Brief Announcement: Communication-Optimal Convex Agreement

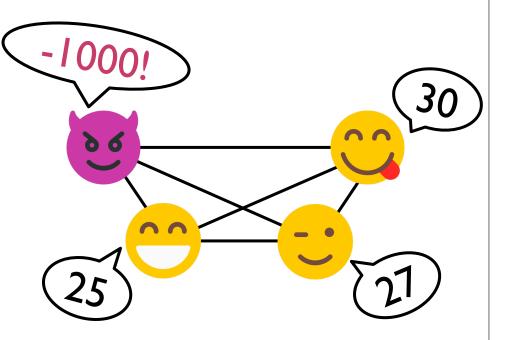
Diana Ghinea^{*}, Chen-Da Liu-Zhang^{*}, Roger Wattenhofer^{*}

* ETH Zürich

* Lucerne University of Applied Sciences and Arts & Web3 Foundation

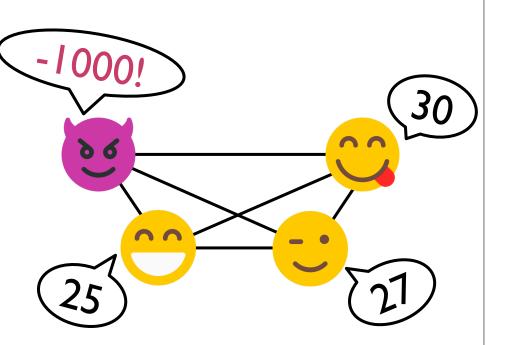
Byzantine Agreement

- \circ Consider *n* parties; t < n/3 of them byzantine.
- The network is synchronous.
- Each party has an input.
- Honest parties need to **agree** on a value...



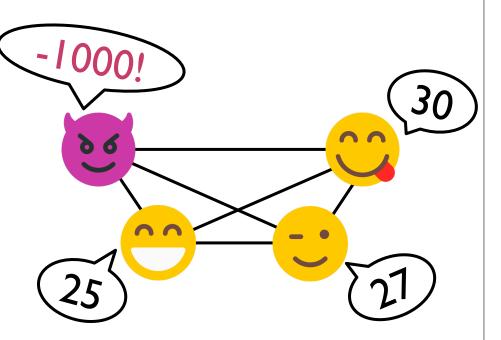
Byzantine Agreement

- \circ Consider *n* parties; t < n/3 of them byzantine.
- \circ The network is synchronous.
- Each party has an input.
- Honest parties need to **agree** on a value...
 - ... satisfying the following **validity** condition:
 - If all honest parties have input v, then the output agreed upon is v.
 - So, if honest parties have different inputs, they can agree on any value.



Convex Agreement

- \circ Consider *n* parties; t < n/3 of them byzantine.
- \circ The network is synchronous.
- \circ Each party has an input (for today in \mathbb{Z}).
- Honest parties need to **agree** on a value...
 - ... satisfying the following **validity** condition:
 - If all honest parties have input v, then the output agreed upon is v.
 - So, if honest parties have different inputs, they can agree on any value.
 - The output agreed upon must be in the honest inputs' range.



What is the optimal **comunication complexity** for Convex Agreement?

= number of bits sent by the honest parties

assuming they have ℓ -bit inputs.

- State-of-the-art solutions for Convex Agreement:
 0(ℓn²) bits, assuming honest parties have inputs of ℓ bits.
 ~ every party sends its input to everyone.
 - => parties gain information about the honest inputs' range.

-1000, 25, 27, 30

1000, 25, 27, 30

9 9

-1000, 25, 27, 30

- State-of-the-art solutions for **Convex Agreement**:
 - $O(\ell n^2)$ bits, assuming honest parties have inputs of ℓ bits.
 - \sim every party sends its input to everyone.
 - => parties gain information about the honest inputs' range.
- A lower bound, if honest parties have inputs of ℓ bits: $\Omega(\ell n)$.

9 9

 \sim one honest party sends its input to everyone.

- State-of-the-art solutions for **Convex Agreement**:
 - $O(\ell n^2)$ bits, assuming honest parties have inputs of ℓ bits.
 - \sim every party sends its input to everyone.
 - => parties gain information about the honest inputs' range.
- A lower bound, if honest parties have inputs of ℓ bits: $\Omega(\ell n)$.
 - ~ one honest party sends its input to everyone.
 - => less information about the honest inputs' range.

- State-of-the-art solutions for **Convex Agreement**:
 - $O(\ell n^2)$ bits, assuming honest parties have inputs of ℓ bits.
 - \sim every party sends its input to everyone.
 - => parties gain information about the honest inputs' range.
- A lower bound, if honest parties have inputs of ℓ bits: $\Omega(\ell n)$.
 - \sim one honest party sends its input to everyone.
 - => less information about the honest inputs' range.
- For **Byzantine Agreement**, $O(\ell n)$ bits are sufficient (for large enough ℓ)! However, existing solutions lose information about the honest inputs' range.

Our Result

- Convex Agreement can be achieved with asymptotically optimal communication complexity O(ℓn) for ℓ-bit inputs in ℤ! (for ℓ > n²log n · security parameter size)
- Our solution is a byzantine variant of the longest common prefix problem.
- Take a look at out paper!

eprint.iacr.org/2024/251