Wireless Algorithms

Roger Wattenhofer

... an oxymoron?

more recently?

Wireless Communication

EE, Physics
Maxwell Equations
Simulation, Testing
'Scaling Laws'

Network Algorithms

CS, Applied Math [Geometric] Graphs Worst-Case Analysis Any-Case Analysis CS Models: e.g. Disk Model (Protocol Model)

CS Models: e.g. Disk Model (Protocol Model)

CS Models: e.g. Disk Model (Protocol Model)

EE Models: e.g. SINR Model (Physical Model)

Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

$$\frac{\frac{P_u}{d(u,v)^{\alpha}}}{N+\sum_{w\in V\setminus\{u\}}\frac{P_w}{d(w,v)^{\alpha}}} \geq \beta$$

Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

Example: Protocol vs. Physical Model

Assume a single frequency (and no fancy decoding techniques!)

Example: Protocol vs. Physical Model

Assume a single frequency (and no fancy decoding techniques!)

Let α =3, β =3, and N=10nW

Transmission powers: $P_B = -15 \text{ dBm}$ and $P_A = 1 \text{ dBm}$

SINR of A at D:
$$\frac{1.26mW/(7m)^3}{0.01\mu W + 31.6\mu W/(3m)^3} \approx 3.11 \geq \beta$$
 SINR of B at C:
$$\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26mW/(5m)^3} \approx 3.13 \geq \beta$$

This works in practice!

... even with very simple hardware (sensor nodes)

Time for transmitting 20'000 packets:

	Time required	
	standard MAC	"SINR-MAC"
Node u_1	721s	267s
Node u_2	778s	268s
Node u_3	780s	270s

	Messages received	
	standard MAC	"SINR-MAC"
Node u_4	19999	19773
Node u_5	18784	18488
Node u_6	16519	19498

Speed-up is almost a factor 3

The Capacity of a Wireless Network

Measures for Capacity

Throughput capacity

- Number of packets successfully delivered per time
- Dependent on the traffic pattern
- E.g.: What is the maximum achievable rate, over all protocols, for a random node distribution and a random destination for each source?

Transport capacity

- A network transports one bit-meter when one bit has been transported a distance of one meter.
- What is the maximum achievable rate, over all node locations, and all traffic patterns, and all protocols?

Convergecast capacity

How long does it take to get information from all nodes to a sink
 Many more...

Transport Capacity

- n nodes are arbitrarily located in a unit disk.
- We adopt the protocol model with R=2, that is a transmission is successful
 if and only if the sender is at least a factor 2 closer than any interfering
 transmitter. In other words, each node transmits with the same power,
 and transmissions are in synchronized slots.
- Quiz: What configuration and traffic pattern will yield the highest transport capacity?
- Idea: Distribute n/2 senders uniformly in the unit disk. Place the n/2 receivers just close enough to senders so as to satisfy the threshold.

Transport Capacity: Example

Transport Capacity: Example

Transport Capacity: Understanding the example

• Sender-receiver distance is $\Theta(1/Vn)$. Assuming channel bandwidth W [bits], transport capacity is $\Theta(WVn)$ [bit-meter], or per node: $\Theta(W/Vn)$ [bit-meter]

- Can we do better by placing the sourcedestination pairs more carefully? No, having a sender-receiver pair at distance d inhibits another receiver within distance up to 2d from the sender. In other words, it kills an area of ⊕(d²).
- We want to maximize n transmissions with distances $d_1, d_2, ..., d_n$ given that the total area is less than a unit disk. This is maximized if all $d_i = \Theta(1/Vn)$. So the example was asymptotically optimal.
 - BTW, a fun open geometry problem: Given k circles with total area 1, can you always fit them in a circle with total area 2?

More capacities...

- The throughput capacity of an n node random network is $\Theta(\frac{W}{\sqrt{n\log n}})$
- There exist constants c and c' such that $\lim_{n\to\infty} \Pr[c\frac{W}{\sqrt{n\log n}}]$ is feasible] = 1

$$\lim_{n\to\infty} \Pr[c' \frac{W}{\sqrt{n\log n}} \text{ is feasible}] = 0$$

- Transport capacity:
 - Per node transport capacity decreases with $\frac{1}{\sqrt{n}}$
 - Maximized when nodes transmit to neighbors
- Throughput capacity:
 - For random networks, decreases with $\frac{1}{\sqrt{n \log n}}$
 - Near-optimal when nodes transmit to neighbors
- In one sentence: local communication is better

Even more capacities...

- Similar claims hold in the physical (SINR) model as well...
- There are literally thousands of results on capacity, e.g.
 - on random destinations
 - on power-law traffic patterns
 - communication through relays
 - communication in mobile networks
 - channel broken into subchannels
 - etc.

Practical relevance?

- Efficient access to media, i.e. MAC layer!
- This (and related) problem is studied theoretically:

Network Topology?

 All these capacity studies make very strong assumptions on node deployment, topologies

randomly, uniformly distributed nodes

nodes placed on a grid

etc.

'Scaling Laws'

"Classic" Capacity

How much information can be transmitted in nice networks?

'Scaling Laws'

"Classic" Capacity

How much information can be transmitted in nice networks?

Worst-Case Capacity

How much information can be transmitted in nasty networks?

'Scaling Laws'

- Data gathering & aggregation
 - Classic application of sensor networks
 - Sensor nodes periodically sense environment
 - Relevant information needs to be transmitted to sink
- Functional Capacity of Sensor Networks
 - Sink periodically wants to compute a function f_n of sensor data
 - At what rate can this function be computed?

Example: simple round-robin scheme

→ Each sensor reports its results directly to the root one after another

Networks Model/Power	Max. rate in arbitrary, worst-case deployment	Max. rate in random, uniform deployment
Protocol Model		
Physical Model (w/ power control)		

[Giridhar, Kumar, 2005]

Worst-Case Capacity

Networks
Max. rate in arbitrary,
worst-case deployment

Protocol Model

Physical Model
(w/ power control)

[Giridhar, Kumar, 2005]

Best-Case Capacity

Max. rate in random,
uniform deployment

 $[Moscibroda, W, 2006] \\ \hline Worst-Case Capacity \\ \hline Networks \\ Max. rate in arbitrary, \\ worst-case deployment \\ \hline Protocol Model \\ (w/ power control) \\ \hline \\ [Giridhar, Kumar, 2005] \\ \hline Max. rate in random, \\ uniform deployment \\ \hline \\ \Omega(1/log \ n) \\ \hline \\ \Omega(1/log \ n)$

[Moscibroda, W, 2006] [Giridhar, Kumar, 2005] **Worst-Case Capacity Best-Case Capacity Networks** Max. rate in arbitrary, Max. rate in random, uniform deployment worst-case deployment Model/Power $\Theta(1/n)$ $\Theta(1/\log n)$ Protocol Model Physical Model $\Omega(1/\log^3 n)$ $\Omega(1/\log n)$ (w/ power control)

Wireless Communication

EE, Physics

Maxwell Equations

Simulation, Testing

'Scaling Laws'

Network Algorithms

CS, Applied Math [Geometric] Graphs Worst-Case Analysis Any-Case Analysis

Possible Application – Hotspots in WLAN

Traditionally: clients assigned to (more or less) closest access point → far-terminal problem → hotspots have less throughput

Possible Application – Hotspots in WLAN

Potentially better: create hotspots with very high throughput Every client outside a hotspot is served by one base station Better overall throughput – increase in capacity!

Wireless Communication

EE, Physics
Maxwell Equations
Simulation, Testing
'Scaling Laws'

Network Algorithms

CS, Applied Math
[Geometric] Graphs
Worst-Case Analysis
Any-Case Analysis

Wireless Algorithms

CS & EE

SINR and more

Worst-Case Analysis

Any-Case Analysis

Wireless Algorithms

CS & EE

SINR and more

Worst-Case Analysis

Any-Case Analysis

On the time-complexity of broadcast in multi-hop radio networks [Bar-Yehuda, Goldreich, Itai , 1992]

Wireless Algorithms

CS & EE

SINR and more

Worst-Case Analysis

Any-Case Analysis

Distributed Protocols

On the time-complexity of broadcast in multi-hop radio networks [Bar Yehuda, Goldreich, Itai , 1992]

Wireless Communication 101

Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

Ratio β depends on receiver (hardware, software, parameters)

- Simple solutions have $\beta > 10$
 - But β < 1 is possible (thanks to forward error correction)

Ratio β depends on receiver (hardware, software, parameters)

- Simple solutions have $\beta > 10$
 - But β < 1 is possible (thanks to forward error correction)
- Algorithmically speaking, the exact value of β does not really matter, thanks to SINR robustness
 - [Halldorsson, W, 2009] and [Fanghänel, Kesselheim, Räcke, Vöcking, 2009]
 - Model not only robust with regard to β, but also with regard to other constant factor disturbances, for instance, wind, constant antenna gain, etc.
 - Concretely: If we adapt model by factor ϕ , results will change at most by factor ϕ^2 .

Ratio β depends on receiver (hardware, software, parameters)

- Simple solutions have $\beta > 10$
 - But β < 1 is possible (thanks to forward error correction)
- Algorithmically speaking, the exact value of β does not really matter, thanks to SINR robustness
 - [Halldorsson, W, 2009] and [Fanghänel, Kesselheim, Räcke, Vöcking, 2009]
 - Model not only robust with regard to β, but also with regard to other constant factor disturbances, for instance, wind, constant antenna gain, etc.
 - Concretely: If we adapt model by factor ϕ , results will change at most by factor ϕ^2 .

Modulation and demodulation

Digital modulation

- Modulation of digital signals known as Shift Keying
- Amplitude Shift Keying (ASK):
 - very simple
 - low bandwidth requirements
 - very susceptible to interference
- Frequency Shift Keying (FSK):
 - needs larger bandwidth

- Phase Shift Keying (PSK):
 - more complex
 - robust against interference

Phase Shift Keying 101

Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

$$P_r = \frac{P_s G_s G_r \lambda^2}{(4\pi)^2 d^2 L}$$

$$P_r = \frac{P_s G_s G_r h_s^2 h_r^2}{d^4}$$

$$P_r = \frac{P_s G_s G_r \lambda^2}{(4\pi)^2 d^2 L}$$

$$P_r = \frac{P_s G_s G_r h_s^2 h_r^2}{d^4}$$

 $\alpha \ge \text{Dimension}$ 2nd law of thermodyn.

Wireless Propagation Depends on Frequency

Path-loss-exponent α : Near-Field Effects

$$P_r = \frac{P_s G_s G_r \lambda^2}{(4\pi)^2 d^2 L}$$

$$d \ll 1?$$

Path-loss-exponent α : Near-Field Effects

... in other words, algorithmic papers should rule out near-field effects

Real World Examples

Attenuation by objects

- Shadowing (3-30 dB):
 - textile (3 dB)
 - concrete walls (13-20 dB)
 - floors (20-30 dB)
- reflection at large obstacles
- scattering at small obstacles
- diffraction at edges
- fading (frequency dependent)

reflection

scattering

diffraction

Multipath

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

Time dispersion: signal is dispersed over time

Multipath

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Time dispersion: signal is dispersed over time
- Interference with "neighbor" symbols: Inter Symbol Interference (ISI)

Multipath

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Time dispersion: signal is dispersed over time
- Interference with "neighbor" symbols: Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted. Distorted signal depending on the phases of the different parts

There's much more...

There's much more...

Analog Network Coding

Advanced Algorithms?

Quiz: How to Build a Multi-Hop Alarm System

Problem: More than 1 node may sense problem at the same time. Potentially we have a massive interference problem!

Quiz: How to Build a Multi-Hop Alarm System

Problem: More than 1 node may sense problem at the same time. Potentially we have a massive interference problem!

Quiz: How to Build a Multi-Hop Alarm System

Problem: More than 1 node may sense problem at the same time.

Potentially we have a massive interference problem!

...followed by verification (1% false positives outdoors)

Media Access: Theory and Practice

Media Access: Theory and Practice

Media Access: Theory and Practice

Ultrasound

(A different kind of communication)

Ultra-Wideband (UWB)

- An example of a new physical paradigm.
- Discard the usual dedicated frequency band paradigm.
- Instead share a large spectrum (about 1-10 GHz).
- Modulation: Often pulse-based systems. Use extremely short duration pulses (sub-nanosecond) instead of continuous waves to transmit information. Depending on application 1M-2G pulses/second

Summary

Thank You!

Questions & Comments?

Roger Wattenhofer