
ar
X

iv
:1

01
1.

54
70

v2
 [

cs
.D

C
]

 3
1

M
ar

 2
01

6

Local Computation: Lower and Upper Bounds∗

Fabian Kuhn1, Thomas Moscibroda2, Roger Wattenhofer3

1kuhn@cs.uni-freiburg.de, University of Freiburg, Germany
2moscitho@microsoft.com, Microsoft Research, Beijing, China

3wattenhofer@ethz.ch, ETH Zurich, Switzerland

Abstract

The question of what can be computed, and how efficiently, are at the core of com-
puter science. Not surprisingly, in distributed systems and networking research, an
equally fundamental question is what can be computed in a distributed fashion. More
precisely, if nodes of a network must base their decision on information in their local
neighborhood only, how well can they compute or approximate a global (optimization)
problem? In this paper we give the first poly-logarithmic lower bound on such local
computation for (optimization) problems including minimum vertex cover, minimum
(connected) dominating set, maximum matching, maximal independent set, and max-
imal matching. In addition we present a new distributed algorithm for solving general
covering and packing linear programs. For some problems this algorithm is tight with
the lower bounds, for others it is a distributed approximation scheme. Together, our
lower and upper bounds establish the local computability and approximability of a
large class of problems, characterizing how much local information is required to solve
these tasks.

1 Introduction

Many of the most fascinating systems in the world are large and complex networks, such as
the human society, the Internet, or the brain. Such systems have in common that they are
composed of a multiplicity of individual entities, so-called nodes ; human beings in society,
hosts in the Internet, or neurons in the brain. Each individual node can directly communi-
cate only to a small number of neighboring nodes. For instance, most human communication
is between acquaintances or within the family, and neurons are directly linked with merely
a relatively small number of other neurons. On the other hand, in spite of each node being
inherently “near-sighted,” i.e., restricted to local communication, the entirety of the system
is supposed to work towards some kind of global goal, solution, or equilibrium.

In this work we investigate the possibilities and limitations of local computation, i.e.,
to what degree local information is sufficient to solve global tasks. Many tasks can be

∗This paper is based in part on work that has appeared in the following two preliminary versions: What
Cannot Be Computed Locally, In Proceedings of the 23rd ACM Symposium on the Principles of Distributed
Computing (PODC), St. John’s, Canada, 2004 [28] and The Price of Being Near-Sighted, In Proceedings
of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami, Florida, 2006 [29]. We are
grateful to Bar-Yehuda, Censor-Hillel, and Schwartzman [7] for pointing out an error in an earlier draft [30]
of this paper.

1

http://arxiv.org/abs/1011.5470v2

solved entirely locally, for instance, how many friends of friends one has. Clearly, only local
communication is required to answer this question. Many other tasks are inherently global,
for instance, counting the total number of nodes or determining the diameter of the system.
To solve such global problems, some information must traverse across the entire network.

Are there natural tasks that are in the middle of these two extremes, tasks that are
neither completely local nor inherently global? In this paper we answer this question af-
firmatively. Assume for example that the nodes want to organize themselves, some nodes
should be masters, the others will be slaves. The rules are that no two masters shall be
direct neighbors, but every slave must have at least one master as direct neighbor. In graph
theory, this problem is known as the maximal independent set (MIS) problem. At first, this
problem seems local since the rules are completely local. Consequently one might hope for
a solution where each node can communicate with its neighbors a few times, and together
they can decide who will become master and who will become slave. However, as we show in
this paper, this intuition is misleading. Even though the problem can be defined in a purely
local way, it cannot be solved using local information only! No matter how the system tack-
les the problem, no matter what protocol or algorithm the nodes use, non-local information
is vital to solve the task. On the other hand, the problem is also not global: Mid-range
information is enough to solve the problem. As such the MIS problem establishes an ex-
ample that is neither local nor global, but in-between these extremes. As it turns out to
be polylogarithmic in the number of nodes, we call it polylog-local. Using locality-preserving
reductions we are able to show that there exists a whole class of polylog-local problems.

We show that this class of polylog-local problems also includes approximation variants
of various combinatorial optimization problems, such as minimum vertex cover, minimum
dominating set, or maximum matching. In such problems, each node must base its decision
(for example whether or not to join the dominating set) only on information about its
local neighborhood, and yet, the goal is to collectively achieve a good approximation to
the globally optimal solution. Studying such local approximation algorithms is particularly
interesting because it sheds light on the trade-off between the amount of available local
information and the resulting global optimality. Specifically, it characterizes the amount of
information needed in distributed decision making: what can be done with the information
that is available within some fixed-size neighborhood of a node. Positive and negative results
for local algorithms can thus be interpreted as information-theoretic upper and lower bounds;
they give insight into the value of information.

We believe that studying the fundamental possibilities and limitations of local compu-
tation is of interest to theoreticians in approximation theory, distributed computing, and
graph theory. Furthermore, our results may be of interest for a wide range of scientific
areas, for instance dynamic systems that change over time. Our theory shows that small
changes in a dynamic system may cause an intermediate (or polylog-local) “butterfly ef-
fect,” and it gives non-trivial bounds for self-healing or self-organizing systems, such as
self-assembling robots. It also establishes bounds for further application areas, initially in
engineering and computing, possibly extending to other areas studying large-scale systems,
e.g., social science, finance, neural networks, or ant colonies.

1.1 Model and Notation

Local Computations: We consider a distributed system in which distributed decision
makers at the nodes of a graph must base their computations and decisions on the knowledge
about their local neighborhoods in the graph. Formally, we are given a graph G = (V,E),

2

|V | = n, and a parameter k (k might depend on n or some other property of G). At each
node v ∈ V there is an independent agent (for simplicity, we identify the agent at node v
with v as well). Every node v ∈ V has a unique identifier id(v)1 and possibly some additional
input. We assume that each node v ∈ V can learn the complete neighborhood Γk(v) up
to distance k in G (see below for a formal definition of Γk(v)). Based on this information,
all nodes need to make independent computations and need to individually decide on their
outputs without communicating with each other. Hence, the output of each node v ∈ V can
be computed as a function of it’s k-neighborhood Γk(v).

Synchronous Message Passing Model: The described graph-theoretic local compu-
tation model is equivalent to the classic message passing model of distributed computing. In
this model, the distributed system is modeled as a point-to-point communication network,
described by an undirected graph G = (V,E), in which each vertex v ∈ V represents a node
(host, device, processor, . . .) of the network, and an edge (u, v) ∈ E is a bidirectional com-
munication channel that connects the two nodes. Initially, nodes have no knowledge about
the network graph; they only know their own identifier and potential additional inputs. All
nodes wake up simultaneously and computation proceeds in synchronous rounds. In each
round, every node can send one, arbitrarily long message to each of its neighbors. Since we
consider point-to-point networks, a node may send different messages to different neighbors
in the same round. Additionally, every node is allowed to perform local computations based
on information obtained in messages of previous rounds. Communication is reliable, i.e.,
every message that is sent during a communication round is correctly received by the end
of the round. An algorithm’s time complexity is defined as the number of communication
rounds until all nodes terminate.2

The above is a standard model of distributed computing and is generally known as the
LOCAL model [46, 37]. It is the strongest possible model when studying the impact of
locally-restricted knowledge on computability, because it focuses entirely on the locality of
distributed problems and abstracts away other issues arising in the design of distributed
algorithms (e.g., need for small messages, fast local computations, congestion, asynchrony,
packet loss, etc.). It is thus the most fundamental model for proving lower bounds on local
computation [37]; because any lower bound is a true consequence of locality restrictions.

Equivalence of Time Complexity and Neighborhood-Information: There is a
one-to-one correspondence between the time complexity of distributed algorithms in the LO-
CAL model and the graph theoretic notion of neighborhood-information. In particular, a
distributed algorithm with time-complexity k (i.e., in which each node performs k communi-
cation rounds) is equivalent to a scenario in which distributed decision makers at the nodes
of a graph must base their decision on (complete) knowledge about their k-hop neighbor-
hood Γk(v) only. This is true because with unlimited sized messages, every node v ∈ V
can easily collect all IDs and interconnections of all nodes in its k-hop neighborhood in k
communication rounds. On the other hand, a node v clearly cannot obtain any information
from a node at distance k+1 or further away, because this information would require more
than k rounds to reach v. Thus, the LOCAL model relates distributed computation to the
algorithmic theory of the value of information as studied for example in [44]: the question
of how much local knowledge is required for distributed decision makers to solve a global

1All our results hold for any possible ID space including the standard case where IDs are the numbers
1, . . . , n.

2Notice that this synchronous message passing model captures many practical systems, including for
example, Google’s Pregel system, a practically implemented computational model suitable for computing
problems in large graphs [40].

3

task or approximate a global goal is equivalent to the question of how many communication
rounds are required by a distributed algorithm to solve the task.

Notation: For nodes u, v ∈ V and a graph G = (V,E), we denote the shortest-path
distance between u and v by dG(u, v). Let Γk(v) be the k-hop neighborhood of a node
v ∈ V . Formally, we define Γk(v) := {u ∈ V : dG(u, v) ≤ k}. We also use the shortcut
Γv := Γ1(v), that is, Γv is the (inclusive) neighborhood of v. In a local computation with
k-hop neighborhood information (or equivalently, in any distributed algorithm with time
complexity k), each node has a partial view of the graph and must base its algorithm’s
outcome solely on information obtained in Γk(v). Formally, let Tv,k be the topology seen
by v after k rounds in a distributed algorithm, i.e., Tv,k is the graph induced by the k-
neighborhood of v where edges between nodes at exactly distance k are excluded. The
labeling (i.e., the assignment of identifiers to nodes) of Tv,k is denoted by L(Tv,k). The view
of a node v is the pair Vv,k := (Tv,k,L(Tv,k)). Any deterministic distributed algorithm can
be regarded as a function mapping (Tv,k,L(Tv,k)) to the possible outputs. For randomized
algorithms, the outcome of v is also dependent on the randomness computed by the nodes
in Tv,k.

1.2 Problem Definitions

In this paper, we study several standard combinatorial optimization problems (and their
natural relaxations) that intuitively appear to be local, yet turn out to be neither completely
local nor global. Specifically, we consider the following standard optimization problems in
graphs:

• Minimum Vertex Cover (MVC): Given a graph G = (V,E), find a minimum
vertex subset S ⊆ V , such that for each edge in E, at least one of its endpoints is in
S.

• Minimum Dominating Set (MDS): Given a graph G = (V,E), find a minimum
vertex subset S ⊆ V , such that for each node v ∈ V , either v ∈ S or at least one
neighbor of v must be in S.

• Minimum Connected Dominsting Set (MCDS): Given a graph G = (V,E),
find a minimum dominating set S ⊆ V , such that the graph G[S] induced by S is
connected.

• Maximum Matching (MaxM): Given a graph G = (V,E), find a maximum edge
subset T ⊆ E, such that no two edges in T are adjacent.

In all these cases, we consider the respective problem on the network graph, i.e., on the
graph representing the network. In addition to the above mentioned problems, we study
their natural linear programming relaxations as well as a slightly more general class of linear
programs (LP) in a distributed context. Consider an LP and its corresponding dual LP in
the following canonical forms:

min cTx

s. t. A · x ≥ b

x ≥ 0.

(P)

min bTy

s. t. AT · y ≤ c

y ≥ 0.

(D)

4

We call an LP in form (P) to be in primal canonical form (or just in canonical form)
and an LP in form (D) to be in dual canonical form. If all the coefficients of b, c, and A are
non-negative, primal and dual LPs in canonical forms are called covering and packing LPs,
respectively. The relaxations of vertex cover and dominating set are covering LPs, whereas
the relaxation of matching is a packing LP.

While there is an obvious way to interpret graph problems such as vertex cover, dominat-
ing set, or matching as a distributed problem, general LPs have no immediate distributed
meaning. We use a natural mapping of an LP to a network graph, which was introduced
in [44] and applied in [9]. For each primal variable xi and for each dual variable yj , there
are nodes vpi and vdj , respectively. We denote the set of primal variables by Vp and the set
of dual variables by Vd. The network graph GLP = (Vp∪̇Vd, E) is a bipartite graph with the
edge set

E :=
{
(vpi , v

d
j) ∈ Vp × Vd

∣
∣ aji 6= 0

}
,

where aji is the entry of row j and column i of A. We define np := |Vp| and nd := |Vd|, that
is, A is a (nd × np)-matrix. Further, the maximum primal and dual degrees are denoted
by ∆p and ∆d, respectively. In most real-world examples of distributed LPs and their
corresponding combinatorial optimization problems, the network graph is closely related to
the graph GLP such that any computation on GLP can efficiently be simulated in the actual
network.

In the context of local computation, each node v ∈ V has to independently decide
whether it joins a vertex cover or dominating set, which of its incident edges should partici-
pate in a matching, or what variable its corresponding variable gets assigned when solving an
LP. Based on local knowledge, the nodes thus seek to produce a feasible approximation to the
global optimization problem. Depending on the number of rounds nodes communicate—and
thus on the amount of local knowledge available at the nodes—, the quality of the solution
that can be computed differs. We seek to understand the trade-off between the amount of
local knowledge (or communication between nodes) and the resulting approximation to the
global problem.

In addition to these optimization problems, we also consider important binary problems,
including:

• Maximal Independent Set (MIS): Given a graph G = (V,E), select an inclusion-
maximal vertex subset S ⊆ V , such that no two nodes in S are neighbors.

• Maximal Matching (MM): Given a G = (V,E), select an inclusion-maximal edge
subset T ⊆ E, such that no two edges in T are adjacent.

For such problems, we are interested in the question, how much local information is required
such that distributed decision makers are able to compute fundamental graph-theoretic
structures, such as an MIS or an MM. Whereas most of the described combinatorial op-
timization problems are NP-hard and thus, unless P = NP, even with global knowledge,
algorithms can compute only approximations to the optimum, an MIS or an MM can triv-
ially be computed with global knowledge. The question is thus how much local knowledge
is required to solve these tasks.

1.3 Contributions

Our main results are a lower bound on the distributed approximability of the minimum
vertex cover problem in Section 3 as well as a generic algorithm for covering and packing

5

LPs of the form (P) and (D) in Section 5, respectively. Both results are accompanied by
various extensions and adaptations to the other problems introduced in Section 1.2. It
follows from our discussion that these results imply strong lower and upper bounds on the
amount of local information required to solve/approximate global tasks.

For the MVC lower bound, we show that for every k > 0, there exists a graph G such
that every k-round distributed algorithm for the MVC problem has approximation ratios at
least

Ω

(

nc/k2

k

)

and Ω

(
∆1/(k+1)

k

)

for a positive constant c, where n and ∆ denote the number of nodes and the highest
degree of G, respectively. Choosing k appropriately, this implies that to achieve a con-
stant approximation ratio, every MVC algorithm requires at least Ω

(√

logn/ log logn
)
and

Ω
(
log∆/ log log∆

)
rounds, respectively. All bounds also hold for randomized algorithms.

Using reductions that preserve the locality properties of the considered graph, we show
that the same lower bounds also hold for the distributed approximation of the minimum
dominating set and maximum matching problems. Because MVC and MaxM are covering
and packing problems with constant integrality gap, the same lower bounds are also true
for general distributed covering and packing LPs of the form (P) and (D). Furthermore,
using locality-preserving reductions, we also derive lower bounds on the amount of local
information required at each node to collectively compute important structures such as an
MIS or a maximal matching in the network graph. Finally, a simple girth argument can be
used to show that for the connected dominating set problem, even stronger lower bounds
are true. We show that in k rounds, no algorithm can have an approximation ratio that
is better than nc/k for some positive constant c. This implies that for a polylogarithmic
approximation ratio, Ω(log(n)/ log log(n)) rounds are needed.

We show that the above lower bound results that depend on ∆ are asymptotically al-
most tight for the MVC and MaxM problem by giving an algorithm that obtains O(∆c/k)
approximations with k hops of information for a positive constant c. That is, a constant
approximation to MVC can be computed with every node having O(log∆)-hop information
and any polylogarithmic approximation ratio can be achieved in O(log∆/ log log∆) rounds.
In recent work, it has been shown that also a constant approximation can be obtained in
time O(log∆/ log log∆) and thus as a function of ∆, our MVC lower bound is also tight for
contant approximation ratios [7]. Our main upper bound result is a distributed algorithm to
solve general covering and packing LPs of the form (P) and (D). We show that with k hops
of information, again for some positive constant c, a nc/k-approximation can be computed.
As a consequence, by choosing k large enough, we also get a distributed approximation
scheme for this class of problems. For ε > 0, the algorithm allows to compute an (1 + ε)-
approximation in O(log(n)/ε) rounds of communication. Using a distributed randomized
rounding scheme, good solutions to fractional covering and packing problems can be con-
verted into good integer solutions in many cases. In particular, we obtain the currently best
distributed dominating set algorithm, which achieves a (1+ ε) ln∆-approximation for MDS
in O(log(n)/ε) rounds for ε > 0. Finally, we extend the MDS result to connected dominat-
ing sets and show that up to constant factors in approximation ratio and time complexity,
we can achieve the same time-approximation trade-off as for the MDS problem also for the
CDS problem.

6

2 Related Work

Local Computation: Local algorithms have first been studied in the Mid-1980s [39, 11].
The basic motivation was the question whether one can build efficient network algorithms,
where each node only knows about its immediate neighborhood. However, even today, rel-
atively little is known about the fundamental limitations of local computability. Similarly,
little is known about local approximability, i.e., how well combinatorial optimization prob-
lems can be approximated if each node has to decide individually based only on knowledge
available in its neighborhood.

Linial’s seminal Ω(log∗n) time lower bound for constructing a maximal independent
set on a ring [37] is virtually the only non-trivial lower bound for local computation.3

Linial’s lower bound shows that the non-uniform O(log∗n) coloring algorithm by Cole and
Vishkin [11] is asymptotically optimal for the ring. It has recently been extended to other
problems [12, 36]. On the other hand, it was later shown that there exist non-trivial problems
that can indeed be computed strictly locally. Specifically, Naor and Stockmeyer present
locally checkable labelings which can be computed in constant time, i.e., with purely local
information [41].

There has also been significant work on (parallel) algorithms for approximating packing
and covering problems that are faster than interior-point methods that can be applied to
general LPs (e.g. [23, 47, 56]). However, these algorithms are not local as they need at
least some global information to work.4 The problem of approximating positive LPs using
only local information has been introduced in [43, 44]. The first algorithm achieving a
constant approximation for general covering and packing problems in polylogarithmic time
is described in [9]. Distributed (approximation) algorithms targeted for specific covering and
packing problems include algorithms for the minimum dominating set problem [16, 27, 48,
31] as well as algorithms for maximal matchings and maximal independent sets [3, 26, 39].
We also refer to the survey in [17].

While local computation was always considered an interesting and elegant research ques-
tion, several new application domains, such as overlay or sensor networks, have reignited
the attention to the area. Partly driven by these new application domains, and partly due
to the lower bounds presented in this paper, research in the last five years has concentrated
on restricted graph topologies, such as unit disk graphs, bounded-growth graphs, or planar
graphs. A survey covering this more recent work is [54].

Self-Organization & Fault-Tolerance: Looking at the wider picture, one may argue
that local algorithms even go back to the early 1970s when Dijkstra introduced the concept of
self-stabilization [14, 15]. A self-stabilizing system must survive arbitrary failures, including
for instance a total wipe out of volatile memory at all nodes. The system must self-heal and
eventually converge to a correct state from any arbitrary starting state, provided that no
further faults occur.

It seems that the world of self-stabilization (which is asynchronous, long-lived, and full
of malicious failures) has nothing in common with the world of local algorithms (which is
synchronous, one-shot, and free of failures). However, as shown 20 years ago, this perception
is incorrect [5, 1, 6]; indeed it can easily be shown that the two areas are related. Intuitively,

3There are of course numerous lower bounds and impossibility results in distributed computing [21], but
they apply to computational models where locality is not the key issue. Instead, the restrictive factors are
usually aspects such as bounded message size [18, 49], asynchrony, or faulty processors.

4In general, a local algorithm provides an efficient algorithm in the PRAM model of parallel computing,
but a PRAM algorithm is not necessarily local [55].

7

this is because (i) asynchronous systems can be made synchronous, (ii) self-stabilization
concentrates on the case after the last failure, when all parts of the system are correct
again, and (iii) one-shot algorithms can just be executed in an infinite loop. Thus, efficient
self-stabilization essentially boils down to local algorithms and hence, local algorithms are
the key to understanding fault-tolerance [35].

Likewise, local algorithms help to understand dynamic networks, in which the topology
of the system is constantly changing, either because of churn (nodes constantly joining or
leaving as in peer-to-peer systems), mobility (edge changes because of mobile nodes in mo-
bile networks), changing environmental conditions (edge changes in wireless networks), or
algorithmic dynamics (edge changes because of algorithmic decisions in overlay networks).
In dynamic networks, no node in the network is capable of keeping up-to-date global infor-
mation on the network. Instead, nodes have to perform their intended (global) task based on
local information only. In other words, all computation in these systems is inherently local!
By using local algorithms, it is guaranteed that dynamics only affect a restricted neigh-
borhood. Indeed, to the best of our knowledge, local algorithms yield the best solutions
when it comes to dynamics. Dynamics also play a natural role in the area of self-assembly
(DNA computing, self-assembling robots, shape-shifting systems, or claytronics), and as
such it is not surprising that local algorithms are being considered a key to understanding
self-assembling systems [53, 25].

Other Applications: Local computation has also been considered in a non-distributed
(sequential) context. One example are sublinear time algorithms, i.e., algorithms that cannot
read the entire input, but must give (estimative) answers based on samples only. For
example, the local algorithms given in Section 5 are used by Parnas and Ron [45] to design
a sublinear- or even constant-time sequential approximation algorithms. In some sense the
local algorithm plays the role of an oracle that will be queried by random sampling, see also
[42].

There has recently been significant interest in the database community about the Pregel
system [40], a practically implemented computational model suitable for computing prob-
lems in large graphs. All our lower bounds directly apply to Pregel, i.e., they show how
many iterations are required to solve certain tasks; while our upper bounds provide optimal
or near-optimal algorithms in a Pregel-like message-passing system.

Finally, the term “local(ity)” is used in various different contexts in computer science.
The most common use may be locality of reference in software engineering. The basic idea
is that data and variables that are frequently accessed together should also be physically
stored together in order to facilitate techniques such as caching and pre-fetching. At first
glance, our definition of locality does not seem to be related at all with locality in software
engineering. However, such a conclusion may be premature. One may for instance consider a
multi-core system where different threads operate on different parts of data, and sometimes
share data. Two threads should never manipulate the same data at the same time, as this
may cause inconsistencies. At runtime, threads may figure out whether they have conflicts
with other threads, however, there is no “global picture”. One may model such a multi-
thread system with a virtual graph, with threads being nodes, and two threads having a
conflict by an edge between the two nodes. Again, local algorithms (in particular maximal
independent set or vertex coloring) might help to efficiently schedule threads in a non-
conflicting way. At this stage, this is mostly a theoretical vision [51], but with the rapid
growth of multi-core systems, it may get practical sooner than expected.

8

3 Local Computation: Lower Bound

The proofs of our lower bounds are based on the timeless indistinguishability argument
[22, 32]. In k rounds of communication, a network node can only gather information about
nodes which are at most k hops away and hence, only this information can be used to
determine the computation’s outcome. If we can show that within their k-hop neighborhood
many nodes see exactly the same graph topology; informally speaking, all these nodes are
equally qualified to join the MIS, dominating set, or vertex cover. The challenge is now to
construct the graph in such a way that selecting the wrong subset of these nodes is ruinous.

We first construct a hard graph for the MVC problem because i) it has a particularly
simple combinatorial structure, and ii) it appears to be an ideal candidate for local compu-
tation. At least when only requiring relatively loose approximation guarantees, intuitively,
a node should be able to decide whether or not to join the vertex cover using information
from its local neighborhood only; very distant nodes appear to be superfluous for its deci-
sion. Our proof shows that this intuition is misleading and even such a seemingly simple
problem such as approximating MVC is not purely local; it cannot be approximated well
in a constant number of communication rounds. Our hardness of distributed approximation
lower bounds for MVC holds even for randomized algorithms as well as for the fractional
version of MVC. We extend the result to other problems in Section 4.

Proof Outline: The basic idea is to construct a graph Gk = (V,E), for each positive
integer k. In Gk, there are many neighboring nodes that see exactly the same topology in
their k-hop neighborhood, that is, no distributed algorithm with running time at most k can
distinguish between these nodes. Informally speaking, both neighbors are equally qualified
to join the vertex cover. However, choosing the wrong neighbors in Gk will be ruinous.

Gk contains a bipartite subgraph S with node set C0∪C1 and edges in C0×C1 as shown
in Figure 1. Set C0 consists of n0 nodes each of which has δ0 neighbors in C1. Each of the
n0 · δ0δ1 nodes in C1 has δ1, δ1 > δ0, neighbors in C0. The goal is to construct Gk in such
a way that all nodes in v ∈ S see the same topology Tv,k within distance k. In a globally
optimal solution, all edges of S may be covered by nodes in C1 and hence, no node in C0

needs to join the vertex cover. In a local algorithm, however, the decision of whether or not
a node joins the vertex cover depends only on its local view, that is, the pair (Tv,k,L(Tv,k)).
We show that because adjacent nodes in S see the same Tv,k, every algorithm adds a large
portion of nodes in C0 to its vertex cover in order to end up with a feasible solution. This
yields suboptimal local decisions and hence, a suboptimal approximation ratio. Throughout
the proof, C0 and C1 denote the two sets of the bipartite subgraph S.

The proof is organized as follows. The structure of Gk is defined in Section 3.1. In
Section 3.2, we show how Gk can be constructed without small cycles, ensuring that each
node sees a tree within distance k. Section 3.3 proves that adjacent nodes in C0 and C1 have
the same view Tv,k and finally, Section 3.4 derives the local approximability lower bounds.

3.1 The Cluster Tree

The nodes of graph Gk = (V,E) can be grouped into disjoint sets which are linked to each
other as bipartite graphs. We call these disjoint sets of nodes clusters. The structure of Gk is
defined using a directed tree CTk = (C,A) with doubly labeled arcs ℓ : A → N×N. We refer
to CTk as the cluster tree, because each vertex C ∈ C represents a cluster of nodes in Gk.
The size of a cluster |C| is the number of nodes the cluster contains. An arc a = (C,D) ∈ A
with ℓ(a) = (δC , δD) denotes that the clusters C and D are linked as a bipartite graph, such

9

12δ δ3 δ2 δ0 δ1

δ0 δ1

δ3δ2 δ1δ0

δ3δ2δ2 δ1δ0δ1

δ

Level 0

Level 1

Level 2

Level 3

3

2C

0C
S

1

C

C

Figure 1: Cluster-Tree CT2.

that each node u ∈ C has δC neighbors in D and each node v ∈ D has δD neighbors in C.
It follows that |C| · δC = |D| · δD. We call a cluster leaf-cluster if it is adjacent to only one
other cluster, and we call it inner-cluster otherwise.

Definition 1. The cluster tree CTk is recursively defined as follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

ℓ(C0, C1) := (δ0, δ1), ℓ(C0, C2) := (δ1, δ2),

ℓ(C1, C3) := (δ0, δ1)

Given CTk−1, we obtain CTk in two steps:

• For each inner-cluster Ci, add a new leaf-cluster C′
i with ℓ(Ci, C

′
i) := (δk, δk+1).

• For each leaf-cluster Ci of CTk−1 with (Ci′ , Ci) ∈ A and ℓ(Ci′ , Ci) = (δp, δp+1), add
k−1 new leaf-clusters C′

j with ℓ(Ci, C
′
j) := (δj , δj+1) for j = 0 . . . k, j 6= p+ 1.

Further, we define |C0| = n0 for all CTk.

Figure 1 shows CT2. The shaded subgraph corresponds to CT1. The labels of each arc
a ∈ A are of the form ℓ(a) = (δl, δl+1) for some l ∈ {0, . . . , k}. Further, setting |C0| = n0

uniquely determines the size of all other clusters. In order to simplify the upcoming study of
the cluster tree, we need two additional definitions. The level of a cluster is the distance to
C0 in the cluster tree (cf. Figure 1). The depth of a cluster C is its distance to the furthest
leaf in the subtree rooted at C. Hence, the depth of a cluster plus one equals the height of
the subtree corresponding to C. In the example of Figure 1, the depths of C0, C1, C2, and
C3 are 3, 2, 1, and 1, respectively.

Note that CTk describes the general structure of Gk, i.e., it defines for each node the
number of neighbors in each cluster. However, CTk does not specify the actual adjacencies.
In the next subsection, we show that Gk can be constructed so that each node’s local view
is a tree.

10

3.2 The Lower-Bound Graph

In Section 3.3, we will prove that the topologies seen by nodes in C0 and C1 are identical.
This task is greatly simplified if each node’s topology is a tree (rather than a general graph)
because we do not have to worry about cycles. The girth of a graph G, denoted by g(G),
is the length of the shortest cycle in G. In the following, we show that it is possible to
construct Gk with girth at least 2k + 1 so that in k communication rounds, all nodes see a
tree.5

For the construction of Gk, we start with an arbitrary instance G′
k of the cluster tree

which may have the minimum possible girth 4. An elaboration of the construction of G′
k is

deferred to Section 3.4. For now, we simply assume that G′
k exists and we show how to use

it to obtain Gk. We start with some basic definitions. For a graph H = (W,F), a graph
H̃ = (W̃ , F̃) is called a lift of H if there exists a covering map from H̃ to H . A covering
map from H̃ to H is a graph homomorphism ϕ : W̃ →W that maps each 1-neighborhood in
H̃ to a 1-neighborhood in H . That is, for each v0 ∈ W̃ with neighbors v1, . . . , vd ∈ W̃ , the
neighbors of ϕ(v0) in W are ϕ(v1), . . . , ϕ(vd) (such that ϕ(vi) 6= ϕ(vj) for i 6= j). Observe
that given a graph G′

k that satisfies the specification given in Section 3.1, any lift Gk of
G′

k also satisfies the cluster tree specification. In order to show that Gk can be constructed

with large girth, it therefore suffices to show that there exists a lift G̃′
k of G′

k such that G̃′
k

has large girth. In fact, we will see that for every graph H , there exists a lift H̃ such that
H̃ has large girth (and such that the size of H̃ is not too large). We start with two simple
observations.

Lemma 1. Let H = (W,F) be a graph and assume that H ′ is a subgraph of H and H̃ is a
lift of H. Then, there exists a lift H̃ ′ of H ′ such that H̃ ′ is a subgraph of H̃.

Proof. Let ϕ be a covering map from H̃ to H . We construct H̃ ′ in the straightforward way.
For every node x ∈ V (H̃), we add node x to the node set V (H̃ ′) of H̃ ′ if and only if ϕ(x)
is a node of H ′. Further, for every edge {x, y} ∈ E(H̃), we add {x, y} as an edge to graph
H̃ ′ if and only if x ∈ V (H̃), y ∈ V (H̃), and {ϕ(x), ϕ(y)} is an edge of H ′.

Lemma 2. Let H = (W,F) be a graph and assume that H̃ = (W̃ , F̃) is a lift of H. Then,
the girth of H̃ is at least as large as the girth of H.

Proof. Consider any cycle C̃ = (x0, x2, . . . , xℓ−1) of H̃ (that is, for i ∈ {0, . . . , ℓ− 1},
{
xi, x(i+1) mod ℓ

}
is an edge of H̃). Let ϕ be a covering map from H̃ to H . Because ϕ

is a covering map, the nodes ϕ(x0), ϕ(x1), . . . , ϕ(xℓ−1), ϕ(x0) form a closed walk of length ℓ
on H . Therefore, the cycle C̃ induces a cycle C in H of length at most ℓ.

We further use the following three existing results.

Lemma 3. [2] Let H = (W,F) be a simple graph and assume that ∆(H) is the largest
degree of H. Then, there exists a simple ∆(H)-regular graph H ′ such that H is a subgraph
of H ′ and |V (H ′)| ≤ |V (H)|+∆(H) + 2.

Lemma 4. [19] For any d ≥ 3 and any g ≥ 3, there exist d-regular (simple) graphs with
girth at least g and d(1+o(1))g nodes.

5The high-girth construction we use in this paper is based on the notion of graph lifts. For the original
proof in [28], we used an alternative method based on a bipartite graph family of high girth developed by
Lazebnik and Ustimenko [33]). Both techniques yield equivalent results, but the construction using graph
lifts is easier.

11

Lemma 5. [4] Consider some integer d ≥ 1 and let H1 = (W1, F1) and H2 = (W2, F2) be
two d-regular graphs. Then, there exists a graph H̃ = (W̃ , F̃) such that H̃ is a lift of H1 and
a lift of H2, and such that the number of nodes of H̃ is at most |V (H̃)| ≤ 4·|V (H1)|·|V (H2)|.

Combining the above lemmas, we have all the tools needed to construct Gk with large
girth as summarized in the following lemma.

Lemma 6. Assume that for given parameters k and δ0, . . . , δk+1, there exists an instance
G′

k of the cluster tree with n′ nodes. Then, for every g ≥ 4, there exists an instance Gk of
the cluster tree with girth g and O(n′ ·∆(1+o(1))g) nodes, where ∆ is the maximum degree of
G′

k (and hence also of Gk).

Proof. We consider the instance G′
k of the cluster tree. Consider any lift G̃′

k of G′
k and

let ϕ be a covering map from G̃′
k to G′

k. If G′
k follows the cluster tree structure given in

Definition 1, G̃′
k also follows the structure for the same parameters k and δ0, . . . , δk+1. To

see this, given a cluster C′ of G′
k, we define the corresponding cluster C̃′ of G̃′

k to contain

all the nodes of G̃′
k that are mapped into C′ by ϕ. The graph G̃′

k then satisfies Definition 1
(each node has the right number of neighbors in neighboring clusters) because ϕ is a covering
map. To prove the lemma, it is therefore sufficient to show that there exists a lift G̃′

k of G′
k

such that G̃′
k has girth at least g and such that G̃′

k has at most O(n′∆(1+o(1))g) nodes.

We obtain such a lift G̃′
k of G′

k by applying the above lemmas in the following way.
First of all, by Lemma 3, there exists a ∆-regular supergraph Ḡ′

k of G′
k with O(n′) nodes.

Further, by Lemma 4, there exists a ∆-regular graph H with girth at least g and ∆g(1+o(1))

nodes. Using Lemma 5, there exists a common lift ˜̄G′
k of Ḡ′

k and H such that ˜̄G′
k has at

most 4|V (Ḡ′
k)||V (H)| = O(n′∆g(1+o(1))) nodes. By Lemma 2, because ˜̄G′

k is a lift of H , the

girth of ˜̄G′
k is at least g. Further, because ˜̄G′

k is a lift of Ḡ′
k and because G′

k is a subgraph

of Ḡ′
k, by Lemma 1 there exists a subgraph G̃′

k of ˜̄G′
k such that G̃′

k is a lift of G′
k, which

proves the claim of the lemma.

3.3 Equality of Views

In this subsection, we prove that two adjacent nodes in clusters C0 and C1 have the same
view, i.e., within distance k, they see exactly the same topology Tv,k. Consider a node
v ∈ Gk. Given that v’s view is a tree, we can derive its view-tree by recursively following all
neighbors of v. The proof is largely based on the observation that corresponding subtrees
occur in both node’s view-tree.

Let Ci and Cj be adjacent clusters in CTk connected by ℓ(Ci, Cj) = (δl, δl+1), i.e., each
node in Ci has δl neighbors in Cj , and each node in Cj has δl+1 neighbors in Ci. When
traversing a node’s view-tree, we say that we enter cluster Cj (resp., Ci) over link δl (resp.,
δl+1) from cluster Ci (resp., Cj).

Let Tu be the tree topology seen by some node u of degree d and let T1, . . . , Td be the
topologies of the subtrees of the d neighbors of u. We use the following notation to describe
the topology Tu based on T1, . . . , Td:

Tu := [T1 ⊎ T2 ⊎ . . . ⊎ Td] =

[
d⊎

i=1

Ti

]

.

12

Further, we define the following abbreviation:

d · T := T ⊎ T ⊎ . . . ⊎ T
︸ ︷︷ ︸

d times

.

If T1, . . . , Td are sets of trees, we use [T1 ⊎ . . . ⊎ Td] to denote the set of all view-trees
[T1 ⊎ . . . ⊎ Td] for which Ti ∈ Ti for all i. We will also mix single trees and sets of trees, e.g.,
[T1 ⊎ T] is the set of all view-trees [T1 ⊎ T] with T1 ∈ T1.
Definition 2. The following nomenclature refers to subtrees in the view-tree of a node in
Gk.

• Mi is the subtree seen upon entering cluster C0 over a link δi.

• B↑

i,d,λ denotes the set of subtrees that are seen upon entering a cluster C ∈ C \ {C0}
on level λ over a link δi from level λ− 1, where C has depth d.

• B↓

i,d,λ denotes the set of subtrees that are seen upon entering a cluster C ∈ C \ {C0}
on level λ over a link δi from level λ+ 1, where C has depth d.

In the following, we will frequently abuse notation and write Bi,d,λ when we mean some
tree in Bi,d,λ. The following example should clarify the various definitions. Additionally,
you may refer to the example of G3 in Figure 7.2.

Example 1. Consider G1. Let VC0 and VC1 denote the view-trees of nodes in C0 and C1,
respectively:

VC0 ∈
[
δ0 · B↑

0,1,1 ⊎ δ1 · B↑

1,0,1

]
VC1 ∈

[
δ0 · B↑

0,0,2 ⊎ δ1 ·M1

]

B↑

0,1,1 ⊆
[
δ0 · B↑

0,0,2 ⊎ (δ1 − 1) ·M1

]
B↑

0,0,2 ⊆
[
(δ1 − 1) · B↓

1,1,1

]

B↑

1,0,1 ⊆ [(δ2 − 1) ·M2] M1 ∈
[
(δ0 − 1) · B↑

0,1,1 ⊎ δ1 · B↑

1,0,1

]

M2 ∈
[
δ0 · B↑

0,1,1 ⊎ (δ1 − 1) · B↑

1,0,1

]
. . .

We start the proof by giving a set of rules which describe the subtrees seen at a given
point in the view-tree. We call these rules derivation rules because they allow us to derive
the view-tree of a node by mechanically applying the matching rule for a given subtree.

Lemma 7. The following derivation rules hold in Gk:

Mi ∈



(δi−1 − 1) · B↑

i−1,k−i+1,1 ⊎
⊎

j∈{0,...,k}\{i−1}
δj · B↑

j,k−j,1





B↑

i,d,1 ⊆
[
F{i+1},d,1 ⊎ Dd,1 ⊎ (δi+1 − 1) ·Mi+1

]

B↓

i,k−i,1 ⊆
[

F{i−1,i+1},k−i,1 ⊎Dk−i,1 ⊎ δi+1 ·Mi+1 ⊎ (δi−1 − 1) · B↑

i−1,k−i−1,2

]

B↑

i−2,k−i,2 ⊆
[

F{i−1},k−i,2 ⊎ Dk−i,2 ⊎ (δi−1 − 1) · B↓

i−1,k−i+1,1

]

(i ≥ 2),

where F and D are defined as

FW,d,λ :=
⊎

j∈{0,...,k−d+1}\W
δj · B↑

j,d−1,λ+1

Dd,λ :=

k⊎

j=k−d+2

δj · B↑

j,k−j,λ+1.

13

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0

δ

δ −1δ2 0δ1δ

−1δ3 1δ 0δ

−1δ2 −1δ1

2δ

−1δ3

0δ

−1δ2 −1δ1

2δ

−1δ3 −1δ4

3δ

3δ 2δ 0δ−1δ1

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

0δ−1δ2

−1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

−1δ4

3δ

0δ

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

2δ −1δ0

1δ2δ−1δ3 −1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

3δ −1δ2 0δ1δ

−1

3

3 1δ

VC0

VC1

Figure 2: The Cluster Tree CT3 and the corresponding view-trees of nodes in C0 and C1.
The cluster trees CT1 and CT2 are shaded dark and light, respectively. The labels of the
arcs of the cluster tree represent the number of higher-level cluster. The labels of the reverse
links are omitted. In the view-trees, an arc labeled with δi stands for δi edges, all connecting
to identical subtrees.

14

Proof. We first show the derivation rule forMi. By Definition 2, Mi is the subtree seen upon
entering the cluster C0 over a link δi. Let us therefore first derive a rule for the view-tree

VC0 of C0 in Gk. We show by induction on k that VC0 ∈
[
⊎

j∈{0,...,k} δj · B↑

j,k−j,1

]

. It can

be seen in Example 1 that the rule holds for k = 1. For the induction step, we build CTk+1

from CTk as defined in Definition 1. C0 is an inner cluster and therefore, one new cluster
with view trees of the form B↑

k+1,0,1 is added. The depth of all other subtrees increases by
1 and thus the rule for VC0 follows. If we enter C0 over link δi, there will be only δi−1 − 1
edges left to return to the cluster from which we had entered C0. Consequently, Mi is the
same as VC0 but with only δi−1 − 1 subtrees of the form B↑

i−1,k−i+1,1.
The remaining rules follow along similar lines. Let Ci be a cluster with entry-link δi

which was first created in CTr, r < k. Note that in CTk, the depth of Ci is d = k − r
because each subtree increases its depth by one in each “round”. According to the second
building rule of Definition 1, r new neighboring clusters (subtrees) are created in CTr+1.
More precisely, a new cluster is created for all entry-links δ0 . . . δr, except δi. We call these
subtrees fixed-depth subtrees F . If the subtree with root Ci has depth d in CTk, the fixed-
depth subtrees have depth d − 1. In each CTr′ , r′ ∈ {r + 2, . . . , k}, Ci is an inner-cluster
and hence, one new neighboring cluster with entry-link δr′ is created. We call these subtrees
diminishing-depth subtrees D. In CTk, each of these subtrees has grown to depth k − r′.

We now turn our attention to the differences between the three rules. They stem from
the exceptional treatment of level 1, as well as the predicates ↑ and ↓. In B↑

i,d,1, the link
δi+1 returns to C0, but contains only δi+1 − 1 edges in the view-tree.

In B↓

i,k−i,1, we have to consider two special cases. The first one is the link to C0. For
a cluster on level 1 with depth d and entry-link (from C0) δj , the equality k = d + j holds
and therefore, the link to C0 is δi+1 and thus, Mi+1 follows. Secondly, because in B↓

i,k−i,1

we come from a cluster C′ on level 2 over a δi link, there are only δi−1 − 1 links back to
C′ and therefore there are only δi−1 − 1 subtrees of the form B↑

i−1,k−i−1,2. (Note that since
we entered the current cluster from a higher level, the link leading back to where we came
from is δi−1, instead of δi+1). The depths of the subtrees in B↓

i,k−i,1 follow from the above

observation that the view B↓

i,k−i,1 corresponds to the subtree of a node in the cluster on
level 1 that is entered on link δi+1 from C0.

Finally in B↑

i−2,k−i,2, we again have to treat the returning link δi−1 to the cluster on level

1 specially. Consider a view-tree B↑

j,d,x of depth d. All level x+1 subtrees that are reached

by links δj′ with j′ ≤ k − d+ 1 are fixed-depth subtrees of depth d− 1. Because B↑

i−2,k−i,2

is reached through link δi−1 from the cluster on level 1 and because i− 1 ≤ k − (k − i) = i,
B↑

i−2,k−i,2 is a fixed-depth subtree of its level 1 parent. Thus, we get that the depth of the

δi−1 − 1 subtrees B↓

i−1,k−i+1,1 is k − i + 1.

Note that we do not give general derivation rules for all B↑

i,d,x and B↓

i,d,x because they
are not needed in the following proofs. Next, we define the notion of r-equality. Intuitively,
if two view-trees are r-equal, they have the same topology within distance r.

Definition 3. Let V ⊆
[
⊎d

i=1 Ti
]

and V ′ ⊆
[
⊎d

i=1 T ′
i

]

be sets of view-trees. Then, V and V ′

are r-equal if there is a permutation π on {1, . . . , d} such that Ti and T ′
π(i) are(r − 1)-equal

for all i ∈ {1, . . . , d}:

V r
= V ′ ⇐= Ti r−1

= T ′
π(i) , ∀i ∈ {1, . . . , d}.

Further, all (sets of) subtrees are 0-equal, i.e., T 0
= T ′ for all T and T ′.

15

Using the notion of r-equality, we can now define what we actually have to prove. We
will show that in Gk, VC0

k
= VC1 holds. Since the girth of Gk is at least 2k + 1, this is

equivalent to showing that each node in C0 sees exactly the same topology within distance
k as its neighbor in C1. We first establish several helper lemmas. For two collections of
sub-tree sets β = T1 ⊎ . . . ⊎ Td and β′ = T ′

1 ⊎ . . . ⊎ T ′
d , we say that β r

= β′ if Ti r
= T ′

i for all
i ∈ [d].

Lemma 8. Let β =
⊎t

i=1 Ti and β′ =
⊎t

i=1 T ′
i be collections of sub-tree sets and let

Vv ∈
[

β ⊎
⊎

i∈I

δi · B↑

i,di,xi

]

and Vv′ ∈
[

β′ ⊎
⊎

i∈I

δi · B↑

i,d′
i
,x′

i

]

for a set of integers I and integers di, d
′
i, xi, and x′

i for i ∈ I. Let r ≥ 0 be an integer. If
for all i ∈ I, di = d′i or r ≤ 1 + min {di, d′i}, it holds that

Vv1 r
= Vv2 ⇐= β r−1

= β′.

Proof. Assume that the roots of the subtree of Vv and Vv′ are in clusters C and C′, respec-
tively. W.l.o.g., we assume that d′ ≤ d. Note that we have d′ ≥ 1 + mini∈I min {di, d′i} and
thus r ≤ d′. In the construction process of Gk, C and C′ have been created in steps k − d
and k − d′, respectively.

By Definition 1, all subtrees with depth d∗ < d′ have grown identically in both views
Vv and Vv′ . The remaining subtrees of Vv′ were all created in step k − d′ + 1 and have
depth d′ − 1. The corresponding subtrees in Vv have at least the same depth and the same
structure up to that depth. Hence paths of length at most d′ which start at the roots of Vv

and Vv, go into one of the subtrees in B↑

i0,di0 ,xi0
and B↑

i0,d′
i0
,x′

i0

for i0 ∈ I and do not return

to clusters C and C′ must be identical. Further, consider all paths which, after s ≤ d′ hops,
return to C and C over link δi0+1. After these s hops, they return to the original cluster
and see views

V ′
v ∈



β ⊎ (δi0 − 1) · B↑

i0,di0 ,xi0
⊎

⊎

i∈I\{i0}
δi · B↑

i,di,xi



 and

V ′
v′ ∈



β′ ⊎ (δi0 − 1) · B↑

i0,d′
i0
,x′

i0

⊎
⊎

i∈I\{i0}
δi · B↑

i,d′
i
,x′

i



 ,

differing from Vv and Vv′ only in having δi0 − 1 instead of δi0 subtrees in B↑

i0,di0 ,xi0
and

B↑

i0,d′
i0
,x′

i0

, respectively. This does not affect β and β′ and therefore,

Vv1
r
= Vv2 ⇐= V ′

v1
r−s
= V ′

v2 ∧ β r−1
= β′ , s > 1.

Note that s ≤ d′ implies s ≤ r. Thus, the same argument can be repeated until r − s = 0
and because V ′

v
0
= V ′

v′ , we can conclude that Vv
r
= Vv and thus the lemma follows.

Figure 3 shows a part of the view-trees of nodes in C0 and C1 in G3. The figure shows
that the subtrees with links δ0 and δ2 cannot be matched directly to one another because of
the different placement of the −1. It turns out that this inherent difference appears in every
step of our theorem. However, the following lemma shows that the subtrees T0 and T2 (T ′

0

16

2 Τ2 Τ1 Τ0

δ4−1

δ1

δ1

VC1

δ4−1

δ1

Τ2

δ3 δ2+ +1 δ3 δ2+ +1

δ3 δ0−13

−1δ2 δ1

δ0

’ ’ ’

δ

VC

δ

0

2

Τ1 Τ0Τ

Figure 3: The view-trees VC0 and VC1 in G3 seen upon using link δ1.

and T ′
2) are equal up to the required distance and hence, nodes are unable to distinguish

them. It is this crucial property of our cluster tree, which allows us to “move” the “−1”
between links δi and δi+2 and enables us to derive the main theorem.

Lemma 9. For all i ∈ {2, . . . , k}, we have

Mi
k−i−1

= B↑

i−2,k−i,2.

Proof. By Lemma 7, we have

Mi ∈




⊎

j∈{0,...,k}\{i−1}
δj · B↑

j,k−j,1 ⊎ (δi−1 − 1) · B↑

i−1,k−i+1,1





B↑

i−2,k−i,2 ⊆







⊎

j∈{0,...,i+1}
\{i−1}

δj · B↑

j,k−i−1,3 ⊎
⊎

j∈{i+2,...,k}
δj · B↑

j,k−j,3 ⊎ (δi−1 − 1) · B↓

i−1,k−i+1,1







Consider the subtrees of the form B↑

j,d,x for j 6= i−1 in both cases. For j ≤ i+1, the depths
of the subtrees are k − j and k − i − 1 ≤ k − j, respectively. For j > i + 1, the depths are
k − j in both cases. We can therefore apply Lemma 8 to get that

Mi
k−i−1

= B↑

i−2,k−i,2 ⇐= B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1. (1)

To show that the right-hand side of Eq. (1) holds, we plug B↑

i−1,k−i+1,1 and B↓

i−1,k−i+1,1

into Lemma 7 and use the derivation rules:

B↑

i−1,k−i+1,1 ⊆
[
F{i},k−i+1,1 ⊎ Dk−i+1,1 ⊎ (δi − 1) ·Mi

]

=
[

F{i−2,i},k−i+1,1 ⊎ Dk−i+1,1 ⊎ (δi − 1) ·Mi ⊎ δi−2 · B↑

i−2,k−i,2

]

B↓

i−1,k−i+1,1 ⊆
[

F{i−2,i},k−i+1,1 ⊎ Dk−i+1,1 ⊎ δi ·Mi ⊎ (δi−2 − 1) · B↑

i−2,k−i,2

]

The two expressions are equal except for the placement of the “−1”. Therefore, we get
B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1 if Mi
k−i−3

= B↑

i−2,k−i,2. Hence, we have shown that

Mi
k−i−1

= B↑

i−2,k−i,2 ⇐= B↑

i−1,k−i+1,1
k−i−2

= B↓

i−1,k−i+1,1 ⇐= Mi
k−i−3

= B↑

i−2,k−i,2.

17

This process can be continued using exactly the same rules until the requirement becomes
that either

B↑

i−1,k−i+1,1
0
= B↓

i−1,k−i+1,1 or Mi
0
= B↑

i−2,k−i,2,

which is always true.

Finally, we are ready to prove the main theorem.

Theorem 10. Consider graph Gk. Let VC0 and VC1 be the view-trees of two adjacent nodes
in clusters C0 and C1, respectively. Then, VC0

k
= VC1 .

Proof. By the construction of Gk, the view-trees of VC0 and VC1 can be written as

VV0 ∈





k⊎

j=0

δj · B↑

j,k−j,1



 and

VV1 ∈



δ1 ·M1 ⊎
⊎

j∈{0,...,k}\{1}
δj · B↑

j,k−j,2



 .

It follows that VC0

k
= VC1 ⇐= B↑

1,k−1,1
k−1
= M1 by Lemma 8. To prove that B↑

1,k−1,1
k−1
= M1,

we show that
B↑

k−s,s,1
s
= Mk−s for all s ∈ {0, . . . , k − 1} . (2)

We show Equation (2) by induction on s. The statement is trivially true for s = 0 because
any two trees are 0-equal. For the induction step, consider the derivation rules for B↑

k−s,s,1

and Mk−s:

B↑

k−s,s,1 ⊆





k−s⊎

j=0

δj · B↑

j,s−1,2 ⊎
k⊎

j=k−s+2

δj · B↑

j,k−j,2 ⊎ (δk−s+1 − 1) ·Mk−s+1





Mk−s ∈




⊎

j∈{0,...,k}\{k−s−1}
δj · B↑

j,k−j,1 ⊎ (δk−s−1 − 1) · B↑

k−s−1,s+1,1





Consider the subtrees of the form B↑

j,d,x for j 6∈ {k − s− 1, k − s+ 1} in both expressions.
For j ≤ k − s, the depths of the subtrees are s − 1 < k − j and k − j, respectively. For
j > k − s+ 1, the depth is k − j in both cases. Hence, we can apply Lemma 8 to get

B↑

k−s,s,1
s
= Mk−s ⇐= (3)

a · B↑

k−s−1,s+1,2 ⊎ (b − 1) ·Mk−s+1
s−1
= (a− 1) · B↑

k−s−1,s+1,1 ⊎ b · B↑

k−s+1,s−1,1

for a = δk−s+1 and b = δk−s−1. By Lemma 9, we have B↑

k−s−1,s+1,2
s−1
= Mk−s+1 and thus the

right-hand side of Eq. (2) is true by the induction hypothesis. This concludes the induction
to show Eq. (2) and thus also the proof of the theorem.

Remark As a side-effect, the proof of Theorem 10 highlights the fundamental significance
of the critical path P = (δ1, δ2, . . . , δk) in CTk. After following path P , the view of a node
v ∈ C0 ends up in the leaf-cluster neighboring C0 and sees δi+1 neighbors. Following the
same path, a node v′ ∈ C1 ends up in C0 and sees

∑i
j=0 δj − 1 neighbors. There is no way

to match these views. This inherent inequality is the underlying reason for the way Gk is
defined: It must be ensured that the critical path is at least k hops long.

18

3.4 Analysis

In this subsection, we derive the lower bounds on the approximation ratio of k-local MVC
algorithms. LetOPT be an optimal solution for MVC and let ALG be the solution computed
by any algorithm. The main observation is that adjacent nodes in the clusters C0 and C1

have the same view and therefore, every algorithm treats nodes in both of the two clusters
the same way. Consequently, ALG contains a significant portion of the nodes of C0, whereas
the optimal solution covers the edges between C0 and C1 entirely by nodes in C1.

Lemma 11. Let ALG be the solution of any distributed (randomized) vertex cover algorithm
which runs for at most k rounds. When applied to Gk as constructed in Section 3.2 in the
worst case (in expectation), ALG contains at least half of the nodes of C0.

Proof. Let v0 ∈ C0 and v1 ∈ C1 be two arbitrary, adjacent nodes from C0 and C1. We first
prove the lemma for deterministic algorithms. The decision whether a given node v enters
the vertex cover depends solely on the topology Tv,k and the labeling L(Tv,k). Assume that
the labeling of the graph is chosen uniformly at random. Further, let pA0 and pA1 denote the
probabilities that v0 and v1, respectively, end up in the vertex cover when a deterministic
algorithm A operates on the randomly chosen labeling. By Theorem 10, v0 and v1 see the
same topologies, that is, Tv0,k = Tv1,k. With our choice of labels, v0 and v1 also see the
same distribution on the labelings L(Tv0,k) and L(Tv1,k). Therefore it follows that pA0 = pA1 .

We have chosen v0 and v1 such that they are neighbors in Gk. In order to obtain a
feasible vertex cover, at least one of the two nodes has to be in it. This implies pA0 + pA1 ≥ 1
and therefore pA0 = pA1 ≥ 1/2. In other words, for all nodes in C0, the probability to end
up in the vertex cover is at least 1/2. Thus, by the linearity of expectation, at least half
of the nodes of C0 are chosen by algorithm A. Therefore, for every deterministic algorithm
A, there is at least one labeling for which at least half of the nodes of C0 are in the vertex
cover.6

The argument for randomized algorithms is now straight-forward using Yao’s minimax
principle. The expected number of nodes chosen by a randomized algorithm cannot be
smaller than the expected number of nodes chosen by an optimal deterministic algorithm
for an arbitrarily chosen distribution on the labels.

Lemma 11 gives a lower bound on the number of nodes chosen by any k-local MVC
algorithm. In particular, we have that E[|ALG|] ≥ |C0|/2 = n0/2. We do not know OPT ,
but since the nodes of cluster C0 are not necessary to obtain a feasible vertex cover, the
optimal solution is bounded by |OPT | ≤ n− n0. In the following, we define

δi := δi , ∀i ∈ {0, . . . , k + 1} (4)

for some value δ. Hence, δ0 = 1 and for all i ∈ {0, . . . , k}, we have δi+1/δi = δ.

Lemma 12. If δ > k + 1, the number of nodes n of Gk is

n ≤ n0

(

1 +
k + 1

δ − (k + 1)

)

and the largest degree ∆ of Gk is δk+1 = δk+1.

6In fact, since at most |C0| such nodes can be in the vertex cover, for at least 1/3 of the labelings, the
number exceeds |C0|/2.

19

Proof. Consider a cluster C of size |C| on some level ℓ and some neighbor cluster C′ on level
ℓ+1. For some i ∈ {0, . . . , k}, all nodes in C have δi neighbors in cluster C′ and all nodes in
C′ have δi+1 neighbors in cluster C. We therefore have |C|/|C′| = δi+1/δi = δ and for every
i, C can have at most 1 such neighboring cluster on level ℓ+ 1. The total number of nodes
in level ℓ + 1 clusters that are neighbors of C can therefore be bounded as |C| · (k + 1)/δ.
Hence, the number of nodes decreases by at least a factor of δ/(k + 1) on each level. For
δ > k + 1, the total number of nodes can thus be bounded by

∞∑

i=0

n0 ·
(
k + 1

δ

)i

= n0 ·
δ

δ − (k + 1)
.

For determining the largest degree of Gk, observe that if in some cluster C, each node
has δk+1 neighbors in a neighboring cluster C′, C′ is the only neighboring cluster of C.
Further, for each cluster C and each i ∈ {0, . . . , k + 1}, there is at most one cluster C ′ such
that nodes in C have δi neighbors in C′. The largest degree ∆ of GK can therefore be
computed as

∆ = max

{

δk+1,

k∑

i=0

δi

}

.

Because for each i, δi+1/δi = δ > 2, we have
∑k

i=0 δi < 2δk = δk+1.

It remains to determine the relationship between δ and n0 such that Gk can be realized
as described in Section 3.2. There, the construction of Gk with large girth is based on a
smaller instance G′

k where girth does not matter. Using Eq. (4) (i.e., δi := δi), we can now
tie up this loose end and describe how to obtain G′

k. Let Ci and Cj be two adjacent clusters
with ℓ(Ca, Cb) = (δi, δi+1). We require that |Ca|/|Cb| = δi+1/δi = δ. Hence, Ci and Cj can
simply be connected by as many complete bipartite graphs Kδi,δi+1 as necessary.

To compute the necessary cluster sizes to do this, let cℓ be the size of the smallest cluster
on level ℓ. We have c0 = n′

0 and cℓ−1/cℓ = δk+1/δk = δ. Hence, the size of the smallest
cluster decreases by a factor δ when going from some level to the next one. The smallest
cluster Cmin of G′

k is on level k + 1. Because each node in the neighboring cluster of Cmin

on level k has δk neighbors in Cmin, Cmin needs to have size at least δk. We thus choose
Cmin of size ck+1 = |Cmin| = δk. From cℓ−1/cℓ = δ, we thus get

n′
0 = c0 = ck+1 · δk = δk · δk = δ2k.

If we assume that δ > 2(k+1), we have n′ ≤ 2n′
0, by Lemma 12. Applying Lemma 6 from

Section 3.2, we can then construct Gk with girth 2k+1 such that n = O(n′∆(1+o(1))(2k+1)),
where ∆ = δk+1 is the largest degree of G′

k and Gk. Putting everything together, we obtain

n = O
(

n′
0∆

(2k+1)(1+o(1))
)

= O
(

δ4k
2(1+o(1))

)

. (5)

Theorem 13. For every integer k > 0, there are graphs G, such that in k communication
rounds in the LOCAL model, every distributed algorithm for the minimum vertex cover
problem on G has approximation ratios at least

Ω

(

n
1−o(1)

4k2

k

)

and Ω

(

∆
1

k+1

k

)

,

where n and ∆ denote the number of nodes and the highest degree in G, respectively.

20

Proof. We have seen that the size of an optimal vertex cover is at most n − n0. For δ ≥
2(k+1), based on Lemmas 11 and 12, the approximation ratio of any k-round algorithm is
therefore at least Ω(δ/k). We thus need to bound δ as a function of the number of nodes n
and the largest degree ∆ of Gk.

Assuming δ ≥ 2(k + 1), by Lemma 12, we have ∆ = δk+1 and n = O(δ4k
2(1+o(1))) and

we thus have to choose k such that ∆ ≤ (2(k + 1))k+1 and n = O
(
(2(k + 1))4k

2(1+o(1))
)
. If

we choose k such that ∆ = Θ((2(k + 1))k+1) or n = Θ
(
(2(k + 1))4k

2(1+o(1))
)
, both claimed

lower bounds simplify to Ω(1) and they thus trivially hold for such k and also for larger

k. If k is chosen such that ∆ ≤ (2(k + 1))k+1 and n = O
(
(2(k + 1))4k

2(1+o(1))
)
, the lower

bounds follow directly because δ = ∆1/(k+1) and δ = n(1−o(1))/4k2

and because in this case,
the (expected) approximation ratio of any (possibly randomized) k-round algorithm is at
least Ω(δ/k).

Theorem 14. In order to obtain a constant or polylogarithmic approximation ratio, even
in the LOCAL model, every distributed algorithm for the MVC problem requires at least

Ω
(√

logn/ log logn
)

and Ω (log∆/ log log∆) communication rounds.

Proof. Follows directly from Theorem 13.

Remark Note that the lower bounds of Theorems 13 and 14 hold even in the LOCAL
model (i.e., even if message size and local computations are not bounded). Further, both
lower bounds also hold even if the identifiers of the nodes are {1, . . . , n} and even if all
nodes know the exact topology of the network graph (i.e., in particular, every node knows
the exact values of ∆ and n).

4 Locality-Preserving Reductions

Using the MVC lower bound, we can now derive lower bounds for several of the other
classical graph problems defined in Section 1.2. Interestingly, the hardness of distributed
approximation lower bound on the MVC problem also gives raise to local computability
lower bounds for two of the most fundamental exact problems in distributed computing:
MIS and MM.

Specifically, we use the notion of locality preserving reductions to show that a number of
other problems can be reduce to MVC with regard to their local computability/approximability.
This implies that, like MVC, these problems fall into the polylog-local class of problems.
Figure 4 shows the hierarchy of locality preserving reductions derived in this section.

4.1 Lower Bounds for Minimum Dominating Set

In a non-distributed setting, MDS in equivalent to the general minimum set cover problem,
whereas MVC is a special case of set cover which can be approximated much better. It is
therefore not surprising that also in a distributed environment, MDS is harder than MVC.
In the following, we formalize this intuition giving a locality-preserving reduction from MVC
to MDS.

Theorem 15. For every integer k > 0, there are graphs G, such that in k communica-
tion rounds in the LOCAL model, every (possibly randomized) distributed algorithm for the

21

Figure 4: Locality Preserving Reductions. The dotted line between MVC and MaxM implies
that we do not know of a direct locality preserving reduction between the covering and
packing problem, but the respective lower bound constructions are based on a common
cluster tree structure.

minimum dominating set problem on G has approximation ratios at least

Ω

(

n
1−o(1)

4k2

k

)

and Ω

(

∆
1

k+1

k

)

,

where n and ∆ denote the number of nodes and the highest degree in G, respectively.

Proof. To obtain a lower bound for MDS, we consider the line graph L(Gk) of Gk. The
nodes of a line graph L(G) of G are the edges of G. Two nodes in L(G) are connected by an
edge whenever the two corresponding edges in G are incident to the same node. Assuming
that initially each node knows all its incident edges, a k-round computation on the line
graph of G can be simulated in k round on G, i.e., in particular Gk and L(Gk) have the
same locality properties.

A dominating set of the line graph of a graph G = (V,E) is a subset E′ ⊆ E of the edges
such that for every {u, v} ∈ E, there is an edge {u′, v′} ∈ E′ such that {u, v} ∩ {u′, v′} 6= ∅.
Hence, for every edge dominating set E′, the node set S =

⋃

{u,v}∈E′ {u, v} is a vertex cover

of G of size |S| ≤ 2|E′|. In the other direction, given a vertex cover S of G, we obtain a
dominating set of E′ of L(G) of the same size |E′| = |S| simply by adding some edge {u, v}
to E′ for every node u ∈ S. Therefore, up to a factor of at most 2 in the approximation
ratio, the two problems are equivalent and thus the claim of the theorem follows.

Remark Using the same locality-preserving reduction as from MVC to MDS, it can also
be shown that solving the fractional version of MDS is at least as hard as the fractional
version of MVC. Since Theorem 13 also holds for fractional MVC (the integrality gap of
MVC is at most 2), Theorem 15 and Corollary 16 can equally be stated for fractional MDS,
that is, for the standard linear programming relaxation of MDS.

Corollary 16. In order to obtain a constant or polylogarithmic approximation ratio for
minimum dominating set or fractional minimum dominating set, there are graphs on which

22

even in the LOCAL model, every distributed algorithm requires time

Ω

(√

logn

log logn

)

and Ω

(
log∆

log log∆

)

.

Proof. The corollary follows directly from Theorem 15.

Remark The MDS problem on the line graph of G is also known as the minimum edge
dominating set problem of G (an edge dominating set is a set of edges that ’covers’ all edges).
Hence, the above reduction shows that also the minimum edge dominating set problem is
hard to approximate locally.

4.2 Lower Bounds for Maximum Matching

While MVC and MDS are standard covering problems, the lower bound can also be ex-
tended to packing problems. Unfortunately, we are not aware of a simple locality-preserving
reduction from MVC to a packing problem, but we can derive the result by appropriately
adjusting the cluster graph from Section 3.2. In fact, we prove the result for the fractional
maximum matching problem in which edges may be selected fractionally, and the sum of
these fractional values incident at a single node must not exceed 1. Let E(v) denotes the
set of edges incident to node v.

The basic idea of the lower bound follows along the lines of the MVC lower bound in
Section 3. The view of an edge e = (u, v) can be defined as the union of its incident nodes’
views along with a specification, which one edge e is in both node views. In Lemma 17, we
first show that if the graph has large girth so that all node views are trees, the topology of
edge view is uniquely defined by the topologies of the views of the two nodes. The common
edge does not have to be specified explicitly in this case. In other words, in graphs with
large girth, two edges (u, v) and (u′, v′) have the same view if Vu,k = Vu′,k and Vv,k = Vv′,k.

The idea is to construct a graphHk which contains a large set E′ ⊂ E of edges with equal
view up to distance k. This implies that, in expectation, the fractional values ye assigned
to the edges in E′ must be equal. Hk is constructed in such a way, that there are edges
in E′ that are incident to many other edges in E′. Further, the edges in E′ also contain a
large matching of Hk and all large matchings of Hk predominantly consist of edges in E′.
As every distributed k-local algorithm assigns equal fractional values ye to all edges in E′ in
expectation, in order to keep the feasibility at the nodes incident to many edges in E′, this
fractional value must be rather small. Together with the fact that all large matchings have
to consist of a large number of edges from E′, this will lead to the sub-optimality captured
in Theorem 20.

The construction of Hk uses the lower-bound graph Gk of the MVC lower bound. Essen-
tially, we take two identical copies Gk,1 and Gk,2 of the MVC lower bound graph defined in
Section 3 and we connect Gk,1 and Gk,2 to each other by using a perfect matching. Formally,
in order to obtain a graph Hk with large girth, we start with two copies of G′

k,1 and G′
k,2

with low girth (and fewer nodes). We then obtain a graph H ′
k by adding an edge between

each node in G′
k,1 and its corresponding edge in G′

k,2 (i.e., the edges connecting G′
k,1 and

G′
k,2 form a perfect matching of H ′

k). Clearly, the graph H ′
k has cycles of length 4 (formed

by two corresponding edges in G′
k,1 and G′

k,2 and by two of the edges connecting G′
k,1 and

G′
k,2). In order to obtain a copy of H ′

k with large girth, we compute a lift Hk of H ′
k by

applying the same construction as in Lemma 6 from Section 3.2. As a result, we obtain a

23

0,2C0,1 C

Figure 5: The structure of lower-bound graph Hk.

graph Hk with girth at least 2k + 2 such that Hk consists of two (large-girth) copies Gk,1

and Gk,2 of the MVC lower bound graph, where corresponding nodes in Gk,1 and Gk,2 are
connected by an edge. Hence, also in Hk, the edges connecting Gk,1 and Gk,2 for a perfect
matching of the graph. In the following, we use Ci,1 and Ci,2 to denote the copies of cluster
Ci in graphs Gk,1 and Gk,2. Furthermore, we use the abbreviations S0 := C0 ∪ C′

0 and
S1 := C1 ∪C′

1. The structure of Hk is illustrated in Figure 5. We start by showing that all
edges between clusters C0,1, C1,1, C0,2, and C1,2 have the same view up to distance k. As
stated above, we first show that in trees (and thus in graphs of sufficiently large girth), the
views of two edges are identical if all four nodes have the same view.

Recall that we use Tv,k to denote the topology of the k-hop view of node v in a given
graph G. If G has girth at least 2k + 1, Tv,k is a tree of depth at most k (it is the tree
induced by all nodes at distance at most k from v). For an edge e = {u, v}, we define the
k-hop topology Te,k as the “union” of Tu,k and Tv,k. Hence if G has girth at least 2k + 2,
Te,k is the tree induced by all nodes at distance at most k from u or v.

Lemma 17. Let G = (V,E) be a graph and let u, v, x, and y be 4 nodes such that
e = {u, v} ∈ E, e′ = {x, y} ∈ E, and for some k ≥ 1, Tu,k = Tv,k = Tx,k = Ty,k. If the girth
of G is at least 2k + 2, the k-hop topologies of e and e′ are identical, i.e., Te,k = Te′,k.
Proof. First note that from the girth assumption, it follows that all the considered k-hop
topologies Tu,k, Tv,k, Tx,k, Ty,k, Te,k, and Te′,k are trees. Further, the assumption that the
k-hop topology of the four nodes u, v, x, and y are identical implies that Tu,i = Tv,i =
Tx,i = Ty,i for all i ∈ {0, . . . , k}.

We show that Te,i = Te′,i for all i ∈ {0, . . . , k} by induction on i. To show this, for an
unlabeled tree T and a node u ∈ T and a neighbor v ∈ T , let subv(T, u) be the unlabeled
subtree of node u rooted at node v. Further, let sub(T, u) be the multiset containing
subv(T, u) for all neighbors v of u in T . Note that if the topology Tu,k of the k-hop view of
a node u is a tree, Tu,k is uniquely described by sub(Tu,k, u). To prove the lemma, we show
by induction on i that for all i ∈ {1, . . . , k} and for the nodes u, v, x, and y of G, we have

subv(Tu,i, u) = subu(Tv,i, v) = suby(Tx,i, x) = subx(Ty,i, y). (6)

Note that because the nodes u, v, and x, and y are assumed to have identical k-hop views,
for all i ∈ {1, . . . , k} we also clearly have

sub(Tu,i, u) = sub(Tv,i, v) = sub(Tx,i, x) = sub(Ty,i, y). (7)

24

Equation (6) holds for i = 1 because all the four subtrees are single nodes. For example, for
T u, 1 is a star with center u and the subtree rooted at neighbor v is the node v itself. For
the induction step, let us assume that Eq. (6) holds for i = i0 < k and we want to show that
it also holds for i = i0 + 1. Let us first construct subv(Tu,i0+1, u). The subtree of u rooted
at v in Tu,i0+1 is uniquely determined by the i0-hop view of node v. It consists of root node
v with subtrees sub(Tv,i0 , v) \ subu(Tv,i0 , v). By the assumption that Eqs. (6) and (7) hold
for i = i0, we can then conclude that subv(Tu,i0+1, u) = subu(Tv,i0+1, v) and by symmetry
also that Eq. (6) holds for i = i0 + 1. This proves the claim of the lemma.

By the construction of Hk and the structural properties proven in Theorem 10, the
following lemma now follows in a straightforward way.

Lemma 18. Let {u, v} and {u′, v′} be two edges of Hk such that u, v, u′, and v′ are four
nodes in S0 ∪ S1. Then, the two edges see the same topology up to distance k.

Proof. Let E′ be the set of edges connecting Gk,1 and Gk,2. As the girth of Hk is at least
2k + 2, the k-hop views of all four nodes and also the k-hop views of the two edges are
trees. By Theorem 10, when removing the edges in E′, all four nodes have the same k-hop
view. As each node in w ∈ S0 ∪ S1 is incident to exactly one edge in E′, connecting w to
a node w′ ∈ S0 ∪ S1, also after adding the edges in E′, all four nodes have the same k-hop
view. By Lemma 17, also the two edges have the same k-hop view and therefore the lemma
follows.

Lemma 18 implies that no distributed k-local algorithm can distinguish between edges
connecting two nodes in S0 ∪S1. In particular, this means that edges between C0,i and C0,i

(for i ∈ {1, 2}) cannot be distinguished from edges between C0,1 and C0,2. In the sequel, let
OPT be the value of the optimal solution for fractional maximum matching and let ALG
be the value of the solution computed by any algorithm.

Lemma 19. When applied to Hk, any distributed, possibly randomized algorithm which runs
for at most k rounds computes, in expectation, a solution of at most ALG ≤ |S0|/(2δ) +
(|V | − |S0|).
Proof. First, consider deterministic algorithms. The decision of which value ye is assigned
to edge e = (v, v) depends only on the view the topologies Tu,k and Tv,k and the labelings
L(Tu,k) and L(Tv,k), which u and v can collect during the k communication rounds. Assume
that the labeling of Hk is chosen uniformly at random. In this case, the labeling L(Tu,k) for
any node u ∈ V is also chosen uniformly at random.

All edges connecting nodes in S0 and S1 see the same topology. If the node’s labels are
distributed uniformly at random, it follows that the distribution of the views (and therefore
the distribution of the ye) is the same for all edges connecting nodes in S0 and S1. We
denote the random variables describing the distribution of the ye by Ye. Every node u ∈ S1

has δ1 = δ neighbors in S0. Therefore, for edges e between nodes in S0 and S1, it follows
by linearity of expectation that E[Ye] ≤ 1/δ because otherwise, there exists at least one
labeling for which the computed solution is not feasible. On the other hand, consider an
edge e′ having both end-points in S0. By Lemma 18, these edges have the same view as
edges e between S0 and S1. Hence, for y′e of e′, it must equally hold that E[Y ′

e] ≤ 1/δ.
Because there are |S0|/2 such edges, the expected total value contributed to the objective
function by edges between two nodes in S0 is at most |S0|/(2δ).

Next, consider all edges which do not connect two nodes in S0. Every such edge has at
least one end-point in V \ S0. In order to obtain a feasible solution, the total value of all

25

edges incident to a set of nodes V ′, can be at most |V ′| = |V \ S0|. This can be seen by
considering the dual problem, a kind of minimum vertex cover where some edges only have
one incident node. Taking all nodes of V ′ (assigning 1 to the respective variables) yields a
feasible solution for this vertex cover problem. This concludes the proof for deterministic
algorithms.

For probabilistic algorithms, we can apply an identical argument based on Yao’s minimax
principle as in the MVC lower bound (cf. Lemma 11).

Lemma 19 yields an upper bound on the objective value achieved by any k-local frac-
tional maximum matching algorithm. On the other hand, it is clear that choosing all edges
connecting corresponding nodes of Gk and G′

k is feasible and hence, OPT ≥ n/2 ≥ |S0|/2.
Let α denote the approximation ratio achieved by any k-local distributed algorithm, and
assume—as in the MVC proof—that k + 1 ≤ δ/2. Using the relationship between n, |S0|,
δ, and k proven in Lemma 12 and combining it with the bound on ALG gives raise to the
following theorem.

Theorem 20. For every integer k > 0, there are graphs G, such that in k communica-
tion rounds in the LOCAL model, every (possibly randomized) distributed algorithm for the
(fractional) maximum matching problem on G has approximation ratios at least

Ω

(

n
1−o(1)

4k2

k

)

and Ω

(

∆
1

k+1

k

)

,

where n and ∆ denote the number of nodes and the highest degree in G, respectively.

Proof. By Lemmas 12 and 19, on Hk, the approximation ratio of any, possibly randomized,
(fractional) maximum matching algorithm is Ω(δ). Because asymptotically, the relations
between δ and the largest degree ∆ and the number of nodes n is the same in the MVC
lower bound graph Gk and in Hk, the lower bounds follow in the same way as the lower
bounds in Theorem 13.

Corollary 21. In order to obtain a constant or polylogarithmic approximation ratio, even
in the LOCAL model, every distributed algorithm for the (fractional) maximum matching
problem requires at least

Ω
(√

logn/ log log n
)

and Ω (log∆/ log log∆)

communication rounds.

4.3 Lower Bounds for Maximal Matching

A maximal matching M of a graph G is a maximal set of edges which do not share common
end-points. Hence, a maximal matching is a set of non-adjacent edges M of G such that
all edges in E(G) \M have a common end-point with an edge in M. The best known lower
bound for the distributed computation of a maximal matching is Ω(log∗n) which holds for
rings [37].

Theorem 22. There are graphs G on which every distributed, possibly randomized algorithm
in expectation requires time

Ω
(√

logn/ log log n
)

and Ω (log∆/ log log∆)

26

to compute a maximal matching. This bound holds even in the LOCAL model, i.e. even if
message size is unlimited and nodes have unique identifiers.

Proof. It is well known that the set of all end-points of the edges of a maximal matching
form a 2-approximation for MVC. This simple 2-approximation algorithm is commonly
attributed to Gavril and Yannakakis. For deterministic algorithms, the lower bound for
the construction of a maximal matching in Theorem 22 therefore directly follows from
Theorem 14.

Generalizing this result to randomized algorithms, however, still requires some work. The
problem is that Theorem 13 lower bounds the achievable approximation ratio by distributed
algorithms whose time complexity is exactly k. That is, it does not provide a lower bound for
randomized algorithms whose time complexity is at most k in expectation or with a certain
probability. As stated in the theorem, however, we consider distributed algorithms that
always compute a feasible solution, i.e., only the time complexity depends on randomness.
In other words, Theorem 13 yields a bound on Monte Carlo type algorithms, whereas in the
case of maximal matching, we are primarily interested in Las Vegas type algorithms.

In order to generalize the theorem to randomized algorithms, we give a transformation
from an arbitrary distributed maximal matching algorithm AM with expected time com-
plexity T into a distributed vertex cover algorithm AVC with fixed time complexity 2T + 1
and expected approximation ratio 11.

We first define an algorithm A′
VC. In a first phase, A′

VC simulates AM for exactly 2T
rounds. Let EM ⊆ E be the set of edges selected after these rounds. In the second phase,
every node v checks whether it has at most one incident edge in EVC. If a node has more
than one incident edge in EVC, it removes all these edges from EVC. Hence, EVC forms a
feasible matching, although not necessarily a maximal one.

It follows from Markov’s inequality that when running AM for 2T rounds, the probability
for obtaining a feasible maximal matching is at least 1/2. Therefore, algorithm A′

VC outputs
a matching that is maximal with probability at least 1/2. Let VVC ⊆ V denote the set of all
nodes incident to an edge in EVC. If EVC is a maximal matching, VVC is a feasible vertex
cover (with probability at least 1/2). In any case, the construction of A′

VC guarantees that
|VVC| is at most twice the size of an optimal vertex cover.

Algorithm AVC executes c · ln∆ independent runs of A′
VC in parallel for a sufficiently

large constant c. Let VVC,i be the node set VVC constructed by the ith of the c · ln∆ runs
of Algorithm AVC. For each node u ∈ V , we define

xu := 6 · |{i : u ∈ VVC,i}|
c · ln∆ .

Algorithm AVC computes a vertex cover S as follows. All nodes with xu ≥ 1 join the initial
set S. In one additional round, nodes that have an uncovered edge also join S to guarantee
that S is a vertex cover.

Let OPTVC be the size of an optimal vertex cover. Because for each i, |VVC,i| ≤
2OPTVC, we get

∑

u∈V xu ≤ 12 · OPTVC. For every edge {u, v}, in each run of A′
VC

that ends with a vertex cover, the set {i : u ∈ VVC,i} contains at least one of the two nodes
{u, v}. Hence, if at least 1/3 of the runs of A′

VC produces a vertex cover, we have xu+xv ≥ 2
for every edge {u, v}. Thus, in this case, taking all nodes u for which xu ≥ 1 gives a valid
vertex cover of size at most

∑

u∈V xu. Let X be the number of runs of A′
VC that result in a

vertex cover. Because the runs are independent and since each of them gives a vertex cover
with probability at least 1/2, we can bound the number of successful runs using a Chernoff

27

bound:

Pr

[

X <
c ln∆

3

]

= Pr

[

X <

(

1− 1

3

)

· c ln∆
2

]

≤ e−
c
36 ln∆ =

1

∆c/36
.

For c ≥ 36, the probability that the nodes u with xu ≥ 1 do not form a vertex cover is
at most 1/∆. Thus, with probability at least 1 − 1/∆, the algorithm computes a vertex
cover of size at most 10OPTVC. With probability at most 1/∆, the vertex cover has size at
most n ≤ ∆OPTVC. The expected size of the computed vertex cover therefore is at most
11OPTVC. The theorem now follows from Theorem 14.

4.4 Lower Bounds for Maximal Independent Set (MIS)

As in the case of a maximal matching, the best currently known lower bound on the dis-
tributed complexity of an MIS has been Linial’s Ω(log∗n) lower bound. Using a locality-
preserving reduction from MM to MIS, we can strengthen this lower bound on general
graphs as formalized in the following theorem.

Theorem 23. There are graphs G on which every distributed, possibly randomized algorithm
in expectation requires time

Ω
(√

logn/ log log n
)

and Ω (log∆/ log log∆)

to compute a maximal independent set (MIS). This bound holds even in the LOCAL model,
i.e., even if message size is unlimited and nodes have unique identifiers.

Proof. For the MIS problem, we again consider the line graph L(Gk) of Gk, i.e., the graph
induced by the edges of Gk. The MM problem on a graph G is equivalent to the MIS
problem on L(G). Further, if the real network graph is G, k communication rounds on
L(G) can be simulated in k + O(1) communication rounds on G. Therefore, the times t to
compute an MIS on L(Gk) and t′ to compute an MM on Gk can only differ by a constant,
t ≥ t′ − O(1). Let n′ and ∆′ denote the number of nodes and the maximum degree of Gk,
respectively. The number of nodes n of L(Gk) is less than n′2/2, the maximum degree ∆
of Gk is less than 2∆′. Because n′ only appears as logn′, the power of 2 does not hurt and
the theorem holds (log n = Θ(logn′)).

4.5 Connected Dominating Set Lower Bound

In this section, we extend our lower bound to the minimum connected dominating set
problem (MCDS). First first start with a simple technical lemma that relates the respective
sizes of an optimal dominating set and an optimal connected dominating set in a graph.

Lemma 24. Let G = (V,E) be a connected graph and let DSOPT and CDSOPT be the sizes
of optimal dominating and connected dominating sets of G. It holds that CDSOPT < 3 ·
DSOPT . Moreover, every dominating set D of G can be turned into a connected dominating
set D′ ⊇ D of size |D′| < 3|D|.

Proof. Given G and D, we define a graph GD = (VD, ED) as follows. VD = D and there is
an edge (u, v) ∈ ED between u, v ∈ D if and only if dG(u, v) ≤ 3. We first show that GD is

28

u

v

e

u

v

v

ue

e

Figure 6: Graph transformation used for the distributed minimum connected dominating
set lower bound

connected. For the sake of contradiction assume that GD is not connected. Then there is a
cut (S, T) with S ⊆ D,T = D \ S, and S, T 6= ∅ such that

∀u ∈ S, ∀v ∈ T : dG(u, v) ≥ 4. (8)

Let u ∈ S and v ∈ T be such that

dG(u, v) = min
u∈S,v∈T

(dG(u, v)). (9)

By Equation (8), there is a node w ∈ V with dG(u,w) ≥ 2 and dG(v, w) ≥ 2 on each shortest
path connecting u and v. Because of Equation (9), we have that

∀u ∈ S, ∀v ∈ T : dG(u,w) ≥ 2 ∧ dG(v, w) ≥ 2.

However this is a contradiction to the assumption that D = S ∪ T is a dominating set of G.
We can now construct a connected dominating set D′ as follows. We first compute a

spanning tree of GD. For each edge (u, v) of the spanning tree, we add at most two nodes
such that u and v become connected. Because the number of edges of the spanning tree is
|D| − 1, this results in a connected dominating set of size at most 3|D| − 2.

Using this lemma, we can now derive the lower bound on the local approximability of
the MCDS problem.

Theorem 25. Consider a (possibly randomized) k-round algorithm for the MCDS problem.
There are graphs for which every such algorithm computes a connected dominating set S of
size at least

|S| ≥ nΩ(1/k) · CDSOPT,

where CDSOPT denotes the size of an optimal connected dominating set.

Proof. It follows from a well-known theorem (see e.g. [10]) that there exist graphsG = (V,E)
with girth g(G) ≥ (2k+1)/3 and number of edges |E| = n1+Ω(1/k). From any such graph G,
we construct a graph G′ as follows. For every edge e = (u, v) ∈ E, we generate additional
nodes ue and ve. In G′, there is an edge between u and ue, between ue and ve, and between v

29

and ve. Note that there is no edge between u and v anymore. The described transformation
is illustrated in Figure 6. We denote the set of all new nodes by W and the number of nodes
of G′ by N = |V ∪W |.

By the definition of G′, the nodes in V form a dominating set of G′. Hence, an optimal
connected dominating set on G′ has size less than 3|V | by Lemma 24. Note that the
construction described in Lemma 24 actually computes a spanning tree T on G and adds
all nodes ue, ve ∈ W to the dominating set for which (u, v) is an edge of T . To bound
the number of nodes in the connected dominating set of a distributed algorithm, we have a
closer look at the locality properties of G′. Because g(G) ≥ (2k + 1)/3, the girth of G′ is
g(G′) ≥ 2k + 1. This means that in k communication rounds it is not possible to detect a
cycle of G′. Hence, no node can locally distinguish G′ from a tree. However, since on a tree
all edges are needed to keep a connected graph, a k-round algorithm removing an edge from
G′ cannot guarantee that the resulting topology remains connected. This means that the
connected dominating set of every k-round algorithm must contain all nodes V ∪W of G′.
The approximation ratio of every distributed k-round MCDS algorithm on G′ is therefore
bounded by

|V ∪W |
3|V | =

n1+Ω(1/k)

3n
= nΩ(1/k) = N(1− 1

k+Ω(1))Ω(1/k) = NΩ(1/k).

5 Local Computation: Upper Bounds

This section is devoted to distributed algorithms with similar time-approximation guarantees
as given by the lower bounds in Section 3 for the problems introduced in Section 1.2. In
Section 5.1. we start with a simple algorithm that specifically targets the minimum vertex

cover problem and asymptotically achieves the trade-off given by the Ω(∆
1−ε
k+1) lower bound

in Theorem 13. We then describe a generic distributed algorithm to approximate covering
and packing linear programs in Section 5.2. In Sections 5.3 and 5.4, we show how an LP
solution can be turned into a solution for vertex cover, dominating set, matching, or a
related problems by randomized rounding and how a dominating set can be extended to a
connected dominating set. Finally, we conclude this section by providing a derandomization
result for the distributed solution of fractional problems and with a general discussion on
the role of randomization and fractional relaxations in the context of local computations in
Section 5.5.

5.1 Distributed Vertex Cover Algorithm

The MVC problem appears to be an ideal starting point for studying distributed approx-
imation algorithms. In particular, as long as we are willing to pay a factor of 2 in the
approximation ratio, MVC does not involve the aspect of symmetry breaking which is so
crucial in more complex combinatorial problems. The fractional relaxation of the MVC
problem asks for a value xi ≥ 0 for every node vi ∈ V such that the sum of all xi is min-
imized and such that for every edge {vi, vj}, xi + xj ≥ 1. A fractional solution can be
turned into an integer solution by rounding up all nodes with a fractional value at least 1/2.
This increases the approximation ratio by at most a factor of 2. Moreover, any maximal
matching is a 2-approximation for MVC and hence, the randomized parallel algorithm for

30

maximal matching by Israeli et al. provides a 2-approximation in time O(log n) with high
probability [26]. This indicates that the amount of locality required in order to achieve a
constant approximation for MVC is bounded by O(log n). In this section, we present a sim-
ple distributed algorithm that places an upper bound on the achievable trade-off between
time complexity and approximation ratio for the minimum vertex cover problem.

Specifically, the algorithm comes with a parameter k, which can be any integer larger
than 0. The algorithm’s time complexity—and hence its locality—is O(k) and its approxi-
mation ratio depends inversely on k. The larger k, the better the achieved global approxi-
mation.

1 xi ← 0; forall the ej ∈ Ei do yj ← 0;
2 for ℓ = k − 1, k − 2, . . . , 0 do

3 δ̃i ← |{uncovered edges e ∈ Ei}| = |Ẽi|;
4 δ̃

(1)
i ← maxi′∈Γ(vi) δ̃i′ ;

5 if δ̃i ≥ (δ̃
(1)
i)ℓ/(ℓ+1) then

6 forall the ej ∈ Ei do yj ← yj + 1/δ̃i;
7 xi ← 1

8 end
9 Yi ←

∑

ej∈Ei
yj;

10 if xi = 0 and Yi ≥ 1 then
11 forall the ej ∈ Ei do yj ← yj(1 + 1/Yi);
12 xi ← 1;

13 end

14 end
15 Yi ←

∑

ej∈Ei
yj ;

16 forall the ej = (vi, vi′) ∈ Ei do yj ← yj/max{Yi, Yi′}
Algorithm 1: Vertex Cover and Fractional Matching: Code for node vi ∈ V

Algorithm 1 simultaneously approximates both MVC and its dual problem, the fractional
maximum matching (FMM) problem. Let Ei denote the set of incident edges of node vi.
In the FMM problem, each edge ej ∈ E is assigned a value yj such that the sum of all yj is
maximized and such that for every node vi ∈ V ,

∑

ej∈Ei
yj ≤ 1. The idea of Algorithm 1

is to compute a feasible solution for minimum vertex cover (MVC) and while doing so,
distribute dual values yj among the incident edges of each node. Each node vi that joins the
vertex cover S sets its xi to 1 and subsequently, the sum of the dual values yj of incident
edges ej ∈ Ei is increased by 1 as well. Hence, at the end of each iteration of the main loop,
the invariant

∑

vi∈V xi =
∑

ej∈E yj holds. We will show that for all nodes vi,
∑

ej∈Ei
yj ≤ α

for α = 3 + ∆1/k and that consequently, dividing all yj by α yields a feasible solution for
FMM. By LP duality, α is an upper bound on the approximation ratio for FMM and MVC.
We call an edge covered if at least one of its endpoints has joined the vertex cover. The set
of uncovered edges incident to a node vi is denoted by Ẽi, and we define node vi’s dynamic
degree to be δ̃i := |Ẽi|. The maximum dynamic degree δ̃i′ among all neighbors vi′ of vi is

denoted by δ̃
(1)
i .

In the algorithm, a node joins the vertex cover if it has a large dynamic degree—i.e., many
uncovered incident edges—relative to its neighbors. In this sense, it is a faithful distributed

31

implementation of the natural sequential greedy algorithm. Because the running time is
limited to k communication rounds, however, the greedy selection step must inherently be
parallelized, even at the cost of sub-optimal decisions.

The following lemma bounds the resulting decrease of the maximal dynamic degree in
the network.

Lemma 26. At the beginning of each iteration, it holds that δ̃i ≤ ∆(ℓ+1)/k for every vi ∈ V .

Proof. The proof is by induction over the main loop’s iterations. For ℓ = k − 1, the lemma
follows from the definition of ∆. For subsequent iterations, we show that all nodes having

δ̃i ≥ ∆ℓ/k set xi := 1 in Line 7. In the algorithm, all nodes with δ̃i ≥ (δ̃
(1)
i)ℓ/(ℓ+1) set xi := 1.

Hence, we have to show that for all vi, (δ̃
(1)
i)ℓ/(ℓ+1) ≤ ∆ℓ/k. By the induction hypothesis,

we know that δ̃i ≤ ∆(ℓ+1)/k at the beginning of the loop. Since δ̃
(1)
i represents the dynamic

degree δ̃i′ of some node vi′ ∈ Γ(vi), it holds that δ̃
(1)
i ≤ ∆(ℓ+1)/k for every such vi and the

claim follows because (δ̃
(1)
i)ℓ/(ℓ+1) ≤ ∆

ℓ+1
k

· ℓ
ℓ+1 .

The next lemma bounds the sum of dual y values in Ei for an arbitrary node vi ∈ V .
For that purpose, we define Yi :=

∑

ej∈Ei
yj.

Lemma 27. At the end of the algorithm, for all nodes vi ∈ V ,

Yi =
∑

ej∈Ei

yj ≤ 3 + ∆1/k.

Proof. Let Φh denote the iteration in which ℓ = h. We distinguish three cases, depending
on whether (or in which line) a node vi joins the vertex cover. First, consider a node vi
which does not join the vertex cover. Until Φ0, it holds that Yi < 1 since otherwise, vi
would have set xi := 1 in Line 12 of a previous iteration. In Φ0, it must hold that δ̃i = 0
because all nodes with δ̃i ≥ 1 set xi := 1 in the last iteration. That is, all adjacent nodes
vi′ of vi have set xi′ := 1 before the last iteration and Yi does not change anymore. Hence,
Yi < 1 for nodes which do not belong to the vertex cover constructed by the algorithm.

Next, consider a node vi that joins the vertex cover in Line 7 of an arbitrary iteration
Φℓ. With the same argument as above, we know that Yi < 1 at the beginning of Φℓ. When
vi sets xi := 1, Yi increases by one. In the same iteration, however, neighboring nodes
vi′ ∈ Γ(vi) may also join the vertex cover and thereby further increase Yi. By the condition

in Line 5, those nodes have a dynamic degree at least δ̃i′ ≥ (δ̃
(1)
i′)ℓ/(ℓ+1) ≥ δ̃

ℓ/(ℓ+1)
i . Further,

it holds by Lemma 26 that δ̃i ≤ ∆(ℓ+1)/k and therefore

δ̃i ·
1

δ̃i′
≤ δ̃i

δ̃
ℓ/(ℓ+1)
i

= δ̃
1/(ℓ+1)
i ≤ ∆1/k.

Thus, edges that are simultaneously covered by neighboring nodes may entail an additional
increase of Yi by ∆1/k. Together with vi’s own cost of 1 when joining the vertex cover,
the total increase of Yi in Line 6 of Φℓ is then at most 1 + ∆1/k. In Line 6, dual values
are distributed among uncovered edges only. Therefore, the only way Yi can increase in
subsequent iterations is when neighboring nodes xi′ set xi′ := 1 in Line 12. The sum of
the yj of all those edges covered only by vi (note that only these edges are eligible to be
increased in this way) is at most 1. In Line 11, these yj can be at most doubled. Putting
everything together, we have Yi ≤ 3 + ∆1/k for nodes joining the vertex cover in Line 7.

32

Finally, we study nodes vi that join the vertex cover in Line 12 of some iteration Φℓ.
Again, it holds that Yi < 1 at the outset of Φℓ. Further, using an analogous argument as
above, Yi is increased by at most ∆1/k due to neighboring nodes joining the vertex cover in
Line 7 of Φℓ. Through the joining of vi, Yi further increases by no more than 1. Because
the yj are increased proportionally, no further increase of Yi is possible. Thus, in this case
we have Yi ≤ 2 + ∆1/k.

Based on the bound obtained in Lemma 27, the main theorem follows from LP duality.

Theorem 28. In k rounds of communication, Algorithm 1 achieves an approximation ratio
of O(∆1/k). The algorithm is deterministic and requires O(log∆) and O(log∆/ log log∆)
rounds for a constant and polylogarithmic approximation, respectively.

Proof. We first prove that the algorithm computes feasible solutions for MVC and fractional
maximum matching. For MVC, this is clear because in the last iteration, all nodes having
δ̃i ≥ 1 set xi := 1. The dual y-values form a feasible solution because in Line 16, the yj of
each edge ej is divided by the larger of the Yi of the two incident nodes corresponding to ej ,
and hence, all constraints of the fractional matching problem are guaranteed to be satisfied.
The algorithm’s running time is O(k), because every iteration can be implemented with a
constant number of communication rounds. As for the approximation ratio, it follows from
Lemma 27 that each yj is divided by at most α = 3 + ∆1/k and therefore, the objective
functions of the primal and the dual problem differ by at most a factor α. By LP duality, α
is a bound on the approximation ratio for both problems. Finally, setting k1 = β log∆ and
k2 = β log∆/ log log∆ for an appropriate constant β leads to a constant and polylogarithmic
approximation ratio, respectively.

Hence, the time-approximation trade-off of Algorithm 1 asymptotically nearly matches
the lower bound of Theorem 13. The reason why Algorithm 1 does not achieve a constant or
polylogarithmic approximation ratio in a constant number of communication rounds is that
it needs to “discretize” the greedy step in order to achieve the necessary parallelism. Whereas
the sequential greedy algorithm would select a single node with maximum dynamic degree
in each step, a k-local distributed algorithm must inherently take many such decisions in
parallel. This discrepancy between Algorithm 1 and the simple sequential greedy algorithm
can be seen even in simple networks. Consider for instance the network induced by the
complete bipartite graph Km,

√
m. When running the algorithm with parameter k = 2, it

holds for every node vi that δ̃i ≥ (δ̃
(1)
i)ℓ/(ℓ+1) in the first iteration (ℓ = 1) of the loop.

Hence, every node will join the vertex cover, resulting in a cover of cardinality m +
√
m.

The optimal solution being
√
m, the resulting approximation factor is

√
m+ 1 = ∆1/2 + 1.

Remark: Note that while the lower bound of Theorem 13 holds for the LOCAL model,
Algorithm 1 does not require the full power of this model. In particular, to implement
Algorithm 1, it suffices to exchange messages containing only O(log n) bits.

5.2 Distributed Algorithm for
Covering and Packing Linear Programs

We will now describe a generic distributed algorithm to solve covering and packing LPs
in the network setting described in Section 1.2. The algorithm is based on a randomized
technique to cover a graph with clusters of small diameter described in [38]. The property

33

of covering and packing LPs allows to solve local sub-LPs for all clusters and to combine
the local solutions into an approximate global one.

Assume that we are given a primal-dual pair of covering and packing LPs of the canonical
form (P) and (D) and the corresponding network graph GLP = (Vp∪̇Vd, E) as defined in
Section 1.2. We first describe how the local sub-LPs look like. Let Y = {y1, . . . , ynd

} be the
set of variables of (D). Each local primal-dual sub-LP pair is defined by a subset S ⊆ Vd of
the dual nodes Vd and thus by a subset YS ⊆ Y of the dual variables. There is a one-to-
one correspondence between the inequalities of (P) and the variables of (D). Let PS be the
LP that is obtained from (P) by restricting to the inequalities corresponding to the dual
variables in YS . The primal variables involved in PS are exactly the ones held by primal
nodes Vp that are neighbors of some node in S. The local LP DS is the dual LP of PS .
The variables of DS are given by the set of inequalities of PS and therefore by YS . We first
prove crucial basic properties of such a pair of local sub-LPs.

Lemma 29. Assume that we are given a pair of LPs PS and DS that are constructed from
(P) and (D) as described above. If (P) and (D) are both feasible, PS and DS are both
feasible. Further, any solution to DS (with dual variables in Y \ YS set to 0) is a feasible
solution of (D).

Proof. Clearly PS is feasible as every feasible solution for (P) directly gives a feasible solution
for PS (by just ignoring all variables that do not occur in PS). Because PS is a minimization
problem and since (P) and (D) are covering and packing LPs, all coefficients in the objective
function (the vector c) are non-negative, PS is also bounded (its objective function is always
at least 0). Hence, also the dual LP DS must be feasible.

Assume that we are given a feasible solution for DS which is extended to a solution for
(D) by setting variables in Y \ YS to 0. Inequalities in (D) that correspond to columns of
variables occurring in PS are satisfied by the feasibility of the solution for DS . In all other
inequalities of (D), all variables are set to 0 and thus, feasibility follows from the fact that
c ≥ 0.

Note that by construction, a feasible solution for PS gives a solution for (P) which
satisfies all the inequalities corresponding to variables YS and for which the left-hand sides
of all other inequalities are at least 0 because all coefficients and variables are non-negative.
We next show how to obtain local sub-LPs PS and DS that can be solved efficiently.

In [38], Linial and Saks presented a randomized distributed algorithm for a weak-
diameter network decomposition. We use their algorithm to decompose the linear program
into sub-programs which can be solved locally in the LOCAL model. Assume that we are
given a network graph G = (V , E) with n = |V| nodes. The basic building block of the
algorithm in [38] is a randomized algorithm LS(p,R) which computes a subset S ⊆ V such
that each node u ∈ S has a leader ℓ(u) ∈ V and the following properties hold for arbitrary
parameters p ∈ [0, 1] and R ≥ 1:

1. ∀u ∈ S : dG(u, ℓ(u)) ≤ R, where dG(u, v) is the shortest path distance between two
nodes u, v ∈ V .

2. ∀u, v ∈ S : ℓ(u) 6= ℓ(v) =⇒ (u, v) 6∈ E .

3. S can be computed in O(R) rounds.

4. ∀u ∈ V : Pr[u ∈ S] ≥ p(1− pR)n−1.

34

Hence, Algorithm LS(p,R) computes a set of clusters of nodes such that nodes belonging
to different clusters are at distance at least 2 and such that every node u that belongs to
some cluster is at distance at most R from its cluster center ℓ(u). Note that Algorithm
LS(p,R) does bound the distance between nodes of the same cluster in the graph induced
by the nodes of the cluster. It merely bounds their distance in G. The maximal G-distance
between any two nodes of a cluster is called the weak diameter of the cluster.

Based on the graph GLP, we define the graph G = (V , E) on which we invoke Algorithm
LS(p,R):

V := Vd, E :=

{

{u, v} ∈
(
Vs

2

)∣
∣
∣
∣
d(u, v) ≤ 4

}

, (10)

where d(u, v) denotes the distance between u and v in GLP. Hence, the nodes of G are all
nodes corresponding to dual variables in GLP. As discussed, there is a one-to-one correspon-
dence between nodes in Vd and inequalities in the linear program (P). Two nodes u, v ∈ Vd

are connected by an edge in E iff the corresponding inequalities contain variables that occur
together in some inequality. We apply Algorithm LS(p,R) several times on graph G to
obtain different locally solvable sub-LPs that can then be combined into an approximate
solution for (P) and (D). The details are given by Algorithm 2.

1 Run ℓ independent instances of LS(p,R) on G in parallel:

2 yields node sets S1, . . . ,Sℓ ⊆ V = Vd;

3 Solve local LPs PS1 , DS1 , . . . , PSℓ
, DSℓ

;

4 Interpret as solutions for (P) and (D):
x1,1, . . . , x1,np

, y1,1, . . . , y1,nd
, . . . xℓ,1, . . . , xℓ,np

, yℓ,1, . . . , yℓ,nd
;

5 forall the i ∈ {1, . . . , np} do xi ←
∑ℓ

t=1 xt,i;

6 forall the i ∈ {1, . . . , nd} do yi ←
∑ℓ

t=1 yt,i;

7 forall the i ∈ {1, . . . , np} do xi ← xi/minvd
j
∈Γ

v
p
i

(Ax)j/bj ;

8 forall the i ∈ {1, . . . , nd} do yi ← yi/ℓ;

9 return x and y

Algorithm 2: Algorithm for Covering and Packing linear programs with parame-
ters: ℓ, p, and R

We first analyze the time complexity of Algorithm 2.

Lemma 30. Algorithm 2 can be executed in O(R) rounds. It computes feasible solutions
for (P) and (D).

Proof. Algorithm 2 consists of the following main steps. First, ℓ independent instances of
Algorithm LS(p,R) are executed. Then, for each collection of clusters resulting from these
executions, a local LP is solved and the local LPs are combined to solutions of (P) and (D).
Finally, each resulting dual variable is divided by ℓ and each primal variable is divided by
an amount that keeps the primal solution feasible.

As the ℓ instances of Algorithm LS(p,R) are independent, they can be executed in
parallel and thus the time complexity for the first step is O(R). Note that since neighbors
in G are at distance at most 4, each round on G can be simulated in 4 rounds on GLP.

For the second step, consider the set of nodes Si ⊆ Vd computed by the ith instance of
LS(p,R). Two nodes that are in different connected components of the sub-graph G[Si] of

35

G induced by Si are at distance at least 5. Hence, the corresponding dual variables and also
the primal variables corresponding to their GLP-neighbors in Vp cannot occur together in
an inequality of (D) and (P), respectively. Hence, the local sub-LP induced by Si can be
solved by individually solving the sub-LPs induced by every connected component of G[Si].
As every connected component of G[Si] has a leader node that is at distance at most R
from all nodes of the connected component, all information from the sub-LP corresponding
to G[Si] can be sent to this leader and the sub-LP can be solved there locally. Hence, the
second step of the algorithm can also be executed in O(R) rounds.

For the third step, note that the values by which the primal variables xi are divided
can be computed locally (by only exchanging information with direct neighbors in GLP).
Finally, the computed dual solution is feasible because it is the average of the dual solutions
of all sub-LP and because each dual sub-LP is feasible for (D) by Lemma 29. Line 7 of
Algorithm 2 guarantees that the computed primal solution is a feasible solution for (P).

Theorem 31. Let ε ∈ (0, 1), α > 1, and β > 0 be parameters. We choose p = n
−α/R
d and

define q := p · (1 − nd · pR). If we choose ℓ ≥ 2(1+β)
ε2q lnnd, Algorithm 2 computes 1

q(1−ε)

approximations for (P) and (D) in O(R) time (in the LOCAL model) with probability at

least 1− 1/nβ
d .

Proof. The time complexity follows directly from Lemma 30. Because by Lemma 30, the
computed solutions for (P) and (D) are both feasible, the approximation ratio of the algo-
rithm is bounded by the ratio of the objective functions of the solutions for (P) and (D).
Both solutions are computed as the sum of the solutions of all local sub-LPs in Lines 5 and
6 of the algorithm that are then divided by appropriate factors in Lines 7 and 8. By LP
duality (of the sub-LPs), we have cTx = bT y after Line 6. Hence, the approximation ratio
is upper bounded be the ratio between the factor ℓ by which the dual variables are divided
and the minimal value by which the primal variables are divided. The approximation is
therefore upper bounded by

ℓ

minvp
i
∈Vp

minvd
j
∈Γ

v
p
i

(Ax)j/bj
=

ℓ

minvd
j
∈Vd

(Ax)j/bj
(11)

for x after Line 6. To obtain an upper bound on the value of the above equation, assume
that for every vdj ∈ Vd, the number of local sub-LPs PSt

for which (Axt)j ≥ bj is at least
ℓ′ ≤ ℓ. Hence, ℓ′ is a lower bound on the number of times each inequality of (P) is satisfied,
combined over all sub-LPs. Because bj ≥ 0 for all j and because all coefficients of A and
the variables x are non-negative, we then have (Ax)j/bj ≥ ℓ′ for all j. By Equation (11), it
then follows that the computed solutions for (P) and (D) are at most by a factor ℓ/ℓ′ worse
than the optimal solutions.

We get a bound on the minimum number of times each inequality of (P) is satisfied by
a local sub-LP by using the properties of Algorithm LS(p,R) and a Chernoff bound. From
[38], we have that for each t ∈ {1, . . . , ℓ} and vdi ∈ Vd, the probability that vdi ∈ St is at
least

p(1− pR)nd−1 =
pR

=
1

n
α/R
d

·
(

1− 1

nα
d

)nd−1 (α>1)

≥ 1

n
α/R
d

·
(

1− 1

nα−1
d

)

= q.

36

Therefore, for every vdj ∈ Vd, the probability Pj that jth inequality of (P) is satisfied less
than (1− ε)qℓ times is at most

Pj < e−
ε2

2 qℓ ≤ e−(1+β) lnnd =
1

nd
· 1

nβ
. (12)

The theorem now follows by a union bound over all nd inequalities of (P).

Corollary 32. In k rounds in the LOCAL model, Algorithm 2 with high probability computes
an nc/k-approximation for covering and packing LPs for some constant c > 0. An (1 + ε)-
approximation can be computed in time O(log(n)/ε).

5.3 Randomized Rounding

We next show how to use the algorithm of the last section to solve the MDS problem or
another combinatorial covering or packing problem. Hence, we show how to turn a fractional
covering or packing solution into an integer one by a distributed rounding algorithm. In
particular, we give an algorithm for integer covering and packing problems of the forms

min cTx′

s. t. A · x′ ≥ b

x′
i ∈ N.

(PI)

min bTy′

s. t. AT · y′ ≤ c

y′i ∈ N.

(DI)

with matrix elements aij ∈ {0, 1}. LPs (P) and (D) are the fractional relaxations of (PI)
and (DI). Not that we denote the solution vectors for the integer program by x′ and y′

whereas the solution vectors for the corresponding LPs are called x and y.
We start with covering problems (problems of the form of (P)). Because the aij and the

xi are restricted to integer values, w.l.o.g. we can round up all bj to the next integer value.
After solving/approximating the LP, each primal node vpi executes Algorithm 3. The value
of the parameter λ will be determined later.

1 if xi ≥ 1(λ ln∆p) then
2 x′

i ← ⌈xi⌉
3 else
4 pi ← xi · λ ln∆p;
5 x′

i ← 1 with probability pi and x′
i ← 0 otherwise

6 end

Algorithm 3: Distributed Randomized Rouding: Covering Problems

The expected value of the objective function is E[cTx′] ≤ λ ln∆p · cTx. Yet regardless
of how we choose λ, there remains a non-zero probability that the obtained integer solution
is not feasible. To overcome this, we have to increase some of the x′

i. Assume that the jth

constraint is not satisfied. Let aj be the row vector representing the jth row of the matrix A

and let b′j := bj − aix
′ be the missing weight to make the jth row feasible. Further, let ijmin

be the index of the minimum ci for which aji = 1. We set x′
ijmin

:= x′
ijmin

+ b′j . Applied to

all non-satisfied primal constraints, this gives a feasible solution for the considered integer
covering problem.

Theorem 33. Consider an integer covering problem (PI) with aij = {0, 1} and bj ∈ N.
Furthermore, let x be an α-approximate solution for the LP relaxation (P) of (PI). The

37

above described algorithm computes an O(α log∆p)-approximation x′ for (PI) in a constant
number of rounds.

Proof. As stated above, the expected approximation ratio of the first part of the algorithm
is λ ln∆p. In order to bound the additional weight of the second part, where x′

ijmin
is

increased by b′j , we define dual variables ỹj := b′jcijmin
/bj . For each unsatisfied primal

constraint, the increase cijmin
b′j of the primal objective function is equal to the increase

bj ỹj of the dual objective function. If the jth constraint is not satisfied, we have b′j ≥ 1.

Therefore, E[ỹj] ≤ qjcijmin
, where qj is the probability that the jth primal inequality is not

fulfilled.
In order to get an upper bound on the probability qj , we have to look at the sum of the

x′
i before the randomized rounding step in Line 5 of the algorithm. Let βj := bi − aix

′ be
the missing weight in row j before Line 5. Because the x-values correspond to a feasible
solution for the LP, the sum of the pi involved in row j is at least βjλ ln∆p. For the following
analysis, we assume that ln∆p ≥ 1. If ln∆p < 1, applying only the last step of the described
algorithm gives a simple distributed 2-approximation for the considered integer program.
Using a Chernoff bound, we can bound qj as

qj < e
− 1

2βjλ ln∆p(1− 1
λ ln∆p

)2 ≤
(

1

∆p

) 1
2λ(1− 1

λ
)2

≤ 1

∆p
.

In the second inequality, we use that βj ≥ 1. For the last inequality, we have to choose λ such
that λ(1−1/λ)2/2 ≥ 1 (i.e., λ ≥ 2+

√
3). Thus, the expected value of ỹj is E[ỹj] ≤ cijmin

/∆p.
Hence, by definition of cijmin

, in expectation the ỹ-values form a feasible solution for (D).

Therefore, the expected increase of the objective function cTx′ in the last step after the
randomized rounding is upper-bounded by the objective function of an optimal solution for
(P).

Combining Algorithms 2 and 3, we obtain an O(log∆)-approximation for MDS in
O(logn) rounds.

We now turn our attention to integer packing problems. We have an integer program of
the form of (DI) where all aij ∈ {0, 1} and where y′ ∈ N

n. We can w.l.o.g. assume that the
cj are integers because rounding down each cj to the next integer has no influence on the
feasible region. Each dual node vdi applies Algorithm 4.

1 if yi ≥ 1 then
2 y′i ← ⌊yi⌋
3 else
4 pi ← 1/(2e∆d);
5 y′i ← 1 with probability pi and y′i ← 0 otherwise

6 end
7 if y′i ∈ ‘non-satisfied constraint’ then
8 y′i ← ⌊yi⌋
9 end

Algorithm 4: Distributed Randomized Rouding: Packing Problems

Clearly, the yields a feasible solution for the problem. The approximation ratio of the
algorithm is given by the next theorem.

38

Theorem 34. Let (DI) be an integer covering problem with aij = {0, 1} and cj ∈ N.
Furthermore, let y be an α-approximate solution for the LP relaxation of (DI). Algorithm
4 computes an O(α∆d)-approximation y′ for (DI) in a constant number of rounds.

Proof. After Line 6, the expected value of the objective function is bTy′ ≥ bTy/(2e∆d). We
will now show that a non-zero y′i stays non-zero with constant probability in Line 8. Let qj
be the probability that the jth constraint of the integer program is not satisfied given that
y′i has been set to 1 in Line 5. For convenience, we define Y ′

j :=
∑

i aijy
′
i. If cj ≥ 2, we

apply a Chernoff bound to obtain

qj = Pr[Y ′
j > cj

∣
∣ y′i = 1] ≤ Pr[Y ′

j > cj − 1]

<

(
ee∆d−1

(e∆c)e∆d

)cj/(2e∆d)

<
1

∆d
.

If cj = 1, we get

qj ≤ 1− Pr[Y ′
j = 0] = 1−

∏

vd
i
∈Γ(vp

j
)

(1− pi)

≤ 1−
(

1− 1

2e∆d

)

=
1

2e∆d
.

The probability that all dual constraints containing y′i are satisfied is lower-bounded by the
product of the probabilities for each constraint [52]. Therefore, under the natural assumption
that ∆d ≥ 2:

Pr[y′i = 1 after Line 8] ≥
(

1− 1

∆d

)∆d

≥ 1

4
.

Thus the expected value of the objective function of the integer program (DI) is

E[bTy′] ≥ 8e∆d · bTy.

Remark As stated, Algorithms 3 and 4 require the nodes to know the maximum primal
and dual degrees ∆p and ∆d, respectively. In both cases, it would be possible to replace the
use of ∆p and ∆d by local estimates of these quantities. In order to keep the algorithms
and the analysis as simple as possible, we decided to state and analyze them in the present
form.

5.4 Connecting a Dominating Set

An important applications of dominating sets in networks is to obtain clusterings in ad hoc
or sensor networks. In particular, clustering helps to improve information dissemination and
routing algorithms in such networks. However, for this purpose, one usually needs clusters
to be connected to each other and thus a connected dominating set as underlying structure.
Lemma 24 in Section 4.5 shows that every dominating set D can be extended to a connected
dominating set D′ of size |D′| < 3|D|. In the following, we described a simple distributed
strategy to convert any dominating set into a connected dominating set that is only slightly
larger. A similar strategy is also used in [16].

39

Assume that we are given a dominating set D of the network graph G. As in the proof
of Lemma 24, we define a graph GD as follows. The node set of GD is D and there is
an edge between u, v ∈ D iff their distance in G is at most 3. We have seen that GD is
connected and thus, any spanning tree of GDinduces a connected dominating set of size
O(D). Unfortunately, for a local, distributed algorithm, it is not possible to compute a
spanning tree of GD. Nevertheless, a similar approach also works for distributed algorithms.
Instead of computing a spanning tree of GD, it is sufficient to compute any sparse spanning
subgraph of GD. If the number of edges of the subgraph of GD is linear in the number
of nodes |D| of GD, we obtain a connected dominating set S′ which is only by a constant
factor larger than D.

We therefore need to solve the following problem. Given a graph G = (V,E) with
|V | = n, we want to compute a spanning subgraph G′ of G with a minimal number of edges.
For an arbitrary k ≥ 1, the following Algorithm 5 shows how to compute such a spanning
subgraph in k rounds. For the algorithm, we assume that all edges e = (u, v) of G have a
unique weight we and that there is a total order on all edge weights. If there are no natural
edge weights, a weight for (u, v) can for example be constructed by taking the ordered pair
of the IDs of the nodes u and v. Two weights can be compared using lexicographic order.

1 G′ ← G;
2 forall the u ∈ V do u collects complete k-neighborhood;
3 forall the e ∈ E do
4 if weight we of e is largest in any cycle of length ≤ 2k then
5 remove e from G
6 end

7 end

Algorithm 5: Computing a sparse connected subgraph

The following lemma shows that Algorithm 5 indeed computes a sparse connected sub-
graph G′ of G.

Lemma 35. For every n-node connected graph G = (V,E) and every k, Algorithm 5 com-
putes a spanning subgraph G′ = (V,E′) of G for which the number of edges is bounded by
|E′| ≤ n1+O(1/k).

Proof. We first prove that the produced G′ is connected. For the sake of contradiction,
assume that G′ is not connected. Then, there must be a cut (S, T) with S ⊆ V , T = V \ S,
and S, T 6= ∅ such that S × T ∩ E′ = ∅. However, since G is connected, there must be an
edge e ∈ S × T ∩ E crossing the given cut. Let e be the edge with minimal weight among
all edges crossing the cut. Edge e can only be removed by Algorithm 5 if it has the largest
weight of all edges in some cycle. However, all cycles containing e also contain another edge
e′ crossing the (S, T)-cut. By definition of e, we′ > we and therefore, e is not deleted by the
algorithm.

Let us now look at the number of edges of G′. Because in every cycle of length at most
2k at least one edge is removed by Algorithm 5, G′ has girth g(G′) ≥ 2k+1. It is well-known
that therefore, G′ has at most |V |1+O(1/k) edges (see e.g. [10]).

We can therefore formulate a k-round MCDS algorithm consisting of the following three
phases. First, a fractional dominating set is computed using Algorithm 2. Second, we use the
randomized rounding scheme given by Algorithm 3 to obtain a dominating set D. Finally,
Algorithm 5 is applied to GD. For each edge (u, v) of the produced spanning subgraph

40

of GD, we add the nodes (at most 2) of a shortest path connecting u and v in G to D.
Note that a k-round algorithm on GD needs at most 3k rounds when executed on G. The
achieved approximation ratio is given by the following theorem.

Theorem 36. In O(k) rounds, the above described MCDS algorithm computes a connected
dominating set of expected size

O
(

CDSOPT · nO(1/k) · log∆
)

.

Proof. Given the dominating set D, by Lemma 35, the number of nodes of the connected
dominating set D′ can be bounded by

|D′| ≤ 3|D|1+O(1/k) ≤ 3|D|nO(1/k)

and therefore
E[|D′|] ≤ 3E[|D|]nO(1/k). (13)

Using Theorems 31 and 33, it follows that the expected size of the dominating set D is

E[|D|] ∈ O
(
DSOPTn

O(1/k) log∆
)
.

Plugging this into Equation (13) completes the proof.

5.5 Role of Randomization and Distributed Derandomization

Randomization plays a crucial role in distributed algorithms. For many problems such as
computing a MIS, there are simple and efficient randomized algorithms. For the same prob-
lems, the best deterministic algorithms are much more complicated and usually significantly
slower. The most important use of randomization in distributed algorithms is breaking sym-
metries. We have seen that in certain cases, LP relaxation can be used to “avoid” symmetry
breaking. The question is whether the use of randomness can also be avoided in such cases?
In the following, we show that this indeed is the case, i.e., we show that in the LOCAL model
any distributed randomized algorithm for solving a linear program can be derandomized.

Assume that we are given a randomized distributed k-round algorithmA which computes
a solution for an arbitrary linear program P . We assume that A explicitly solves P such
that w.l.o.g. we can assume that each variable xi of P is associated with a node v which
computes xi. We also assume that A always terminates with a feasible solution. The
following theorem shows that A can be derandomized.

Theorem 37. Algorithm A can be transformed into a deterministic k-round algorithm A′

for solving P . The objective value of the solution produced by A′ is equal to the expected
objective value of the solution computed by A.

Proof. We first show that for the node computing the value of variable xi, it is possible
to deterministically compute the expected value E[xi]. We have seen that in the LOCAL
model every deterministic k-round algorithm can be formulated as follows. First, every
node collects all information up to distance k. Then, each node computes its output based
on this information. The same technique can also be applied for randomized algorithms.
First, every node computes all its random bits. Collecting the k-neighborhood then also
includes collecting the random bits of all nodes in the k-neighborhood. However, instead of

41

computing xi as a function of the collected information (including the random bits), we can
also compute E[xi] without even knowing the random bits.

In algorithm A′, the value of each variable is now set to the computed expected value.
By linearity of expectation, the objective value of A′’s solution is equal to the expected
objective value of the solution of A. It remains to prove that the computed solution is
feasible. For the sake of contradiction, assume that this is not the case. Then, there must
be an inequality of P which is not satisfied. By linearity of expectation, this implies that
this inequality is not satisfied in expectation for the randomized algorithm A. Therefore,
there is a non-zero probability that A does not fulfill the given inequality, a contradiction
to the assumption that A always computes a feasible solution.

Theorem 37 implies that the algorithm of Section 5.2 could be derandomized to de-
terministically compute an (1 + ε)-approximation for (P) and (D) in O(log(n)/ε) rounds.
It also means that in principle every distributed dominating set algorithm (e.g. [27, 48]
could be turned into a deterministic fractional dominating set algorithm with the same
approximation ratio. Hence, when solving integer linear programs in the LOCAL model,
randomization is only needed to break symmetries. Note that this is really a property of
the LOCAL model and only true as long as there is no bound on message sizes and local
computations. The technique described in Theorem 37 can drastically increase message
sizes and local computations of a randomized distributed algorithm.

6 Conclusions & Future Work

Lower Bounds: Distributed systems is an area in computer science with a strong lower
bound culture. This is no coincidence as lower bounds can be proved using indistinguisha-
bility arguments, i.e. that some nodes in the system cannot distinguish two configurations,
and therefore must make “wrong” decisions.

Indistinguishability arguments have also been used in locality. In his seminal paper,
Linial proved an Ω(log∗n) lower bound for coloring the ring topology [37]. However, one
cannot prove local inapproximability bounds on the ring or other highly symmetric topolo-
gies, as they allow for straight-forward purely local, constant approximation solutions. Take
for instance the minimum vertex cover problem (MVC): In any δ-regular graph, the algo-
rithm which includes all nodes in the vertex cover is already a 2-approximation. Each node
will cover at most δ edges, the graph has nδ/2 edges, and therefore at least n/2 nodes need
to be in a vertex cover.

Further, also several natural asymmetric graph families enjoy constant-time algorithms.
For example, in a tree, choosing all inner nodes yields a 2-approximation MVC. More gen-
erally, a similar algorithm also yields a constant MVC approximation for arbitrary graphs
with bounded arboricity (i.e., graphs where all subgraphs are sparse, includes minor-closed
families such as planar graphs). On the other extreme, also very dense graph classes have
very efficient MVC algorithms. Graphs from such families often have small diameter and
in addition, as each node can cover at most n − 1 edges, in every graph with Ω(n2) edges,
taking all the nodes leads to a trivial constant MVC approximation. Thus, our lower bound
construction in Section 3 requires the construction of a “fractal”, self-recursive graph that
is neither too symmetric nor too asymmetric, and has a variety of node degrees! To the
best of our knowledge, not many graphs with these “non-properties” are known in computer
science, where symmetry and regularity are often the key to a solution.

42

Upper Bounds: It is interesting to compare the lower and upper bounds for the
various problems. The MVC algorithm presented in Section 5.1 achieves an O(∆1/k) ap-
proximation in k communication rounds, and hence, the lower and upper bounds achieved
in Theorems 13 and 28 are almost tight. In particular, any distributed algorithm requires
at least Ω(log∆/ log log∆)-hop neighborhood information in order to achieve a constant
or polylogarithmic approximation ratio to the MVC problem, respectively, which is exactly
what our algorithm achieves for polylogarithmic approximation ratios. It has recently been
shown that even a (2 + ε)-approximation for the MVC problem can be computed in time
O(log∆/ log log∆) and thus our lower bound is also tight for constant approximation ratios
[7].

Our bounds are not equally tight when expressed as a function of n, rather than ∆.
In particular, the remaining gap between our upper and lower bounds can be as large as
Θ(
√

logn/ log logn). The additional square-root in the lower bounds when formulated as a
function of n follows inevitably from the high-girth construction of Gk: In order to derive a
lower-bound graph as described in Sections 3.1 and 3.2, there must be many “bad” nodes
that have the same view as a few neighboring “good” nodes. If each bad node has a degree of
δbad (in Gk, this degree is δbad ∈ Θ(n1/k)) and if we want to have girth at least k, the graph
must contain at least n ≥ δkbad nodes. Taking all good nodes and applying Algorithm 1 of

Section 5.1 to the set of bad nodes, we obtain an approximation ratio of α ∈ O(δ
1/k
bad) in

k communication rounds. Combining this with the bound on the number of nodes in the
graph, it follows that there is no hope for a better lower bound than Ω(n1/k2

) with this
technique. From this it follows that if we want to improve the lower bound (i.e., by getting
rid of its square-root), we either need an entirely different proof technique, or we must
handle graphs with low girth in which nodes do not see trees in their k-hop neighborhood,
which would necessitate arguing about views containing cycles.

Future Work: We believe that the study of local computation and local approxima-
tion is relevant far beyond distributed computing, and there remain numerous directions for
future research. Clearly, it is interesting to study the locality of other network coordina-
tion problems that appear to be polylog-local, including for example the maximum domatic
partition problem [20], the maximum unique coverage problem [13], or various coloring prob-
lems [8].

Beyond these specific open problems, the most intriguing distant goal of this line of
research is to divide distributed problems into complexity classes according to the problems’
local nature. The existence of locality-preserving reductions and the fact that several of
the problems discussed in this paper exhibit similar characteristics with regard to local
computability/approximability raises the hope for something like a locality hierarchy of
combinatorial optimization problems. It would be particularly interesting to establish ties
between such a distributed hierarchy of complexity classes and the classic complexity classes
originating in the Turing model of computation [34]. A first step in this direction has recently
been done in [24], where complexity classes for distributed decision problems were defined.
Note that unlike in standard sequential models, in a distributed setting, the complexity
of decision problems is often not related to the complexity of the corresponding search
problems.

Besides classifying computational problems, studying local computation may also help in
gaining a more profound understanding of the relative strengths of the underlying network
graph models themselves. It was shown in [50], for example, that a MIS can be computed
in unit disk graphs (as well as generalizations thereof) in time O(log∗n), which—in view
of Linial’s lower bound on the ring—is asymptotically optimal. Hence, in terms of local

43

computability, the vast family of unit disk graphs are equally hard as a simple ring network.
On the other hand, our lower bounds prove that general graphs are strictly harder, thus
separating these network topologies.

7 Acknowledgements

We thank the anonymous reviewers of the paper for various helpful comments. We also
thank Mika Göös for bringing the common lifts construction by [4] to our attention (used to
simplify the construction in Section 3.2). We are also grateful to Bar-Yehuda, Censor-Hillel,
and Schwartzman [7] for pointing out an error in an earlier draft [30] of this paper.

44

References

[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for general
networks. In J. van Leeuwen and N. Santoro, editors, WDAG, volume 486 of Lecture
Notes in Computer Science, pages 15–28. Springer, 1990.

[2] J. Akiyama, H. Era, and F. Harary. Regular graphs containing a given graph. Elem.
Math. 83, 83:15–17, 1983.

[3] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[4] D. Angluin and A. Gardiner. Finite common coverings of pairs of regular graphs. J.
Comb. Theory, Ser. B, 30(2):184–187, 1981.

[5] B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks. In Proc.
29th Symp. Foundations of Computer Science (FOCS), pages 206–219, 1988.

[6] B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In Proc. 32nd Symp. on Foundations of Computer
Science (FOCS), pages 258–267, 1991.

[7] R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. A distributed (2 +
ǫ)-approximation for vertex cover in O(log∆/ǫ log log∆) rounds. CoRR,
abs/1602.03713v2, 2016.

[8] L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, 2013.

[9] Y. Bartal, J. W. Byers, and D. Raz. Global optimization using local information with
applications to flow control. In Proc. 38 th Symp. on Foundations of Computer Science
(FOCS), pages 303–312, 1997.

[10] B. Bollobas. Extremal Graph Theory. Academic Press, 1978.

[11] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986.

[12] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak. Fast distributed approximations
in planar graphs. In Proc. 22nd Symp. on Distributed Computing (DISC), pages 78–92,
2008.

[13] E. D. Demaine, U. Feige, M. T. Hajiaghayi, and M. R. Salavatipour. Combination
can be hard: Approximability of the unique coverage problem. In Proc. of the 17th

ACM-SIAM Symposium on Discrete Algorithm (SODA), pages 162–171, 2006.

[14] E. W. Dijkstra. Self-stabilization in spite of distributed control. Manuscript EWD391,
Oct. 1973.

[15] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

45

[16] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast dis-
tributed algorithms for (weakly) connected dominating sets and linear-size skeletons. In
Proc. of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 717–724,
2003.

[17] M. Elkin. Distributed approximation - a survey. ACM SIGACT News - Distributed
Computing Column, 35(4), 2004.

[18] M. Elkin. An unconditional lower bound on the hardness of approximation of dis-
tributed minimum spanning tree problem. In Proc. of the 36 th ACM Symposium on
Theory of Computing (STOC), pages 331–340, 2004.

[19] P. Erdős and H. Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler
Knotenzahl. Wiss. Z. Martin-Luther-U. Halle Math.-Nat., 12:251–257, 1963.

[20] U. Feige, M. M. Halldórsson, G. Kortsarz, and A. Srinivasan. Approximating the
domatic number. SIAM Journal on Computing, 32(1):172–195, 2003.

[21] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed computing.
Distributed Computing, 16(2-3):121–163, 2003.

[22] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[23] L. Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM Journal on Discrete Mathematics, 13(4):505–520, 2000.

[24] P. Fraigniaud, A. Korman, and D. Peleg. Towards a complexity theory for local dis-
tributed computing. Journal of the ACM, 60(5):35, 2013.

[25] S. C. Goldstein, J. D. Campbell, and T. C. Mowry. Programmable matter. Computer,
38(6):99–101, 2005.

[26] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters, 22:77–80, 1986.

[27] L. Jia, R. Rajaraman, and R. Suel. An efficient distributed algorithm for construct-
ing small dominating sets. In Proc. of the 20 th ACM Symposium on Principles of
Distributed Computing (PODC), pages 33–42, 2001.

[28] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally!
In Proc. of the 23 rd ACM Symposium on the Principles of Distributed Computing
(PODC), pages 300–309, 2004.

[29] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In
Proc. of the 17 th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[30] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local computation: Lower and upper
bounds. CoRR, abs/1011.5470v1, 2010.

[31] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approxima-
tion. In Proc. of the 22nd Annual ACM Symp. on Principles of Distributed Computing
(PODC), pages 25–32, 2003.

46

[32] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, 1982.

[33] F. Lazebnik and V. A. Ustimenko. Explicit construction of graphs with an arbitrary
large girth and of large size. Discrete Applied Mathematics, 60(1-3):275–284, 1995.

[34] C. Lenzen, Y. A. Oswald, and R. Wattenhofer. What can be approximated locally? In
20th ACM Symposium on Parallelism in Algorithms and Architecture (SPAA), Munich,
Germany, June 2008.

[35] C. Lenzen, J. Suomela, and R. Wattenhofer. Local algorithms: Self-stabilization on
speed. In 11th International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS), Lyon, France, November 2009.

[36] C. Lenzen and R. Wattenhofer. Leveraging Linial’s locality limit. In Proc. 22nd Symp.
on Distributed Computing (DISC), pages 394–407, 2008.

[37] N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[38] N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–
454, 1993.

[39] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15:1036–1053, 1986.

[40] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: A system for large-scale graph processing. In Proceedings of the
International Conference on Management of Data (SIGMOD), 2010.

[41] M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

[42] H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local im-
provements. In Proc. of the 49 th Symposium on Foundations of Computer Science
(FOCS), pages 327–336, 2008.

[43] C. H. Papadimitriou and M. Yannakakis. On the value of information in distributed
decision making. In Proc. of the 10 th ACM Symposium on Principles of Distributed
Computing (PODC), pages 61–64, 1991.

[44] C. H. Papadimitriou and M. Yannakakis. Linear programming without the matrix. In
Proc. of the 25 th ACM Symposium on Theory of Computing (STOC), pages 121–129,
1993.

[45] M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–196,
2007.

[46] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs
on Discrete Mathematics and Applications, 2000.

[47] S. Plotkin, D. Shmoys, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Mathematics of Operations Research, 20:257–301, 1995.

47

[48] S. Rajagopalan and V. Vazirani. Primal-dual RNC approximation algorithms for set
cover and covering integer programs. SIAM Journal on Computing, 28:525–540, 1998.

[49] A. D. Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg,
and R. Wattenhofer. Distributed verification and hardness of distributed approxima-
tion. In SIAM Journal on Computing (special issue of STOC 2011), November 2012.

[50] J. Schneider and R. Wattenhofer. A log-star distributed maximal independent set algo-
rithm for growth-bounded graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada, August 2008.

[51] J. Schneider and R. Wattenhofer. Bounds on contention management algorithms. In
20th International Symposium on Algorithms and Computation (ISAAC), Honolulu,
USA, December 2009.

[52] A. Srinivasan. Improved approximations of packing and covering problems. In Proc. of
the 27th ACM Symposium on Theory of Computing (STOC), pages 268–276, 1995.

[53] A. Sterling. Memory consistency conditions for self-assembly programming. CoRR,
abs/0909.2704, 2009.

[54] J. Suomela. Survey of local algorithms. ACM Computing Surveys, 2011.

[55] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In Proc. of the
18 th Annual Conference on Distributed Computing (DISC), pages 335–348, 2004.

[56] N. E. Young. Sequential and parallel algorithms for mixed packing and covering. In
Proc. of the 42 nd Symposium on Foundations of Computer Science (FOCS), pages
538–546, 2001.

48

	1 Introduction
	1.1 Model and Notation
	1.2 Problem Definitions
	1.3 Contributions

	2 Related Work
	3 Local Computation: Lower Bound
	3.1 The Cluster Tree
	3.2 The Lower-Bound Graph
	3.3 Equality of Views
	3.4 Analysis

	4 Locality-Preserving Reductions
	4.1 Lower Bounds for Minimum Dominating Set
	4.2 Lower Bounds for Maximum Matching
	4.3 Lower Bounds for Maximal Matching
	4.4 Lower Bounds for Maximal Independent Set (MIS)
	4.5 Connected Dominating Set Lower Bound

	5 Local Computation: Upper Bounds
	5.1 Distributed Vertex Cover Algorithm
	5.2 Distributed Algorithm for Covering and Packing Linear Programs
	5.3 Randomized Rounding
	5.4 Connecting a Dominating Set
	5.5 Role of Randomization and Distributed Derandomization

	6 Conclusions & Future Work
	7 Acknowledgements

