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Abstract. Distributed distance oracles consist of a labeling scheme
which assigns a label to each node and a local data structure deployed
to each node. When a node v wants to know the distance to a node u,
it queries its local data structure with the label of u. The data structure
returns an estimated distance to u, which must be larger than the actual
distance but can be overestimated. The accuracy of the distance oracle
is measured by stretch, which is defined as the maximum ratio between
actual distances and estimated distances over all pairs (u, v).

In this paper, we focus on the time complexity of constructing dis-
tributed distance oracles with a given stretch. We show a number of
time lower bounds depending on the stretch:

– Under the assumption that the popular combinatorial girth con-
jecture is true, any distributed algorithm constructing oracles with
stretch 2t requires Ω̃(n1/(t+1)) rounds in unweighted graphs. This
bound holds even if we only consider constant diameter graphs.

– For oracles with stretch 2t in weighted graphs, we have a lower bound

of Ω(n
1
2
+ 1

5t ) rounds, assuming the girth conjecture. This bound
holds even if we only consider O(log n) diameter graphs.

– If we restrict the label size of oracles to o(nε) bits, where ε =
1/2t(t+1) in unweighted graphs and ε = (1/5t2) in weighted graphs,
the same lower bounds are obtained without assuming the girth con-
jecture.

To the best of our knowledge, this paper is the first that exhibits a
non-trivial trade-off between time and stretch for distributed distance
oracles.

1 Introduction

1.1 Background

The primary objective of routing protocols is to identify paths from sources to
destinations, in order to route packets efficiently. While there are a number of
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criteria to measure efficiency (delay, bandwidth, reliability, and so on), the most
popular choice for selecting a good path is the path’s length (i.e., distance be-
tween two nodes). In other words, Internet routing is still often synonymous
to shortest path routing. A well-known example is the distance-vector routing
protocol BGP. Often, real-world routing protocols weigh the edges of the net-
work to measure distance more precisely. Sometimes, this weight information is
somewhat hidden. In the case of BGP, for example, a technique called AS-path
prepending is used, where a node includes itself in the route several times in
order to give an edge more weight, i.e. to discourage other nodes from routing
through it.

Regarding distributed complexity, many distance problems are recognized as
so-called global problems. That is, their distributed time-complexity is Ω(Δ),
where Δ is the unweighted (hop-count) diameter of the network. A common
naive solution for such global problems is the centralized approach: A single node
aggregates the whole topological information of the network (and the weights of
all edges in the case of weighted graphs), and computes the solution locally. This
solution gives a O(Δ)-time matching upper bound for the model with unbounded
communication on each edge. However, for large networks, this unbounded (often
also called LOCAL) message passing model becomes unreasonable. Instead one
should assume that communication messages are limited. An established model
for distributed computation is the so-called CONGEST message passing model.
It allows each message to have at most O(log n) bits, where n is the number
of all nodes in the network. In this model, it is known that the conventional
all-pairs distance computation or approximation requires Ω̃(n) rounds [5,11]
even in unweighted graphs with constant diameters.1 On the other hand, near
tight upper bounds are also known for both weighted and unweighted graphs.
In unweighted graphs, there is an algorithm constructing all-pair shortest paths
in O(n) rounds [9,6], and in weighted graphs, there is an algorithm computing
an (1 + o(1))-approximation of all-pairs distances in Õ(n) rounds [11]. These
results imply that all-pairs distance computation is an expensive task, even in
the approximation case.

1.2 Distance Oracles

The inherent difficulty behind the all-pairs distance computation is that each
node must fill out its own distance table of n−1 entries (one of which corresponds
to the distance to some other node). In other words, it is inherently necessary
that each node must receive Ω(n) bits of information to fill out the table of size
Θ(n). However, if we can have a more compact representation of distance tables,
its construction can be achieved in sublinear time. This observation yields to
the problem of distributed distance oracles. A distance oracle is a subquadratic-
size data structure storing all-pairs approximated distances, which was originally
introduced in the context of centralized algorithms [14]. A distributed distance

1 The tilde complexity notation Õ(f(n)) hides a polylogarithmic factor in n, usually,
in this line of work, caused by the O(log n) bits allowed in each message.
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oracle consists of a labeling scheme giving a label to each node and a local data
structure deployed to each node v in the network. When a node v wants to know
the distance to another node u, v queries its local data structure with the label of
u. The data structure returns an estimated distance to u, which must be larger
than the actual distance but can be overestimated. The approximation factor
of distance oracles is also called stretch, which is defined as the maximum ratio
between actual distances and estimated distances over all pairs (u, v).

There have been two results about the construction time of distributed dis-
tance oracles so far. The first one is by Das Sarma et al. [1], which gives an algo-
rithm guaranteeing stretch 2t − 1, Õ(n1/t)-bit label size, and Õ(n1/tΔ′)-round
construction time, where t is a parameter trading time, space, and stretch, and
Δ′ is the shortest-path diameter of the graph (i.e., the maximum hop length over
all-pairs shortest paths.2. Since Δ′ can become linear of n at the worst-case, the
construction time of this algorithm can be superlinear. A second paper by Lenzen
and Patt-Shamir [8] proposes an algorithm with stretch 2t(8t−3), O(t(log n))-bit
label size, and Õ(n1/2+1/2k+Δ)-round construction time. It also shows that any
distributed distance oracle algorithm achieving an arbitrary non-trivial stretch
must have Ω̃(

√
n) construction time.

1.3 Our Contribution

In this paper, we present several time lower bounds for the construction of dis-
tributed distance oracles. The primary results of our paper are new improved
lower bounds depending on stretch. More precisely, our contributions are as
follows:

– Under the assumption that the popular combinatorial girth conjecture is
true, any distributed algorithm constructing oracles with stretch 2t requires
Ω̃(n1/(t+1)) rounds in unweighted graphs. This bound holds even if we only
consider constant diameter graphs.

– For oracles with stretch 2t in weighted graphs, we have a lower bound of
Ω(n

1
2+

1
5t ) rounds, assuming the girth conjecture. This bound holds even if

we only consider O(log n) diameter graphs.
– If we restrict the label size of oracles to o(nε) bits, where ε = 1/2t(t + 1)

in unweighted graphs and ε = (1/5t2) in weighted graphs, the same lower
bounds are obtained without assuming the girth conjecture.

To the best of our knowledge, these are the first results that exhibit a non-
trivial trade-off between construction time and stretch.

1.4 Related Work

For unweighted graphs, there has been a lot of progress to understand the dis-
tributed complexity [9,5,6,12,2] of distance problems such as the single-source

2 Note that Δ ≤ Δ′ always holds because for the pair (u, v) giving the hop-count
diameter path, the hop-length of the shortest path between u and v cannot be
shorter than Δ.
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shortest paths, all-pairs shortest paths, diameter, and distance oracles. A first
paper by Frischknecht et al. [5] showed an Ω̃(n)-time lower bound for the ex-
act diameter computation in unweighted networks with constant diameters. A
matching upper bound was shown by Holzer at al. [6], and Lenzen and Peleg [9];
they concurrently and independently proposed almost the same O(n)-time al-
gorithm for all-pairs shortest paths. The hardness of the approximated diame-
ter computation is also considered. An easy solution for a 2-approximation of
the diameter is to construct a shortest path tree rooted at an arbitrary node
u. Since shortest path trees and breadth-first search (BFS) are equivalent in
unweighted networks, a 2-approximation is trivially achieved in O(Δ) time by
running a simple BFS-tree construction. A result by [5] also showed that any
3/2-approximation algorithm for the diameter problem requires Ω̃(

√
n) time.

This lower bound is improved to Ω̃(n) by [6]. Interestingly, regarding upper
bounds, Peleg et al. showed that a 3/2-approximated value of Δ is computable
in Õ(

√
nΔ) time [12]. A recent paper [9] improves this time bound for a 3/2-

approximation to an additive Õ(
√
n + Δ) time. Holzer and et al. [6] show a

more accurate approximation algorithm for the network diameter problem with
O(n/Δ + Δ) running time. Its approximation factor is (1 + ε) for an arbitrary
small constant ε < 1.

While a rich literature exists for unweighted networks, only a few papers
consider distance problems in weighted networks. To the best of our knowledge,
there are three papers directly related to weighted graphs. Das Sarma et al. [1]
and Lenzen and Patt-Shamir [8] we already discussed in the introduction. The
paper by Lenzen and Patt-Shamir [8] also considers several related problems,
including (all-pairs) shortest paths or diameter. In addition there is a very recent
result by Nanongkai [11]. It proposes faster distributed approximation algorithms
for single-source shortest paths and all-pairs shortest paths.

1.5 Roadmap

The paper is organized as follows: We introduce fundamental definitions and
notations in Section 2. In Section 3, we give our lower bound proof for unweighted
graphs. It is extended to the weighted case in Section 4. The case for bounded
label size oracles is considered in Section 5. Finally in Section 6, we conclude
this paper.

2 Preliminaries

2.1 Round-Based Synchronous Systems

A distributed system consists of n nodes interconnected with communication
links. We model it by a weighted undirected graph G = (V,E,w), where V =
{v0, v1, · · · , vn−1} is the set of nodes, E ⊆ V × V is the set of links (edges), and
w : E → N is the edge-weight function. Since we consider undirected graphs,
w(u, v) = w(v, u) holds for any u, v ∈ V . We also consider the system modeled
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by unweighted graphs, which is a special case of weighted graphs where every
edge has weight one.

Executions of the system proceed with a sequence of consecutive rounds. In
each round, each process sends a (possibly different) message to each neighbor,
and within the round, all messages are received. After receiving its messages,
each process performs local computation. Throughout this paper, we restrict the
number of bits transmittable through any communication link per one round to
O(log n) bits. This is known as the CONGEST model. Note that in weighted
networks the weight of each edge does not imply the delay of communication.
It is guaranteed that messages transferred through weighted edges reach their
destinations within one round.

A path P between u and v is a sequence u = u0, u1, · · ·uk = v such that
(ui−1, ui) ∈ E holds for any i (1 ≤ i ≤ k). The distance between u and v in
graph G is the weighted length of the shortest path between them, which is
denoted by dG(u, v).

2.2 Problem Definition

The distributed distance oracle is defined as the problem of constructing a la-
beling scheme λ : V → L, where L is the domain of labels, and a local data
structure destv : L → Z deployed to each node v ∈ V , which locally computes
the distance estimation from v by giving the label λ(u) of any target node u. The
value destv(λ(u)) returned by the local oracle at node v is always lower at least
the actual distance dG(u, v). The stretch of a distributed distance oracle is de-
fined as maxu,v∈V destv(λ(u))/dG(v, u). The label size of a distributed distance
oracle is defined as �log |L|�.

3 Lower Bound for Unweighted Graphs

3.1 Two-Party Communication Complexity

Communication complexity, which was first introduced by Yao [15], reveals the
amount of communication to compute a global function whose inputs are dis-
tributed in the network. The most successful scenario in communication com-
plexity is two-party communication complexity, where two players, called Alice
and Bob, have x-dimensional 0-1 vectors a and b respectively, and compute a
global function f : {0, 1}x×{0, 1}x → {0, 1}. The communication complexity of
a two-party protocol is the number of one-bit messages exchanged by the pro-
tocol for the worst case input (if the protocol is randomized, it is defined as the
expected number of bits exchanged for the worst-case input). One of the most
useful problems in communication complexity theory is set-disjointness:

Definition 1. The x-bit set-disjointness function disj x : {0, 1}x × {0, 1}x →
{0, 1} is defined as follows:

disj x(a,b) =

{
1 if ∃i ∈ [0, x− 1] : ai = bi = 1,
0 otherwise
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For this problem, the following theorem is known [13,7].

Theorem 1. The communication complexity of the x-bit set-disjointness prob-
lem is Ω(x).

In the following argument, we use a slightly different form of the set-disjointness
problem:We first introduce a base graphH = (W,F ) such that |W | = N , |F | = M
for some value N > 0 and M > 0. Alice and Bob respectively have subsets Fa

and Fb of F as their inputs. The goal of the two-party computation is to decide
if (W,Fa ∪ Fb) = H holds or not. This problem is equivalent to the M -bit set-
disjointness problem, i.e., each edge inG is one-bit entry of the set-disjointness, and
e ∈ Fa (resp. e ∈ Fb) implies that Alice’s (resp. Bob’s) corresponding bit is set to
zero. Thus by Theorem 1, the communication complexity of this problem isΩ(M).
In what follows, we refer to this form of the set-disjointness problem as the graphic
set-disjointness overH . If an instance (Fa, Fb) satisfies Fa ∪ Fb = F , we say that
(Fa, Fb) is disjoint. Otherwise we say that (Fa, Fb) is intersecting. Two examples
of the graphic set-disjointness are shown in Figure 1, where one instance is disjoint
and another is intersecting. The black (resp. gray) lines represent the edges Alice
and Bob have (resp. does not have), and the dotted line in the intersecting case is
the the edge commonly lost by both players).

(a) Base graph
(N=6, M =7)

(b) Input for Alice and Bob (disjoint case)
Alice Bob

(c) Input for Alice and Bob (intersecting case)
Alice Bob

Fig. 1. Two examples of graphic set-disjointness instances
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3.2 Gadget Construction

The core of the lower bound proof is a reduction from the graphic set-disjointness
over some large-girth graph. The reduction scheme itself is similar to one intro-
duced by [5]. This subsection shows the construction of the gadget for the reduc-
tion from the graphic set-disjointness over H = (W,F ). The constructed graph
is denoted by ΓH,γ(Fa, Fb), where γ is a design parameter and (Fa, Fb) is any
instance of the graphic set-disjointness over H . Letting ΓH,γ(Fa, Fb) = (V,E),
V and E are constructed by the following steps:

1. The set of nodes V consists of two groups of N nodes W a =
{wa

0 , w
a
1 , · · · , wa

N−1} and W b = {wb
0, w

b
1, · · · , wb

N−1}.
2. For any i, 0 ≤ i ≤ N − 1, each pair (wa

i , w
b
i ) is connected by an edge. The

path (of length one) added in this step is called an intra-cluster path.
3. Each pair (wa

i , w
a
j ) ∈ W a (resp. (wb

i , w
b
j) ∈ W b) is connected by a path of

length γ if and only if (wi, wj) ∈ Fa (resp. (wi, wj) ∈ Fb) (γ > 0). The path
added in this step is called an inter-cluster path.

Informally,ΓH,γ(Fa, Fb) behaves as theweighted version of graphH
′ = (W,Fa∪

Fb) (where each edge hasweight γ).We can observe its behavior easily by clustering
node pairwa

i andw
b
i for each i ∈ [0, N−1]. Figure 2 gives an alternative drawing of

ΓH,γ(Fa, Fb) for the instance shown in Figure 1. Each light-gray band corresponds
to an edge e in H , which contains at least one actual path of length γ if and only
if e ∈ Fa or e ∈ Fb holds. For this construction, we can show the following lemma:

Path of length 

Simulated by BobSimulated by Alice

Path of length one

Fig. 2. Construction of ΓH,γ(Ea, Eb) for the disjoint instance in Figure 1

Lemma 1. Let (Fa, Fb) be an instance of the graphic set-disjointness over H =
(W,F ), H ′ = (W,Fa∪Fb), and Γ = ΓH,γ(Fa, Fb) for short. Then, for any integer
k > 0, the following two properties hold:
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Fig. 3. An alternative view of ΓH,γ(Ea, Eb) shown in Figure 2

– If dH′ (wi, wj) = 1 (i �= j), dΓ (w
a
i , w

a
j ) ≤ γ + 2.

– If dH′ (wi, wj) = k (k > 1, i �= j), dΓ (w
a
i , w

a
j ) ≥ kγ.

Proof. If dH′ (wi, wj) = 1, (wi, wj) ∈ Fa or (wi, wj) ∈ Fb holds. It implies that Γ
contains an inter-cluster path between wa

i and wa
j or wb

i and wb
j . Since Γ always

contains the edges (wa
i , w

b
i ) and (wb

j , w
b
j), the first property obviously holds.

We look at the second property. Suppose for contradiction that there exists a
simple path P between wa

i and wa
j whose length is less than kγ. Note that P is

a concatenation of several inter-cluster paths and intra-cluster paths. It implies
that P contains at most k−1 inter-cluster paths. Now let P ′ be the path obtained
from P by contracting all the intra-cluster paths. Since P ′ is the concatenation
of several inter-cluster paths, it can be represented by some sequence of the
nodes where two inter-cluster paths are concatenated. Let wα0

β0
, wα1

β1
, · · · , wαl

βl
be

that sequence (0 < l ≤ k − 1). Then, for any x ∈ [0, l − 1], wαx

βx
and w

αx+1

βx+1

must be connected by an inter-cluster path. That is, either (wβx , wβx+1) ∈ Fa

or (wβx , wβx+1) ∈ Fb must hold. However, it implies that H ′ = (W,Fa ∪ Fb)
contains a path from wi to wj with length l(< k). It is a contradiction. �

The main theorem utilizes the conjecture below:

Conjecture 1 (Girth conjecture). For any integers N and t, there exists a graph
Ht,N of N nodes and Θ(N1+1/t) edges whose girth is at least 2t+ 2.

Theorem 2. Assume that the girth conjecture is true for some constant t > 0.
Let ALG be a distributed algorithm constructing distance oracles with stretch 2t.

Then, its worst-case running time τ(n) must satisfy τ(n) ≥ Ω
(
n

1
t+1 / logn

)
.

Proof. The theorem is proved by the reduction from the graphic set-disjointness
over Ht,N claimed in Conjecture 1 (the value of N is determined later). That is,
we construct from ALG a two-party protocol solving the graphic set-disjointness
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problem over Ht,N for any instance (Fa, Fb). The core of the construction is to
simulate the run of ALG in ΓHt,N ,8t(Fa, Fb). Let Γ = ΓHt,N ,8t(Fa, Fb) for short.
Alice simulates all the processes in W a and Bob those in W b. To make the sim-
ulation proceed, both Alice and Bob need to obtain the messages exchanged on
intra-cluster paths in the run of ALG. Since there are N intra-cluster paths, the
amount of the information transmitted through the paths is at most O(N logn)
bits per one round. Thus to complete the simulation, it suffices that Alice and
Bob totally exchange O(τ(n)N logn)-bit messages. After the simulation, Al-
ice checks the distance of each pair (wa

i , w
a
j ) ∈ F by querying it to wa

i ’s local
oracle. Note that this query is locally processed at Alice. From Lemma 1, if
(wa

i , w
a
j ) ∈ Fa ∪Fb holds, the distance between wa

i and wa
j in Γ is at most 8t+2

(remind γ = 8t). Hence the distance estimated by the oracle is at most 2t(8t+2).
On the other hand, if (wi, wj) �∈ Fa ∪ Fb, the distance between wi and wj in
the graph Ht,N \ (wi, wj) is at least 2t+ 1 because the girth of Ht,N is at least
2t+2. Thus, by Lemma 1, the distance between wa

i and wb
j is at least 8t(2t+1).

These two facts imply that Alice can determine the disjointness of (Fa, Fb) from
the query results: If all the queries return values at most 2t(8t+ 2), (Fa, Fb) is
disjoint. Otherwise, it is intersecting. Finally Alice sends one-bit information of
the decision.

The two-party protocol explained above totally consumes O(τ(n)N logn)
bits in the worst case, which must be lower bounded by the communication
complexity of the graphic set-disjointness over Ht,N , that is, Ω(N1+1/t) bits.
Now we rewrite variable N by using only n and t. Since the number n of
nodes in ΓHt,N ,8t(Fa, Fb) is 2N + (8t − 1) · Θ(N1+1/t) = Θ(tN1+1/t), N =

Θ((n/t)t/(t+1)) holds. Since t is a constant, we have N = Θ(nt/(t+1)). Thus
the total amount of messages exchanged by the proposed two-party protocol is
Θ((nt/(t+1) ·(τ(n) log n)). Since this is bounded by Ω(N1+1/t) = Ω(n). It follows
that τ(n) = Ω(n1/(t+1)/ logn). The theorem is proved. �

4 Lower Bound for Weighted Graphs

The lower bound in the previous section is extended to a stronger lower bound
for weighted graphs. The fundamental idea of the extension is to utilize the
framework by Das Sarma et al. [2]. Given values N and t, let N− = N

1
2− 1

5t and

N+ = N
1
2+

1
5t for short. For simplicity, we assume that N+ is a power of two.

Note that this assumption is not essential and easily removed without affecting
the asymptotic complexity we prove in this section. The gadget graph Γ ′

H(Fa, Fb)
(say Γ ′ for short) is built by the following steps:

1. We first prepare N− paths of length N+, each of which is denoted by
Pi (0 ≤ i ≤ N− − 1). The nodes constituting Pi are identified by
v(i,0), v(i,1), · · · , v(i,N+−1) from left to right. The weight of each edge con-
stituting these paths is one. Furthermore, we give an alias to each end-
point node. We refer to nodes v(i,0) and v(i,N+−1) as wa

i and wb
i respec-

tively (0 ≤ i ≤ N− − 1). We also define W a = {wa
0 , w

a
1 , · · ·wa

N−−1} and

W b = {wb
0, w

b
1, · · ·wb

N−−1}.
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2. Construct a complete binary tree with N+ leaves. The leaf nodes in the tree
are labeled by u0, u1, · · ·uN+−1 from left to right. The weight of edges in the
tree is 100N+N−t2.

3. Add edges (ui, v(j,i)) for any i ∈ [0, N+−1] and j ∈ [0, N−−1]. These edges
also has weight 100N+N−t2.

4. Encode the instance (Fa, Fb) to the graph induced by W a and W b. That is,
an edge (wa

i , w
a
j ) (resp. (w

b
i , w

b
j)) is connected by an edge of weight 8tN+ if

and only if (wi, wj) ∈ Fa (resp. (wi, wj) ∈ Fb).

The whole construction is illustrated in Figure 4. Note that the number n of
nodes in Γ ′

H(Fa, Fb) is Θ(N), and its diameter is D = O(log n). This gadget has
a structure similar to the unweighted case. We have the following lemma:

Lemma 2. Let (Fa, Fb) be an instance of the graphic set-disjointness problem
over H = (W,F ), and H ′ = (W,Fa ∪Fb) for short. Then, for any integer k > 0,
the following two properties hold:

– If dH′ (wi, wj) = 1 (i �= j), dΓ ′ (wa
i , w

a
j ) ≤ (8t+ 2)N+.

– If dH′ (wi, wj) = k (k > 1, i �= j), dΓ ′(wa
i , w

a
j ) ≥ 8tkN+.

Proof. Since all the edges augmented in Step 2 and 3 of the construction are
too heavy, they are not contained in the shortest path between wa

i and wb
j for

any i and j. Thus we can omit those edges in the proof (in Figure 4, they
are grayed out). Then, the graph Γ ′ = Γ ′

H(Fa, Fb) can be seen as a weighted
version of Γ = ΓH,8t(Fa, Fb): The length of the path between wa

i and wb
i (0 ≤

i ≤ N− − 1) is N+ (which corresponds to intra-cluster paths in Γ ) and each
edge between (wa

i , w
a
j ) ∈ Fa (resp. (wb

i , w
b
j) ∈ Fb) has weight 8tN

+. That is, we
have dΓ ′(wa

i , w
a
j ) = N+ · dΓ (wa

i , w
a
j ). Consequently, the lemma is deduced from

Lemma 1. �
The following theorem is the core of the reduction.

Theorem 3 (Das Sarma et al. [2]). Let ALG be any algorithm running on
the graph Γ ′, where H is an arbitrary graph of N− nodes. Then there exists a
two-party protocol satisfying the following three properties:

– At the beginning of the protocol, Alice (resp. Bob) knows the whole topological
information of Γ ′ except for the subgraph induced by W b (resp. W a),

– after the run of the protocol, Alice and Bob output the internal states of the
processes in W a and W b at round N+/2 in the execution of ALG, respec-
tively, and

– the protocol consumes at most O(N+(logn)2)-bit communication.

While the graph used in this paper is a slightly modified version of the original
construction in [2], the theorem above is proved in the almost same way. So we
just quote it without the proof.

The theorem above induces our lower bound via a reduction from two-party
graphic set-disjointness:
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Fig. 4. Construction of Γ ′
H(Fa, Fb)

Theorem 4. Assume that the girth conjecture is true for some constant t > 0.
Let ALG be an algorithm constructing distributed (weighted) distributed distance
oracles with stretch 2t. Then, its worst-case running time τ(n) must satisfy

τ(n) = Ω(N+) = Ω
(
n

1
2+

1
5t

)
.

Proof. The proof is almost the same as Theorem 2. Letting Ht,N− be the graph
claimed inConjecture 1 and (Fa, Fb) be any instance of the graphic set-disjointness
overHt,N− , we consider the run of ALG in the graph Γ ′

Ht,N− (Fa, Fb). Suppose for

contradiction that τ(n) < N+/2 holds. Then, by Theorem 3, we can have a two-
party protocol where Alice and Bob simulate the run of ALG at the processes
in W a and W b respectively. After the simulation, Alice queries the distance be-
tween wa

i and wb
j for each (wi, wj) ∈ F . Then, by Lemma 2 and the same argu-

ment as the proof of Theorem 2, Alice can determine the disjointness of (Fa, Fb).
That is, if all the queries return values at most 2t(8t+ 2)N+, (Fa, Fb) is disjoint.
Otherwise, it is intersecting. Finally Alice sends the one-bit information of the
decision. By Theorem 3, this protocol consumes only O(N+(logn)2)-bit commu-
nication for deciding the disjointness of (Fa, Fb). However, the communication
complexity of the graphic set-disjointness overHt,N− is bounded by the number of
edges in the base graphHt,N− . That is, from Conjecture 1, it is lower bounded by

Ω((N−)(1+1/t)) = Ω((N
1
2− 1

5t )(1+1/t)) = Ω(N
1
2+

1
5t+ε) = ω(N+(log n)2), where ε

is a small constant (depending on t). It is a contradiction. �
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5 Lower Bound for Bounded Label Size Oracles

In this section, we present an unconditional lower bound for the case of bounded
label size oracles. For lack of space, we only focus on the bound for unweighted
graphs, but its result is easily extended to the weighted case by combining the
argument in Section 4.

The fundamental idea follows the proof in Section 3. We construct a reduction
from the two-party graphic set-disjointness. The main difference is that we use
a graph of Θ(N1+1/t−ε) nodes with girth (2t + 2) as the base graph (where ε
is a small constant depending on t), but augment only N intra-cluster paths
crossing Alice and Bob sides. The following lemma is an alternative to the girth
conjecture.

Lemma 3. Let ε ≤ 1/2t2. For any sufficiently large integer N , there exists a
bipartite graph H = (U ∪ W,F ) such that |U | = N1+1/t−ε, |W | = N , and
|F | = N1+1/t hold and the girth is at least 2t+ 2.

Proof. The proof idea is based on the seminal one by Erdos’s probabilistic
method, which shows an existence of the graph with high chromatic number
and girth [3,4]. We consider the random construction of a bipartite graph H∗

whose node set is U ∪ W . That is, fixing the vertex set U and W , for each
pair (u,w) ∈ U ×W , we add an edge with probability 1/N1−ε. Then the graph
H∗ satisfies the following two properties with a non-zero probability: (1) The
number of edges is Ω(N1+1/t), and (2) there are only o(N1+1/t) cycles with a
length less than or equal to 2t. Once we find a graph H∗ with both properties,
the desired graph H is obtained from H∗ by removing o(N1+1/t) edges from
each short cycle, which still have Ω(N1+1/t) edges but there is no cycle with
length less than 2t+ 2 (remind that the graph is bipartite and thus there is no
cycle of length 2t+1). Thus the remaining part of the proof is to show that the
properties (1) and (2) are simultaneously satisfied with a non-zero probability.
More precisely, it suffices to show that each property is satisfied with a proba-
bility more than 1/2. Then using the union bound, the probability that either
property (1) or (2) fails becomes strictly smaller than one.

The first property is almost trivial. Let X be the number of edges in H ′. Since
the variable X is the sum of independent Poisson trials, we can apply Chernoff
bounds [10]. Then it is not difficult to obtain Pr[X < E[X ]/2] = o(1). That is,
X ≥ E[X ]/2 holds with probability more than 1/2. The expected number E[X ]
of edges in H ′ is |U ||W | · (1/N1−ε) = N1+1/t, and thus the first property holds.

We look at the second property. Let Y be the number of cycles with length
less than 2t+2 in H ′. The probability that a given sequence of 2k nodes (k ≤ t)
form a cycle is obviously bounded by (1/N1−ε)2k. Since we assume ε ≤ 1/2t2,
the expected number E[Y ] is bounded as follows:
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E[Y ] =
t∑

k=1

(
N1+ 1

t −ε

k

)(
N

k

)
·
(

1

N1−ε

)2k

≤ tN t(1+ 1
t −ε)N t ·N−2t(1−ε)

≤ tN1+εt

≤ O(N1+1/2t),

Using Markov’s inequality [10], we can have

Pr[Y ≥ 3E[Y ]] ≤ E[Y ]/(3E[Y ]) = 1/3.

Thus the property (2) is also satisfied with probability more than 1/2. The
lemma is proved. �

Let H = (U ∪W,F ) be the graph proposed in Lemma 3 for ε = 1/2t2. The
gadget graph Γ̂H,8t(Fa, Fb) to encode the graphic set-disjointness (Fa, Fb) overH
is constructed similarly to ΓH,8t(Fa, Fb) in Section 3. Only the difference is that
we connect Alice and Bob sides only by edges (wa

i , w
b
i ) for any i (0 ≤ i ≤ N−1),

but not connect ua
i and ub

i . The constructed gadget is presented in Figure 5. We
define Ua = {ua

0 , u
a
1, · · · , ua

N−1} and U b = {ub
0, u

b
1, · · · , ub

N−1}.

Path of length 

Simulated by BobSimulated by Alice

Path of length one

�
�
�

�
�
� �
�
�

�
�
�

Fig. 5. Construction of Γ̂H,8t(Fa, Fb)

For this construction, we can have a lemma analogous to Lemma 1.

Lemma 4. Let (Fa, Fb) be an instance of the graphic set-disjointness over H,
H ′ = (U,W,Fa ∪ Fb), and Γ̂ = Γ̂H,8t(Fa, Fb) for short. Then, for any integer
k > 0, the following two properties hold:
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Fig. 6. Construction of the gadget for weighted and bounded label-size oracles

– If (wi, uj) ∈ Fb, dΓ̂ (w
a
i , u

b
j) ≤ (8t+ 1).

– If (wi, uj) �∈ Fa ∪ Fb, dΓ̂ (w
a
i , u

b
j) ≥ 8t(2t+ 1).

While the proof is omitted for lack of space, it is almost the same as that for
Lemma 1. We show the main theorem:

Theorem 5. Let ALG be an algorithm constructing distributed distance oracles
with stretch 2t and o(n1/2t(t+1))-bit label size. Then, its worst-case running time

τ(n) must satisfy τ(n) ≥ Ω
(
n

1
t+1 / logn

)
.

Proof. The proof basically follows that for Theorem 2. To construct a two-party
graphic set-disjointness protocol, Alice and Bob simulate the internal states of
the processes W a and Ua, and W b and U b in the run of ALG, respectively. After
the simulation, since Bob knows all the labels assigned to the nodes in U b, it sends
them to Alice. This information allows Alice to estimate the distance between
wa

i and ub
j for any i and j locally. Then, by Lemma 4, Alice can determine the

existence of the edge (wb
i , u

b
j) for i, j such that (wa

i , u
a
j ) �∈ Fa holds. That is,

Alice first queries the distance between wa
i and ub

j, and then if the estimated

distance is less than or equal to 2t(8t+ 1), it decides (wa
i , u

b
j) ∈ Fb. Repeating

this kind of queries, Alice can determines the disjointness of (Fa, Fb).
Compared to the protocol proposed in the proof of Theorem 2, the extra

communication incurred by this protocol is to send the labels of the nodes in U b

from Bob to Alice. Since the label size for one node is o(n1/2t(t+1)) = o(N1/2t2)
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bits, the amount of the extra communication is o(N1/2t2) · |U b| = o(N1+1/t) bits,
which is not a dominant part of the protocol communication because solving the
graphic set-disjointness requires Ω(N1+1/t)-bit communication. Consequently,
the amount of the communication spent for the simulation must be Ω(N1+1/t)
bits, and thus we have the same bound for τ(n) as Theorem 2. �

By applying the same approach, we can also obtain the lower bound for
weighted graphs. The gadget construction is illustrated in Figure 6. The en-
coding of H is similar with the construction of Γ̂ . For Alice (resp. Bob) side,
only the nodes in W a (resp. W b) overlap the endpoints of the paths. Following
the arguments in Theorem 4 and 5, we can show the theorem below:

Theorem 6. Let ALG be a distributed algorithm constructing weighted distance
oracles with stretch 2t and and o(n1/5t2)-bit label size. Then, its worst-case run-

ning time τ(n) must satisfy τ(n) = Ω
(
n

1
2+

1
5t

)
.

6 Conclusion

We presented time lower bounds for the distributed distance oracle construc-
tion. Our primary result is to exhibit a trade-off between construction time and
stretch. More precisely, given stretch factor 2t, our lower bounds have the form of
Ω̃(n1/O(t)) rounds for unweighted graphs, and the form of Ω̃(n1/2+1/O(t)) rounds
for weighted graphs. While we assume that the girth conjecture is true for prov-
ing the bounds, we can bypass it when we consider bounded label-size ofracles.
Restricting the label size to nε for a small constant ε depending on t, the same
lower bounds are unconditionally obtained. An open problem related to our re-
sults is to find algorithms whose running time gets close to our lower bounds.
The currently best algorithm in weighted graphs takes O(n

1
2+

1
2t ) rounds for the

construction and achieves O(t2) stretch. The algorithm whose stretch linearly

depends on t but achieving O(n
1
2+

1
O(t) )-round construction time is still open.

Faster solutions for unweighted graphs are also not known.
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