑣) to all the parties.

3: Upon receiving (echo, 𝑣) from 𝑛 − 𝑡 parties or

4: (ready, 𝑣) from 𝑡 + 1 parties:

5: Send (ready, 𝑣) to all the parties.

6: Upon receiving (ready, 𝑣) from 𝑛 − 𝑡 parties:

7: Output 𝑣.

The results below show that ΠrBC is a (𝑡, 𝑐rBC, 𝑐′
rBC

)-secure Re-
liable Broadcast protocol, where 𝑐rBC = 3 and 𝑐′

rBC
= 2. In Lemmas

6.1 and 6.4, we show thatΠrBC satisfies 𝑡-Validity and 𝑡-Consistency.

If every honest party joins the execution of the protocol, Lemma

6.5 shows that (𝑡, 𝑐
rBC

′ )-Honest Liveness is achieved. If, in addition,

the network is synchronous (𝑡, 𝑐rBC, 𝑐′
rBC

)-Conditional Liveness
follows from 6.5.

We first show that ΠrBC achieves 𝑡-Validity.

Lemma 6.1 (𝑡-Validity). Assume that the sender 𝑆 is honest and
has input 𝑣 . Then, even if not all honest parties participate in the
protocol’s execution, for any 𝑣 ′ ≠ 𝑣 , no honest party sends (echo, 𝑣 ′),
(ready, 𝑣 ′), or outputs 𝑣 ′.

Proof. Since 𝑆 is honest, no party receives 𝑣 ′ ≠ 𝑣 from 𝑆 . Hence,

no honest party sends (echo, 𝑣 ′). As no honest party receives𝑛−𝑡 >
𝑡 (echo, 𝑣 ′) messages, no honest party sends (ready, 𝑣 ′). It follows
that no honest party outputs 𝑣 ′. □

Lemma 6.2. Assume that the sender 𝑆 is honest and has input 𝑣 .
Then, if all honest parties join the protocol’s execution, every honest
party outputs 𝑣 eventually. In addition, if the network is synchronous
and the honest parties started executing the protocol at the same time
𝜏 , they output 𝑣 by time 𝜏 + 3 · Δ.

Proof. Lemma 6.1 guarantees that no honest party outputs

𝑣 ′ ≠ 𝑣 . Then, every party eventually receives 𝑣 from the honest

sender. If the network is synchronous, these messages are received

by time 𝜏 + Δ. Then, every honest party sends (echo, 𝑣).
Every party eventually (or by time 𝜏 + 2 · Δ, if the network is

synchronous) receives 𝑛 − 𝑡 messages (echo, 𝑣) and hence sends

(ready, 𝑣).
Finally, every honest party eventually (or by time 𝜏 + 3 · Δ, if

the network is synchronous) receives 𝑛 − 𝑡 messages (ready, 𝑣) and
terminates with output 𝑣 . □

Lemma 6.3. If an honest party 𝑃 sends (ready, 𝑣), then no honest
party sends (ready, 𝑣 ′) for 𝑣 ′ ≠ 𝑣 , even if not all honest parties join
the protocol’s execution.

Proof. Without loss of generality, assume that 𝑃 and 𝑃 ′ are the
first honest parties that send (ready, 𝑣) and (ready, 𝑣 ′) respectively.
Then, 𝑃 has received (echo, 𝑣) from 𝑛 − 𝑡 parties, while 𝑃 ′ has
received (echo, 𝑣 ′) from𝑛−𝑡 parties. Then, there is a set of𝑛−2𝑡 > 𝑡

parties, hence at least one honest party, that sent multiple echo

messages for different values, which contradicts the protocol. □

Lemma 6.4 (𝑡-Consistency). If two honest parties 𝑃 , 𝑃 ′ obtain
outputs 𝑣 and 𝑣 ′ respectively, then 𝑣 = 𝑣 ′, even if not all honest parties
join the protocol’s execution.

Proof. As 𝑃 has output 𝑣 , at least one honest party has sent

(ready, 𝑣). From Lemma 6.3 it follows that no honest party has sent

(ready, 𝑣 ′′) for 𝑣 ′′ ≠ 𝑣 . Therefore, if 𝑃 ′ obtains an output 𝑣 ′, then
𝑣 = 𝑣 ′. □

Lemma 6.5. If all honest parties join the protocol’s execution, and
an honest party 𝑃 outputs 𝑣 , then every honest party outputs 𝑣 . In
addition, if the network is synchronous and the parties have started
executing the protocol at the same time, then every honest party
outputs 𝑣 within 2 · Δ time.

Proof. By Lemma 6.4, no honest party outputs 𝑣 ′ ≠ 𝑣 .

𝑃 has received 𝑛 − 𝑡 messages (ready, 𝑣). Lemma 6.3 guarantees

that no honest party sends (ready, 𝑣 ′) for 𝑣 ′ ≠ 𝑣 . Hence, every

honest party receives at least 𝑛 − 2𝑡 > 𝑡 + 1 messages (ready, 𝑣)
eventually, or within Δ time from the moment 𝑃 has obtained an

output, if the network is synchronous. Then, every honest party

sends (ready, 𝑣). If the network is asynchronous, the messages

are delivered eventually, and each honest party terminates. If the

network is synchronous, these messages are delivered within addi-

tional Δ time, hence every honest party outputs 𝑣 within 2 · Δ time

after 𝑃 has obtained output. □

6.2 Analysis of 𝚷oBC
We prove the theorem below.

Theorem 4.4. ΠoBC is a (𝑡𝑠 , 𝑡𝑎, 𝑐oBC)-secure Overlap All-to-All
Broadcast protocol for 𝑐oBC = 𝑐rBC + 𝑐′rBC.

The results below trivially follow from ΠrBC’s 𝑡𝑠 -Validity and

𝑡𝑠 -Consistency, regardless of whether the network is synchronous

or asynchronous.

Lemma 6.6 (𝑡𝑠 -Validity). Let 𝑃 and 𝑃 ′ denote two honest parties,
and assume that 𝑃 outputsM. If (𝑣, 𝑃 ′) ∈ M, then 𝑣 = 𝑣𝑃 ′ , even if
not all honest parties join the protocol’s execution.

Lemma 6.7 (𝑡𝑠 -Consistency). Let 𝑃 and 𝑃 ′ denote two honest
parties, and assume they outputM andM′ respectively. If (𝑣, 𝑃 ′′) ∈
M and (𝑣 ′, 𝑃 ′′) ∈ M′, then 𝑣 = 𝑣 ′, even if not all honest parties join
the protocol’s execution.

Lemma 6.8 ((𝑡𝑠 , 𝑡𝑎)-Overlap). Let 𝑃 and 𝑃 ′ denote two honest
parties. If 𝑃 and 𝑃 ′ outputM andM′ respectively, then

��M∩M′�� ≥
𝑛 − 𝑡𝑠 , even if not all parties join the protocol’s execution.
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Proof. We show that 𝑃 and 𝑃 ′ have an honest witness in com-

mon. Since they obtain outputs,

��𝑊 ��, ��𝑊 ′�� ≥ 𝑛 − 𝑡𝑠 , which implies

that

��𝑊 ∩𝑊 ′�� ≥ 𝑛 − 2𝑡𝑠 ≥ 𝑡𝑠 + 𝑡𝑎 + 1. Hence, as at most 𝑡𝑠 of the

parties involved are corrupted,𝑊 ∩𝑊 ′
contains an honest witness

𝑃𝑊 .

Then, 𝑃 and 𝑃 ′ have received the same set M𝑃𝑊 of size at least

𝑛 − 𝑡𝑠 from 𝑃𝑊 such that M𝑃𝑊 ⊆ M and M𝑃𝑊 ⊆ M′
, which

proves the statement. □

Lemma 6.9 ((𝑡𝑠 , 𝑡𝑎)-Synchronized Overlap and Synchronized

(𝑡𝑠 , 𝑐oBC)-Synchronized Liveness). Assume that the honest parties
start executing ΠoBC at the same time 𝜏 . Let 𝑐oBC = 𝑐rBC + 𝑐′rBC.

Then, every honest party 𝑃 outputsM by time 𝜏 + 𝑐oBC · Δ, and
M contains (𝑣𝑃 ′ , 𝑃 ′) for every honest party 𝑃 ′.

Proof. Since every honest party starts the protocol at time

𝜏 , ΠrBC achieves (𝑡𝑠 , 𝑐rBC)-Honest Liveness. That is, every honest

value is received by time 𝜏+𝑐rBC ·Δ. Hence, at time 𝜏+𝑐rBC ·Δ, the set
M of every honest party contains the 𝑛 − 𝑡𝑠 pairs corresponding to

honest values, and possibly some pairs corresponding to corrupted

values. Hence, (𝑡𝑠 , 𝑡𝑎)-Synchronized Overlap holds.

Then, we need to show that

��𝑊 �� ≥ 𝑛−𝑡𝑠 holds by time 𝜏 + (𝑐rBC+
𝑐′
rBC

) · Δ for every honest party 𝑃 . Since every honest party 𝑃 ′ has
sent its setM𝑃 ′ at time 𝜏+𝑐rBC ·Δ, every setM𝑃 ′ is received by time

𝜏 + (𝑐rBC + 1) · Δ. In addition, ΠrBC achieves (𝑡𝑠 , 𝑐′
rBC

)-Conditional
Liveness, which ensures that every value received by 𝑃 ′ by time

𝜏 + 𝑐rBC · Δ and included inM𝑃 ′ is received by every party by time

𝜏 + (𝑐rBC+𝑐′
rBC

) ·Δ. As 𝑐′
rBC

≥ 1, by time 𝜏 + (𝑐rBC+𝑐′
rBC

) ·Δ, 𝑃 adds

𝑃 ′ to its set𝑊 for each honest party 𝑃 ′, and hence
��𝑊 �� ≥ 𝑛−𝑡𝑠 holds.

Therefore, (𝑡𝑠 , 𝑐oBC)-Synchronized Liveness holds as well. □

Lemma 6.10 (𝑡𝑎-Liveness). If all honest parties join the protocol’s
execution, all honest parties obtain an output.

Lemma 6.11. Let 𝑃 and 𝑃 ′ denote two honest parties, and assume
that 𝑃 ′ has not yet obtained an output. Since every honest party
actively participates in the protocol, 𝑃 eventually receives at least
𝑛 − 𝑡𝑠 values via ΠrBC, and hence eventually sends a set M𝑃 to
all the parties. As ΠrBC achieves (𝑡𝑎, 𝑐rBC)-Conditional Liveness, 𝑃 ′
can eventually receive each of these values, along with M𝑃 , and
therefore mark 𝑃 as a witness. As this result holds for every honest 𝑃 ,
𝑃 ′ eventually obtains 𝑛 − 𝑡𝑠 witnesses and outputs.

6.3 Proofs for Safe Area Properties

Lemma 5.4. Assume that 𝑋 is a finite set, 𝑚 ≤ 𝐷 + 1, and let
𝑋1, . . . , 𝑋𝑚 ∈ restrict𝑡 (𝑋 ). Then,

��⋂𝑚
𝑖=1 𝑋𝑖

�� ≥ ��𝑋 �� −𝑚𝑡 .
In addition, given a finite set 𝑌 ,

��𝑋 ∩𝑌 ∩⋂𝑚
𝑖=1 𝑋𝑖

�� ≥ ��𝑋 ∩𝑌
��−𝑚𝑡 .

Proof. We prove the second part of the statement by induction

on𝑚.

The base case is when𝑚 = 1:

��𝑋 ∩ 𝑌 ∩⋂
1≤𝑖≤1 𝑋𝑖

�� = ��(𝑋 ∩ 𝑌 ) ∩
𝑋1

�� = ��(𝑋 ∩𝑌 ) \ ((𝑋 ∩ 𝑌 ) \ 𝑋1)
��
. Since 𝑋 ∩𝑌 ⊆ 𝑋 and

��𝑋 \𝑋1

�� = 𝑡 ,

then

��(𝑋 ∩ 𝑌 ) \ 𝑋1

�� ≤ 𝑡 . Therefore,
��𝑋 ∩ 𝑌 ∩ 𝑋𝑖

�� ≥ ��𝑋 ∩ 𝑌
�� − 𝑡 .

For the induction step, assume that

��𝑋∩𝑌∩⋂
1≤𝑖≤𝑚−1 𝑋𝑖

�� ≥ ��𝑋∩
𝑌
��−(𝑚−1)𝑡 . Similarly to the argument for the base case, it holds that�� (𝑋 ∩ 𝑌 ∩⋂

1≤𝑖≤𝑚−1 𝑋𝑖
)
\𝑋

�� ≤ 𝑡 since 𝑋 ∩𝑌 ∩⋂
1≤𝑖≤𝑚−1 𝑋𝑖 ⊆ 𝑋

and

��𝑋 \ 𝑋𝑖
�� = 𝑡 . Therefore,

��𝑋 ∩ 𝑌 ∩⋂
1≤𝑖≤𝑚 𝑋𝑖

�� ≥ ��𝑋 ∩ 𝑌
�� −𝑚𝑡 .

Then, by setting 𝑌 = 𝑋 , we obtain that

��𝑋 ∩ 𝑌 ∩⋂
1≤𝑖≤𝑚 𝑋𝑖

�� ≥��𝑋 ∩ 𝑌
�� −𝑚𝑡 =

��𝑋 �� −𝑚𝑡 . □

Before proving Lemma 5.10, we need to include the following

technical result.

Lemma 6.12. safe𝑡 (M) ⊆ safe𝑡−1 (M).

Proof.

safe𝑡 (M) =
⋂

𝑀∈restrict𝑡M
convex(val(𝑀))

⊆
⋂

𝑀∈restrict𝑡 (M)

©­«
⋂

𝑚∈M\𝑀
convex(val(𝑀 ∪ {𝑚}))ª®¬

=
⋂

𝑀∈restrict𝑡−1 (M)
convex(val(𝑀)) = safe𝑡−1 (M) .

□

Lemma 5.10. Let𝑚 denote a value-party pair, and M a set of
value-party pairs. Then, safe𝑡 (M) ⊆ safe𝑡 (M ∪ {𝑚}).

Proof. Firstly, note that every set 𝑀 ∈ restrict𝑡 (M ∪ {𝑚})
contains 𝑘 =

��M�� + 1 − 𝑡 values. Out of these values, either 𝑘 are

in safe𝑡 (M), or 𝑘 − 1 are in safe𝑡 (M) and the 𝑘-th value is 𝑚.

Then, since the sets of restrict𝑡 (M) only contain

��M�� − 𝑡 values,

we obtain that restrict𝑡 (M ∪ {𝑚}) = restrict𝑡−1 (M) ∪ {𝑀 ∪ {𝑚} :
𝑀 ∈ restrict𝑡 (M)}.

Hence, we can write safe𝑡 (M ∪ {𝑚}) as follows:⋂
𝑀∈restrict𝑡−1 (M)

convex(val(𝑀)) ∩
⋂

𝑀∈restrict𝑡 (M)
convex(val(𝑀))

= safe𝑡−1 (M) ∩
⋂

𝑀∈restrict𝑡 (M)
convex(val(𝑀 ∪ {𝑚})).

From Lemma 6.12, we obtain that safe𝑡 (M) ⊆ safe𝑡−1 (M). In
addition, for any 𝑉 ⊆ R𝐷 and 𝑣 ∈ R𝐷 , convex(𝑉 ) ⊆ convex(𝑉 ∪
{𝑣}. This is because 𝑣 is either inside convex(𝑉 ) or it extends the
convex hull. Then, for any 𝑀 ∈ restrict𝑡 (M), convex(val(𝑀)) ⊆
convex(val(𝑀 ∪ {𝑚})). Therefore, safe𝑡 (M) ⊆ safe𝑡 (M ∪ {𝑚}).

□

Lemma 5.3. Let M denote a set of 𝑛 − 𝑡𝑠 + 𝑘 value-party pairs,
where 𝑘 ≤ 𝑡𝑠 . Then,

��restrict
max(𝑘,𝑡𝑎 ) (M)

�� ≥ 𝐷 + 1.

Proof. We obtain a lower bound for𝑚 =
��
restrict

max(𝑘,𝑡𝑎 ) (M)
��

as follows:

𝑚 =

(
𝑛 − 𝑡𝑠 + 𝑘
max(𝑘, 𝑡𝑎)

)
=

max(𝑘,𝑡𝑎 )∏
𝑖=1

𝑛 − 𝑡𝑠 + 𝑘 −max(𝑘, 𝑡𝑎) + 𝑖
𝑖

.

Note that each term of the product is greater than 1 since 𝑛 − 𝑡𝑠 +
𝑘 −max(𝑘, 𝑡𝑎) + 𝑖 ≥ 𝐷 · 𝑡𝑠 + 𝑘 + 1 + 𝑖 ≥ 1 + 𝑖 . Therefore, we obtain
that:𝑚 ≥ 𝑛 − 𝑡𝑠 + 𝑘 −max(𝑘, 𝑡𝑎) + 1 ≥ 𝐷 · 𝑡𝑠 + 𝑘 + 1 ≥ 𝐷 + 1. □

6.4 Analysis of 𝚷init
Lemma 6.13. For every honest party 𝑃 , it eventually holds that��𝑊 �� ≥ 𝑛 − 𝑡𝑠 . In addition, if the network is synchronous, every honest

party obtains a set𝑊 that contains every honest party by time 𝜏start+
2𝑐rBC · Δ.
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Proof. ΠrBC guarantees 𝑡𝑠 -Validity, (𝑡𝑠 , 𝑐rBC)-Honest Liveness,
and (𝑡𝑠 , 𝑐′

rBC
)-Conditional Liveness.

Then, if the network is asynchronous, every honest party even-

tually receives 𝑛−𝑡𝑠 values and reliably broadcasts its setM. These

sets are delivered eventually.

If the network is synchronous, each honest party receives at

least the 𝑛 − 𝑡𝑠 honest values by time 𝜏start + 𝑐rBC · Δ and reliably

broadcasts its set M immediately. These sets are delivered by time

𝜏start + 2𝑐rBC · Δ.
Due to ΠrBC’s 𝑡𝑠 -Consistency and (𝑡𝑠 , 𝑐′

rBC
)-Conditional Live-

ness, every value in a setM sent by an honest party can be received

by all other parties, hence at least 𝑛 − 𝑡𝑠 parties are marked as wit-

nesses eventually.

If the network is synchronous, any value in a set M sent by

an honest party 𝑃 is received by time 𝜏start + (𝑐rBC + 𝑐′
rBC

) · Δ <

𝜏start + 2𝑐rBC · Δ, and hence 𝑃 can be marked immediately as

a witness. As this result holds for any honest party 𝑃 , at time

𝜏start + (𝑐rBC + 𝑐′
rBC

) · Δ, every honest party has obtained a set𝑊

containing every honest party. □

Lemma 6.14. Eventually,
��𝑊2

�� ≥ 𝑛 − 𝑡𝑠 for every honest party. In
addition, if the network is synchronous,𝑊2 contains all the honest
parties at time 𝜏start + (2𝑐rBC + 𝑐′rBC) · Δ for every honest party.

Proof. Lemma 6.13 shows that every honest party sends its set

𝑊 eventually. In addition, if the network is synchronous, this set

contains every honest party and is sent by time 𝜏start + 2𝑐rBC · Δ.
If the network is asynchronous and 𝑃 ′ ∈ 𝑊 for some honest

party 𝑃 , then eventually every honest party receives the same set

M𝑃 ′ as 𝑃 due to (𝑡𝑠 , 𝑐′
rBC

)-Conditional Liveness. Then, every honest
party can add 𝑃 ′ to its own set𝑊 and mark 𝑃 as a double-witness.

Therefore,

��𝑊2

�� ≥ 𝑛 − 𝑡𝑠 eventually holds for every honest party.

If the network is synchronous, then the set𝑊 sent by an honest

party 𝑃 is received by time 𝜏start + (2𝑐rBC +1) ·Δ. Π𝑟𝐵𝐶 guarantees

(𝑡𝑠 , 𝑐′
rBC

)-Conditional Liveness, which implies that every party 𝑃 ′ ∈
𝑊 is marked as a witness by every honest party by time 𝜏start +
(2𝑐rBC + 𝑐′

rBC
) · Δ, and hence 𝑃 is marked immediately as a double-

witness. Finally, since 𝑐′
rBC

≥ 1, every honest party marks every

honest party as a double-witness by time 𝜏start + (2𝑐rBC + 𝑐′
rBC

) ·
Δ. □

The result below follows from Lemma 5.6 and Lemma 5.7.

Lemma 6.15. If an honest party 𝑃 adds 𝑃 ′ to𝑊 , then 𝑣𝑃 ′ is well-
defined. In addition, if 𝑃 ′ is honest, 𝑣𝑃 ′ is in the honest inputs’ convex
hull.

Lemmas 6.14 and 6.15 show that every party obtains a set 𝐼𝑒 of

𝑛−𝑡𝑠 +𝑘 value-party pairs, containing at least 𝑛−𝑡𝑠 +𝑘−max(𝑘, 𝑡𝑎)
values in the honest inputs’ convex hull. Then, we apply Lemma

5.7 once again and obtain the following.

Lemma 6.16. Every honest party 𝑃 eventually obtains a well-
defined set 𝐼𝑒 , a well-defined value 𝑣0 ⊆ convex(𝐼 ), and outputs.
In addition, if the network is synchronous, every honest party outputs
at time 𝜏start + (2𝑐rBC + 𝑐′rBC) · Δ.

The property below follows from the 𝑡𝑠 -Consistency property of

ΠrBC.

Lemma 6.17. Let 𝑃 , 𝑃 ′ denote two honest parties, and let 𝐼𝑒 and 𝐼 ′𝑒
denote their sets of estimations. If (𝑣𝑃 ′′ , 𝑃 ′′) ∈ 𝐼𝑒 and (𝑣 ′

𝑃 ′′ , 𝑃
′′) ∈ 𝐼 ′𝑒 ,

then 𝑣𝑃 ′′ = 𝑣 ′
𝑃 ′′ .

Lemma 6.18. Let 𝑃 and 𝑃 ′ denote two honest parties and let 𝐼𝑒 and
𝐼 ′𝑒 denote their estimated values, and 𝑣0 and 𝑣 ′

0
their outputs. Then,

𝑣0 ∈ convex(𝐼 ′𝑒 ).

Proof. If the network is synchronous, Lemma 6.13 guarantees

that 𝑃 and 𝑃 ′ have 𝑛 − 𝑡𝑠 witnesses in common. If the network is

asynchronous, 𝑃 and 𝑃 ′ obtain 𝑛 − 2𝑡𝑠 > 𝑡𝑎 + 1 common double

witnesses, hence at least one honest double witness in common,

from which they received the same set𝑊 of 𝑛−𝑡𝑠 witnesses. Hence,
𝑃 and 𝑃 ′ have 𝑛 − 𝑡𝑠 witnesses in common. In both cases, 𝐼𝑒 and 𝐼 ′𝑒
have a subset of 𝑛 − 𝑡𝑠 common pairs according to Lemma 6.17.

Let 𝑘 =
��𝐼𝑒 �� − (𝑛 − 𝑡𝑠 ). Then, restrictmax(𝑘,𝑡𝑎 ) (𝐼𝑒 ) includes a

subset 𝐼𝑒,∩ of the common 𝑛 − 𝑡𝑠 pairs, which implies that 𝑣0 ∈
safe

max(𝑘,𝑡𝑎 ) (𝐼𝑒 ) ⊆ convex(𝐼𝑒,∩) ⊆ 𝐼 ′𝑒 . □

The result below follows immediately from Lemmas 6.16 and

6.18

Lemma 5.18. Every honest party outputs (𝑇, 𝑣0) in Πinit such
that 𝑣0 is within the convex hull of honest inputs and, if 𝐼0 denotes
the multiset of outputs 𝑣0, 𝑇 ≥ log

√
7/8 (𝜀/𝛿max (𝐼0)). In addition, if

the network is synchronous, the honest parties obtain outputs at time
𝑐init · Δ, where 𝑐init = 2𝑐rBC + 𝑐′rBC.

Proof. Lemma 6.16 shows that each honest party eventually

obtains a set of estimations 𝐼𝑒 , a value 𝑣0 ⊆ convex(𝐼 ), and hence

an estimation 𝑇 . If the network is synchronous, these outputs are

obtained at time 𝑐init · Δ. Then, Lemma 6.18 guarantees that 𝐼0 ⊆
convex(𝐼𝑒 ) for every honest party. Then, 𝛿max (𝐼𝑒 ) ≥ 𝛿max (𝐼0) and
hence 𝑇 = log

√
7/8 (𝜀/𝛿max (𝐼𝑒 )) ≥ log

√
7/8 (𝜀/𝛿max (𝐼0)). □
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