
Collaboration in Distributed Systems:
Robots, Ants, and Matchings

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

TOBIAS LANGNER

MSc, University of Freiburg, Germany

born on 18.11.1982

citizen of
Germany

2015

Abstract

From robots playing soccer together, through ants ensuring the survival of their
colony, to nodes in a peer-to-peer network, collaboration is a corner-stone of the
success of many different kind of distributed systems. The goal of this thesis is
to shed more light onto various kinds of collaboration, and the advantages that
individuals get from working together with others.

In the first part of the thesis, we consider a version of the Gale-Shapley stable
matching setting, where each pair of n nodes is associated with a (symmetric)
matching cost and the preferences are determined with respect to these costs.
This stable matching version is analyzed through the Price of Anarchy (PoA)
and Price of Stability (PoS) lens with the objective of minimizing the total cost
of matched nodes. A simple example demonstrates that in the general case, the
situation is hopeless, hence we restrict our attention to metric costs. Our first
result is a tight bound of Θ(nlog(3/2)) on the PoA in such metric graphs. We
then use the notion of α-stability, where a pair of unmatched nodes defect only
if both can thereby reduce their costs by a factor greater than α ≥ 1. Our main
result is an asymptotically tight trade-off, showing that with respect to α-stable
matchings, the PoS is Θ

(
nlog(1+ 1

2α)). The proof is constructive: we present a
simple algorithm that outputs an α-stable matching satisfying this bound.

In the second part of the dissertation, we examine various aspects of systems
of mobile robots (or agents) with restricted capabilities. We analyze an existing
gathering algorithm for n robots that cannot communicate with each other and
have only limited visibility, and show that the algorithm has polynomial runtime
of Θ(n2). We then turn our view towards n agents controlled by finite automata
that explore a two-dimensional integer grid while being able to communicate
with each other in a very restricted manner. Their goal is to locate a treasure
which is located in some cell at a distance D from the common starting point of
all agents. Despite the restriction to constant-size memory, we show that their
collaborative performance is sufficient to locate the treasure in an optimal time
of O(D + D2/n) even in an asynchronous setting. We also look at small, i.e.,
constant numbers of agents and give upper and lower bounds on the minimal
number of ants sufficient to locate the treasure for various modifications of the
aforementioned model.

In the last part of the thesis, we focus on the power of teamwork in systems
that actively try to prevent collaboration. We investigate the feasibility of a Sybil
attack, where many fake identities are created in order to get an unfair advantage,
against online poker platforms. For this purpose, we implemented a large-scale
attack on a poker platform in which automated players (bots) collaborate to
increase their chances of winning. Due to ethical considerations, our bots were
only deployed at play money tables, where we found that there is a linear rise
in the average gain when increasing the number of bots. We conjecture that the
essence of our findings can be generalized to real money tables and conclude that

it is indeed possible to benefit from such an attack and that poker platforms are
in dire need of stronger countermeasures.

On the whole, the quintessence of this dissertation is that collaboration,
when implemented properly, is a versatile and effective instrument to improve
the performance of all kinds of distributed systems in various ways.

Zusammenfassung

Von Fussball spielenden Robotern über Ameisen, die das Überleben ihrer Kolonie
sicherstellen, zu Knoten in einem Peer-To-Peer-Netzwerk: Kollaboration ist einer
der Eckpfeiler verschiedenster Erfolgsgeschichten verteilter Systeme. Das Ziel
dieser Arbeit ist es, verschiedene Arten von Kollaboration näher zu beleuchten
sowie die Vorteile von Individuen herauszuarbeiten, die miteinander zusammen
arbeiten

Im ersten Teil dieser Arbeit betrachten wir eine Variante des stabilen Mat-
chings nach Gale-Shapley, in welcher jedem Paar aus einer Menge von n Knoten
(symmetrische) Kosten zugeordnet werden, und die Präferenzen für einander
bezüglich dieser Kosten bestimmt werden. Diese Version des stabilen Matchings
wird mittels der Price of Anarchy- (PoA) und Price of Stability-Konzepte (PoS)
analysiert, mit dem Ziel die Gesamtkosten der miteinander gepaarten Knoten
zu minimieren. Ein einfaches Beispiel zeigt, dass die Situation im allgemeinen
Fall hoffnungslos ist, weshalb wir uns auf metrische Kosten beschränken. Unser
erstes Ergebnis ist eine scharfe Schranke von Θ(nlog(3/2)) für PoA und PoS in
metrischen Graphen. Anschliessend betrachten wir α-Stabilität, wobei ein Paar
von nicht einander zugeordneten Knoten nur dann instabil ist, wenn durch einen
Wechsel der Partner beide ihre Kosten um mindestens einen Faktor α ≥ 1 redu-
zieren können. Unser Hauptergebnis ist ein asymptotisch scharfer Trade-Off für
PoS im Bezug auf α-Stabilität von Θ

(
nlog(1+ 1

2α)). Wir präsentieren einen kon-
struktiven Beweis in der Form eines einfachen Algorithmus, der ein α-stabiles
Matching bestimmt, welches diese Schranke realisiert.

Im zweiten Teil dieser Dissertation untersuchen wir verschiedene Aspekte von
Systemen mobiler Roboter (oder Agenten) mit beschränkten Fähigkeiten. Wir
analysieren einen bereits existierenden Algorithmus zum Sammeln von n Robo-
tern in einem Punkt der Ebene, wobei sich die Roboter innerhalb beschränkter
Sichtweite sehen, nicht aber miteinander kommunizieren können. Wir beweisen,
dass die Laufzeit des Algorithmus polynomiell in n ist, indem wir eine scharfe
Schranke von Θ(n2) zeigen. Dann wenden wir uns n von endlichen Automaten
gesteuerten Agenten zu, die das zwei-dimensionale ganzzahlige Gitter erkun-
den und nur auf sehr rudimentäre Art und Weise miteinander kommunizieren
können. Ihr Ziel ist es, einen Schatz zu finden, der sich in einer Zelle befindet,
die im Abstand D vom gemeinsamen Startpunkt aller Agenten liegt. Wir zei-
gen, dass die Agenten trotz der Beschränkung auf eine konstante Speichergrösse
in der Lage sind, kollaborativ den Schatz innerhalb einer optimalen Laufzeit
von Θ(D +D2/n) zu finden und dass dies sogar in einem asynchronen Szenario
gilt. Weiterhin betrachten wir kleine, d. h. konstante Anzahlen von Agenten und
zeigen für verschiedene Modifikationen des beschriebenen Modells obere und un-
tere Schranken für die minimale Anzahl an Agenten, die ausreichend ist, um den
Schatz zu finden.

Im letzten Teil der Arbeit betrachten wir den Einfluss von Zusammenarbeit
in Systemen, die Kollaboration aktiv zu verhindern versuchen. Wir untersuchen

die Machbarkeit eines sogenannten Sybil-Angriffs, bei welchem viele Kopien einer
Identität erzeugt werden, um dadurch einen unfairen Vorteil zu erlangen, auf eine
Online-Poker-Plattform. Zu diesem Zweck implementierten wir einen grossange-
legten Angriff auf eine Poker-Plattform, in welchem automatisierte Spieler (Bots)
am selben Tisch spielen und miteinander kollaborieren, um dadurch ihre Gewinn-
chancen zu erhöhen. In Anbetracht ethischer Gesichtspunkte entschieden wir uns
die Bots nur an Spielgeldtischen einzusetzen, wo wir einen linearen Zusammen-
hang zwischen dem Durchschnittsgewinn pro Bot und der Anzahl der Bots am
Tisch feststellen konnten. Wir mutmassen, dass sich die Essenz unserer Ergeb-
nisse auch auf Echtgeldtische übertragen lässt und kommen daher zum Schluss,
dass Pokerplattformen in der Tat dringend stärkere Gegenmassnahmen gegen
derartige Angriffe nötig haben.

Insgesamt betrachtet besteht die Kernaussage dieser Dissertation darin, dass
Kollaboration ein vielseitiges und effektives Werkzeug ist, um die Leistungsfähig-
keit vielerlei Arten von verteilten Systemen auf verschiedene Weisen zu verbes-
sern.

Acknowledgements

My time as a PhD student in the Distributed Computing Group was an instruc-
tive and exciting experience, despite also sometimes being quite stressful and
hectic. In particular, I enjoyed the opportunity to explore the depths of projects
that personally interested me completely on my own. However, the thesis that
you are now reading would not have been possible without the help of many
people that I would like to thank in the following.

First, I want to thank my supervisor Roger Wattenhofer for giving me the
opportunity to write my thesis in his group and supporting me throughout the
time. He guided me through the treacherous labyrinth called academia and
proved to be an endless source of new promising research questions. Despite
our occasional disagreements, he taught me countless important lessons, among
them how to give exceptional presentations.

Then, I would also like to thank my co-referees Yuval Emek and Franck Petit
for taking the time to review this thesis and to serve on my committee. Besides
being one of my co-referees, Yuval was also supervisor-in-charge for one year of
my studies and I have learned so many things from him, most importantly how
to properly write a scientific article (from which you will hopefully benefit in the
rest of the thesis).

Furthermore, there are also the other people that made my time in the
Distributed Computing Group a wonderful experience; my colleagues and co-
workers. I want to thank (in alphabetical order) Barbara Keller for teaching
me how to cook amazing food without bacon, Beat Futterknecht for being the
most efficient problem-solver on the planet, Benny Gächter for resuscitating our
IT infrastructure, Christian Decker for being my last resort for Git and Python
problems, Christoph Lenzen for being an amazingly funny office mate, David
Stolz for inventing the super ants, Jara Uitto for importing the no-pants policy,
Jasmin Smula for being a loyal Finnish ice-running mate, Jochen Seidel for host-
ing the Maus-Frühstück, Johannes Schneider for introducing me to Frau Muther,
Klaus Förster for being the one and only Captain, Laura Peer for destroying her
iPhone in an elegant manner, Léonard von Niederhäusern for being our 80s music
expert (despite not even having lived a single day in the 80s), The King (Michael
König) for his witty sense of humor, Michael Kuhn for being a fan of the wrong
FCB, Panda Metaiel for giving me moral support during conference talks, Pascal
Bissig for his unique contributions to the coffee break, Philipp Brandes for being
the most responsible CLO (Chief Lunch Officer) of all times, Raphael Eidenbenz
for teaching me the beauty of Bündnerdeutsch, Friederike Brütsch for paying all

1

my bills, Samuel Welten for inventing the FAB newsletter, Sebastian Brandt for
sparking my interest in chess, Stephan Holzer for offering me a place to live in
my first days in Zurich, and Yuezhou Lv for being a true expert on sarcasm.

Then there also were a few friends that helped me with proof-reading my
thesis and I am very grateful to Jara Uitto, Philipp Brandes, Sebastian Brandt,
and Tolga Goren for their helpful comments and suggestions.

During my PhD studies, I supervised bachelor, master, and group projects
of many aspiring students and I enjoyed this diversion from the sometimes
frustrating research tasks very much. I want to thank (again alphabetically)
Adrian Leuenberger, Benjamin Zehnder, Christian Cadruvi, Damian Pfammat-
ter, Dominic Plangger, Dominik Landtwing, Fabian Mentzner, Gian Ulli, Hildur
Ólafsdóttir, Jan Bernegger, Jan Schulze, Kevin Jeisy, Lukas Affolter, Marc
Hüppin, Marian Runo, Martin Ambühl, Nils Reinthaler, Nicolas Forster, Pascal
Fischli, Pascal Niklaus, Patrick Misteli, Roni Häcki, Samuel Zihlmann, Sandro
Affentranger, Sebastian Wendland, Simon Wehrli, Stephan Dollberg, Theodoros
Bourchas, Timon Ruban, and Ueli Ebnöther.

Last but not least, I want to thank the people most important in my life: My
parents Hartmut and Marlene for raising me as a (mostly) responsible person
and for never surrendering to the endless stream of questions that my curiosity
generated in my youth; my dear sister Kristiane for upholding the tradition
of somewhat regular phone calls also when I was too busy to think of it and
for always lending me an ear when I am in need; and my wonderful girlfriend
Katarina whose unwavering love and support helped me to get through the more
difficult times of my PhD studies. Without you guys, I would not be where I am
now, thank you very much!

Contents

1 Introduction 1
1.1 Notational Conventions . 3
1.2 Collaborations and Contributions 4

I Stable Matching 6

2 Stable Matching in Metric Graphs 7
2.1 Related Work . 10
2.2 Setting and Preliminaries . 11
2.3 Price of Anarchy . 12
2.4 Lower Bound on PoSα . 17
2.5 Price of Stability . 18
2.6 Conclusion . 28

II Mobile Agents with Restricted Capabilities 30

3 Gathering of Mobile Robots with Limited Visibility 31
3.1 Related Work . 32
3.2 Model . 34
3.3 The Gathering Algorithm . 35
3.4 The Lower Bound . 36
3.5 The Upper Bound . 37
3.6 Conclusion . 45

4 Treasure Search with Many Mobile Finite Automata 46
4.1 Related Work . 47
4.2 Model . 47
4.3 Parallel Diamond Search . 49
4.4 An Almost Optimal Emission Scheme 59
4.5 Optimal Diamond Search . 62
4.6 Conclusion . 64

5 Treasure Search with Few Mobile Finite Automata 65
5.1 Model . 66
5.2 Four Agents . 68
5.3 Three Agents . 71
5.4 Two Agents . 75
5.5 One Agent . 78
5.6 Returning to the Origin . 81
5.7 Conclusion . 81

III The Dark Side of Collaboration 82

6 The Power of Collusion in Online Poker 83
6.1 Related Work . 84
6.2 Colluding Bots . 85
6.3 Evaluation . 88
6.4 Conclusion . 90

IV Conclusions & References 91

7 Conclusions 92

Bibliography 94

1
Introduction

“Alone we can do so little; together we can do so much.”
— Helen Keller

This quote by the famous author and political activist Helen Keller who, as
an aside, was the first deaf-blind person in history to earn a bachelor of arts
degree, beautifully summarizes in just one sentence the essence of this work.
The goal of this thesis is to shed more light onto the benefits (see Chapters 2–5)
and drawbacks (see Chapter 6) of collaboration, and onto the difficulties that
arise when many entities have to work together in unison.

Collaboration is indeed at the very heart of many “success”1 stories that
surround us in our life. There are the rather obvious instances of collaboration,
such as the gigantic international projects established to design and construct
the world’s largest and most powerful particle accelerator, CERN, or the largest
artificial object in an orbit around the globe, the International Space Station.
In both cases, hundreds or even thousands of people from more than ten differ-
ent countries tirelessly worked together for several decades to eventually make
history. Then there are also more subtle appearances of collaboration; as simple
as a trade between entities, be it a person buying a hot dog on the street from a
vendor, or, on the other end of the spectrum, the multi-billion dollar sale of the
company WhatsApp to Marc Zuckerberg’s Facebook in spring 2014. Despite its
apparent greedy nature, trade is in most cases a collaborative effort providing
mutual benefits to both trade partners.

Moving closer towards the topic discussed in the first part of this thesis, a
relationship between two or more partners clearly requires collaborative efforts

1Not everyone may agree that the following examples were all actually successes, hence the
quotation marks.

CHAPTER 1. INTRODUCTION 2

of all involved parties in order to last. This setting is particularly interesting
from a computer science perspective as the stability of a relationship — the com-
bined incentive to continue the relationship vs. either of the partners searching
for better partner — can be elegantly modeled in a graph-theoretic matching
setting. The notion of stability translates to this setting in the sense that a set
of relationships is stable if there are no two individuals that are not in a relation
with each other, but would both prefer each other over their current partners.
Though stability in this context definitely seems to be a desirable property, we
show in Chapter 2 that it cannot be obtained for free but comes only at the price
of a significantly reduced overall happiness of the underlying society.

In the second part of this thesis, we focus on another, to some extent more
futuristic, aspect of collaboration: the realm of autonomous robots. One of the
most aspiring goals of robotics scientists is the design and construction of large
numbers of inexpensive robots that are able to collaboratively and autonomously
accomplish complex tasks. As of today, robots are already able to play soccer
in teams (see, e.g., [69, 70, 90, 94]), fly and dance autonomously in close vicinity
without crashing into each other (see, e.g., [16,17]), self-assemble complex struc-
tures with hundreds to thousands of units (see, e.g., [93,99]), etc. In Chapter 3,
we consider the problem of robots having to gather in one point of the plane — a
special case of the structure-assembly problem — from a theoretical perspective.
The robots have very limited capabilities and in particular cannot communicate
other than observing each other positions within a limited viewing range. We
analyze an algorithm from a paper from 1999 and prove a long-standing conjec-
ture claiming that the robots gather within polynomially many rounds. More
specifically, we show that the robots gather in O(n2) rounds and also give a
matching lower bound.

Interpreting autonomous robots in a more natural, i.e., biological sense, one
quickly enters the field of swarm intelligence. Collins dictionary gives, among
others, the following definition: “the collective behavior of a group of animals,
esp. social insects such as ants, bees, and termites, that are each following very
basic rules”. Most of us have come in contact with collaborative behavior of
insects in secondary school, when learning for example about the intricate tail-
wagging dance that bees use to communicate the direction and distance to the
next food source. Social insects have developed a breath-taking variety of tech-
niques to accomplish many complex goals such as foraging food, building nests,
efficiently allocating different tasks to different types of workers, evaluating dif-
ferent nesting places, etc. It is important to realize that for most insects, collab-
oration is not just a means to increase the output of the colony, but an essential
requirement to perform certain tasks correctly.

Sasaki et al. [100] recently studied ant colonies of the species Temnothorax
rugatulus, which frequently have to find new nest sites. When confronted with
only two different nest sites of different quality, individuals are very accurate
(approx. 90%) in finding the better option. When the number of sites is increased
to eight while maintaining the same ratio of good vs. bad sites, the individual ant
suffers from a sort of cognitive overload and therefore its accuracy deteriorates
to that of a random choice (approx. 50%). The colony, however, does not appear

CHAPTER 1. INTRODUCTION 3

to suffer from this deficiency, as their collaborative feedback mechanism ensures
a accuracy of around 90%, even in the more difficult case with many options.

There is a long list of many more examples of collaboration in the animal (and
plant) kingdom, which shows that it is a key concept responsible for the survival
(and co-existence) of many species on our planet. In the second part of the thesis,
we aim to advance our understanding of the theoretical aspects of collaboration
among mobile agents (“ants”) with limited capabilities. In Chapter 4, we model
the process of a colony of ants searching for food formally, and show that the
ants are able to efficiently locate a food source on a two-dimensional integer
grid even when the individuals are controlled only by finite state machines and
operate in an asynchronous environment. In Chapter 5 we look at small numbers
of ants and establish upper and lower bounds on the number of ants required
to successfully and efficiently locate the food source for several variants of the
model.

In the third and last part of this thesis, we undertake a brief excursion into
the darker aspects of collaboration: collusion. Merriam-Webster defines the
word as “secret agreement or cooperation especially for an illegal or deceitful
purpose”. In Chapter 6, we give evidence towards the fact that collaboration is
not always a means towards improving the welfare of a society, but can also be
quite detrimental to it. We describe an attack against an online poker platform,
exploiting the weakness of such platforms to effectively control the configuration
of players at a certain table. We developed a system of automated players (bots)
that join the same table and exchange information about their hands among
each other in order to promote their winning probabilities. Our experiments on
play money tables show that the performance of the bots scales almost linearly
with the number of colluding players.

1.1 Notational Conventions

In this thesis we mostly use the standardized notation that has been established
in our field over the previous decades and centuries. A few notations and def-
initions, however, are not entirely unambiguous, which is why we specify their
exact meaning in this section.

1.1.1 Special Sets

We denote the base sets Z, Q, and R as the sets of all integers, rational numbers,
and real numbers, respectively. When suitable, we further restrict these sets by
adding a superscript + to denote only the positive elements (e.g., the positive
reals R+) and further add a subscript 0 if we want to include the element 0 (e.g.,
the natural numbers Z+

0).
For an arbitrary set S, we denote by 2S the power set of S containing all

subsets of S including the empty set and S itself.

CHAPTER 1. INTRODUCTION 4

1.1.2 Bachmann-Landau Notations

For two functions f and g defined on the non-negative integers Z+
0 , we use the

Bachmann-Landau notations in the following sense. We write

• f ∈ o(g) iff f grows asymptotically slower than g, or formally

lim
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ = 0 ,

• f ∈ O(g) iff f does not grow asymptotically faster than g, or formally

lim sup
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ <∞ ,

• f ∈ Θ(g) iff f grows asymptotically as fast as g, or formally

0 < lim inf
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ lim sup
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ <∞ ,

• f ∈ Ω(g) iff f does not grow asymptotically slower than g, or formally

lim inf
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ > 0 ,

• f ∈ ω(g) iff f grows asymptotically faster than g, or formally

lim
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ =∞ .

We sometimes abuse notation and write f = 3(n) instead of f ∈ 3(n) for
3 ∈ {o,O,Θ,Ω, ω}. With the expression f(n) = h(n) + O(g(n)), for example,
we want to say that there exists a constant c such that f(n) ≤ h(n) + c · g(n)
for sufficiently large n.

1.1.3 Miscellaneous

We say that an event occurs with high probability with respect to n (usually the
problem size), abbreviated by w.h.p., if the event occurs with probability at least
1− n−c, where c is an arbitrarily large constant.

When we write log x without specifying a base, we denote the logarithm of
x to the base of 2.

1.2 Collaborations and Contributions

This thesis is based on several publications and drafts I worked on during my
time as a PhD student at the Distributed Computing group at ETH Zurich
under the supervision of Prof. Dr. Roger Wattenhofer. As it is quite often the
nature of research, I did not do all the work myself but collaborated with other

CHAPTER 1. INTRODUCTION 5

brilliant people. I shall list in the following the publications or drafts underlying
the respective chapters along with a list of the respective co-authors. Note
that the authors of the papers are listed in alphabetical order and therefore
do not represent the degree of contribution of the individual authors. Besides
this, all articles listed below are joint work with my supervisor Prof. Dr. Roger
Wattenhofer.

Chapter 2 is based on the publication draft The Price of Matching with Met-
ric Preferences. Co-author was Yuval Emek.

Chapter 3 is based on the publication A Tight Runtime Bound for Synchro-
nous Gathering of Autonomous Robots with Limited Visibility [39]. Co-authors
were Bastian Degener, Barbara Kempkes, Friedhelm Meyer auf der Heide, and
Peter Pietrzyk.

Chapter 4 is based on the publication Solving the ANTS Problem with Asyn-
chronous Finite State Machines [50]. Co-authors were Yuval Emek and Jara
Uitto.

Chapter 5 is based on the publication How Many Ants Does It Take To Find
the Food? [49]. Co-authors were Yuval Emek, David Stolz, and Jara Uitto.

Chapter 6 is based on Benjamin Zehnder’s Bachelor thesis [111], that I su-
pervised in the spring 2012. Co-authors were Thomas Locher and Benjamin
Zehnder.

Part I

Stable Matching

6

2
Stable Matching in Metric
Graphs

Medical students, players of online games, organ receivers, paper reviewers, users
of dating websites, and many others have in common that they are being assigned
to their partners by a match-making process. Indeed, matching can be found
in many settings, and is one of the core concepts in society and economics.
Depending on the circumstances, the matching process can be centralized, with
a central authority deciding on who is matched to whom, more anarchic, with
the participants deciding on their matches themselves, or something in between,
with a neutral advisor helping the participants to find good matches.

In this chapter, we aim to connect two classic approaches towards matching.
The first approach tackles matching from a (global) optimization angle à la
Edmonds [47, 48]: given 2n nodes with pairwise costs c(x, y) = c(y, x) ∈ R>0,
the goal is to construct a perfect matching that minimizes the total cost. The
second approach tackles matching from the (local) selfish angle à la Gale and
Shapley [59]: each node is equipped with a preference list ranking its potential
matches and a matching is stable if no two unmatched nodes prefer each other
over their current matches.

We consider a restricted case of the stable matching realm, where the nodes
preferences are determined based on the aforementioned pairwise costs c(·, ·) so
that node x prefers node y over node y′ if and only if c(x, y) < c(x, y′), and focus
on the following question: How does the requirement that the returned matching
has to be (locally) stable affect its (global) total cost? In an attempt to provide a
quantitative answer to this question, we shall look at matching instances through
the Price of Stability (PoS) lens that compares the min-cost stable matching
to the unrestricted optimum, measuring the ratio of their respective costs. In

7

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 8

fact, to provide a deeper understanding of the delicate balance between the
global matching cost and its local stability, we generalize the problem by using
the notion of an α-stable matching for α ≥ 1, in which no pair of unmatched
nodes has an incentive to defect in order to improve both their costs by a factor
(strictly) greater than α.

Unfortunately, in general, the Price of Stability may be unbounded, as the
following simple example shows: Let G be a complete graph on four nodes
u1, u2, v1, v2 with edge costs c(u1, v1) = c(u2, v2) = 1, c(u1, u2) = ε for some
small ε > 0, and c(v1, v2) = c(u1, v2) = c(u2, v1) = C for some large C. Then,
the optimal perfect matching matches ui to vi for i = 1, 2 with a cost of 2,
whereas an α-stable matching for any reasonable value of α must match u1 to
u2, and hence also v1 to v2 which incurs an arbitrarily large cost.

Fortunately, real-world matching instances often exhibit metric costs, i.e.,
costs that satisfy the triangle inequality (or its bipartite counterpart). Examples
include assigning medical students to hospitals, organ receivers to donors, papers
to reviewers, and also players in online games, or users of dating websites. While
the metric character of the first few examples is intuitive, appreciating the metric
character of online dating is slightly more demanding — refer to the next section
for a comprehensive explanation that also addresses the role that PoS plays in
these matching scenarios.

Indeed, we establish an upper bound of O(nlog(3/2)) on the PoA and PoS
of minimum-cost perfect matchings in metric graphs with 2n vertices, where
log(3/2) ' 0.58, and show that this is asymptotically tight. The somewhat
unattractive polynomial dependency on n raises the following question: How
does PoS improve once the Gale-Shapley stability is relaxed to α-stability, where
two unmatched vertices deviate from the current matching only if both improve
their costs by a factor greater than α ≥ 1? (Observe that since, by definition,
every stable matching is also α-stable, this question is irrelevant in the context
of PoA that can only increase by such a relaxation.) We answer this question
by establishing an asymptotically tight trade-off, showing that with respect to
α-stable matchings, PoS improves to Θ(nlog(1+1/(2α))); in particular, taking α =
O(logn) yields a constant PoS. All our results hold for both simple and bipartite
metric graphs.

Online Dating. Consider a (heterosexual) dating platform with the goal to
help a set W of women and a set M of men finding suitable partners and let us
assume that |W | = |M |. When signing up for the platform, a woman w ∈ W
(resp., a man m ∈M) has to complete a questionnaire about a set of her (resp.,
his) own characteristics including absolute numerical properties such as age,
height, or weight; relative numerical properties such as sportiness, empathy, or
ambition; and combinations thereof that capture more complex aspects such as
movie taste. This questionnaire generates a point v(w) (resp., v(m)) in the real
vector space VW (resp., VM), where each characteristic is represented by one
or more dimensions. Then, she (resp., he) completes a different questionnaire
describing the characteristics of her ideal male partner w∗ (resp., his ideal female
partner m∗), which in turn generates a point v(w∗) in VM (resp., v(m∗) in VW).

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 9

VM

age/y

30

60

100
kneecap diameter/cm

VW

age/y

30

60

200
cochlea diameter/mm

w
w∗

m
m∗

Figure 2.1: In a fictitious example where age is relevant for both sexes while men are
particularly interested in women’s cochleas and women care about men’s kneecaps, we
depict the points corresponding to the characteristics of four individuals, two women
and two men. A black mark indicates the characteristic of a specific user while the
corresponding shape in red marks the characteristic of that person’s ideal partner.

Notice that VM and VW may correspond to different sets of characteristics (after
all, men and women might be interested in different qualities of the respective
opposite sex).

We assume that the valuation of woman w for man m is determined by
‖v(m), v(w∗)‖M , where ‖ · ‖M is some norm on VM . (The same goes with the
opposite sexes with respect to some norm ‖ · ‖W on VW .) Thus, the cost of a
match between a woman w ∈W and a man m ∈M can be measured in terms of
c(w,m) = ‖v(m), v(w∗)‖M+‖v(w), v(m∗)‖W with the reasoning that the smaller
the cost c(w,m) is, the better w and m fit together. Observe that by definition,
the cost function c(·, ·) obeys the bipartite counterpart of the triangle inequality.
Refer to Figure 2.1 for an example with two-dimensional vector spaces VW and
VM .

The popularity of a dating platform depends significantly on the trust that
its users have in the platform finding them a suitable partner. This trust can be
boosted by providing rigid guarantees for the matching established by the plat-
form. Two natural such guarantees are that the total matching cost is minimized,
which means that in total, the happiness among the participants is maximized;
and that the matching is stable, which means that no unmatched pair has an
incentive to deviate from the matching recommended by the platform. How-
ever, it turns out that these two guarantees cannot coexist, hence we allow for
an approximation of the minimum cost (perfect) matching and relax the notion
of stability to α-stability (which will be defined precisely soon). The PoS then
tells us how well the dating platform can do in terms of the total matching
cost compared to a benchmark which is not subject to the (relaxed) stability
constraint.

The problem described above corresponds to finding matchings in complete
bipartite graphs (the marriage version). If, instead, we consider a same-sex
dating platform, we end up with points in a single vector space and a cost
function defined over all user pairs which corresponds to matchings in complete
graphs (the roommates version).

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 10

2.1 Related Work

Studying the impact of selfish players has been a major theoretical computer sci-
ence success story in the last decade (see, e.g., the 2012 Gödel Prize [75,83,98]).
In particular, much effort has been invested in quantifying how the efficiency of
a system degrades due to selfishness of its players. The most notable notions
in this context are the Price of Anarchy (PoA) [75, 85] and the Price of Sta-
bility (PoS) [12, 101], comparing the best possible outcome to the outcome of
the worst (PoA) or best (PoS) solution with selfish players. Since their intro-
duction, the Price of Anarchy and the Price of Stability have been extensively
analyzed in diverse settings such as selfish routing [12,18,30,31,97,98,105], net-
work formation games [3,8,13,29,108], job scheduling [19,36,74,75], and resource
allocation [68,96]. While selfish players are traditionally modeled using the Nash
equilibrium solution concept, where no player can benefit from a unilateral de-
viation, in matching settings unilateral deviations are not natural. Instead, we
want that no two unmatched players prefer each other over their current match-
ing partners. This solution concept is generally known as the Gale-Shapley stable
matching [59].

For the most part, the stable matching realm has been subdivided into two
versions: the marriage (bipartite) version, where the players are partitioned into
men and women and each man (resp., woman) is equipped with a list of prefer-
ences over the set of women (resp., men); and the roommates (all-pairs) version,
where each player is equipped with a list of preferences over all other players.
Gale and Shapley showed that in the bipartite version, a stable matching always
exists, and in fact, can be computed by a simple poly-time algorithm. In con-
trast, the all-pairs version does not necessarily have a solution. Both versions of
the stable matching problem and their manifold variants (strictly/weakly ordered
preferences, (in-)complete preference lists, (a-)symmetric preferences) admit an
abundance of literature; see, e.g., the books of Knuth [73], Gusfield and Irv-
ing [61], and Roth and Sotomayor [95]. The notion of stability studied in this
chapter has been coined as strong stability by Irving [63].

Sometimes, the players’ preferences are associated with real costs so that
each preference list is sorted in order of non-decreasing costs. This setting gives
rise to the minimum-cost stable matching problem, where the goal is to construct
a stable matching that minimizes the total cost of matched partners. Irving et
al. [64] designed a poly-time algorithm for the bipartite (marriage) version of a
special case of this problem, referred to as the egalitarian stable matching prob-
lem, where a cost of j is associated with each player for matching his/her jth
preferred partner. This was generalized by Feder [52] who presented a poly-time
algorithm for the bipartite version of the general minimum-cost stable match-
ing problem. Moreover, Feder also established the NP-hardness of the all-pairs
version and showed that it admits a 2-approximation algorithm.

The players’ preferences in general stable matching scenarios exhibit no in-
trinsic correlations. Several approaches have been taken towards introducing
consistency in the preference lists [65, 73, 82]. Most relevant to the current
chapter is the approach of Arkin et al. [14] who studied the geometric stable

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 11

roommate problem, where the players are identified with points in a Euclidean
space and the preferences are given by the sorted distances to the other points.
They showed that in the geometric setting, a stable matching always exists and
that it is unique if the players’ preferences exhibit no ties. These results easily
generalize to arbitrary metric spaces. Arkin et al. also introduced the notion of
an α-stable matching, which is central to the current chapter.

Reingold and Tarjan [88] proved that the approximation ratio of some greedy
algorithm for minimum-cost perfect matching in metric graphs is Θ(nlog(3/2))
where log(3/2) ≈ 0.58. We point out that this result is equivalent to establishing
the same bound for the PoA of minimum-cost perfect matching in such graphs.
In Section 2.3 we give a simpler proof for the PoA-result and extend their result in
Section 2.4 to obtain a lower bound for the PoS for all α ≥ 1 of Ω(nlog(1+1/(2α))).

2.2 Setting and Preliminaries

Consider a graph G with vertex set V (G) and edge set E(G). Each edge e ∈
E(G) is assigned a positive real cost c(e). Unless stated otherwise, the graphs
mentioned have 2n vertices, n ∈ Z+, and are either complete (|E(G)| =

(2n
2
)
)

or complete bipartite (V (G) = U1 ∪ U2, |U1| = |U2| = n and |E(G)| = n2).
We say that the complete graph G is metric if c(x, y) ≤ c(x, z) + c(z, y) for
every x, y, z ∈ V (G); we say that the complete bipartite graph G is metric if
c(x, y) ≤ c(x, z) + c(z, z′) + c(z′, y) for every x, y, z, z′ ∈ V (G), where x, z′ and
y, z are on opposite sides of the bipartite graph. For an arbitrary graph G, the
distance distG(x, y) of two vertices x and y of G is defined as the weighted length
of the shortest path between x and y in G.

A matching is a subset M ⊆ E(G) of the edges such that every vertex in
V (G) is incident to at most one edge in M . A matching is called perfect if every
vertex in V (G) is incident to exactly one edge in M , which implies that |M | = n
as |V (G)| = 2n. For a perfect matching M and a vertex x ∈ V (G), we denote by
M(x) the unique vertex y ∈ V (G) such that (x, y) ∈M . Unless stated otherwise,
all matchings mentioned hereafter are assumed to be perfect. (Perfect matchings
clearly exist in a complete or complete balanced bipartite graph with an even
number of vertices.) Given an edge subset F ⊆ E(G), we define the cost of F as
the total cost of all edges in F , denoted by c(F) = ∑

e∈F c(e); in particular, the
cost of a matching is the sum of its edge costs.

Definition (α-Stable Matching). Consider some (perfect) matching M ⊆ E(G)
and some real number α ≥ 1. An edge (u, v) /∈ M is called α-unstable with
respect to M if α · c(u, v) < min{c(u,M(u)), c(v,M(v))}. Otherwise, the edge
is called α-stable. A matching M is called α-stable if it does not admit any
α-unstable edge. We will omit α and call edges as well as matchings just stable
or unstable whenever α is clear from the context or the argumentation holds for
every choice of α.

Let M∗ denote a certain (perfect) matching M that minimizes c(M). For
simplicity, we restrict our attention to complete (rather than complete bipartite)
metric graphs, although all our results hold also for the complete bipartite case.

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 12

Definition (α-Price of Stability). The α-Price of Stability of G, denoted by
PoSα(G), is defined as PoSα(G) = min{c(M)/c(M∗) : M is α-stable matching}.
Furthermore, PoSα(2n) = sup{PoSα(G) : G is metric, |V (G)| = 2n}. Unless
stated otherwise, when the parameter α is omitted, we refer to the case α = 1.

Definition (Price of Anarchy). The Price of Anarchy of a graph G, denoted
by PoA(G), is defined as PoA(G) = max{c(M)/c(M∗) : M is stable matching}.
Furthermore, PoA(2n) = sup{PoA(G) : G is metric, |V (G)| = 2n}.

Note that since any stable matching by definition is also α-stable for any
α ≥ 1, the Price of Anarchy does not improve by considering α-stability and
hence its definition does not include the parameter α.

2.3 Price of Anarchy

The following theorem was implicitly proven by Reingold and Tarjan [88] already
in 1981. They showed that for minimum-cost perfect matching in metric graphs,
the approximation ratio of the algorithm that picks edges by ascending costs
is Θ(nlog(3/2)). Since the matching returned by this greedy algorithm is stable
and since every stable matching can be obtained from the algorithm by an ap-
propriate tie-breaking policy, it follows that the PoA of minimum-cost perfect
matching in such graphs is also Θ(nlog(3/2)).

Theorem 2.1. The PoA of minimum-cost perfect matching in metric graphs
with 2n vertices is Θ(nlog(3/2)).

We present a simpler and more intuitive proof for Reingold and Tarjan’s
30-year-old result, which essentially relies on a series of elementary reductions,
essentially showing that PoA(2n) is realized by weighted line graphs, i.e., metric
graphs that can be embedded isometrically into the real line. Following that,
we introduce a family of weighted line graphs with PoA of Θ(nlog(3/2)) and show
that no other weighted line graph admits higher PoA.

Definition (Matching Configuration). A matching configuration (MC) ξ =
(G,M∗,M) consists of a metric graph G, a minimum-cost matching M∗, and a
stable matching M on G. The ratio of ξ is defined as ρ(ξ) := c(M)/c(M∗).

Observe that the definition of a MC ξ induces a collection A(ξ) of alternating
cycles in the symmetric difference M ⊕M∗, where an alternating cycle is a cycle
whose edges are alternatingly from M and M∗. The cycles in A(ξ) are referred
to hereafter as the alternating cycles exhibited by ξ. We say that ξ is spanned
by the cycles in A(ξ) if each vertex of G belongs to an alternating cycle in
A(ξ). Clearly, graphs with two vertices admit a single (perfect) matching, hence
PoA(2) = 1, so in what follows, it suffices to consider MCs on 2n vertices for
n > 1. The following lemma states that it also suffices to consider MCs spanned
by a single alternating cycle.

Lemma 2.1. For every MC ξ = (G,M∗,M) on 2n vertices, there exists a MC
ξ̂ on 2n′ vertices, 1 < n′ ≤ n, spanned by a single alternating cycle such that
ρ(ξ̂) ≥ ρ(ξ).

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 13

Proof. Since A(ξ) = ∅ implies ρ(ξ) = 1, we may assume hereafter that |A(ξ)| ≥
1. So let A be an alternating cycle in A(ξ) maximizing the ratio c(MA)/c(M∗A),
where MA and M∗A are the matchings M∗ and M , resp., restricted to the edges of
A. Let GA be the subgraph of G induced by V (A) and take ξ̂ = (GA,M∗A,MA).
Observe that ξ̂ is a valid MC, since M∗A and MA are still a minimum-cost match-
ing and a stable matching, resp., in GA. By the choice of A, it follows that
ρ(ξ̂) ≥ ρ(ξ).

In the following, we will say that the edge costs in a graph G = (V,E) agree
with the distances in a subgraph G′ = (V,E′) on the same vertices, iff for any
edge (x, y) in G we have c(x, y) = distG′(x, y).

Definition (Weighted Cycle MC). A MC ξ = (G,M∗,M) is said to be a
weighted cycle MC if ξ is spanned by a single alternating cycle A and the edge
costs in G agree with the distances in the subgraph of G induced by the edges
in E(A).

Our next lemma states that it suffices to bound the PoA in weighted cycle
MCs.

Lemma 2.2. For every MC ξ = (G,M∗,M) on 2n vertices that is spanned by a
single alternating cycle, there exists a weighted cycle MC ξ̂ on 2n vertices such
that ρ(ξ̂) ≥ ρ(ξ).

Proof. Let A be the single alternating cycle spanning ξ. If ξ is not a weighted
cycle MC, then G must admit a shortcut — an edge (x, y) ∈ E(G) \ E(A)
satisfying c(x, y) < distA(x, y), where distA(x, y) denotes the distance between
x and y in the (weighted) cycle A. Let (x, y) be a shortcut minimizing c(x, y)
and let z ∈ V (G)\{x, y} be the vertex minimizing c(x, z)+c(z, y). Observe that
c(x, y) must be strictly smaller than c(x, z) + c(z, y) as (x, y) is a shortcut of G
and G does not admit any shorter shortcut. We argue that the cost of (x, y) can
be increased to c(x, z) + c(z, y) without violating the validity of ξ as a MC. As
there are only finitely many shortcuts, the assertion follows since repeating this
step (finitely many times) removes all the shortcuts of G. To that end, note that
after increasing c(x, y) to c(x, z)+c(z, y), M∗ remains a minimum-cost matching
of G (we only increased the cost of some edge not in M∗) and M remains a stable
matching of G (we only increased the cost of some edge not in M). So, all we
have to show is that G remains metric, which follows from the choice of z.

Definition (Weighted Line MC). We say that a (2n)-vertex metric graph G is
a weighted line graph if it can be isometrically embedded into the real line. As
such, it is convenient to identify the vertices of G with the reals x1 < · · · < x2n
so that c(xi, xj) = xj − xi for every 1 ≤ i < j ≤ 2n. In some cases, it will
also be convenient to define a weighted line graph by setting all the differences
xi+1 − xi without explicitly specifying the xis themselves. A weighted line MC
ξ = (G,M∗,M) is a MC on 2n vertices satisfying:

(1) G is a weighted line graph;

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 14

(2) M∗ = {(x2i−1, x2i) | 1 ≤ i ≤ n}; and

(3) M = {(x2i, x2i+1) | 1 ≤ i < n} ∪ {(x1, x2n)}.

Observe that ξ is spanned by a single alternating cycle A = (x1, . . . , x2n, x1).

Note that requirement (2) in the definition is not really necessary: the re-
quirement that G is a weighted line graph already implies that {(x2i−1, x2i) |
1 ≤ i ≤ n} is the unique minimum-cost matching of G as every other match-
ing M ′ contains some edge (xi, xj) such that |j − i| > 1; it is easy to show
that such an edge must belong to an improving alternating cycle, hence M ′

cannot be optimal. Given a (2n)-vertex weighted line graph G, we shall sub-
sequently denote this unique minimum-cost stable matching by M∗(G) and the
matching {(x2i, x2i+1) | 1 ≤ i < n} ∪ {(x1, x2n)} by M(G). By definition,
ξ = (G,M∗(G),M(G)) is a valid (weighted line) MC if and only if M(G) is sta-
ble. Note also that a weighted line MC is a refinement of a weighted cycle MC,
with the additional requirement that the cost of the longest edge in the unique
alternating cycle A equals the total cost of all other edges of A. Building on this
fact, the next lemma states that it suffices to consider weighted line MCs.

Lemma 2.3. For every weighted cycle MC ξ = (G,M∗,M) on 2n vertices, there
exists a weighted line MC ξ̂ on 2n vertices such that ρ(ξ̂) ≥ ρ(ξ).

Proof. Let A be the single alternating cycle spanning ξ and let e be an edge in
M that maximizes c(e). Let W−e = ∑

e′∈E(A)\{e} c(e′). Clearly, c(e) ≤ W−e,
as otherwise, G is not metric. We argue that if c(e) < W−e, then the cost of e
can be increased to W−e (while also adapting the cost of all edges whose cost is
affected by e) without violating the validity of ξ as a MC; the assertion follows
because this step turns ξ into a weighted line MC. To that end, note that after
increasing c(e) to W−e, G remains metric (ξ is a weighted cycle MC) and M∗

remains a minimum-cost matching (we only increased the cost of some edges not
in M∗). So, all we have to show is that M remains stable, which follows from
the choice of e.

Once we restrict our attention to weighted line configurations, we can aug-
ment G with new vertices without significantly affecting the ratio of the MC.

Lemma 2.4. For every weighted line MC ξ = (G,M∗,M) on 2n vertices and
for any ε > 0, there exists a weighted line MC ξ̂ on 2(n + 1) vertices such that
ρ(ξ̂) ≥ ρ(ξ)− ε.

Proof. Recall that the vertices of G are identified with the reals x1 < . . . < x2n.
Let Ĝ be the weighted line graph obtained from G by augmenting V (G) with
two new vertices identified with the reals y = x2n + δ ands y′ = y + δ′ for some
δ′ > δ > 0 (see Figure 2.2 for an illustration). The assertion follows since by
taking a sufficiently small δ′, we guarantee both that M(Ĝ) is stable in Ĝ and
that c(M(Ĝ))/c(M∗(Ĝ)) ≥ ρ(ξ)− ε.

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 15

δ δ′
M

M∗

︸ ︷︷ ︸
G︸ ︷︷ ︸

Ĝ

x y

Figure 2.2: A weighted line MC can be augmented with two vertices x and y in
distances δ and δ′ without changing the structure of its matchings and without affecting
its ratio ρ by more than ε. The red edges depict the stable matching M while the black
edges depict the minimum-cost matching M∗. The dashed edges show the changes of
the two matchings after the augmentation.

1/α− ε

1 (1/α− ε)(2 + 1/α− ε)2 (1/α− ε)(2 + 1/α− ε)1

M
H1
︸︷︷︸

H2
︸ ︷︷ ︸

H3
︸ ︷︷ ︸

H4
︸ ︷︷ ︸

Figure 2.3: This parametrized Reingold-Tarjan graph H4
α with 24 vertices has a unique

“expensive” α-stable matching M (red edges). Setting the optional parameters α and ε
(that are used in the proof of the PoS lower bound) to 1 and 0, resp., yields the original
Reingold-Tarjan graph H4.

We now turn to present a family of metric graphs referred to as Reingold-
Tarjan graphs, acknowledging Reingold and Tarjan’s paper [88], where these
graphs were first introduced.

Consider some integer k > 0. The kth Reingold-Tarjan graph Hk is a
weighted line graph whose 2k vertices are identified with the reals xk1 < · · · < xk2k .
It is defined recursively: For k = 1, we set x1

2 − x1
1 = 1. Assume that Hk is al-

ready defined and let Dk = xk2k − x
k
1 be its diameter. Then, Hk+1 is defined

by placing two disjoint instances of Hk on the real line with an Sk+1 spacing
between them, i.e., xk+1

2k+1 − x
k+1
2k = Sk+1, yielding Dk+1 = 2 · Dk + Sk+1. In

the current1 construction, we set Sk = Dk−1, thus the diameter of Hk satisfies
Dk = 3k−1. Refer to Figure 2.3 for an illustration of the parametrized Reingold-
Tarjan graph H4

α that will be used later. The original graph is obtained by
setting the two parameters α and ε to 1 and 0, respectively.

Recall that M∗(Hk) matches xk2i−1 with xk2i for every 1 ≤ i ≤ 2k−1; since
1A parametrized variant of the Reingold-Tarjan graphs is presented in Section 2.4, where

we use a different value for Sk.

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 16

x1 x2k+1x2k x2k+1

e

M M∗

︷ ︸︸ ︷
L

︷ ︸︸ ︷
R

Figure 2.4: Any MC ξ on 2k vertices can be transformed into a Reingold-Tarjan
MC without decreasing the ratio ρ(ξ). The black edges are part of the minimum-cost
matching M∗ while the red edges belong to the stable matching M .

all these edges have cost 1, it follows that c(M∗(Hk)) = 2k−1. Furthermore, we
argue by induction on k that the matching

M(Hk) = {(xk2i, xk2i+1) | 1 ≤ i < 2k−1} ∪ {(xk1, xk2k)}

is stable and that its cost is

c(M(Hk)) = Dk + (Dk − c(M∗)) = 2 · 3k−1 − 2k−1 .

Therefore, ξkRT = (Hk,M∗(Hk),M(Hk)), referred to as the kth Reingold-Tarjan
MC hereafter, is a valid weighted line MC with ratio

ρ(ξkRT) = c(M(Hk))
c(M∗(Hk)) = 2 · 3k−1 − 2k−1

2k−1 = Θ
(
(3/2)k−1) = Θ

(
nlog(3/2)) ,

where the last equation follows by setting 2n = 2k. Combined with Lemma 2.4,
we immediately conclude that PoA(2n) = Ω(nlog(3/2)), establishing the lower
bound part of Theorem 2.1. The upper bound part of the theorem is established
by combining Lemmas 2.1, 2.2, 2.3, and 2.4 with the following lemma.

Lemma 2.5. The kth Reingold-Tarjan MC ξkRT satisfies the inequality ρ(ξkRT) ≥
ρ(ξ) for any weighted line MC ξ on 2k vertices.

Proof. By induction on k. The assertion holds trivially for k = 1, so assume that
it holds for k and consider an arbitrary weighted line MC ξ = (G,M∗(G),M(G))
on 2k+1 vertices identified with the reals x1 < · · · < x2k+1 . Let L and R be the
subgraphs of G induced by the vertices x1, . . . , x2k and x2k+1, . . . , x2k+1 , resp.
Let e = (x2k , x2k+1) and let DL = x2k − x1 and DR = x2k+1 − x2k+1. We
refer to the vertices x1 and x2k (resp., x2k+1 and x2k+1) as the external vertices
of L (resp., R) and to the vertices x2, . . . , x2k−1 (resp., x2k+2, . . . , x2k+1−1) as
the internal vertices of L (resp., R). Observe that e ∈ M(G) and since M(G)
is a stable matching of G, we must have x2k+1 − x2k = c(e) ≤ min{DL, DR}
as otherwise, at least one of the edges (x1, x2k) or (x2k+1, x2k+1) is unstable.
Figure 2.4 illustrates the various notions.

We say that a 2k-vertex weighted line graph is consistent with Hk if it can be
obtained from Hk by scaling the edge costs. Fixing the external vertices of L and
R, we argue that the internal vertices of L and R can be repositioned so that L
and R, resp., become consistent with Hk without violating the validity of ξ as a

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 17

weighted line MC and without decreasing the ratio ρ(ξ). We shall establish this
fact for L; the proof for R is analogous. Note first that since M(Hk) is stable in
Hk and since c(e) ≤ DL, it follows that by repositioning the internal vertices of
L so that L becomes consistent with Hk, we do not violate the stability of M(G).
Second, by the inductive hypothesis, repositioning the internal vertices of L so
that L becomes consistent with Hk maximizes c(M(L))/c(M∗(L)), thus ρ(ξ)
cannot decrease after this repositioning step, which establishes the argument.
So, assume hereafter that both L and R are consistent with Hk.

Assume without loss of generality that DL ≥ DR, so c(e) = x2k+1 − x2k
is at most DR. In fact, since R is consistent with Hk, it follows that we can
increase the difference x2k+1− x2k until it is equal to DR, keeping the difference
xi+1 − xi unchanged for all other is, without violating the validity of ξ as a
weighted line MC and without decreasing the ratio ρ(ξ). So, assume hereafter
that DL ≥ c(e) = DR. Now, we argue that we can scale down the differences
xi+1−xi for every 1 ≤ i < 2k, keeping xi+1−xi unchanged for all other is, until
we obtain DL = c(e) = DR, without decreasing the ratio ρ(ξ). This completes
the proof since DL = c(e) = DR implies that G = Hk+1.

Let ` = c(M(L)) − DL, `∗ = c(M∗(L)), r = c(M(R)) − DR, and r∗ =
c(M∗(R)); notice that ` + `∗ = DL and r + r∗ = DR. Since c(e) = DR, we can
express ρ(ξ) as

ρ(ξ) = c(M(G))
c(M∗(G)) = 2`+ `∗ + 2(r + r∗) + 2r + r∗

`∗ + r∗
= 2`+ `∗ + 4r + 3r∗

`∗ + r∗
.

Recalling that DL ≥ DR, we express DL as DL = (1 + λ)DR for some λ ≥ 0,
and so ` = (1 + λ)r and `∗ = (1 + λ)r∗. Thus,

ρ(ξ) = 2(1 + λ)r + (1 + λ)r∗ + 4r + 3r∗
(1 + λ)r∗ + r∗

= (6 + 2λ)r + (4 + λ)r∗
(2 + λ)r∗ .

Assuming that the edge costs in G (as a whole) are scaled so that R = Hk

(rather than merely being consistent with Hk), and recalling the properties of
ξkRT , we get

ρ(ξ) = (6 + 2λ)(3k−1 − 2k−1) + (4 + λ)2k−1

(2 + λ)2k−1 =
(6 + 2λ

2 + λ

)
· (3/2)k−1 − 1 .

The lemma follows since the function f(λ) = 6+2λ
2+λ is monotonically decreasing

for λ ≥ 0, meaning that it assumes its maximum for λ = 0 which implies that
DL = DR has to hold.

2.4 Lower Bound on PoSα

Our goal in this section is to prove Theorem 2.2 and thereby establish a lower
bound on PoSα of minimum-cost perfect matching in metric graphs with 2n
vertices.

Theorem 2.2. PoSα of minimum-cost perfect matching in metric graphs with
2n vertices is Ω(nlog(1+1/(2α))).

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 18

The graph construction that lies at the heart of this lower bound, denoted
Hk
α, is a parametrized variant of the Reingold-Tarjan graph Hk presented in

Section 2.3 and depicted in Figure 2.3 for arbitrary values of α. Specifically,
the 2-vertex graph H1

α is identical to H1; and the 2k+1-vertex graph Hk+1
α is

constructed recursively by placing two disjoint instances of Hk
α, each of diameter

Dk
α, on the real line, only that this time, the spacing between them is set to

Sk+1
α = (1/α − ε)Dk

α, for some sufficiently small ε > 0 that will be determined
later on. This implies that Dk

α = (2 + 1/α − ε)k−1 and Sk+1
α = (1/α − ε)(2 +

1/α− ε)k−1.
Now let M be an α-stable matching in Hk

α. We argue that M has to contain
each edge e = (x, y) with c(e) = 1/α− ε. Indeed, if e /∈M , then e is α-unstable
in M since c(e) < α · min{c(x, x′), c(y, y′)} for all other vertices x′, y′. Given
that all vertices with distance 1/α − ε are therefore already matched, we can
apply the same argument for each edge connecting two adjacent vertices with
edge cost (1/α−ε)(2+1/α−ε) and thereby conclude that these edges have to be
in M as well. By repeating this argument, we end up with the unique α-stable
matching M that has to contain the edge (xk1, xk2k) whose cost is Dk

α and and all
other edges whose cost differs from 1. Thus, c(M) ≥ Dk

α = (2 + 1/α− ε)k−1.
On the other hand, the cost of the minimum-cost matching M∗ is not larger

than that of the matching using all cost 1 edges, thus we can bound the cost of
M∗ as c(M∗) ≤ 2k−1. Together, we conclude that

PoSα(Hk
α) ≥ c(M)

c(M∗) ≥
(2 + 1/α− ε)k−1

2k−1

= Ω
(

1 + 1
2α

)k−1
= Ω

(
nlog(1+ 1

2α)) ,

where the last two equalities hold by taking a sufficiently small ε and by recalling
that Hk

α has 2n = 2k vertices, resp.

2.5 Price of Stability

The upper bound established on the PoA in Section 2.3 clearly holds for the PoS,
too. In Section 2.4, we showed that the proof technique for the Ω(nlog(3/2))-
lower bound of Section 2.3 can be easily adapted to establish the same lower
bound for the PoS as well, so the PoS does not provide much of an improve-
ment over the PoA. In fact, Section 2.4 generalizes this result, showing that
PoSα(2n) = Ω

(
nlog(1+1/(2α))) for every α ≥ 1. Consequently, we turn our atten-

tion to bounding PoSα(2n) from above, establishing the following theorem.

Theorem 2.3. PoSα of minimum-cost perfect matching in metric graphs with
2n vertices is at most 3 · nlog(1+1/(2α)).

Observe that Theorem 2.2 and 2.3 establish a tight bound of Θ
(
nlog(1+1/(2α)))

on PoSα(2n). The upper bound promised by Theorem 2.3 is constructive, relying
on a simple algorithm presented in Section 2.5.1. Section 2.5.2 provides the
analysis of this algorithm, showing that the returned matching indeed satisfies
the bound.

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 19

e

f

e′

g

b2

b1

d

c

u v

M(u) M(v)

Figure 2.5: This figure illustrates the two different cases of Lemma 2.6.

2.5.1 An Algorithm for α-Stable Matchings

The following algorithm Stab transforms a minimum-cost matching M∗ in a
metric graph into an α-stable matching M .
Algorithm Stab: Start with the minimum-cost matching M ←M∗ and iterate
over all edges of G by non-decreasing order of costs. If the edge (u, v) currently
considered is α-unstable in the current matching M , replace the edges (u,M(u))
and (v,M(v)) in M by (u, v) and (M(u),M(v)) (this operation is called a flip
of the edge (u, v)) and continue with the next edge. After having iterated over
all edges, return M .
We assume that edge cost ties are resolved in an arbitrary but consistent manner.
In the following, we denote byMi the matching calculated by the above algorithm
at the end of iteration i. Moreover, M0 = M∗ is the initial minimum-cost
matching and MS the final matching returned by Stab.

Lemma 2.6. For any unstable edge b created by the flip of an edge e, we have
c(b) > c(e).

Proof. We consider a flip of the edge e = (u, v) and denote by e′ = (M(u),M(v))
the second new edge joining M as a result of the flip. The two edges that are
removed by the flip are denoted by f and g. See Figure 2.5 for an illustration of
the situation. When an edge e is flipped, there are essentially two different cases
for an unstable edge to be created. The unstable edge contains either one vertex
of e or one vertex of e′. No other vertices are involved in the flip and thus every
new unstable edge has to contain at least one of the four vertices. We assume
without loss of generality that a vertex of the edge g is incident to the unstable
edge created by the flip.

Let us first consider the case where a vertex of e is incident to the new
unstable edge. This case is denoted as the edge b1 in Figure 2.5. We assume that
b1 is stable before the flip and unstable thereafter. For b1 to be unstable after the
flip, we must have α ·c(b1) < c(e) and α ·c(b1) < c(c). But as e is unstable before
the flip, we have α · c(e) < c(g) and thus we get α · c(b1) < c(e) < c(g)/α ≤ c(g).
This means that b1 was already unstable before the flip, which is a contradiction
to the assumption. Hence, no vertex of e can be part of the new unstable edge.

Let us now consider the case, where a vertex from e′ is part of the new
unstable edge (b2 in Figure 2.5). Since b2 is stable before the flip and unstable

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 20

after it, we must have c(g) ≤ α ·c(b2) < c(e′). But as e is unstable before the flip,
we have α · c(e) < c(g), and thus we get c(e) < c(g)/α ≤ c(b2) which completes
the proof.

Corollary 2.7 follows by induction on i. Lemma 2.8 then follows by a straight-
forward analysis of the algorithm’s run-time.

Corollary 2.7. Let ei be the edge considered in iteration i. Then for any un-
stable edge b in Mi it holds that either c(ei) < c(b) or b will be considered in a
later iteration j > i.

Lemma 2.8. Algorithm Stab transforms a minimum-cost matching into a valid
α-stable matching in time O(n2 logn).

Proof. The running time of the algorithm is dominated by the step of sorting
the edges in G according to their cost. This takes O(n2 logn) steps. The second
phase — the actual algorithm — runs in O(n2) steps since it iterates once over
all edges in V × V and each iteration takes O(1) time.

The correctness of the algorithm is established by Corollary 2.7 since it states
that in the last iteration, all unstable edges have strictly larger cost than the
edge currently considered or will be considered later. Since this edge is already
the one with the largest cost and all edges have been considered, there cannot
be any unstable edges in the final matching MS .

2.5.2 Cost Analysis

Our goal in this section is to show that when the algorithm Stab is invoked
with parameter α for any α ≥ 1, it returns an α-stable matching MS satisfying
c(MS) = c(M∗) · O(nlog(1+1/(2α))). Since this section makes heavy use of rooted
binary trees and their properties, we require a few definitions. In a full binary
tree, each inner node has exactly two children. The depth d(v) of a node v in a
tree T is the length of the unique path from the root of T to v and the height
h(T) of a tree T is defined as the maximal depth of any node in T . The height
h(v) of a node v of T is defined to be the height of its subtree. The leaf set L(T)
or L(F) of a tree T or a collection F of trees is the set of all leaves in T or F ,
resp. The leaf set L(v) of a node v in a tree is L(Tv) where Tv is the subtree
rooted at v. Finally, two nodes with the same parent are called sibling nodes.

We begin with Lemma 2.9 stating an important property of the edges that
are flipped by Stab.

Lemma 2.9. If an edge e is flipped in iteration i, then e ∈Mj for all j ≥ i and,
in particular, e ∈MS.

Proof. Let us assume for the sake of contradiction that e = (u, v) was flipped
in iteration i of the algorithm and further that (u, v) /∈ Mj for some j > i.
According to the algorithm, we have (u, v) ∈Mi. Since (u, v) /∈Mj , there has to
exist an iteration k with i < k ≤ j where (u, v) is removed from Mk−1 such that
(u, v) /∈Mk. For this to happen, either edge (u, u′) or (v, v′) for some vertex u′ or
v′ must be flipped in iteration k because it was unstable in Mk−1. Without loss

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 21

y ∼ eu z ∼ ev

x ∼ e

u v

M(u) M(v)

⇒eu ev

e

Figure 2.6: The left side shows a matching configuration with an unstable edge (u, v),
which will be flipped by Stab. This flip is then represented by the flip tree segment
on the right, which depicts the replacement of the two active edges (u,M(u)) ∼ y and
(v,M(v)) ∼ z by the active edge (M(u),M(v)) ∼ x.

of generality, we assume that (u, u′) is unstable in Mk−1 and flipped in iteration
k > i. Thus, we have c(u, u′) ≤ α · c(u, u′) < c(u, v). But this means that
Stab would have considered the edge (u, u′) before considering the edge (u, v),
a contradiction to the assumption.

Consider an iteration of Stab where edge (u, v) is flipped because it was
unstable at the beginning of the iteration. Then the two edges (u,M(u)) and
(v,M(v)) are replaced by (u, v) and (M(u),M(v)). Since the edge (u, v) is
selected irrevocably according to Lemma 2.9, the edges (u,M(u)) and (v,M(v))
can never be part of M again. The only edge, of the four edges involved, that may
be changed again, is the edge (M(u),M(v)). Thus, we refer to (M(u),M(v)) as
an active edge. We also refer to all edges in M0 as active. Using the notion of
active edges, we shall now model the changes that Stab applies to the matching
during its execution through a logical helper structure called the flip forest.

To avoid confusion between the basic elements of our graphs and the basic
elements of the flip forest, we refer to the former as vertices/edges and to the
latter as nodes/links.

Definition (Flip Forest). The flip forest F = (U,K) for a certain execution of
Stab is a collection of disjoint rooted trees and has node set U and link set K.
For each edge e ∈ V ×V that has been active at some stage during the execution,
there exists a node ue ∈ U . This correspondence is denoted by ue ∼ e. For each
flip of an edge (u, v) in G, resulting in the removal of the edges (u,M(u)) and
(v,M(v)) from M , K contains a link connecting the node y ∼ (u,M(u)) to
its parent x ∼ (M(u),M(v)) and a link connecting the node z ∼ (v,M(v))
to its parent x ∼ (M(u),M(v)). (Observe that, by definition, all three edges
(u,M(u)), (v,M(v)), and (M(u),M(v)) are active.) Refer to Figure 2.6 for an
illustration.

The definition of a flip forest ensures that for each flip of the algorithm, we
obtain a binary flip tree segment as depicted by Figure 2.6. When we transcribe
each flip operation of the complete execution of Stab into a flip tree segment as
explained above, we end up with a collection of full binary trees — the flip forest.
This is because the parent node of a tree segment may appear as a child node
of the tree segment corresponding to a later iteration of the algorithm since its
corresponding edge is still active and therefore may participate in another flip.

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 22

e1

e3

e5

(a) The initial matching M0 is a
minimum-cost matching.

e1

e2

e3

e5

e7

∼ e1 ∼ e3

∼ e7

(b) Matching M1 is obtained from M0 by flipping e2.
The corresponding flip tree is shown on the right.

e1

e2

e3

e4

e5

e6

e7

∼ e1 ∼ e3

∼ e7 ∼ e5

∼ e6

(c) Matching M2 is obtained from M1 by flipping e4. The
corresponding flip tree is shown on the right.

Figure 2.7: This figure shows how the initial minimum-cost matching M0 is trans-
formed by an execution of Stab through the flips of the edges e2 and e4 along with
the flip forest (here only a single flip tree) corresponding to the execution. Edges in
the current matching are drawn with solid lines while edges in matchings of previous
iterations are drawn with dashed lines.

Each such tree is called a flip tree hereafter. Figure 2.7 illustrates a sample
execution of Stab.

Observe that all leaves (including isolated nodes) in the flip forest correspond
to edges in the minimum-cost matching M0 = M∗. The edges in the matching
MS are implicitly represented by the flip forest: An edge that gets flipped —
and is therefore irrevocably selected into MS — has no corresponding node in F ,
but we may associate it with the node corresponding to the active edge resulting
from the flip. On top of these edges, MS contains the edges corresponding to
isolated nodes or roots.

We now define a function ψ : U 7→ R that assigns a real weight to each
node in the flip forest F as follows. For each leaf ` of a flip tree in F , we set
ψ(`) := c(e), where ` ∼ e and we recall that an edge corresponding to a leaf node
in F is part of M∗. The function ψ is extended to an inner node x of a flip tree
with child nodes y and z by the recursion

ψ(x) := ψ(y) + ψ(z) + (1/α) ·min{ψ(y), ψ(z)} . (2.1)

For ease of notation, we call the child with smaller (resp., larger) weight as well
as the link leading to its parent light (resp., heavy); ties are resolved arbitrarily.
We denote the light child of a node x as xL and the heavy child as xH. Then we

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 23

can rewrite Equation (2.1) as

ψ(x) := ψ(xH) + (1 + 1/α) · ψ(xL) .

Lemma 2.10. Let x be a node in F and e an edge in G with x ∼ e. Then
c(e) ≤ ψ(x).

Proof. We prove the statement by induction over the height of x in its flip tree.
The assertion holds for every leaf x ∼ e in the flip forest as ψ(x) = c(e) by
definition. Assume that the statement holds for the two children xL and xH of
a node x that represents a flip of the edge (u, v). Then x ∼ (M(u),M(v)) =
e and we assume without loss of generality that xH ∼ (u,M(u)) = eu and
xL ∼ (v,M(v)) = ev. Thus, by the inductive hypothesis, c(eu) ≤ ψ(xH) and
c(ev) ≤ ψ(xL). This flip tree segment represents the replacement of the edges
eu and ev by e and (u, v), which happened because the edge (u, v) was unstable
with respect to M , that is, α · c(u, v) < min{c(ev), c(eu)}. Since G is metric, we
can bound c(e) as follows.

c(e) ≤ c(eu) + c(ev) + c(u, v)
< c(eu) + (1 + 1/α) · c(ev)
≤ ψ(xH) + (1 + 1/α) · ψ(xL) (inductive hypothesis)
= ψ(x)

At this stage, we would like to relate the weight ψ(rT) of the roots rT in F to
the cost of the stable matching MS returned by Stab. To that end, we observe
that MS consists of the edges corresponding to the roots in F and to the edges
that have been flipped along the course of the execution; let R and D denote
the set of the former and latter edges, respectively. Observe that

c(MS) =
∑
e∈R

c(e) +
∑
e∈D

c(e) .

Consider the flip of the edge (u, v) resulting in the insertion of the edge
(M(u),M(v)) ∼ x to M and the removal of the edges (u,M(u)) ∼ xL and
(v,M(v)) ∼ xH from M . Since ψ(x) = ψ(xH) + (1 + 1/α) · ψ(xL), we have
ψ(x) − (ψ(xL) + ψ(xH)) = ψ(xL)/α. Lemma 2.10 then implies that ψ(x) −
(ψ(xL) + ψ(xH)) ≥ c(u,M(u))/α, and since edge (u, v) was flipped, we have
ψ(x)− (ψ(xL) + ψ(xH)) ≥ c(u, v). Therefore,∑

e∈D
c(e) ≤

∑
internal x∈U

(ψ(x)− (ψ(xL) + ψ(xH)))

=
∑

flip trees T

(
ψ(rT) −

∑
`∈L(T)

ψ(`)
)

=
∑

flip trees T
ψ(rT) −

∑
`∈L(F)

ψ(`) ,

where the second equation holds by a telescoping argument. Note further that∑
e∈R c(e) ≤

∑
flip treesT ψ(rT) and thus

c(MS) ≤ 2
∑

flip trees T
ψ(rT) −

∑
`∈L(F)

ψ(`) .

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 24

Since c(M∗) = ∑
`∈L(F) ψ(`), Corollary 2.11 follows.

Corollary 2.11. The matching MS returned by Stab satisfies

c(MS) ≤ 2
∑

flip trees T
ψ(rT)− c(M∗) .

We will now have a closer look at the properties of our flip trees and their
weights. It will be convenient to ignore the relation of the flip trees to the Stab
algorithm at this stage; in other words, we consider an abstract full binary tree
T with a function w : L(T)→ R+

0 that assigns non-negative real weights to the
leaves of T . For any leaf ` of T , we set ψ(`) = w(`) and determine the weight
ψ(x) of each inner node x in T following the recursion given by Equation (2.1).
Note that we allow our tree T to have zero-weight leaves now (this can only
make our analysis more general).

Definition (Complete Binary Tree). A full binary tree T is called complete if
all leaves are at depth h(T) or h(T)− 1. Given some positive integer n that will
typically be the number of leaves in some tree, let

h(n) = dlogne and k(n) = 2h(n) − n .

Note that 0 ≤ k(n) < 2h(n)−1.

Observe that for a complete full binary T with n leaves, h(n) equals the height
h(T) of T while k(n) equals the number of missing leaves at the maximum depth
h(T).

Definition (ψ-Balanced Binary Tree). A full binary tree T is called ψ-balanced
if for any two sibling nodes x, y in T , we have ψ(x) = ψ(y).

Consider a full binary tree T . Let Λ(T) denote the sum of the weights of
the leaves of T , i.e., Λ(T) = ∑

`∈L(T) ψ(`), and let Ψ(T) = ψ(rT) (recall that rT
denotes the root of T). The following observation is established by induction on
the node depth.

Observation 2.12. For any node v of a ψ-balanced full binary tree T , we have

ψ(v) = (2 + 1/α)−d(v) ·Ψ(T) .

Definition (Effect of Binary Tree). The effect η(T) of a full binary tree T is
defined to be

η(T) =
{

Ψ(T)/Λ(T) if Λ(T) > 0
1 if Λ(T) = 0

.

An n-leaf full binary tree T is said to be effective if it maximizes η(T), i.e., if
there does not exist any n-leaf full binary tree T ′ such that η(T ′) > η(T).

Intuitively speaking, if we think of T as a flip tree, then its effect is a measure
for the factor by which the flips represented by T increase the cost of M∗ when
applied to it. But, once again, we do not restrict our attention to flip trees at this

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 25

stage. The effect of a full binary tree is essentially determined by its topology
and by the assignment of weights to its leaves.

Before we proceed towards proving the upper bound on PoSα(2n), we first
establish that the effect of a flip tree is invariant under scaling the leaf weights.
We begin by defining the light depth λ(x) of a node x in a flip tree T as the
number of light links on the direct path from x to the root rT of T . Lemma 2.13
relates the weight of a node of a flip tree to the weights of the leaves of its
subtree.

Lemma 2.13. Every node x in a flip tree satisfies

ψ(x) =
∑

`∈L(x)
(1 + 1/α)λ(`)−λ(x) · ψ(`) .

Proof. We prove the statement by induction over the height of x in its flip tree.
The statement holds for a leaf node x since then we have L(x) = {x} and
λ(x) − λ(x) = 0. Assume that the statement holds for both children xH and xL
of a node x. By definition, we have

ψ(x) = ψ(xH) + (1 + 1/α) · ψ(xL)
=

∑
`∈L(x

H
)
(1 + 1/α)λ(`)−λ(x

H
) · ψ(`)

+ (1 + 1/α) ·
∑

`∈L(x
L

)
(1 + 1/α)λ(`)−λ(x

L
) · ψ(`)

=
∑

`∈L(x
H

)
(1 + 1/α)λ(`)−λ(x) · ψ(`)

+ (1 + 1/α) ·
∑

`∈L(x
L

)
(1 + 1/α)λ(`)−λ(x)−1 · ψ(`)

=
∑

`∈L(x
H

)
(1 + 1/α)λ(`)−λ(x) · ψ(`) +

∑
`∈L(x

L
)
(1 + 1/α)λ(`)−λ(x) · ψ(`)

=
∑

`∈L(x)
(1 + 1/α)λ(`)−λ(x) · ψ(`) ,

where we used λ(xL) = λ(x) + 1 and λ(xH) = λ(x).

Lemma 2.14. The effect of a flip tree is invariant under scaling its leave weights.

Proof. Recall that, by definition, Ψ(T) = ψ(rT) where rT is the root of T and
Λ(T) = ∑

`∈L(rT) ψ(`). Lemma 2.13 then yields Ψ(T) = ∑
`∈L(rT)(1 + 1/α)λ(`) ·

ψ(`) since λ(rT) = 0 for the root node. The effect of a flip tree T can then be
expressed as

η(T) = Ψ(T)
Λ(T) =

∑
`∈L(rT)(1 + 1/α)λ(`) · ψ(`)∑

`∈L(rT) ψ(`)
and the claim follows.

Our upper bound is established by showing that the effect of an effective
n-leaf full binary tree is O

(
nlog(1+1/(2α))). We begin by developing a better

understanding of the topology of effective ψ-balanced full binary trees.

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 26

Lemma 2.15. An effective n-leaf ψ-balanced full binary tree must be complete.

Proof. Aiming for a contradiction, suppose that T is not complete. We scale
the leaf weights of T so that Ψ(T) = 1, knowing by Lemma 2.14 that this does
not change the effect of T . Because T is not complete, it must have leaves at
depth d1 and at depth d2, where d2 > d1 + 1. The assertion is established by
showing that an n-leaf full binary tree with higher effect can be obtained by a
small modification to T ’s topology, in contradiction to the assumption that T is
effective.

Let y be a leaf at depth d1 and `1 and `2 be two leaves at depth d2 > d1 + 1
with parent node z. Since T is ψ-balanced, we can employ Observation 2.12 to
conclude that

ψ(`1) = ψ(`2) = (2 + 1/α)−d2 and ψ(y) = (2 + 1/α)−d1 .

Now, consider the ψ-balanced full binary tree T ′ obtained from T by removing `1
and `2 and adding two new leaves `′1 and `′2 as children of y with weights ψ(`′1) =
ψ(`′2) = (2 + 1/α)−d1−1, keeping the weights of all other nodes unchanged. By
doing so, we turn z — an internal node in T — into a leaf (whose weight remains
ψ(z) = (2+1/α)−d2+1). On the other hand, y, which is a leaf in T , is an internal
node in T ′. Therefore,

Λ(T ′) = Λ(T) + ψ(`′1) + ψ(`′2) + ψ(z)− ψ(`1)− ψ(`2)− ψ(y)
= Λ(T) + 2 · (2 + 1/α)−d1−1 + (2 + 1/α)−d2+1

− 2 · (2 + 1/α)−d2 − (2 + 1/α)−d1

= Λ(T) + (2 + 1/α)−d1−1(2− (2 + 1/α))
+ (2 + 1/α)−d2(2 + 1/α− 2)

= Λ(T) + (1/α)((2 + 1/α)−d2 − (2 + 1/α)−(d1+1))
< Λ(T) .

As Ψ(T ′) = Ψ(T) = 1, it follows that η(T ′) > η(T), in contradiction to the
effectiveness of T .

Next, we develop a closed-form expression for the effect of complete ψ-
balanced full binary trees. We define the function ϕ : Z+ 7→ R with

ϕ(n) := (2 + 1/α)h(n)

2h(n) + k(n)/α
.

and recall that h(n) = dlogne and k(n) = 2h(n) − n.

Lemma 2.16. The effect of an n-leaf complete ψ-balanced full binary tree T is

η(T) = ϕ(n) .

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 27

Proof. Again we assume without loss of generality that the weights of the leaves
are scaled so that Ψ(T) = 1, cf. Lemma 2.14. By definition, T has 2h−2k leaves
at depth h and k leaves at depth h−1. Employing Observation 2.12, we conclude

Λ(T) = (2h − 2k) · (2 + 1/α)−h + k · (2 + 1/α)−(h−1)

= (2 + 1/α)−h · (2h − 2k + k · (2 + 1/α))
= (2 + 1/α)−h · (2h + k/α) .

Since Ψ(T) = 1, we have η(T) = 1/Λ(T) which completes the proof.

An important property of complete ψ-balanced full binary trees is that their
effect is strictly increasing in the number of leaves.

Lemma 2.17. The function ϕ(n) is strictly increasing.

Proof. We show that for all n ∈ Z+, it holds that ϕ(n+1) > ϕ(n) and distinguish
two cases. First, we consider the case that n 6= 2i for all i ∈ Z+. Observe that
h(n + 1) = h(n) and k(n + 1) < k(n) and therefore ϕ(n + 1) > ϕ(n). Now, we
examine the case that n = 2i for some i ∈ Z+. We have h(n + 1) = i + 1 and
h(n) = i as well as k(n + 1) = 2i − 1 and k(n) = 0. Plugging these values into
ϕ, we obtain ϕ(n+ 1) > ϕ(n) and the proof is complete.

We are now ready to show that it is sufficient to consider complete ψ-balanced
full binary trees.

Lemma 2.18. An effective n-leaf full binary tree must be ψ-balanced.

Proof. We prove the statement by induction on the number of leaves n. The
base case of a tree having a single leaf (which is also the root) holds vacuously;
the base case of a tree having two leaves is trivial. Assume that the assertion
holds for trees with fewer than n leaves and let T be an effective n-leaf full binary
tree. Let T` and Tr be the left and right subtrees of T and let z be the number
of leaves in T` where 1 ≤ z ≤ n − 1. Observe that both T` and Tr have to be
effective as otherwise, η(T) could be increased; more precisely, if Ti ∈ {T`, Tr} is
not effective, then one can increase Ψ(Ti) while keeping Λ(Ti) unchanged, which
results in an increased η(T). Thus, by the inductive hypothesis, we can assume
that T` and Tr are ψ-balanced. Lemma 2.15 then guarantees that both T` and
Tr are complete. Hence, we can use Lemma 2.16 to determine the effects of T`
and Tr as ϕ(z) and ϕ(n− z), respectively.

Assume without loss of generality that the leaf weights are scaled such that
Λ(T) = Λ(T`)+Λ(Tr) = 1 and set Λ(T`) = x, Λ(Tr) = 1−x, for some 0 ≤ x ≤ 1.
We consider a set of n− 1 function fz : [0, 1] 7→ R>0 (parametrized by z) with

fz(x) =
{
ϕ(z) · x+ (1 + 1/α)ϕ(n− z) · (1− x) if ϕ(z)x ≥ ϕ(n− z)(1− x)
(1 + 1/α)ϕ(z) · x+ ϕ(n− z) · (1− x) if ϕ(z)x ≤ ϕ(n− z)(1− x)

that, by Lemma 2.16, determines the effect of T given x and z. Observe that
each fz is a piecewise linear and continuous function, which is linear in the

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 28

intervals [0, bz] and [bz, 1] where bz is the break point of fz such that ϕ(z)bz =
ϕ(n−z)(1− bz). Hence, fz must attain its maximum either at a boundary point
0 or 1, or at the breakpoint bz, where the latter is realized by a ψ-balanced tree.

Consider the function f(x) = maxz fz(x) whose maximum corresponds to
the effect of an effective n-leaf full binary tree. Let x̂ be the argument for
which f(x) is maximized and we argue that x̂ can be neither 0 nor 1. Indeed,
if x̂ = 0, then Ψ(T) = Ψ(Tr) and Λ(T) = Λ(Tr), hence η(T) = η(Tr) for the
corresponding tree T . But since Tr has fewer leaves than T and is complete and
ψ-balanced, Lemma 2.16 and 2.17 dictate that its effect — and thus also the
effect of T — must be smaller than the effect of an n-leaf complete ψ-balanced
full binary tree, a contradiction to the choice of x̂maximizing f(x). An analogous
argument excludes x̂ = 1. It follows that the maximum of f(x) must be attained
at a point 0 < x̂ < 1, which, by the definition of f , is the break point bz of some
function fz and thus realized by a ψ-balanced tree.

Combining Lemmas 2.15, 2.16, and 2.18 and recalling that h = h(n) =
dlogne ≤ logn + 1 and k = k(n) ≥ 0, we conclude that the effect of an n-leaf
full binary tree is at most

(2 + 1/α)h
2h + k/α

≤ (2 + 1/α)h
2h ≤ (1 + 1/(2α))logn+1 ≤ 3/2 · nlog(1+1/(2α)) .

Returning to the definition of the flip forest F , we recall that there exists one
leaf in F for each of the n edges in the minimum-cost matching M∗ and therefore
each flip tree has at most n leaves. Furthermore, since

c(M∗) =
∑

flip trees T

∑
`∈L(T)

ψ(`) =
∑

flip trees T
Λ(T) ,

we can employ Corollary 2.11 to derive

c(MS)
c(M∗) ≤ 2 ·

∑
flip trees T Ψ(T)∑
flip trees T Λ(T) ≤ 2 · max

flip trees T
η(T) ≤ 3 · nlog(1+1/(2α)) ,

thus establishing Theorem 2.3.

2.6 Conclusion

“In matching, stability is not for free” puts the results of this chapter in a
nutshell. We have shown that in order to discourage nodes from deviating from
a suggested assignment, one might have to pay a high price in terms of the
overall cost of all matched pairs. However, when looking at real-world instances
of matchings such as relationships between humans, it becomes apparent pretty
quickly that 1-stability is usually not the most appropriate solution concept.
Who would really be willing to leave one’s partner for someone who is just
infinitesimally “better”? When looking at α-stability, our results are much more
encouraging as the overall costs only increase by a constant factor if one is

CHAPTER 2. STABLE MATCHING IN METRIC GRAPHS 29

satisfied with a O(logn)-stable matching. Contemplated the other way around,
paying only a constant factor already yields a significant level of stability.

We hope that our findings can assist real-word matching systems such as
matching donated organs to organ receivers, doctors to hospitals, people in dat-
ing platforms to each other while ensuring in particular that entities are happier
with their matches and have less incentives to deviate, whatever that means in
the respective context.

Part II

Mobile Agents with Restricted
Capabilities

30

3
Gathering of Mobile Robots with
Limited Visibility

In the future, large groups of small and cheap mobile robots can potentially
replace few and expensive robots for many tasks. Thus, there is a growing
interest in figuring out which kinds of tasks can be solved by such robotic teams.
For mobile robots, it is especially interesting whether they can build a given
formation and which capabilities are needed to do so. Naturally, the goal is to
require as few capabilities as possible in order to be able to use robots that are
as cheap as possible.

In this chapter we study the robot-gathering problem, a classic mobile net-
work problem. As we discuss in more detail in the related work section, robot-
gathering has received considerable attention in the past few years, and there
exist various model variants. We are particularly interested in the concurrent
version of the problem: We are given n robots, modeled as points in the two-
dimensional Euclidean plane, and these robots want to gather at a single point.
In each synchronous round, every robot observes the plane and the other robots,
decides where to move, and moves there, concurrently with all other robots. The
robots are oblivious and thus cannot remember any information between rounds.
The next round does not start before the last movement has finished. If robots
have full visibility, the problem is trivial as all robots can compute the unique
center of the smallest enclosing circle (SEC) of all robots, and then concurrently
move there, finishing in one single round. Hence, we study the distributed ver-
sion of the problem where each robot has a limited viewing range and can only
observe other robots that are within unit distance of its position. This notion
implies that the visibility graph of the robots is a unit disk graph (UDG). Clearly,
the UDG of the robots must be connected initially, meaning that there is a path

31

CHAPTER 3. GATHERING OF MOBILE ROBOTS 32

from any robot to any other robot just following the visibility neighborhoods.
Additionally we assume that robots are anonymous, in the sense that they do
not have unique IDs. Again, if robots have unique IDs, the problem becomes
much simpler, as the robots just have to agree on meeting at the location of the
robot with the minimum ID.

The most important question in the aforementioned model is whether the
robots are able to meet at a single point and how long it takes to do so. The
answer to the first question is known for 15 years. In their seminal paper Ando,
Suzuki, and Yamashita [10] presented an algorithm that gathers the robots. In
each round, every robot simply moves to the center of the SEC of the robots
in its viewing range, only constrained by the condition that robots must not
lose visibility to their neighboring robots. As Ando et al. proved, this approach
works, and the robots eventually meet.

More recently, Chazelle [27] showed that similar processes may have an expo-
nential behavior. It is therefore an interesting task to examine runtime bounds
of the original SEC algorithm by Ando et al. In this chapter we show that the
algorithm gathers all robots at a single point in a number of rounds polynomial
in the number of nodes n, in particular O(n2). Furthermore, we give a matching
lower bound of Ω(n2) and thus present a tight analysis of the SEC algorithm,
showing that the algorithm needs Θ(n2) rounds to gather all robots.

3.1 Related Work

The problem of gathering a set of robots has gained a lot of interest during the
last 15 years. In early work, all robots had a global view of the positions of
the other robots [106, 107]. Several articles have been published for the fully
asynchronous and continuous setting, where the robots do not have a common
notion of time, and hence may also observe each other while moving. A promising
approach seems to let all robots move to the Weber point that — unlike the center
of gravity or the center of the SEC — is invariant to movements of robots towards
it. However, Bajaj [23] showed that the Weber point cannot be computed because
it involves calculating roots of high-order polynomials. Cieliebak et al. [33] gave
an algorithm that solves the gathering problem if the robots are able to detect
whether there is more than one robot at a given point (multiplicity detection).
Cohen et al. showed that moving to the center of gravity of the robots leads to
convergence, even in highly asynchronous models [34,35]. Furthermore, Izumi et
al. [66] showed exponential lower bounds for the convergence of a certain class
of randomized algorithms.

We are mainly interested in the local model with limited visibility, where
the robots have to base their decisions only on the positions of the neighboring
robots within a given range. This setting is more difficult, because a robot does
not know the system as a whole, often not even the total number of robots.
Furthermore, it is essential to always guarantee the connectivity of the neigh-
borhood graph, given that it is connected in the beginning. Otherwise it cannot
be ensured that the connectivity will ever be regained — at least when dealing
with oblivious robots. This is especially an issue in a synchronous and discrete

CHAPTER 3. GATHERING OF MOBILE ROBOTS 33

round model, which is common in the literature [10, 45, 106] and which we also
consider in this chapter. As the robots move at the same time (possibly based
on different information), it is difficult to keep the connectivity.

The gathering problem in the local setting was already tackled some time
ago by Ando et al. [10]. Similar to other local algorithms for the gathering
problem, their robots move to the center of the smallest enclosing circle of their
neighbors’ locations. This target point definition guarantees that connectivity is
maintained if no two robots are activated at the same time. But it can be easily
seen that connectivity is not necessarily maintained in the synchronous setting.
To overcome this problem, the authors restrict the distance that a robot moves
towards its target point in a clever way, such that connectivity is guaranteed even
under worst-case movement of the other robots performing the same algorithm.
Furthermore, Ando et al. showed that their algorithm allows the robots to gather
in a finite number of rounds. Beyond this result, no runtime bounds were given.
A follow-up article [9] evaluated the quality of their algorithm in a more realistic
environment, where sensor data is not perfectly accurate, and suggested that the
algorithm is robust against measurement errors of the sensors.

The same algorithm, but in an asynchronous setting, is used by Meyer auf
der Heide et al. [81]. Here, the robots only move one at a time, and so no
connectivity maintenance is required. It is shown that the robots also gather in
this setting, but again, no runtime bounds are given.

Flocchini et al. [57] showed that having a common orientation among the
robots is sufficient to solve the gathering problem in finite time in the fully
asynchronous model. The work by Degener et al. [40] is closest to our new
contribution. It is shown that gathering can be achieved in expected O(n3 logn)
rounds if the robots move sequentially: in each step only one robot (chosen
uniformly at random) is activated. Moreover, when active, robots do not only
move themselves, but they need the additional capability to assign new target
points to neighbors, which may then move as well. This is a very powerful
assumption, since it enables a robot to move several robots to the same position
and let them act like one single robot from then on.

Apart from this result, there are no runtime bounds known for other algo-
rithms for the local gathering problem so far.

Other researchers have analyzed how the algorithms can cope with failures
or inaccuracies of sensor readings. Among others, Souissi et al. [104] and Izumi
et al. [67] presented algorithms that are able to deal with erroneous readings
from a compass. Agmon et al. [1] studied algorithms that tolerate the crash of
a single robot, and still are able to achieve gathering of the remaining robots.

The more general problem of constructing geometrical formations with a
set of autonomous robots has also attracted a lot of research. Current work
shows how these robots can form lines between fixed stations [38, 45, 46, 72, 76]
or circles [26,37].

In this chapter, we provide a lower bound of Ω(n2) and, as our main result, a
matching upper bound of O(n2) for the number of rounds required to gather the
robots using the local algorithm for the synchronous setting presented by Ando
et al. [10]. The robots used here are considerably weaker than those discussed in

CHAPTER 3. GATHERING OF MOBILE ROBOTS 34

the work of Degener et al. [40], as they they cannot instruct any robots to move
and are not allowed to view any further than their communication range.

Note, that the capabilities we require are quite restrictive compared to related
work from robot formation problems. Other capabilities that are considered
are for instance compasses [67, 104] and other time models such as the semi-
synchronous model, where arbitrary subgroups of robots move synchronously
[42].

3.2 Model

Our model is essentially the one defined by Ando et al. [10]. Given a set R of n
robots r1, . . . , rn in the Euclidean plane, the goal is to gather all robots in one
point. A robot is represented as a singular point in the plane, which means that
robots cannot block each other’s views or paths. We use a discrete, synchronous
time model: In each round t, t ∈ Z+

0 , all robots act synchronously at the same
time. We call the positions p1(t), . . . , pn(t) of the robots at the beginning of
round t the configuration at time t. When the round t under consideration is
clear from the context, we will sometimes identify a robot ri with its position
pi(t). We further call the configuration at time 0 the start configuration. When
we say time t, we refer to the beginning of round t. The (Euclidean) distance
between two robots ri and rj is indicated by d(pi(t), pj(t)) or also by d(ri, rj)
when t is clear from the context. Two robots ri and rj can see each other, if
d(ri, rj) ≤ 1, where we call ri and rj neighbors and the distance 1 the viewing
range of the robots. The set of all neighbors of a robot ri — its neighborhood —
at time t is denoted as Nt(ri) or just N(ri) if the time is clear from the context.
The notion of limited visibility induces a unit disk graph, the visibility graph
UDGt = (R, Et), where (ri, rj) ∈ Et iff ri and rj are mutually visible at time
t, i.e., dist(ri(t), rj(t)) ≤ 1. We will furthermore use the convex hull of a set of
robot positions to which we will also refer by the convex hull of these robots.

We measure the quality of the algorithm by counting the number of syn-
chronous rounds until the robots have gathered in one point. During each round,
the robots act according to the Look-Compute-Move (LCM) model: First all
robots synchronously observe their environment and determine the positions
of their neighbors relative to their own position (Look-operation). During the
Compute-operation, they use the observed positions as input for the algorithm
described in Section 3.3. The algorithm outputs the point to which the robots
move concurrently during the following Move-operation.

The algorithm is based on the smallest enclosing circle (SEC) of a point set P
(which are robot positions in our context). Its center is the point that minimizes
the maximum distance to any point in P.

Robot Model. Our robots have a limited viewing range, they are oblivious,
which means that they do not have a memory, they do not communicate and they
do not use a common coordinate system. Moreover, they cannot be distinguished
from each other — they are anonymous. On the other hand, we abstract from
technical issues. In particular, we assume the robots to be able to measure

CHAPTER 3. GATHERING OF MOBILE ROBOTS 35

positions of neighbors relative to their own position accurately, they can compute
geometric properties and they can occupy the same position as other robots.

3.3 The Gathering Algorithm

1: // compute target point
2: Ri(t) := {all robots visible from ri including ri itself}
3: Ci(t) := smallest enclosing circle of Ri(t)
4: ci(t) := center of Ci(t)
5: // keep connectivity
6: ∀rj ∈ Ri(t) : mj := midpoint between pi(t) and pj(t)
7: ∀rj ∈ Ri(t) : Dj := circle with radius 1

2 around mj

8: seg := line segment pi(t), ci(t)
9: A := ⋂

rj∈RDj ∩ seg
10: x := point in A that minimizes d(x, ci(t))
11: // Note that A 6= ∅, since pi(t) ∈ A
12: pi(t+ 1) := x

Algorithm 3.1: Algorithm of robot ri in round t

The algorithm introduced by Ando et al. [10], works as follows. First, ri
computes its target point ci(t), which is the center of the smallest enclosing
circle around itself and its neighbors. Because the connectivity of the unit disk
graph could break if all robots would move to their target point, a second phase
is used to compute a point x on the line segment between pi(t) and ci(t) to which
ri finally moves. For each neighbor rj , ri computes the midpoint mj between
their positions and the limit circle Dj with center mj and radius 1/2. As long
as both ri and rj do not leave this circle, they will be in distance 1 of each other
and therefore neighbors at the beginning of the next round. Finally, x is the
point on the line segment between pi(t) and ci(t) that maximizes the distance
that ri moves under the constraint that ri does not leave the circle Dj for any
neighbor rj . Since all robots execute this algorithm, this procedure makes sure
that two neighboring robots never lose their connection.
Lemma 3.1 (Ando et al. [10]). If two robots are neighbors in UDGt at time t,
then they are still neighbors in UDGt+1. In particular, if UDG0 is connected,
then UDGt is connected for all t ≥ 0.

Because of the procedure to keep connectivity, it is possible that a robot does
not move far in direction towards its target point. We say that a robot rj hinders
another robot ri from reaching some point p on the line segment between pi(t)
and ci(t), if ri would leave Dj when moving to p. If in any round, two robots
move to the exact same point, they will stay at a common point for the rest
of the execution of the algorithm, because they see the same neighborhood and
hence behave exactly the same. We say that such robots have merged.

In [10], the authors have already shown that this algorithm gathers the robots
in one point within finite time, but so far no runtime bounds were known. We

CHAPTER 3. GATHERING OF MOBILE ROBOTS 36

d
α

h

Figure 3.1: A robot configuration on the vertices of a regular convex polygon yields a
worst-case running time of the algorithm.

will now first show a lower bound Ω(n2), and then our main result, namely the
upper runtime bound of O(n2) rounds.

3.4 The Lower Bound

For a lower bound on the number of rounds until gathering when using the
algorithm described in Section 3.3, consider a configuration with the robots po-
sitioned on the boundary of a circle, such that each robot has only two neighbors
and the distance between two neighbors on the circle is the same for all robots.
In this configuration, all robots have the same local view and so all robots do the
same. The robots will therefore still be positioned on the boundary of a circle
in the next round. We will use this observation to prove the following result.

Theorem 3.1. There is a start configuration such that the algorithm takes Ω(n2)
rounds to gather the robots in one point.

Proof. Let the robots be positioned on a circle with an initial distance of 1
between two neighboring robots (see Figure 3.1 for an illustration). This means
that the initial circumference of the circle is ≈ n, and its radius is ≈ n

2π . We will
show that it takes Ω(n2) rounds until the circumference of the circle is reduced
to 2

3n.
If the circumference of the circle is greater than 2

3n, each robot r has only two
neighbors, which are in equal distance d, 1

2 < d ≤ 1, from r. The center of the
SEC of r’s neighborhood is the midpoint between its neighbors. We can therefore
compute the distance that r moves as the height h of the equilateral triangle
formed by r and its two neighbors. To compute h, let α be the internal angle of
the triangle at robot r. Due to the definition of the cosine, h = cos(α2) ·d. In the
interval between 0 and π

2 , the cosine can be upper bounded by cos(x) ≤ −x+ π
2 .

As 0 < α
2 < π

2 , we can apply this bound and thus cos(α2) ≤ −α
2 + π

2 , resulting
in h ≤

(
−α

2 + π
2
)
· d. Moreover, since the robots form a regular polygon with n

CHAPTER 3. GATHERING OF MOBILE ROBOTS 37

vertices and the sum of the internal angles of such a polygon is πn− 2π, we get
that α = π − 2π

n for all robots. Thus,

h ≤
(
−α2 + π

2

)
· d

≤
(
−
(
π

2 −
π

n

)
+ π

2

)
· d

= π

n
· d ≤ π

n

and the robots move at most a distance of π
n in each round. Therefore, it

takes at least 1
3πn

2 rounds until the radius is decreased by at least 1
3n. As the

circumference is 2π times the radius of a circle, decreasing the radius by 1
3n also

decreases the circumference by 1
3n. Thus, it takes at least 1

3πn
2 rounds until the

circumference is decreased to 2
3n.

3.5 The Upper Bound

In this section we will show that the robots gather in O(n2) rounds. But be-
fore we start with the analysis, we state some well-known facts about smallest
enclosing circles, on which our analysis will rely heavily.

Proposition 3.2 (Chrystal [32]). Let C be the smallest enclosing circle (SEC)
of a point set S. Then either

1. there are two points P,Q ∈ S on the circumference of C such that the line
segment PQ is a diameter of C, or

2. there are three points P,Q,R ∈ S on the circumference of C such that the
center c of C is inside 4PQR, which means that 4PQR is acute-angled.

Furthermore, the SEC of a set of points is unique.

From this proposition follows directly that the SEC of a point set P is always
within the convex hull of P .

The following definition is illustrated in Figure 3.2.

Definition 3.3. Let C be the SEC of a set of points S. An arc of C that contains
no points is called a point-free arc. The length of this arc is defined as the central
angle of the arc.

Note that the central angle of an arc is greater than π if the arc extends over
more than half the circumference of the circle.

Proposition 3.4 (Chrystal [32]). Let C be the SEC of a set of n ≥ 2 points.
Then there is no point-free arc with length greater than π.

With these basics, we can now define how we measure progress. We will use
two progress measures.

CHAPTER 3. GATHERING OF MOBILE ROBOTS 38

C

α

a

B

A

Figure 3.2: The central angle α of an arc a of the circle C is the angle subtended at
the center of C by the two points A and B delimiting the arc.

• As a first progress measure, we will count the number of rounds in which
robots merge. As we have n robots in the beginning, there can be at most
n− 1 such rounds.

• Since the algorithm is deterministic and it was already proven in Ando
et al.’s original paper [10] that the robots gather in finite time, we know
that, for a given start configuration, the point where the robots gather is
fixed. We will call this point the gathering point M. We define a circle
Nt with center M and radius Rt for a round t, such that Nt contains all
robots in round t and its radius is minimal. Due to the definition of the
algorithm and because the center of the SEC of a point set is always within
the convex hull of the point set, the robots never leave the convex hull of
their neighbors as well as the global convex hull. Rt can therefore only
decrease. We will use Rt as a second progress measure.
As the robots gather at a point inside the convex hull of the robot positions
in any round t, M is inside the convex hull of the robot positions of the
start configuration. Moreover, since UDG0 is connected, the diameter of
the convex hull of the robots in round 0 can be at most n−1 and therefore
also R0 ≤ n−1. The idea of the proof is to show that in a constant number
of rounds in which no robots merge, Rt decreases by at least Ω(1

n).

Using these two progress measures, with R0 ≤ n−1 and at most n−1 rounds in
which robots merge, it follows directly that the robots gather in O(n2) rounds.

From now on, we will consider an arbitrary but fixed round t0. Let N := Nt0
and R := Rt0 . For this round, we introduce some further notions (see Figure
3.3). First, we fix an arbitrary point P on the boundary of N and draw a line R
between P and M. Let l2 be a line perpendicular to R such that the intersection
points of l2 and the circle N are in distance 1

8 from P. Observe that the length
of l2 is bounded by 1

4 . Let l1 be another line perpendicular to R that intersects
with R halfway between P and the intersection point of l2 with R. We define S1
as the circular segment defined by l1 and S2 as the area of the segment defined
by l2 minus the area of S1. The main idea of the analysis is to show that in
round t0 and t0 + 1, either two robots merge or all robots leave S1. We will
conclude that this leads to the desired number of rounds.

CHAPTER 3. GATHERING OF MOBILE ROBOTS 39

l2

l1

S1
P

M

1
8

NR

S2

α

Figure 3.3: The segments S1 and S1 ∪ S2 of the global SEC are later used to measure
the progress of the algorithm.

The following analysis is divided into geometric prerequisites regarding S1
and S2 (Section 3.5.1) and the actual analysis of the algorithm (Section 3.5.2).

3.5.1 Geometric Prerequisites

In this section we want to give prerequisites regarding S1 and S2 and smallest
enclosing circles with centers in these segments. These will be used later to
make a statement about which robots can compute target points inside one of
the segments.

Lemma 3.5. Let x be the length of a chord defining a circular segment S of N .
Then any circle C with its center c in S and radius r > x has an arc outside of
N with a central angle larger than π and thus cannot be the SEC of points only
from N .

Proof. See Figure 3.4 for an illustration of the setting described by the lemma.
Since r is larger than the length of the maximum distance between two points in
S, both intersection points I1 and I2 of the circle N with any circle with center
in S and radius r > x lie outside of S. Because the center c lies in S, it follows
that the (longer) arc of C from I1 to I2 outside of N has a central angle larger
than π (the dashed part of the circumference in Figure 3.4).

Since the chord length of S1 ∪ S2 is bounded by 1
4 , the following corollary is

immediate.

Corollary 3.6. The radius of a SEC of a point set S ⊆ N with its center in
S1 ∪ S2 is at most 1

4 .

In the following, we will show two geometrical lemmas for the position of the
center of a SEC, if the configuration of the underlying points adheres to a few
restrictions. The first lemma follows from Corollary 3.6 and will be used to show
that if a robot can see a robot that is far away from S1 ∪ S2, it cannot compute
a target point inside this circular segment.

CHAPTER 3. GATHERING OF MOBILE ROBOTS 40

N
> x

c

C

I1

I2

S

x

Figure 3.4: A circle with center in S and a radius exceeding the chord length of S
intersects with N outside of S.

Lemma 3.7. Let S ⊆ N be a set of points. Now let A be a point in S1 ∪S2 and
B ∈ S be a point in distance at least 1 from A. Then the center of the SEC C of
S cannot lie in the segment S1 ∪ S2.

Note that A does not need to be in S.

Proof. Assume that C has its center c inside S1∪S2. We know from Corollary 3.6
that C can have at most radius 1

4 . Since the maximum distance of two points in
S1 ∪ S2 is bounded by 1

4 , B must have a distance of at least 3
4 from S1 ∪ S2 in

order to be in distance at least 1 from A. Hence, B cannot lie in C.

The next lemma is similar to the last one in the sense that it makes a state-
ment about configurations, for which robots cannot compute a target point in
S1. In particular, it will be used for robots that can only see one single robot in
S1 ∪ S2. These robots cannot compute a target point in S1.

Lemma 3.8. The center of the SEC C of a non-empty point set S ⊆ N \(S1∪S2)
and a point A ∈ S1 ∪ S2 cannot lie in the segment S1.

Proof. Assume that C has its center c inside S1. We distinguish two cases as
given by Proposition 1.

1. C is defined by two points P1 and P2. A must be one of these points, say P2,
otherwise c cannot lie in S1. Since P1 cannot lie in S1 or S2 by assumption
and because the height of S1 is equal to the height of S2, the midpoint c
of AP1 cannot lie in S1.

2. C is defined by three points P1, P2 and P3. A must be one of these points,
say P3, otherwise c cannot lie in S1. Since C is the circumcircle of 4P1P2A,

CHAPTER 3. GATHERING OF MOBILE ROBOTS 41

it lies on the intersection of the perpendicular bisectors of AP1 and AP2.
The centers of these two segments lie outside S1 and since the perpendicular
bisectors intersect in the interior of4P1P2A and this triangle is acute, their
intersection point also cannot lie in S1.

This completes the proof.

Finally, as the main idea of the analysis is to show that if no robots merge, S1
is empty after two rounds, we will need the height of S1 to compute the progress
with respect to Rt within two rounds.

Lemma 3.9. The segment S1 has a height h of at least 1
128π·R ∈ Ω

(
1
n

)
.

Proof. We start by computing the angle α (see Figure 3.3 for an illustration of
α). The circumference of N is 2πR. Thus, we can position at most 16πR points
on the boundary of N that are in distance 1

8 from the points closest to them and
form a regular convex polygon. The internal angle of each of the points of this
polygon is equal to 2α. To compute such an internal angle, we use that the sum
of the internal angles of a convex polygon is (m− 2) · π, where m is the number
of vertices of the polygon. In our case, this is at most (16πR− 2) · π. It follows
that each angle is at most (16πR−2)·π

16πR = π − 1
8R , and thus α ≤ π

2 −
1

16R .
Now we can use α and the fact that cos(x) ≥ − 2

πx+1 in the interval x ∈ [0, π2]
to compute the height h of S1:

h = cosα
16 ≥

cos
(
π
2 −

1
16R

)
16

≥ 1
16 ·

(
− 2
π
·
(
π

2 −
1

16R

)
+ 1

)
= 1

128πR

Because R ≤ n, we have shown h ∈ Ω(1
n).

3.5.2 Gathering Algorithm Analysis

Now we can proceed to the actual analysis of the algorithm. We can use the
lemmas from Section 3.5.1 to determine that no robot can happen to compute
a target point in S1 or S1 ∪S2. Nevertheless, according to the algorithm, robots
do not always reach their target point; it is also possible that they are hindered
by other robots. So knowing that a target point is outside S1 or S1 ∪ S2 does
not necessarily mean that the robot actually leaves the respective segment. The
following two lemmas show that robots always reach their target point, if it is
in S1 ∪ S2, and that they cannot be hindered from leaving S1 and S2.

Lemma 3.10. Robots that compute a target point in S1 ∪S2 cannot be hindered
from reaching it by the limit circle of any other robot.

CHAPTER 3. GATHERING OF MOBILE ROBOTS 42

Proof. Let ri be a robot that computes a target point c (which is the center of
the SEC C) inside S1 ∪ S2. Then, according to Corollary 3.6, the radius of C
cannot exceed 1

4 and thus the distance between ri and c is also upper bounded
by 1

4 . Now assume that there is a robot re that hinders ri from reaching c. Since
re must be a neighbor of ri, it must also be included in C and therefore, re can
have at most distance 1

2 from ri. Now let me be the midpoint between ri and re
and therefore the center of the limit circle that hinders ri from reaching c. me

can be at most in distance 1
4 from ri. But that means that ri can move freely

in any direction a distance of 1
2 −

1
4 = 1

4 and hence it can reach its target point
without being hindered by re.

Lemma 3.11. Robots cannot be hindered from leaving S1∪S2 by the limit circle
of any other robot.

Proof. Let ri be a robot that computes a target point outside S1 ∪ S2 in round
t0. Now assume for the sake of contradiction that there is one robot rj that
hinders ri from leaving S1 ∪ S2. This is only possible if rj is a neighbor of ri
and thus rj must be within distance 1 of ri (see the circle C1 in Figure 3.5 with
center ri and radius 1: rj must be in C1). Now let m be the point where ri would
leave S1 ∪ S2 if moving to its target point. According to the algorithm it is only
possible that ri is hindered by rj to leave S1 ∪ S2, if m is not within distance 1

2
from the midpoint mj between ri and rj (line 6–10 of the algorithm). It follows
that mj cannot be inside the circle C2 (Figure 3.5) with center m and radius 1

2 .
Based on C2 we can define a circle C3 which may not contain rj , if mj is not in
C2: C3’s center is p′i, which is pi reflected with respect to the point m, and its
radius is 1 (see Figure 3.5). Summing up, rj must be inside of C1, but outside
of C3. Moreover, the smallest enclosing circle computed by the algorithm has at
most radius 1, and so ri’s target point is at most in distance 1 of rj . It follows
that ri’s target point must be on the line between m and p′i, because each point
on the straight line through pi and m beyond p′i is in distance more than 1 from
any point that is in C1, but not in C3.

Case 1 : rj is in S1∪S2. Then, because the chord length of S1∪S2 is at most
1
4 , the distance between ri and rj is also at most 1

4 . But that means that ri is at
most in distance 1

8 from the midpoint between ri and rj and thus it can move
at least distance 1

2 −
1
8 = 3

8 >
1
4 freely in any direction without being hindered

by rj . But after ri has moved a distance of 1
4 , it has left S1 ∪ S2 leading to a

contradiction.
Case 2 : rj is not in S1 ∪ S2. Since a SEC is defined by two or three points

with at least one point on each half of the boundary of the SEC (Proposition
3.4), there must be a robot rk that is in S1 ∪ S2 and on the boundary of the
SEC defining ri’s target point. It follows that rk can be at most in distance 1

4
from m. As pi is also at most in distance 1

4 from m, so is p′i and also pi’s target
point, which is between m and p′i (see explanation above). Thus, rk is at most
in distance 1

2 from ri’s target point. Since rk is on the boundary of the SEC
that defines ri’s target point, it follows that the SEC can have at most a radius
of 1

2 . Now, since rj is outside of C3 and because the distance between m and p′i
is at most 1

4 , rj must be in distance greater than 1
2 from ri’s target point. Thus,

CHAPTER 3. GATHERING OF MOBILE ROBOTS 43

︸ ︷︷ ︸
≤ 1

4

m

pi

p′i

C1

C3

C2
N

S1 ∪ S2

Figure 3.5: This figure illustrates the proof of Lemma 3.11. The circles indicate where
rj can be positioned: C1 is a circle with center pi and radius 1 and must contain rj . C2
has center m and radius 1

2 , and C3’s center is p′i with radius 1. rj must not be in C3.

rj cannot be in the SEC that defines ri’s target point, which is a contradiction
to ri and rj being neighbors. It follows that rj cannot hinder ri from leaving
S1 ∪ S2.

With all these prerequisites, we can now show that if no robots merge, S1 is
empty after two rounds. We first analyze the behavior of some robots in round
t0 in Lemma 3.12, before we plug things together in Lemma 3.13.

Lemma 3.12. Let S be a set of robots in round t0 that are all positioned in or
compute a target point in S1 ∪ S2 and that all have a pairwise different neigh-
borhood. Then at most one of those robots is in S1 ∪ S2 at the beginning of the
next round.

Proof. Since all robots from S have different neighbors, there exists a robot
ri ∈ S for which no robot from S has a set of neighbors that is a subset of
the neighbors of ri. Thus, all robots rj ∈ S \ {ri} have a neighbor that is not
visible from ri and therefore in distance more than 1 from ri. If ri is positioned
in S1 ∪ S2, all robots rj ∈ S \ {ri} see a point B in N (namely the position of
the neighbor that ri cannot see) that is in distance 1 from a point A in S1 ∪ S2
(namely the position of ri). Lemma 3.7 therefore guarantees that all neighbors
of ri compute a target point outside of S1 ∪ S2. According to Lemma 3.11, no
robot is hindered from leaving S1 ∪ S2. Thus, only ri can stay in S1 ∪ S2.

If ri is positioned outside S1 ∪S2, it has its target point in S1 ∪S2 according
to the definition of S. Corollary 3.6 now gives that the radius of ri’s SEC cannot
exceed 1

4 and thus ri is in distance at most 1
4 from S1∪S2. Using that the distance

between two points in S1∪S2 is at most 1
4 , it follows that all points within S1∪S2

are in distance at most 1
2 from ri. Now consider a robot rj ∈ S \ {ri} and a

neighbor rk of rj that is in distance more than 1 from ri. This robot rk must
then be in distance more than 1

2 from S1∪S2. Since rk is rj ’s neighbor, we know

CHAPTER 3. GATHERING OF MOBILE ROBOTS 44

from Corollary 3.6, that the center of rj ’s SEC — its target point — cannot be
in S1 ∪S2 and according to Lemma 3.11 rj is not hindered from leaving S1 ∪S2.
Since this holds for all robots rj ∈ S \ {ri}, ri is the only robot that can be in
S1 ∪ S2 in round t+ 1.

Lemma 3.13. If Rt ≥ 1
2 , either there are robots that merge in round t or after

two rounds, the segment S1 does not contain any robots.

Proof. We consider all robots that are positioned in S1∪S2 or compute a target
point in S1 ∪ S2 in round t. We divide this set of robots into two subsets and
analyze them separately.

• First, we consider all robots that have a neighbor with the same neighbor-
hood. Thus, for all these robots there is another robot that computes the
same target point. Then there are two possibilities: Either one of these
target points is in S1∪S2. According to Lemma 3.10, the robots with such
a target point are not hindered from reaching it and therefore they merge.
If all target points are outside S1 ∪ S2, Lemma 3.11 guarantees that all
these robots leave S1 ∪ S2.

• Now consider the robots that have a pairwise different neighborhood. Ac-
cording to Lemma 3.12, at most one of those robots stays in S1∪S2 during
this round.

Thus, if ri is positioned outside S1 at the end of round t, we are done. Otherwise,
since apart from ri no robot is still in S1 ∪ S2, we know from Lemma 3.8, that
neither ri nor a neighbor of ri can compute a target point in S1 in round t+ 1.
Thus, ri leaves S1 in round t+ 1 (Lemma 3.11) and none of its neighbors enters
S1. All other robots that are not neighbors of ri do not see a robot in S1 and
thus they cannot enter S1.

Lemma 3.13 will be used to show that if no robots merge, Rt decreases by
Ω
(

1
n

)
every two rounds. According to the following Lemma, this procedure

stops as soon as Rt < 1
2 .

Lemma 3.14 (Ando et al. [10]). If Rt < 1
2 , the robots have gathered at one point

in round t+ 1.

This lemma holds because if Rt < 1
2 , all robots can see each other and thus

all robots compute the same target point. It is shown Ando et al.’s original
work [10] that the robots do not hinder each other from reaching this point.

Putting everything together, we are now able to prove the final result.

Theorem 3.2. The robots gather within O(n2) rounds.

Proof. Fix an arbitrary round t0 ≥ 0. Since Lemma 3.13 holds for any point
on the boundary of Nt0 , after two rounds either two robots have merged or all
robots must be in distance greater than the height of S1 from the boundary
of Nt0 . According to Lemma 3.9, the height of S1 is at least 1

128·Rt and thus

CHAPTER 3. GATHERING OF MOBILE ROBOTS 45

if the robots do not merge, the radius decreases by at least 1
128·Rt , giving that

Rt+2 ≤ Rt− 1
128·Rt ≤ Rt−

1
128·R0

. It follows that after 2 ·128 · (R0)2 = 256 · (R0)2

rounds without merging robots, the radius must be less than 1
2 . Now it takes one

round to gather the robots (Lemma 3.14). Moreover, since UDG0 is connected,
R0 ≤ n. There are at most n − 1 rounds in which robots merge. The total
number of rounds is therefore at most 256 · n2 + n.

3.6 Conclusion

In this chapter we have shown that mobile robots can gather at a single point
in O(n2) rounds, when they execute the classic synchronous algorithm by Ando
et al. [10]. Furthermore we showed that this bound is asymptotically tight for
the algorithm by providing a matching lower bound. This raises the question
whether there are more efficient algorithms.

On the other hand there are no nontrivial lower bounds known for classes
of local algorithms for gathering or other formation problems. One would need
a clean definition of asynchronous or synchronous local gathering strategies. A
crucial property restricting such strategies is that connectivity has to be main-
tained. Just looking at the start configuration of the lower bound instance from
Section 3.4, for example, and only demanding connectivity for this specific start
configuration is not sufficient: consider the synchronous algorithm in which each
point moves in the direction of the target point of our algorithm, but goes be-
yond this point until the distance to its neighbors is 1. This algorithm maintains
connectivity for our specific start configuration, but needs only a linear number
of rounds, if the start configuration positions neighboring robots in distance 2

3 on
the cycle. Similar results can be shown for asynchronous strategies with specific
activation policies. Such examples demonstrate that the connectivity constraint
has to be reflected much more severely in lower-bound models for local gathering
strategies.

4
Treasure Search with Many
Mobile Finite Automata

“They operate without any central control. Their collective behavior arises from
local interactions.” The last quote is arguably the mantra of distributed comput-
ing, however, in this case, “they” are not nodes in a distributed system; rather,
this quote is taken from a biology paper that studies social insect colonies [87].
Understanding the behavior of insect colonies from a computer science perspec-
tive will hopefully prove to be a big step for both disciplines.

In this chapter, we study the process of food finding and gathering by ant
colonies from a distributed computing point of view. Inspired by the model of
Feinerman et al. [54], we consider a colony of n ants whose nest is located at
the origin of an infinite grid. The ants collaboratively search for an adversarially
hidden food source located in distance D from the origin. An ant can move
between neighboring grid cells and can communicate with the ants that share
the same grid cell. However, the ant’s navigation and communication capabilities
are very limited since its actions are controlled by a randomized finite automaton
(FA) operating in an asynchronous environment — refer to the model section
for a formal definition. Nevertheless, we design a distributed algorithm ensuring
that the ants locate the food source within O(D + D2/n) time units with high
probability (w.h.p.)1. It is not difficult to show that a matching lower bound
holds even under the assumptions that the ants have unbounded memory (i.e.,
are controlled by a Turing machine) and know the parameter n.

1See Section 1.1 for a formal definition.

46

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 47

4.1 Related Work

Feinerman et al. [53,54] introduce the aforementioned problem called ants nearby
treasure search (ANTS) and study it, assuming that the ants (a.k.a. agents) are
controlled by a Turing machine (with or without space bounds) and do not com-
municate with each other at all. They show that if the n agents know a constant
approximation of n, then they can find the food source (a.k.a. treasure) in time
O(D+D2/n). Moreover, Feinerman et al. observe a matching lower bound and
prove that this lower bound cannot be matched without some knowledge of n.
Lenzen et al. study the effects that bounding the memory of the agents and the
range of available probabilities have on the runtime [79]. In contrast to the model
studied in these works, the agents in our model can communicate anywhere on
the grid as long as they share the same grid cell. However, due to their weak
control unit (a FA), their communication capabilities are very limited even when
they do share the same grid cell. Notice that the stronger computational model
of Feinerman et al. enables an individual agent to perform tasks way beyond the
capabilities of a (single) agent in our setting, e.g., remember the grid cells it has
already visited or perform spiral searches, which play a major role in their upper
bound.

Distributed computing by finite automata has been studied in several differ-
ent contexts including population protocols [11,15] and the recent work [51] from
which we borrowed the agents communication model. In that regard, the line
of work closest to our deliberations in this chapter is probably the one studying
graph exploration by FA controlled agents, see, e.g., [58].

Graph exploration in general is a fundamental problem in computer science.
In the typical case, the goal is for a single agent to visit all nodes in a given
graph [4, 41, 43, 84, 89]. It is well-known that random walks allow a single agent
to visit all nodes of a finite undirected graph in polynomial time [6]. Notice that
in an infinite grid, the expected time it takes for a random walk to reach any
designated cell is infinite. Our problem can also be seen as a variant of the game
of cops and robbers, where the robber remains dormant [2].

Finding treasures in unknown locations has been previously studied, for ex-
ample, in the context of the classic cow-path problem. In the typical setup, the
goal is to locate a treasure on a line as quickly as possible and the performance
is measured as a function of the distance to the treasure. It has been shown that
there is a deterministic algorithm with a competitive ratio 9 and that a spiral
search algorithm is close to optimal in the two-dimensional case [21]. The study
of the cow-path problem was extended to the case of multiple agents by López-
Ortiz and Sweet [80]. In their study, the agents are assumed to have unique
identifiers, whereas our agents cannot be distinguished from each other (at least
not at the beginning of the execution).

4.2 Model

We consider a variant of [54]’s ANTS problem, where a set of n mobile agents
search the infinite grid for an adversarially hidden treasure. The agents are

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 48

controlled by asynchronous randomized finite automata with a common sense of
direction and communicate only with agents sharing the same grid cell.

More formally, consider n mobile agents that explore Z2. In the beginning of
the execution, all agents are positioned in a designated grid cell referred to as the
origin (say, the cell with coordinates (0, 0) ∈ Z2). We assume for simplicity that
the agents can distinguish between the origin and the other cells. We denote
all cells with either x or y-coordinate being 0 as north/east/south/west-axis,
depending on their location.

The main difference between our variation of the ANTS model and the origi-
nal one lies in the agents’ computation and communication capabilities. In both
variants, all agents run the same (randomized) protocol. However, under the
model considered in this chapter, the agents are controlled by an asynchronous
randomized finite automaton. This means that the individual agent has a con-
stant memory and thus, in general, can store neither coordinates in Z2 nor the
number of agents. On the other hand, in contrast to the model considered in [54],
our agents may communicate with each other. Specifically, under our model, an
agent a positioned in cell c ∈ Z2 can communicate with all other agents posi-
tioned in cell c at the same time. This communication is quite limited though:
agent a merely senses for each state q of the finite automaton, whether there
exists at least one agent a′ 6= a in cell c whose current state is q. Notice that
this communication scheme is a special case of the one-two-many communication
scheme introduced in [51] with bounding parameter b = 1.

The distance between two grid cells (x, y), (x′, y′) ∈ Z2 is defined with respect
to the `1 norm (a.k.a. Manhattan distance), that is, |x− x′|+ |y− y′|. Two cells
are called neighbors if the distance between them is 1. In each step of the
execution, agent a positioned in cell (x, y) ∈ Z2 can either move to one of the
four neighboring cells (x, y+ 1), (x, y− 1), (x+ 1, y), (x− 1, y), or stay put in cell
(x, y). The former four position transitions are denoted by the corresponding
cardinal directions N,S,E,W , whereas the latter (stationary) position transition
is denoted by P (standing for “stay put”). We recall that the agents have a
common sense of orientation, i.e., the cardinal directions are aligned with the
corresponding grid axes for every agent in every cell.

The agents operate in an asynchronous environment. Each agent’s execution
progresses in discrete (asynchronous) steps indexed by the non-negative integers
and we denote the time at which agent a completed step i > 0 by ta(i) >
0. Following the common practice, we assume that the time stamps ta(i) are
determined by the policy ψ of an adversary that knows the protocol but is
oblivious to its random bits, whereas the agents do not have any sense of time.
The set of activation times determined by the adversary is called a schedule
and we will use the terms synchronous/asynchronous policy and -/- schedule
interchangeably in the rest of the chapter, despite their subtle difference.

Formally, the agents’ protocol is captured by the 3-tuple Π = 〈Q, s0, δ〉, where
Q is the finite set of states; s0 ∈ Q is the initial state; and

δ : Q× 2Q → 2Q×{N,S,E,W,P}

is the transition function. At time 0, all agents are in state s0 and positioned in

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 49

the origin. Suppose that at time ta(i), agent a is in state q ∈ Q and positioned
in cell c ∈ Z2. Then, the state q′ ∈ Q of a at time ta(i+1) and its corresponding
position transition τ ∈ {N,S,E,W,P} are dictated based on the transition
function δ by picking the pair (q′, τ) ∈ δ(q,Qa), uniformly at random from
δ(q,Qa), where Qa ⊆ Q contains state p ∈ Q if and only if there exists some
(at least one) agent a′ 6= a such that a′ is in state p and positioned in cell c at
time ta(i). (Step i is deterministic if |δ(q,Qa)| ≤ 1.) For simplicity, we assume
that while the state subset Qa (input to δ) is determined based on the status
of cell c at time ta(i), the actual application of the transition function δ occurs
instantaneously at the end of the step, i.e., agent a is considered to be in state
q and positioned in cell c throughout the time interval [ta(i), ta(i+ 1)).

4.2.1 Problem Setting

The goal of the agents is to locate an adversarially hidden treasure, i.e., to bring
at least one agent to the cell in which the treasure is positioned. The distance
of the treasure from the origin is denoted by D. As in [54], we measure the
performance of a protocol in terms of its run-time, where the time is scaled so
that ta(i+ 1)− ta(i) ≤ 1 for every agent a and step i ≥ 0. Although we express
the run-time complexity in terms of the parameters n and D, we point out that
neither of these two parameters is known to the agents (who cannot even store
them in their very limited memory).

4.3 Parallel Diamond Search

In this section, we introduce the collaborative search strategy DiamondSearch
that depends on an emission scheme, which divides all participating agents in
the origin into teams of size ten and emits these teams continuously from the
origin until all search teams have been emitted. We delay the description of
our emission scheme until Section 4.4 and describe for now the general search
strategy (without a concrete emission scheme). We assume, for the sake of the
following informal explanation, an environment in which the agents operate in
synchronous rounds and then explain how we can lift this assumption.

The DiamondSearch strategy consists of two stages. The first stage works as
follows: Whenever a team is emitted, one agent becomes an explorer and four
agents become guides, one for each cardinal direction. The remaining five agents
become scouts, whose function will be explained later. Each guide walks into
its respective cardinal direction until it hits the first cell that is not occupied by
another guide. The explorer follows the north-guide and when they hit the non-
occupied cell (0, d) ∈ Z2 for some d > 0, the explorer starts a diamond search
by first walking south-west towards the west-guide. When it hits a guide, the
explorer changes direction to south-east, then to north-east, and finally to north-
west. This way, it traverses all cells in distance d from the origin, referred to
hereafter as level d (and also almost all cells in distance d+1). When the explorer
meets a guide on its way, the guide enters a sleep state to be awoken again in

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 50

G

G

G

4

32

1

O

E

5

G

Figure 4.1: An explorer (E) starts a diamond search in level ` = 3 at the north-guide,
visits all guides (G) in level ` in a counter-clockwise fashion and ends at the north-
guide. Whenever the explorer meets a guide, the guide moves outwards in its cardinal
direction. When the explorer completes its search by arriving again at the north-guide,
both agents walk outwards together to the next level to be searched. (The numbers
indicate the order in which the explorer moves.)

the second stage. The explorer also enters a sleep state after arriving again at
the north-guide, thereby completing the first stage of the diamond search.

The second stage of DiamondSearch is started when the last search team
is emitted from the origin. At this point in time, Θ(n) cells are occupied by
sleeping guides/explorers in all four cardinal directions. The last search team
wakes up the innermost sleeping search team upon which it resumes its job and
walks outwards to explore the next unexplored level in the same way as in the
first stage. Each team recursively wakes up the search team of the next level
until all sleeping teams have been woken up and resumed the search. A search
in the second stage has one important difference in comparison to a search in the
first stage: When an explorer meets a guide g during a search, g moves outwards
to the next unexplored level instead of entering a sleep state, hopping over all
the other stationary guides on its way, and waits there for the next appearance
of an explorer. When the explorer has finished its diamond by reaching the
north-guide again, it moves north (with the north-guide) to the first unexplored
level and starts another diamond search there. Knowing that all other guides
have reached their target positions in the same level as well, a new search can
begin. Figure 4.1 gives an illustration of the process for a single search team.

Note that the (temporary) assumption of a synchronous environment is cru-
cial for the correctness of the algorithm described so far as we assume that
whenever an explorer crosses a coordinate axis, the respective cell contains a
guide. In an asynchronous setting, the guide might still be on its way to that
particular cell and hence, the explorer would continue walking diagonally ad in-

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 51

finitum. We counter this problem by coupling the searches for different levels
in such a way that a search in level ` can never have progressed further than a
search in level `′ < `. This implies that a search in level ` cannot start/finish
earlier than a search in level `′ < ` starts/finishes. This coupling is implemented
by equipping each explorer with a scout that essentially allows the explorer e`
in level ` to check whether the explorer e`−1 of the preceding level has already
progressed at least as far as e` and to move only then. On top of that, explorer
e` only leaves a coordinate axis after ensuring, again by means of its scout, that
there is already a guide present in level ` + 1. This additional check together
with a few technicalities described later suffices to ensure that the searches are
“nested” properly and the corresponding guides of each explorer are waiting in
the right positions along the coordinate axes when those are hit by the explorer.

As a (much desirable) byproduct of the aforementioned explorers’ logic, it is
guaranteed that during the execution of the DiamondSearch strategy, every cell
contains at most one explorer of each possible state. To ensure that the same
holds for the guides, they are also equipped with scouts whose role is to check
that during a guide’s journey outwards, it does not move into a cell which is
already occupied by a guide, unless the latter is in a stationary state (waiting
for its explorer).

4.3.1 The DiamondSearch Strategy

After the preceding overview description of the DiamondSearch strategy, we shall
now specify it in greater detail and precision in order to allow us to formally prove
important properties later on.

Emission scheme. Initially, all n agents are located at the origin. Until all
agents become involved in the DiamondSearch strategy, an emission scheme is
responsible for emitting new teams (each consisting of ten agents) from the
origin. The emission of the teams is spaced apart in time in the sense that no
two teams are emitted at the exact same time. (Under a synchronous schedule,
a spacing of 20 time units is guaranteed.) To formally express (and analyze) the
emission rate, we introduce the notion of an emission function fn : Z+

0 → Z+
0 ,

where, until all teams are emitted, fn(t) bounds from below the number of teams
emitted up to time t. For simplicity, we assume that there are enough agents to
execute our algorithms, i.e., that n ≥ 40.

Let k+ 2, k ∈ Θ(n), be the total number of emitted teams where we assume
k ≥ 2. The first and last emitted teams have a special role as signal teams in
our protocol. The k remaining teams s1, . . . , sk will be referred to as search
teams. Whenever a search team becomes ready, four of the ten agents become
MovingGuides — one for each cardinal direction — and walk outwards in their
corresponding directions, while the fifth one becomes a MovingExplorer and fol-
lows the north-MovingGuide (see below for a detailed description of the agent
types). Each MovingGuide and MovingExplorer is accompanied by a Scout that
will stick to this particular agent for the rest of the execution.

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 52

Agent types. In the remainder of this chapter, we will refer to several dif-
ferent types of agents. Since there is only a constant number of different types,
these can be modeled by having individual finite automata for the various types.
We essentially use six different types and explain their specific behavior in the
following: Scout, Guide, MovingGuide, MovingExplorer, WaitingExplorer, and Ex-
plorer. We will use the terms “outwards” and “inwards” in the context of agents
of the two Guide-types (recall that they are associated with a cardinal direction)
to indicate the respective direction away from or towards the origin. We sub-
sume the types Explorer/MovingExplorer/WaitingExplorer and Guide/MovingGuide
under the name explorers and guides, resp. During the process of the algorithm,
each non-Scout agent will be accompanied by a Scout, whose type is specific to
the type of the agent it is accompanying — its owner. Since all different Scout-
types have very similar tasks, we first give a general description of a Scout’s
function and then explain its type-specific behavior together with the owner’s
behavior.

Scout. The function of each Scout-type is to control when its owner is allowed
to move further. It does so by moving to one of the four neighbor cells of
the owner — the scout position — and waiting for a certain condition (the
presence/absence of a certain type of agent) to become true in that cell. When
the condition is met, the Scout moves back to the cell containing its owner and
notifies the owner. When the owner moves to a new position, the Scout moves
along. As Scouts only play an auxiliary role in our protocol, we may refer to a
cell as empty even if it contains Scouts. The owner of a Scout only performs an
action after knowing that the Scout is in the correct position.

Guide. A Guide waits until a Explorer performing a search (this can be en-
coded in the state of the Explorer) has entered its cell. When (1) the cell one
coordinate inwards is empty and (2) its cell contains neither MovingGuide nor
MovingExplorer, it becomes a MovingGuide.

MovingGuide. A MovingGuide moves outwards (at least one cell) until it hits
a cell c that contains no Guide. The north-MovingGuide moves north together
with the MovingExplorer of the same search team. It does so by verifying before
each move (after the first) that the MovingExplorer has caught up and is in
the same cell. Otherwise, it waits for the MovingExplorer to catch up. Upon
arriving in c, the MovingGuide becomes a Guide, and waits for an Explorer to
visit. A MovingGuide uses its Scout to prevent moving in a cell that contains a
MovingGuide, MovingExplorer or Explorer.

MovingExplorer. A MovingExplorer repeatedly moves north together with the
north-MovingGuide of the same search team. More precisely, it only moves north
when there is no MovingGuide in its cell, implying that the MovingGuide is al-
ready one cell further and waits there for the MovingExplorer to catch up. The
MovingExplorer moves until it hits the first cell c that contains neither a Guide
that already has an Explorer searching (this can be encoded in the state of the

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 53

E1

E2

E3

O

Figure 4.2: Three Explorers (E1 to E3) are performing a search of adjacent levels in
the north-west quadrant. Their Scouts are depicted as blue squares connected to their
respective Explorer. E1 cannot walk further as there is still an Explorer (E2) in the cell
checked by its Scout. Both E2 and E3 can walk further as their Scouts do not observe
an explorer in the checked cells.

Guide) nor an Explorer. As soon as cell c contains a Guide (the north-Guide of
this explorer’s team), it becomes an Explorer. A MovingExplorer uses its Scout to
prevent moving into a cell that contains another MovingExplorer while walking
outwards.

WaitingExplorer. A WaitingExplorer waits until its cell is empty and then be-
comes a MovingExplorer.

Explorer. An Explorer does the bulk of the actual search by moving along the
sides of a diamond using Guides on its way to change direction (see Figure 4.1 for
an illustration). In the process, it moves south-west, then south-east, north-east,
and north-west, in this order. Initially, an Explorer performs one move west and
then alternatingly south and west.

During a diagonal walk, an Explorer uses its Scout to prevent it from over-
taking Explorers closer to the origin during their search as follows. Consider
an Explorer e in the north-west quarter-plane (walking south-west). The Scout
is sent to the south-neighbor cell, the scout position, and notifies e, when no
Explorer is present there (which might immediately be the case). Only then,
the Explorer and the Scout move one cell further where the Scout again enters
the scout position. See Figure 4.2 for an illustration of a diagonal walk in the
north-west quadrant and in particular of the function of the Scouts. In the
south-west, south-east, and north-east quarter-planes, the scout positions are
the east-, north-, and west-, neighbor cells, resp.

When the Explorer meets a west/south/east-Guide in an axis cell c, it changes
its moving direction. Before leaving the axis, it waits until c does contain neither
Guide nor MovingGuide (thereby ensuring that there is a Guide one cell outwards).
Upon arrival back at the north Guide after the diamond search is completed, it
becomes a WaitingExplorer.

The Explorer of the search team exploring level 1 counts its steps (the explo-
ration journey at this level contains exactly 8 cells) and uses the Scout to make

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 54

sure that the cells on the coordinate axes contain a Guide before entering them.

The signal teams. The first and last emitted teams, s0 and sk+1, resp., have
a special role and they do not actively participate in the exploration of the grid
(which is handled by s1, . . . , sk). Their job is solely to signal to the other teams
when the second stage of the protocol begins.

The first team s0 enters a special signal state and stays at the origin until
the last team sk+1 has been emitted. (Due to the design of our emission scheme
in Section 4.4, the agents in team sk+1 know that they belong to the last emitted
team and are able to notify the agents of s0 accordingly.) The aforementioned
logic of the agents in DiamondSearch ensures that as long as there is an agent
present in the origin, the Guides and Explorers of the innermost search team (and
recursively all other search teams) cannot move outwards. When s0 is notified
by sk+1, the agents in both teams switch to a designated idle state, ignored by
all other agents. As now the origin appears to be empty, the Guides and Explorers
of the innermost (and eventually the other search teams) can move outwards to
continue searching — the second stage has begun.

4.3.2 Correctness

In this section we establish the correctness of the DiamondSearch strategy by
proving that each cell is eventually explored and no agent is lost in the process.
We say that a cell in level ` is explored after it has been visited by an Explorer
exploring level `, where we recall that level ` ∈ Z+

0 consists of all cells in distance
` from the origin. An Explorer is said to start a (diamond) search in level ` at time
t if it moves west from the cell (0, `) (containing the north Guide) at time t and it
finishes a (diamond) search in level ` at time t if it enters the cell (0, `) from the
east at time t. The start time tS` , finish time tF` , and move time tM` are given by
the times at which an Explorer starts a search in level `, finishes a search in level
`, and when the WaitingExplorer in level ` becomes a MovingExplorer, resp. An
Explorer explores level ` at time t, if tS` < t < tF` . The design of DiamondSearch
ensures that regardless of the emission scheme used, the Guides in every cardinal
direction occupy a contiguous segment of cells. It also implies the following
observation and lemma.

Observation 4.1. For two levels `′ > `, we have tS`′ > tS` , tF`′ > tF` , and tM`′ > tM` .

Proof. Consider some level ` > 1. An Explorer can only start a search in level `
by leaving cell (0, `) after the Explorer of level `− 1 has left cell (0, `− 1), which
implies tS` > tS`−1. An Explorer in level ` can only move to cell (0, `) and thereby
finish the search in level ` after the Explorer of level ` − 1 has already reached
the cell (0, ` − 1), thus tF` > tF`−1. A WaitingExplorer in level ` can become a
MovingExplorer only when its Guide has left cell (0, `). This requires in turn that
the Explorer in level ` − 1 has already left cell (0, ` − 1) which requires that it
already has become a MovingExplorer, hence tM` > tM`−1.

Lemma 4.2. Outside the origin, no two agents of the same type occupy the
same cell at the same time.

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 55

Proof. First, recall that the MovingExplorers emitted from the origin are emitted
at different times. A WaitingExplorer becomes a MovingExplorer only when there
is no other MovingExplorer in the same cell. MovingExplorers use Scouts to prevent
stepping onto each others’ cells. A MovingExplorer becomes an Explorer in cell c
only if c does not contain an Explorer and Explorers use Scouts to prevent stepping
into each others’ cells. As no two Explorers can be in the same cell, neither can
be two WaitingExplorers and the claim for all explorer agents follows.

MovingGuides are emitted from the origin at different times. A Guide becomes
a MovingGuide only if its cell does not contain a MovingGuide. MovingGuides use
Scouts to prevent stepping onto each others’ cells. A MovingGuide becomes a
Guide only if its cell does not contain a Guide, which establishes the assertion for
the guides.

As the Scouts of owners with different types also have different types, we only
need to show the claim for Scouts of the same type. This follows by labeling
a Scout as north/east/south/west-CheckingScout, while it is checking a scout
condition in the north/east/south/west neighboring cell of its owner’s cell.

Each Explorer relies on Guides to indicate when it has to change the search
direction in order to search a specific level. The next lemma gives a guarantee
for this.

Lemma 4.3. Whenever an Explorer enters a cell c on an axis, cell c contains a
Guide.

Proof. Observe that if c lies on the north-axis, it will contain a Guide when the
Explorer e returns there because e only leaves c to start a search when c contains a
Guide and this Guide stays there until e returns. To prove the claim for the other
axis, let s` be the search team exploring level ` and let e` be the corresponding
explorer. We prove the statement by induction on `. Observe that the statement
holds for e1 as the Explorer of the first search team explicitly counts cells and
uses its Scout to ensure that c contains a Guide.

Consider a cell c` on an axis in level ` and assume as the induction hypothesis
that the cell c`−1 on the axis in level `−1 contained a Guide when it was entered by
Explorer e`−1. As e`−1 blocks e` from overtaking it, Explorer e` can enter c` only
after e`−1 has left c`−1, which e`−1 only does after ensuring that c`−1 is empty.
This requires, in turn, that the Guide in cell c`−1 has become a MovingGuide
and left c`−1. This can only happen after all other MovingGuides have passed
c`−1 and the MovingGuide in cell c` has become a Guide, thereby asserting the
claim.

The canonical paths. In what follows, we use paths in the infinite grid in their
usual graph-theoretic sense, viewing a path p as a (finite or infinite) sequence
of cells, where p(i) and p(i + 1) are grid neighbors for every i ≥ 1. Notice that
unless stated otherwise, the paths mentioned are not necessarily simple.

Let s1, . . . , sk be the search teams emitted from the origin (ignoring the
two signal teams s0 and sk+1) ordered by ascending emission time and consider
some agent a participating in one of the search teams s1, . . . , sk. Given some

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 56

adversarial policy ψ, let pψa be the path traversed by a during the execution of
the algorithm under ψ starting at the time at which a is emitted from the origin.
We extend the sequence defined by pψa , fixing pψa (0) = (0, 0). We shall refer to
pψa as the execution path of a (under ψ).

The logic of the guides directly implies that if agent a is a north/south/east/
west guide, then its execution path satisfies pψa (i) = (0, i)/(0,−i)/(i, 0)/(−i, 0)
for every adversarial policy ψ. In other words, the path traversed by a guide
does not depend on the adversarial policy. We argue that this is in fact the case
for all agent types, introducing the notion of a canonical path.
Lemma 4.4. For every 1 ≤ i ≤ k and for each agent role ρ (among the 10
different roles in a search team), there exists a canonical path p∗i,ρ such that
if agent a is the ρ-agent in search team si, then pψa = p∗i,ρ, regardless of the
adversarial policy ψ.
Proof. As noted above, the assertion holds for the guides. Since the execution
path of a scout is fully determined by the execution path of its owner, it suffices
to show that the assertion holds for the explorer ei of search team si.

Let mi,j be the simple path leading from cell (0, i) to cell (0, j− 1) along the
north axis and let r` be the simple path corresponding to the diamond search of
level `, starting in cell (0, `) and ending in cell (1, `), that is, the path traversed
by an explorer exploring level ` during the time interval [tS` , tF`). We argue that
the execution path of explorer ei is always

p∗i,e = m0,i ◦ ri ◦mi,k+i ◦ rk+i ◦mk+i,2k+i ◦ r2k+i · · · ,

namely, agent ei (and search team si) search levels ` = z · k + i for z = 0, 1, . . . ,
where we recall that k is the number of search teams.

To establish this argument, we prove that if ei currently searches level `, then
the next level it is going to search is `+k. The argument then follows by induction
on z as the first level searched by ei (after it is emitted from the origin) is level i.
To that end, consider the explorer ei at time tF` when it is back in cell (0, `) as an
Explorer. Recall that ei becomes a MovingExplorer and starts moving outwards
at time tM` that occurs only after the corresponding north-Guide has become a
MovingGuide and left cell (0, `). This is turn happens only after cell (0, `−1) was
verified as empty, which implies that at time tM` , every other MovingExplorer ej
is positioned in some cell (0, `′), `′ > `. Since a MovingExplorer does not enter a
cell containing another MovingExplorer, it follows that ei will not overtake ej as
long as both are MovingExplorers, but rather pass over its north-Guide after ej
has already started exploring its next level. Therefore, explorer ei will have to
pass the north-Guides of all other search teams before it gets to its next explored
level, which completes the proof as there are k search teams in total.

It will sometimes be convenient to use the notation p∗a for the canonical path
p∗i,ρ when agent a is the ρ-agent of search team si. The key to Lemma 4.4’s
proof is the observation that since MovingExplorers do not overtake each other,
the explorers maintain a cyclic order between them in terms of the levels they
explore. The exact same argument can be applied to the guides, concluding that
the agents of a search team “stick together” throughout the execution.

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 57

Corollary 4.5. The agents that were emitted from the origin as guides of search
team si serve as Guides in levels ` = z · k + i for z = 0, 1, . . .

Preventing dead/live-locks. We now turn to prove that DiamondSearch does
not run into deadlocks. Recall that during the execution of DiamondSearch,
agents often wait for other agents to complete some task before they can proceed.
In particular, we say that agent a is delayed by agent a′ at time t, denoted
a →t a

′, if at time t, a is positioned in some cell c and resides in some state q
and the DiamondSearch strategy dictates that a can neither leave cell c nor move
to any state other than q until a′ performs some action in cell c that may take
the form of entering cell c, leaving cell c, or moving to some state within cell c.
For example, a guide in an axis cell c is delayed by its corresponding explorer
until the latter reaches c. Another example is an explorer which is delayed by
its scout in some north-west quarter-plane cell (x, y), while the latter is delayed
until the explorer exploring the previous level leaves cell (x, y − 1). To avoid
the necessity to account for the scouts, we extend the definition of delays in the
context of the correctness proof, allowing for agent a in cell c to be delayed by
agent a′ in a neighboring cell c′ if a is actually delayed by its scout in c who is
delayed by a′ in c′.

Let Dt be the directed graph that corresponds to the binary relation→t over
the set of agents. We prove that DiamondSearch does not run into deadlocks by
establishing the following lemma.

Lemma 4.6. The directed graph Dt does not admit any (directed) cycle at all
times t.

Proof. Consider a snapshot of the agents’ states and positions at time t. Examin-
ing the DiamondSearch strategy, one realizes that the outermost MovingExplorer
and MovingGuides are not delayed by any other agent and that the ith outermost
MovingExplorer and MovingGuides can only be delayed by the (i−1)th outermost
MovingExplorer and MovingGuides. The innermost Explorer e is not delayed by
any agent as long as it is not in an axis cell. In an axis cell, e can only be delayed
by the corresponding guide. An innermost guide in cell c is delayed by its cor-
responding explorer until the latter reaches cell c and since then, it can only be
delayed by the corresponding innermost MovingGuide. Non-innermost Explorer
and Guides in level ` can only be delayed by the Explorer and Guides in level `−1
or by the MovingExplorers and MovingGuides. The assertion follows.

The following corollary is derived from Lemma 4.6 since there is a constant
number of state transitions an agent positioned in cell c can perform before it
leaves cell c.

Corollary 4.7. Agent a reaches cell p∗a(i) within finite time for every i ≥ 1.

Since the canonical path p∗a contains infinitely many different nodes for every
agent a, we can deduce from Corollary 4.7 that DiamondSearch does not run into
livelocks, thus establishing the following theorem.

Theorem 4.1. The cell containing the treasure is explored in finite time.

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 58

4.3.3 Runtime Analysis

For the sake of a clearer run-time analysis, we analyze DiamondSearch employing
an ideal emission scheme with emission function fn(t) = Ω(t), i.e., a new search
team is emitted from the origin every constant number of time units. We do not
know how to implement such a scheme, but in Section 4.4, we will describe an
emission scheme with an almost ideal emission function of fn(t) = Ω(t − logn)
and in Section 4.5, we will show how to compensate for the gap.

Our proof consists of two parts. First, we analyze the run-time of Diamond-
Search assuming a “synchronous” adversarial policy ψs, where ta(i) = i for all a
and i. Then, we lift this assumption by showing that ψs is actually the worst
case policy. We start with the following lemmas.

Lemma 4.8. Under ψs, we have tM`+1 − tM` ≥ 4 and tS`+1 − tS` ≥ 4.

Proof. By Observation 4.1, we know that a search in level ` + 1 cannot finish
before a search in level `. By construction of the algorithm, e`+1 cannot become
a MovingExplorer in level `+ 1 before time tM` + 4, hence tM`+1 − tM` ≥ 4.

Consider the two explorers e`+1 and e` exploring levels `+1 and `, resp. The
design of the emission process and the inequality tM`+1− tM` ≥ 4 imply that when
e`+1 and e` were MovingExplorers, they had a distance of at least 3 with e`+1
being closer to the origin. As e`+1 has to walk to level ` + 1 to start a search
and e` only to level `, the claim holds.

Lemma 4.9. Under ψs, the explorer of search team si is not delayed after time
tMi .

Proof. Recall that tMi is the time when the Explorer of search team si turns
into a MovingExplorer after search level i in the first stage of the algorithm.
By Lemma 4.8, we know that after time tMi , the distance between any two
MovingExplorers at least 3 and hence, they cannot delay each other. It is easy to
see that under ψs, an Explorer never has to wait for the Guide of the next level in
order to leave an axis and thus cannot be delayed by a Guide. Since tS`+1−tS` ≥ 4,
two Explorers of adjacent levels can never delay each other either.

Lemma 4.10. Under ψs, we have tF` ∈ O(`+ `2/n) for any level ` > 0.

Proof. Consider level ` ≤ k and recall that this level will be searched by the `th
search team s` and that k is the number of search teams. Let t` be the time
at which s` is emitted from the origin and note that fn guarantees t` ∈ O(`).
Observe that no delays can occur during the first stage. Hence, s` reaches level
` after time O(`), visits the 8` cells to explore level ` in time O(`) and thus
guarantees tF` ∈ O(`). Moreover, since the last team is emitted from the origin
by time O(k) and at this time, all search teams are positioned in the first k
levels, it follows that each search team si starts its second stage by time O(k),
that is, tMi = O(k).

Consider now level ` > k. Assume wlog. that level ` is explored by search
team i and let e be the explorer of that search team. Lemma 4.4 guarantees that e
moves along its canonical path p∗e. Let π be the canonical path p∗e truncated after

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 59

the exploration of level `. Combining Lemma 4.9 with the fact that tMi = O(k),
and recalling that ` > k = Θ(n), it suffices to show that the length of π (in hops)
is |π| = O(`2/k).

To that end, we write |π| = mm +mx, where mm is the number of hops in π
that e performs as a MovingExplorer andmx is the number of hops in π it performs
as an Explorer. The design of DiamondSearch ensures that mm = O(`) which is
O(`2/k) as ` > k. Since e is part of si, we know that mx = ∑b`/kc

z=0 8(i + zk) =
O(`2/k), which yields the assertion.

We now turn to show that the run-time of DiamondSearch under any ad-
versarial policy ψ is at most the run-time under ψs. By definition, policy ψs

maximizes the length of the time between consecutive completion times of the
agents’ steps. Informally, we have to prove that by speeding up some agents, the
adversary cannot cause larger delays later on.

To that end, consider two agents a and a′ and recall that Lemma 4.4 guaran-
tees that they follow the canonical paths p∗a and p∗a′ , resp., regardless of the ad-
versarial policy. The agents can delay each other only when they are in the same
cell, so suppose that there exist two indices i and i′ such that p∗a(i) = p∗a′(i′) = c.

Given some adversarial policy ψ, let tψin(a) (resp., tψin(a′)) be the time at which
agent a (resp., a′) enters c in the step corresponding to p∗a(i) (resp., p∗a′(i′)) under
ψ and let tψout(a) (resp., tψout(a′)) be the time at which agent a (resp., a′) exits
c for the first time following tψin(a) (resp., tψin(a′)) under ψ. The key observation
now is that the adversarial policy does not affect the order in which a and a′

enter/exit cell c.

Observation 4.11. For every two adversarial policies ψ1, ψ2, we have tψ1
in (a) <

tψ1
in (a′) if and only if tψ2

in (a) < tψ2
in (a′) and tψ1

out(a) < tψ1
out(a′) if and only if tψ2

out(a) <
tψ2
out(a′).

Therefore, the adversary may decide to modify its policy relatively to ψs by
speeding up some steps of some agents, but this modification cannot delay the
progression of the agents along their canonical paths. Corollary 4.12 now follows
from Lemma 4.10.

Corollary 4.12. Under any adversarial policy, tF` ∈ O(` + `2/n) for any level
` > 0.

4.4 An Almost Optimal Emission Scheme

We introduce the emission scheme ParallelTeamAssignment that w.h.p. guaran-
tees an emission function of fn(t) = Ω(t− logn). In Section 4.5, we describe the
search strategy GeometricSearch, that yields an optimal run-time of O(D+D2/n)
when combined with DiamondSearch. The main goal of this section is to establish
the following theorem.

Theorem 4.2. Employing the ParallelTeamAssignment emission scheme, Dia-
mondSearch locates the treasure in time O(D +D2/n+ logn) w.h.p.

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 60

Our first goal is to describe the process FastSpread, where n agents spread
out along the east-axis R consisting of the cells (x, 0) for x ∈ Z+ such that each
cell in some prefix of R is eventually assigned to a single agent. The main idea
behind the implementation of FastSpread is that on every step, agent a throws
a fair coin and moves outwards (towards east) if the coin shows heads and stays
put otherwise. If a senses that it is the only agent occupying cell c, then it
marks itself as ready and stops moving; cell c is also said to be ready following
this event. Furthermore, when a walks onto a ready cell, it moves outwards
deterministically.

To prevent any cell from becoming empty, the agents employ a mechanism
that ensures that at least one agent stays put in each cell. To implement this
mechanism, the agents decide in advance, i.e., in step i, if they want to move
in step i + 1 and report their decision to the other agents. In other words, an
agent a throws a coin in step i and enters a state H or T that correspond to
throwing heads or tails, resp. Then, a moves outwards in step i+ 1 if and only
if it entered state H in step i and if it senses at least one other agent in state
T . Informally, a only moves if at least one other agent has promised to stay put
the next time it acts.

Next, we show that the protocol works correctly, i.e., no cell in the prefix
of R will become empty before getting ready. Suppose for contradiction that
there is a cell c, such that c becomes empty at time t. Let a be an agent and
i a step of a such that for all agents a′ in cell c and all steps j, it holds that
ta′(j) ≤ ta(i) < t. In other words, no agent in c changes its state during time
ta(i) < t′ < t. According to the design of our protocol, a must sense some
other agent a′ in state T precisely at time ta(i). Since a′ does not wake up
after ta(i) and before t, it follows that a′ resides in state T at time t, which is a
contradiction.

Lemma 4.13. For every positive integer s ≤ 16n, the first s/16 cells of the ray
R are ready after s+O(logn) time units w.h.p.

Proof. Let Xa be the random variable that counts the number of moves a non-
ready agent a made outwards by time s ≤ 16n. Unfortunately, the moves that a
makes are not independent of the previous moves. Therefore, we study a weaker
probabilistic process, where the number of a’s moves dominates Xa. Assume
that a occupies cell c at time ta(j) and let a0, a1, . . . , az−1 denote the non-ready
agents that occupy cell c at time ta(j). In the weaker process, a = ai only moves
in step j+1 if ai+1 (index arithmetic in this proof is modulo z) is in state T and
a is in state H at time ta(j) or if there is a ready agent in c.

Let j′ be the last step ai+1 performs before ta(j). The probability that ai+1
enters state T in step j′ is 1/2. In addition, the probability that ai enters H
in step j is 1/2 and therefore, the probability of ai actually moving towards
east in step j + 1 is at least 1/4 in the weaker process. Since we want to count
movements of ai that are independent of the previous movements, we divide the
execution of FastSpread into intervals of two time units. Now the last step that
ai executes in the end of each such interval only depends on the previous step
that ai+1 executed. Since every agent wakes up at least once per time unit, both

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 61

of these steps are unique for every interval and, in particular, independent of the
previous time intervals.

Let X ′a be the random variable that counts the number of moves a made
east in the weaker process conditioned on the event that a is not ready by time
s + O(logn). Since the coin tosses made in each step are independent and a
moves towards east every two time units with probability at least 1/4, we get
that E[X ′a] ≥ (1/2) · (1/4) · (s + O(logn)). By applying a Chernoff bound we
get that P (X ′a < 1/2 · E[X ′a]) ∈ O(n−h) for an arbitrary constant h > 0. Since
Xa ≥ X ′a, any agent a that is not ready by time s + O(logn), the distance to
the origin is at least s/16 w.h.p.

Intuitively, the aforementioned process can be seen as parallel leader election.
Since we want to describe an efficient emission scheme, it remains to show how
the process can be used to quickly emit search teams consisting of five agents with
their respective Scouts from the origin. To enable the FastSpread procedure to
elect ten different kinds of agents per search team, we dedicate every tenth cell to
a specific kind of agent. As an example, every cell in distance d ≡ 1 (mod 10) is
dedicated to an Explorer. After an Explorer is alone in a cell using the FastSpread
procedure described above, it collects its search team in the following manner:
it first takes one step east where a leader election for the Scout dedicated to
it takes place. If the corresponding cell is occupied by a Scout that is marked
ready, they both move outwards to collect the next agent. Otherwise, the Explorer
waits until the leader election is over. After the Explorer (accompanied by the
collected Guides and Scouts) collected all agents needed for the search team, the
team walks to the origin from where it will then be emitted into the four cardinal
directions. We refer to the FastSpread protocol combined with the collection of
the agents as ParallelTeamAssignment.

In addition, we always keep track of the innermost search team in the fol-
lowing way. We flag the agents in the leftmost cell that has not been collected
as the innermost agents. Every time an agent moves out of the innermost cell
with a coin toss, this flag is turned off. In addition, when the Explorer collects its
search team, it performs one additional move outwards to flag the cell where the
Explorer for the next team is elected as the innermost. An Explorer only starts
collecting its search team after it has been flagged as the innermost agent. This
way we know that the closer the team is elected to the origin, the earlier it starts
moving towards the origin. The use of the grid by the ParallelTeamAssignment
is illustrated in Figure 4.3.

Similarly as in the DiamondSearch protocol, every agent a always checks with
its Scout before moving that the next cell is not occupied by an agent of the same
type to prevent a from overtaking any of the other agents. Given that the agents
never overtake or pass other agents, we observe that the canonical path p∗a for
any agent is fixed, i.e., is independent of the adversarial policy, starting from the
time when a becomes ready. Furthermore, under ψs, all agents in a single team
enter the origin simultaneously and ParallelTeamAssignment provides a spacing
of more than 6 between emitted teams.

Lemma 4.14. Assume that n agents start executing ParallelTeamAssignment

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 62

O E G GE . . .

1 2 3 4

432

GG. . .

987

987 10

11
︸ ︷︷ ︸

n

S S S

Figure 4.3: First, the n agents executing the ParallelTeamAssignment protocol form a
ray of single agents in cells (0, 1), . . . (0, n). After the innermost Explorer e (E, red) in
cell (0, 1) (denoted in red) is ready, it starts collecting its search team of Guides (G) and
Scouts (S). Assuming that all the agents of e’s search team are ready, e has collected all
the agents after at most ten time units. Then in at most two more time units, e flags
the Explorer of the next team (E, gray) as innermost.

protocol in round 0. Then at least bmin{s, n}/10c search teams have entered the
origin by time 17s+O(logn) w.h.p.

Proof. By Lemma 4.13, the first s cells are ready w.h.p. by time t′ = 16s +
O(logn), which indicates that the agents in these cells are ready to perform
their collection process latest at time t′. In addition, in each time unit after
t′, the Explorers occupying one of the first s cells moves east unless they have
already collected their teams. Therefore, latest at time 16s+O(logn) + 10 = t,
all full teams within the first s cells have been collected after which they start
moving towards the origin.

Let a1, . . . , am denote the non-Scout agents of some type, say Explorers, within
the first s cells. We first observe that after ai has moved 10i times after being
collected, it reaches the origin. Next, we point out that obeying a synchronous
schedule, no agent ever gets blocked by the other agents. Assume that agent ai
is blocked by ai−1 from entering cell c. This indicates that ai has made more
than 1 move per time unit. Furthermore, ai is able to move to c without blocks
latest when it would have moved to c according to the synchronous schedule.

It follows that all agents from any team ei reaches the origin latest when they
would reach the origin according to the synchronous schedule. Since performing
10i moves takes 10i time units in the synchronous schedule, all agents in team
em will reach the origin latest at time t+ 10m ≤ t′ + s ≤ 17s+O(logn).

By Lemma 4.14, the emission function fn(t) provided by the ParallelTea-
mAssignment protocol satisfies fn(t) = Ω(t − logn) and therefore, Theorem 4.2
follows.

4.5 Optimal Diamond Search

In this section, we will present the search strategy HybridSearch that locates the
treasure with optimal run-time of O(D + D2/n). This is achieved by, combin-
ing DiamondSearch employing the ParallelTeamAssignment with the randomized
search strategy GeometricSearch that is fast only if the treasure is close to the
origin.

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 63

O

A

Figure 4.4: An agent A performs a GeometricSearch in the north-east quarter-plane.
It first moves one cell to the east, then a geometrically distributed number of steps to
the east followed by a geometrically distributed number of steps towards north. The
dashed circles show the intermediate positions of the agents after the different stages.

The search strategy GeometricSearch is suited to locate the treasure very
quickly if it is located close to the origin, more precisely ifD ≤ log(n)/2. Initially,
each of the n agents chooses uniformly at random one of the four quarter-planes
that it will be searching. We will explain the strategy exemplary for an agent
“responsible” for the north-east quarter-plane. The other three types operate
analogously in their respective quarter-plane.

Initially, the agent moves one cell to the east. From then on, it moves a
geometrically distributed number of steps east following which it moves a geo-
metrically distributed number of steps to the north. More precisely, with prob-
ability 1/2 the agent moves further and otherwise stops walking in the current
direction. Both these processes can be realized in our model by having two state
transitions where one of them moves the agent further while the other one ends
the current walk. Either of the two transitions is chosen uniformly at random
and a walk of geometrically distributed length is obtained. See Figure 4.4 for an
illustration of such a search.

Lemma 4.15. If D ≤ log(n)/2, then GeometricSearch locates the treasure in
time O(D) w.h.p.

Proof. Consider some cell c at distance d ≤ log(n)/2 from the origin and fix
some agent a. Let Xa be a random variable that captures the length of the walk
of agent a and observe that Xa obeys a negative binomial distribution so that

P (Xa = k) = (k + 1) · 2−(k+2) .

Recalling that a has already moved one step, we conclude that the probability
that a moves up to distance d is

P (Xa = d− 1) = d · 2−d−1 ≥ 2−d−1 = Ω(1/
√
n) .

Since all cells at distance d from the root have the same probability of being
explored by a and since there are O(logn) such cells, it follows that a explores
cell c with probability at least Ω

(
1√

n logn

)
. Therefore, the probability that none

CHAPTER 4. MANY MOBILE FINITE AUTOMATA 64

of the agents explores cell c is at most
(

1− Ω
(1√

n logn

))n
< e
−Ω
(√

n
logn

)
.

The assertion follows.

We can now combine the two search strategies GeometricSearch, which is op-
timal for D ≤ log(n)/2, and DiamondSearch employing ParallelTeamAssignment,
which is optimal for D = Ω(logn), into the HybridSearch strategy as follows.

At the beginning of the execution, each agent tosses a fair coin to decide
whether it participates in DiamondSearch or GeometricSearch. Let nr and ng be
the number of agents participating in DiamondSearch and GeometricSearch, resp.
and observe that nr, ng ≥ n/3 w.h.p. Then the agents enter according states
so that they do not interfere with each other anymore. One group executes
GeometricSearch and locates the treasure w.h.p. in time O(D) if D ≤ log(n)/2
and the other group executes DiamondSearch locates the treasure w.h.p. in time
O(D +D2/n) if D = Ω(logn), thereby establishing Theorem 4.3.

Theorem 4.3. HybridSearch locates the treasure in time O(D +D2/n) w.h.p.

4.6 Conclusion

One of the main motivations of distributed computing researchers is to find prob-
lems in which separated computationally powerful devices can be replaced by
many collaborative computationally weaker entities without deteriorating per-
formance guarantees. In this chapter, we indeed added another example to the
long list of instances in which this principle has been demonstrated to hold. Com-
bined with the lower bound of Feinerman et al., our result demonstrates that by
allowing the agents to use a very primitive means of communication, one can get
rid of the requirement for a super-constant memory and an approximation of n
and still obtain the same (optimal) runtime for locating the treasure.

It is important to point out that our algorithm is not inspired by any ob-
servations regarding the real behavior of ants. As such, we do not claim that
our results explain any natural phenomenon, but rather attempt to advance the
understanding of the power and limitations of a basic nature-inspired model. In
that regard, the tightness of our upper bound indicates that there is no point in
attempts to improve the lower bound or alternatively, that other restrictions on
the agents should be considered.

5
Treasure Search with Few Mobile
Finite Automata

Recent research (and in particular the previous chapter) on understanding the
behavior of insect colonies from a distributed computing perspective has mainly
focused on questions like “How long does it take a large collection of ants to locate
a food source?” [50,54] or “How do the computational capabilities of a single ant
within this collection affect the time until the food source is found?” [53,58,79].

In this chapter, we take a computability point of view and, instead of focusing
on large numbers of agents and on the time required to find a food source, analyze
the minimum number of agents that is sufficient to locate a food source within
(expected) finite time. More precisely, we show that the minimally sufficient
number of agents crucially depends on the model assumptions, i.e., whether each
agent is controlled by a finite automaton (FA) or a pushdown automaton (PDA),
whether it has access to random bits or not, and whether the environment is
synchronous or asynchronous.1 For most combinations of the aforementioned
characteristics, we establish lower and upper bounds on the number of agents
required to locate the food. Our bounds are tight in most cases. We essentially
present two different families of algorithms — rectangle/spiral and geometric
searches — are inspired by our previous results [50]. The main contributions of
this chapter, however, are the lower bounds for two deterministic FA-agents and
one deterministic PDA-agent presented in Sections 5.4.1 and 5.5.2, respectively.
Table 5.1 at the end of the chapter gives a complete picture of our findings.

As border cases of our findings, we point out that in an asynchronous setting
1Notice the striking resemblance to the problem of finding the number of people needed to

change a light bulb: For people, the answer usually depends on nationality and profession while
for ants, it depends on timing and computational power.

65

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA66

four agents are sufficient to solve the problem when their computational capa-
bilities are most restricted, i.e., they are controlled by deterministic FAs. If we
allow access to random bits and grant the agents slightly more computational
power — a PDA — already one single agent can solve the problem. Note that
neither of these results require the full computational power of a Turing machine.

We do not claim that our considerations are particularly relevant from a
biological perspective — an ant hive generally consists of significantly more than
four ants. However, our results show that powerful computational capabilities
can be traded for primitive means of communication while still being able to
solve complex problems — even for small number of agents.

5.1 Model

The model that we consider in this chapter is mostly identical to the one pre-
sented in Section 4.2 in the previous chapter. In the following, we briefly recap
the previous model while highlighting the few modifications that we require for
our deliberations in this chapter. For a full description of the underlying model,
we refer the reader to Section 4.2.

As in Chapter 4, we consider n mobile agents with a common sense of di-
rection exploring the infinite integer grid in an asynchronous or synchronous
environment. In contrast to previous work (and in particular the previous chap-
ter), we do not assume that the agents can distinguish between the origin and
the other cells (see Section 5.1.3 for a discussion of this matter). Furthermore,
the agents are controlled by a finite automaton (as in the previous chapter) or
by a pushdown automaton, both either randomized or deterministic. An agent
a in some cell c can communicate with the other agents in cell c by sensing for
each state q of its (finite or pushdown) automaton whether there exists at least
one other agent a′ 6= a in cell c whose current state is q.

Since we only consider instances with a constant number of agents, we allow
each agent to run a different individual protocol. This is modeled by assigning
to each agent an individual initial state in the respective automaton (note that
this is only relevant in the deterministic case as otherwise coin flips can be used
to break symmetry). The protocol is controlled by either a finite automaton or
a pushdown automaton. We shall first explain the semantics of the former and
then explain the additional capabilities of the latter.

FA-protocol. An agent controlled by a FA-protocol behaves exactly like the
agents described in the previous section with the additional possibility of a dif-
ferent initial state per agent, which allows the agents to perform different tasks
also in the absence of randomization. Hence, the agent’s protocol is captured by
the 3-tuple Π = 〈Q, sa0, δ〉, where Q is the finite set of states, sa0 ∈ Q is the initial
state of agent a, and δ : Q× 2Q → 2Q×{N,S,E,W,P} is the transition function.

PDA-protocol. An agent employing a PDA-protocol essentially operates iden-
tically but is allowed to use a pushdown automaton with an infinite stack

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA67

instead of an FA. In each step, the agent reads and removes the top-most
symbol from the stack (“pop”) — if the stack is empty, the agent reads the
special symbol ε and the stack remains unchanged — and then adds a finite
amount of symbols to the top of the stack (“push”). The symbol read from
the stack serves as additional input to the agent. Formally, the agents’ pro-
tocol is captured by the 4-tuple Π = 〈Q, sa0,Γ, δ〉, where Q is the finite set of
states, sa0 ∈ Q is the initial state of agent a, Γ is the finite stack alphabet, and
δ : Q × 2Q × Γ ∪ {ε} → 2Q×Γ∗×{N,E,S,W,P} is the transition function. Suppose
that at time ta(i), agent a is in state q ∈ Q, positioned in cell c ∈ Z2, and the
top-most symbol on the stack is γ ∈ Γ∪{ε}. Then, the state q′ ∈ Q of agent a at
time ta(i+1), the word α ∈ Γ∗ to be written to the stack, and the corresponding
movement τ ∈ {N,E, S,W,P} are dictated based on the transition function δ by
picking the tuple (q′, α, τ) uniformly at random from δ(q, γ,Qa), where Qa ⊆ Q
contains state p ∈ Q if and only if there exists some (at least one) agent a′ 6= a
such that a′ is in state p and positioned in cell c at time ta(i).

As before, we assume that while Qa (input to δ) is determined based on the
status of cell c at time ta(i), the actual application of the transition function δ
occurs instantaneously at the end of the step, i.e., agent a is considered to be in
state q and positioned in cell c throughout the time interval [ta(i), ta(i+ 1)).

5.1.1 Problem Setting

We consider two different variants of the problem, where the goal in both is to
locate an adversarially hidden treasure, i.e., to bring at least one agent to the cell
in which the treasure is positioned while the distance of the treasure from the
origin is denoted by D. In async-ANTS, the problem is to find the treasure in an
arbitrary asynchronous environment while in the sync-ANTS problem the agents
operate in a synchronous environment. A FA/PDA-protocol P is effective if it
allows the agents to locate the treasure in finite time if P is deterministic, or if
the agents locate the treasure in expected finite time if P is randomized.

5.1.2 Preliminaries

For our deliberations we require a set of definitions. Let A be the set of agents.
We denote by EPa (t) the cells that an agent a employing protocol P has visited
until time t and furthermore EP(t) = ⋃

a∈AE
P
a (t). In the context of the sync-

ANTS problem, we take the liberty to write EPa (i) for a (then global) step i as
shorthand for EPa (ta(i)) and analogous for EP(i). We omit P in the previous
expressions if the considered protocol is clear from the context.

5.1.3 Non-Distinguishable Origin

As mentioned above, the agents cannot distinguish the origin from the other
cells on the grid in the current model. This is in clear contrast to most previous
work, where the origin usually is a special cell that can be observed by the agents.
Here we will briefly justify why we deviate from the established literature in this
respect.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA68

The goal of this chapter is to determine the minimum number of agents
required to locate the treasure under different model variations. Previous work
mainly considered large numbers of ants where a distinguishable origin can be
emulated easily by leaving a single dedicated agent at the origin without affecting
the asymptotic parameters of the algorithm. Clearly, such an assumption does
not effectively change the power of a model when one is interested in asymptotics.

Since we consider small, i.e., constant, number of agents, the situation is
slightly different. As we present algorithms that employ one agent solely to mark
the origin, one could argue analogously to the case of many agents and allow
the agents to distinguish the origin and in return raise the minimum number
of required agents by one. However, we also present algorithms that do not
use an agent to mark the origin and therefore would not benefit from such a
modification. It seems, hence, that a distinguishable origin is not an essential
requirement for effective algorithms and thus we decided to consider the weaker
model, thereby leaving it to the discretion of the algorithm designer whether or
not a distinguishable origin is needed.

5.2 Four Agents

The goal of this section is to solve the async-ANTS problem without using ran-
domization. We provide a simple protocol for four FA-agents that uses three of
the four agents as landmarks for the fourth agent. The fourth agent discovers
the whole grid in a spiraling fashion with increasing distance to the origin.

We begin by giving an informal description of the protocol. The landmark
agents, referred to as guides, position themselves in a triangle around the origin
and after getting a signal from the searching agent, called the explorer, move
step by step further away from the origin. The explorer moves to the guides one
by one signaling them to expand the triangle. This way the explorer is able to
guarantee that it can always reach one guide after meeting another by simply
walking a (possibly diagonal) straight line, even after the guides are within a
super-constant distance from each other and the origin.

All three guides have specific roles and therefore we give them task-specific
names: NorthGuide, WestGuide and EastGuide. The agents execute the following
protocol, which is illustrated in Figure 5.1. The protocol is initialized by the
NorthGuide moving once north, the WestGuide moving once west and the East-
Guide moving once east. After the explorer notices that the origin is empty, it
moves once north. Note that we refer to the general role of an agent (explor-
er/guide) with a normal font while the specific type is marked with a sans-serif
font (e.g., Explorer or WaitingExplorer).

NorthGuide. When the NorthGuide meets a WaitingExplorer, it moves once
north.

WestGuide. When the WestGuide meets a WaitingExplorer it moves once west
and becomes a MovingWestGuide. The MovingWestGuide first moves once west
and then once south and becomes a WestGuide again.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA69

O

E

1

22

3

3

W

X

N

4

Figure 5.1: Four agents are discovering the grid and currently are performing a triangle
search in distance 3. The origin is denoted by a gray square, the Explorer (X) by a red
disk and the NorthGuide (N), WestGuide (W) and EastGuide (E) by black disks labeled
with the corresponding initial letters. The dashed lines indicate the paths that the
agents are moving along whereas the numbers indicate the order of the movements;
moves along the arrow labeled with i are performed only after the moves along the
arrow labeled with i − 1 are finished. The dotted red line indicates the path of the
Explorer in distance 2.

EastGuide. When the EastGuide meets a WaitingExplorer it moves once south
and becomes a MovingEastGuide. The MovingEastGuide moves twice east and
becomes again an EastGuide.

Explorer. The Explorer continuously performs triangle searches in increasing
distances. It continuously moves into a given direction, starting with south-west
(by alternatingly moving south and west). When the Explorer meets a WestGuide,
it changes its moving direction to east and becomes a WaitingExplorer. When
it meets an EastGuide, it changes the direction to north-west and becomes a
WaitingExplorer. Finally, when the Explorer meets a NorthGuide, it changes its
moving direction to south-west (alternates between west and south) and becomes
a WaitingExplorer. Notice that the Explorer meets the NorthGuide in the starting
position of the triangle search in the next distance. Whenever the Explorer meets
a MovingWestGuide or a MovingEastGuide in cell c, it waits until c is empty before
continuing to move.

WaitingExplorer. When the WaitingExplorer resides in a cell that does not con-
tain an EastGuide, a NorthGuide, or a WestGuide, it becomes an Explorer and
continues moving.

We index the triangle searches by their distances, i.e., if the Explorer meets the
NorthGuide in cell (0, i) and starts moving south-west, we index the corresponding
triangle search by index i (observe the similarity to the concept of a level used

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA70

in the previous chapter) and denote it by TSi. A triangle search in distance
i starts when the Explorer leaves cell (0, i) by moving west and ends when the
Explorer meets a NorthGuide. Furthermore, we say that TSi works correctly, if
the Explorer meets the WestGuide only in cell (−2i + 1,−i + 1), the EastGuide
only in cell (2i− 1,−i+ 1) and the NorthGuide only in cell (0, i+ 1) during TSi.

Lemma 5.1. Every triangle search works correctly.

Proof. We prove the statement by induction on the distance of the triangle
searches. Consider TS1 as the base case. Initially, all the Guides are located
in cells adjacent to the origin. By the design of our protocol, the Explorer first
makes sure that the NorthGuide goes into cell (0, 2). After this, it moves south-
west and reaches the WestGuide in cell (−1, 0). Then it travels east and reaches
the EastGuide in cell (1, 0). From there, it travels north-west and meets the
NorthGuide in cell (0, 2). Thus, the claim holds for TS1.

Assume then that the claim holds for TSi−1 and consider TSi. The Explorer
starts moving south-west from cell (0, i). According to the induction assump-
tion, the WestGuide is located in either (−2i + 2,−i + 2), (−2i + 1,−i + 2) or
(−2i+ 1,−i+ 1). Since the Explorer moves diagonally, it has to pass all of these
cells. According to the design of our algorithm, it does not overtake the Moving-
WestGuide, i.e., the MovingWestGuide reaches its destination before the Explorer,
and therefore the Explorer meets the WestGuide in cell (−2i+ 1,−i+ 1).

Similarly, when the Explorer starts moving towards east, the correctness of
the previous triangle ensures that the MovingEastGuide reaches the cell (2i −
1,−i + 1) before the Explorer. After meeting the EastGuide, the Explorer starts
moving diagonally towards the starting point and reaches it after 2i movements.
Since the Explorer moves north in the next step, it meets the NorthGuide in cell
(0, i+ 1).

To show that the treasure eventually gets discovered, we need two more
auxiliary observations. First, we show that every cell in distance d is discovered
latest during TSd+1. Second, we show that each triangle search finishes within
finite time. We call the set of cells along which the Explorer moves during TSi
the path of triangle search i.

Observation 5.2. Every cell c within distance d to the origin is discovered latest
during TSd+1.

Proof. We prove the claim by induction on the distances of the cells, i.e., we show
that all cells within distance d are contained in a triangle search with index at
most d+ 1. The base case is clear since the origin is contained within the path
that the Explorer moves during TS1.

Assume then that the claim holds for all cells in distance d. By the design of
the triangle search protocol, the path of TSi+1 contains all the cells adjacent to
the cells in the path of TSi that are not discovered during TSi. See Figure 5.1
for an illustration. Therefore, all cells in distance d + 1 are discovered latest
during TSd+2.

Observation 5.3. Every triangle search ends within finite time.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA71

Proof. Let t be the time when TSi starts for some i > 0. By Lemma 5.1, we know
that TSi−1 worked correctly and therefore we know that the WestGuide reaches
cell (−2i+1,−i+1) and the EastGuide reaches cell (2i−1,−i+1) latest by time
t + 3. Therefore, latest by time t + 3 + 4i, the Explorer meets the WestGuide in
cell (−2i+ 1,−i+ 1). By time t+ 3 + 4i+ 2, the WestGuide has left the cell and
the Explorer can continue moving east. By time t+ 5 + 4i+ 4i+ 2, the Explorer
turns towards the NorthGuide and finally reaches its cell by time t+ 7 + 8i+ 4i
ending the triangle search.

We can now combine the results from this section. Recall that D is the
distance to the treasure. By Observation 5.2, the treasure is found latest during
TSD+1. As the duration of each search is finite by Observation 5.3 and by
Lemma 5.1 each triangle is eventually searched, we get the following theorem.

Theorem 5.1. There exists an effective deterministic FA-protocol for async-
ANTS for n = 4.

5.3 Three Agents

In this section, we show that we can locate the treasure with three deterministic
agents if they operate in a synchronous environment and that in an asynchronous
environment, three randomized agents are sufficient.

5.3.1 Deterministic Protocol for sync-ANTS
We show that we can get rid of one of the FA-agents from the algorithm presented
in Section 5.2 by giving the agents a common notion of time. In other words,
if we assume that the execution of the algorithm is synchronous, three agents
suffice to discover the treasure. Our goal is to prove the following theorem.

Theorem 5.2. There exists an effective deterministic FA-protocol for sync-
ANTS for n = 3.

The idea of the three-agent protocol is similar to the protocol from Section 5.2
and inspired by the DiamondSearch protocol presented in the previous chapter.
Again, one of the agents, the Explorer, performs the actual searching and the two
other agents work as Guides. The task of one of the Guides, called OriginGuide,
is simply to stand still and mark the origin throughout the execution. The task
of the other Guide is to tell the Explorer when it hits an axis. On the first round
of the execution, the Explorer and the other Guide move one step north to cell
(0, 1) and then start the execution of the following protocol.

Explorer. The Explorer repeatedly performs diamond searches in increasing dis-
tances. It starts the first diamond search in distance 1 by diagonally moving
south-west, i.e., alternating between moving west and south. When it meets a
Guide, it alters its movement direction by 90◦ counter-clockwise. At the end of
a complete diamond (i.e., when meeting a Guide again at the starting point), it

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA72

G

O

X

Figure 5.2: Three agents can discover the entire grid under a synchronous environment.
The gray circles indicate the locations where the Explorer (X) meets the Guide (G). The
OriginGuide (O) marks the origin.

moves one step outwards starting a new diamond search with a larger distance.
During a diamond search in distance d, the Explorer discovers all cells that have
distance d to the origin.

Guide. The Guide starts by moving towards the OriginGuide that marks the
origin. When it meets the OriginGuide, it alters its direction by 90◦ clockwise
and moves outwards. When it meets the Explorer, it turns around and moves
inwards towards the OriginGuide. The Guide also moves one step north with the
Explorer when they meet in the end of searching a diamond and starts walking
towards the OriginGuide afterwards.

The execution of our protocol is illustrated in Figure 5.2. To prove Theo-
rem 5.2, we only need to show that every time the Explorer enters a cell on an
axis, it meets a Guide. To see why this is sufficient, consider any cell c on the
plane with distance d to the origin. Then c is searched (latest) during diamond
search in distance d. Therefore, assuming that each diamond search is performed
correctly, the whole plane is eventually discovered.

It is fairly easy to see that the Explorer and the Guide never fail to meet.
Consider round r when the Explorer and a Guide meet on an axis during diamond
search in distance d. Then the distance that both of them have to move until
the next meeting point is 2d. Since both agents move exactly once per round,
the claim follows. Note that the assumption of a synchronous environment is
crucial here.

5.3.2 Randomized Protocol for async-ANTS
We now show that if we are not restricted to deterministic state machines but al-
low randomization, we can find the treasure under an asynchronous environment

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA73

with only three FA-agents by using a protocol inspired by the GeometricSearch
strategy presented in the previous chapter.

Again, we have two Guides and one Explorer and the task of one of the agents,
the OriginGuide, is to simply stay in the origin. The Explorer performs the actual
searching and starts by uniformly at random choosing either (north, east), (east,
south), (south, west) or (west, north), i.e., it randomly chooses a quarter plane.
Then, the Explorer performs a geometric search on that quarter-plane.

Consider the case of choosing (east, south); the other quarter-planes work
analogously. The Guide and the Explorer execute the following protocols.

Explorer. The Explorer starts by moving once east. Then on every step the Ex-
plorer tosses a fair coin and if it shows heads, it moves east. When the coin shows
tail, the Explorer stops and becomes a WaitingExplorer until its cell is occupied
by a WaitingGuide. When the WaitingGuide appears, the WaitingExplorer moves
one cell south, becomes an Explorer, and continues tossing coins but now moves
one cell south every time the coin shows head instead of east. When the coin
shows tails, the Explorer turns back, i.e., starts moving north. After the Explorer
reaches a cell with a WaitingGuide, it stops and moves west (until it reaches an
OriginGuide) whenever its cell contains no WaitingGuide.

Guide. The Guide moves east on every step if its cell is not occupied by an
Explorer. When it meets a WaitingExplorer, it turns into a WaitingGuide. When
the WaitingGuide meets an Explorer, it becomes a Guide again and moves west
whenever its cell is not occupied by an Explorer until it meets an OriginGuide.

After all the agents reach the origin, they restart the process. The protocol
is illustrated in Figure 5.3. It is easy to see that each geometric search has a
finite duration with probability 1 since the Explorer throws a finite number of
heads in every search with probability 1. Assume that the number of heads
is finite. Then the Explorer becomes a WaitingExplorer in finite time. After
the Explorer becomes a WaitingExplorer, the Guide moves towards the cell of the
WaitingExplorer in every step and therefore reaches it in finite time. Similarly,
the Explorer returns to the WaitingGuide in finite time and they both reach the
OriginGuide in finite time.

Theorem 5.3. There exists an effective randomized FA-protocol for async-ANTS
for n = 3.

Proof. Assume that the treasure is located in cell c = (x, y) in the north-east
quarter plane with D = x + y. Let us index the geometric searches, i.e., the
iterations of the algorithm, by the positive integers. Clearly, the protocol is
defined so that if the treasure is found in search i, then search j > i is not
needed, however, for the sake of the analysis, we assume that the agents keep
performing the searches indefinitely and bound the time until the treasure is
found — let T be the random variable that captures this time. Given this view,
we know that search i is independent of all searches other than i.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA74

X

2

1

4

3

OG

Figure 5.3: Three agents are performing a geometric search on the north-west quarter
plane. Moves along the black arrows are executed by both the Explorer (X) and the
Guide (G) while the OriginGuide (O) states at the origin. Moves along the red arrows
are executed only by the Explorer.

Let Ai be the event that the Explorer finds the treasure in search i. This
happens if it chooses the right quarter plane, throws heads exactly x − 1 times
before throwing tails once and then throws heads y − 1 times. Hence, Pr(Ai) =
1
4 · 2−(x−1) · 1

2 · 2−(y−1) = 2−(D+1). Let Bi = ¬A1 ∧ · · · ¬Ai−1 ∧ Ai be the event
that the treasure is found in search i and not in any search j < i. Let Li be the
random variable that measures the number of distinct cells the Explorer visits in
search i, i.e., the length of the path along which the Explorer moves during search
i. We rely on the following equations that hold for every i ≥ 1 and 1 ≤ j < i:

(1) Pr(Ai) = 2−(D+1)

(2) Pr(Bi) = (1− 2−(D+1))i−12−(D+1)

(3) E[Li | Bi] = E[Li | Ai] = O(D)

(4) E[Lj | Bi] = E[Lj | ¬Aj] = O(1)

Therefore,

E[T] =
∞∑
i=1

E[T | Bi] · Pr(Bi)

=
∞∑
i=1

(i−1∑
j=1

E[Lj | Bi] + E[Li | Bi]
)
· (1− 2−(D+1))i−12−(D+1)

=
∞∑
i=1

(O(i) +O(D)) · (1− 2−(D+1))i−12−(D+1)

= 2−(D+1) ·
∞∑
i=1
O(i) · (1− 2−(D+1))i−1

+O(D) · 2−(D+1) ·
∞∑
i=1

(1− 2−(D+1))i−1

= 2−(D+1) · O(22D) +O(D) · 2−(D+1) · 2D+1 = O(2D) .

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA75

s
mx

my

e

Figure 5.4: The gray cells belong to a band with slope (mx,my) and extent e.

5.4 Two Agents

Our goals in this section are to show, on the negative side, that two deterministic
FA-agents cannot solve sync-ANTS, and, on the positive side, that one determin-
istic FA-agent together with one deterministic PDA-agent can solve sync-ANTS.

5.4.1 No Deterministic FA-Protocol

We start off with proving the first result. Before doing so, we define the notion of
a band in Z2. A band is the discrete version of a fat line in Euclidean space, i.e.,
the set of cells that have at most a certain distance from a line. See Figure 5.4
for an illustration.

Definition. A band B = (s,m, e), s = (xs, ys) ∈ Z2 with slope m = (mx,my) ∈
Z2 of extent e ∈ Z+ consists of all cells c for which there exists a point p =
(sx +λmx, sy +λmy) for some λ ∈ R such that ‖c− p‖1 ≤ e where ‖x‖1 denotes
the `1-norm of x.

Observation 5.4. Let B be a finite set of bands with finite extent. Then Z2 \⋃
B∈B B 6= ∅.

Proof. Assume for the sake of a contradiction that the bands in B cover Z2

completely. Let e∗ be the maximum extent of the bands in B. Consider a square
region S of Z2 with `2 cells for ` > 2|B|e∗ and a fixed band B = (s,m, e) ∈ B.
Assume wlog. that |mx| ≤ |my|. Observe that |B ∩S| ≤ ` · 2e∗ since S vertically
extends over ` cells and the horizontal width of B ∩ S is at most 2e∗. Let
A = ⋃

B∈B B and we get |A ∩ S| ≤ 2|B|e∗ · ` < `2 = |S|. Thus, the bands in B
do not even cover the cells in S, a contradiction.

We denote by M(P) = (ti)i>0 the strictly increasing sequence of all points in
time when two agents meet during the execution of protocol P. An important
ingredient for the proof is the following lemma, which holds for an arbitrary
amount of agents.

Lemma 5.5. If P is an effective deterministic FA-protocol for sync-ANTS, then
|M(P)| =∞.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA76

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol with finite |M(P)|. Thus, there exists a largest point in time t∗ =
max(M(P)) when two agents meet and after which no two agents meet anymore
and the number of cells explored until t∗ is finite. Consider now agent a and
let q be the state that has been entered by agent a twice after t∗ at the earliest
time. Let (ti)i>0 be the strictly increasing sequence of points in time after t∗
when a enters state q and denote Ii = [ti, ti+1]. Observe that the behavior of a in
each interval Ii is identical, hence a will keep on repeating the same transitions
and movements as in I1 forever. Observe further that a can only move a finite
distance in each Ii as it has a finite length.

Consider the vector vi(a) = Ca(ti+1) − Ca(ti) describing the net-translation
of a during Ii and observe that by the above argument vi(a) = v1(a) for all
i > 0. There are two cases: If v1(a) = 0, then agent a explores only a constant
amount of cells for t → ∞. If v1(a) 6= 0, then a exhibits a net-movement into
the direction of v1(a) in each Ii and since it only explores a constant amount
of cells in each Ii, agent a explores only cells in a band with finite width after
t∗. By Observation 5.4, the agents cannot explore all cells in Z2 and the claim
follows.

Theorem 5.4. There exists no effective deterministic FA-protocol for sync-
ANTS for n = 2.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol for two agents a1 and a2. By Lemma 5.5 we know that |M(P)| = ∞.
Let Q1 and Q2 be the set of states of the two FAs controlling a1 and a2. We
denote by Q1(t) ∈ Q1 and Q2(t) ∈ Q2 the state of agent a1 and a2 at time t
and further Q(t) = (Q1(t), Q2(t)). Observe that since |M(P)| = ∞, there must
be a pair of states (q1, q2) ∈ Q1 × Q2 such that the sub-sequence T = (τi)i>0
of M(P) that consists of all τ ∈ M(P) such that Q(τ) = (q1, q2), is infinite.
We denote the intervals Ii = [τi, τi+1] and observe that a1 and a2 (individually)
perform exactly the same state transitions and movements in each interval Ii
(agent a1 and a2 might meet between τi and τi+1 in different states, but their
behavior is fully determined by their states at time τi). Thus, there is a fixed
vector v = Ca1(τi+1) − Ca1(τi) representing the translation of the meeting cell
of a1 and a2 during some Ii and furthermore a fixed constant ϑ > 0 such that
τi+1−τi = ϑ. Consequently, a1 and a2 can only explore cells in a band with finite
width after τ1. Since E(τ1) is finite, Observation 5.4 yields a contradiction.

5.4.2 Deterministic FA/PDA-Protocol for sync-ANTS
The second result of this section establishes that while two agents controlled
by a FA do not allow for an effective deterministic protocol for sync-ANTS, one
FA-agent and one PDA-agent do so.

The protocol is essentially an adapted version of the protocol from Sec-
tion 5.3.1. The Explorer behaves identically to Section 5.3.1 and performs di-
amond searches with increasing distances to the origin. The second PDA-agent

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA77

replaces the two Guides by walking along the axis in order to signal to the Ex-
plorer when the search in a quarter-plane is complete and it should therefore
alter its movement direction. The trick here is that the Guide tracks its distance
from the origin using the stack. More precisely, the Guide pushes a symbol onto
the stack whenever it performs a movement outwards on one of the axes and
pops one symbol from the stack whenever it moves towards the origin. Using
this trick, the Guide can detect when it has arrived at the origin by verifying
whether the stack is empty, i.e., the top-most symbol is ε. Then the algorithm
works as follows:

At time t = 0, the Guide and the Explorer both move one cell north (and the
Guide records this move on the stack). Whenever the two agents are located
together on the north-axis in cell (0, d), the Explorer starts a diagonal walk
towards south-west while the Guide moves south towards the origin until it arrives
there, which it can track using the stack. Upon arriving there, it moves west until
it meets the Explorer. As the length of the two (different) paths from cell (0, d)
to cell (−d, 0) is equal, both the Guide and the Explorer arrive in cell (0,−d) at
the same time. Now the Explorer changes its movement direction and the Guide
moves back to the origin after which it moves south to meet the Explorer on the
south axis in cell (0,−d). They repeat this process to meet on the west axis in
cell (d, 0) and on the north axis in cell (0, d). When the Explorer has completed
the diamond search of level d by arriving at cell (0, d) again, it moves together
with the Guide to cell (0, d+ 1) and the search of level d+ 1 begins.

It is easy to see that the above algorithm guarantees that the Explorer meets
the Guide every time it crosses an axis and that therefore any level d is explored
in finite time.

Theorem 5.5. There exists an effective deterministic protocol for sync-ANTS
for n = 2 that uses one FA-protocol and one PDA-protocol.

5.4.3 Deterministic PDA-Protocol for async-ANTS
Since two PDAs can simulate a Turing machine [62] by using both their stacks
to represent the infinite band of the Turing machine, it is not surprising that two
PDAs allow for an effective deterministic protocol for async-ANTS. We show that
two PDA-agents can find the treasure by only using their counting capabilities,
i.e., using an alphabet containing only a single symbol.

The two agents a and b employ the following protocol: Both agents walk
“hand-in-hand”, i.e., have a distance of at most one at all times, and perform
a spiral search with increasing distances from the origin (cf. Section 5.3.1). At
any time during the execution, they maintain the invariant that the sum of the
number of symbols on both stacks equals their distance from the origin. They
start from the cell (0, 1) with the stack of agent a containing one symbol. When
the two agents start a spiral search from cell (0, i), agent a has i symbols on is
stack. When a and b walk south-west, agent a removes a symbol from its stack
every other step while agent b pushes one symbol to its stack every other step.
When the stack of agent a is empty, agent b’s stack contains i symbols and the
agents have arrived at the cell (−i, 0) on the west axis. Then they reverse their

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA78

roles and move together to the south, east, and again north axis in the same
fashion to finish the search in distance i. Thereafter, they move one cell north,
push one additional symbol to the stack to account for the increased distance
and start a new search in distance i+ 1. It is easy to see that this protocol can
be implemented to work in an asynchronous environment and guarantees that
the two agents locate the treasure.

Theorem 5.6. There exists an effective deterministic PDA-protocol for async-
ANTS for n = 2.

5.5 One Agent

In this section we show that neither a single randomized FA-agent nor a single
deterministic PDA-agent can find the treasure in finite time while a randomized
PDA-agent is able to do so.

5.5.1 No Randomized FA-Protocol

Consider a single agent who is controlled by a finite state machine. The move-
ments the agent performs on the grid can be described by a Markov chain, where
we simply assign the state set of the Markov chain to be the states of the finite
state machine and the transition probabilities to be the probabilities assigned
to the corresponding state transitions. Clearly, this Markov chain is finite and
all state transition probabilities are constants. Therefore, it must contain an
irreducible subset H of states that are entered within constant amount of state
transitions with a constant probability; for the rest of the section, we condition
on this event and focus on the restriction of the Markov chain to the states of
H. If we show that the expected time to reach the treasure is infinite under
this event, it follows that the expected time to reach the treasure is infinite in
general, since this event occurs with constant probability.

Let s be the first state in H visited by the Markov chain. Let d be the
distance of the agent from the origin when the Markov chain visits state s for
the first time and recall that d is bounded from above by some constant. Since
H is an irreducible set of states with finite cardinality |H|, standard Markov
chain theory (see, e.g., [5]) ensures that state s is visited infinitely often with
probability 1 and the expected time between any two such visits is finite.

Assume hereafter that the the component H of the Markov chain is aperiodic.
This assumption is without loss of generality, since by augmenting each state of
the Markov chain with a self transition that occur with a constant probability,
one obtains an aperiodic Markov chain without increasing the expected hitting
times of the agent by more than a constant factor.

For our purposes, it is enough to study the movements in one dimension
and therefore, we project the location of the agent on the x-axis and ignore
its movements in the y-dimension. So, in what follows, we focus on a single
agent that traverses Z and let Xi ∈ Z, i = 1, 2, . . . , be the (x-coordinate of the)
location of the agent at the ith time the Markov chain visits state s.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA79

Assume towards contradiction that the agent hits every point x ∈ Z in finite
expected time. Since the Markov chain controlling the movements of the agent
is irreducible and aperiodic, it follows that the agent hits every point x ∈ Z
while in state s in finite expected time, namely, the random variable T (x) =
mini≥1Xi = x has finite expectation.

The stochastic process {Xi}i≥1 is, by itself, Markovian, i.e.,

Pr(Xn = xn | X1 = x1, . . . , Xn−1 = xn−1) = Pr(Xn = xn | Xn−1 = xn−1) .

This process has been characterized by Feller [56, p. 396, Theorem 2] based on
the random variable Y = Xi+1 −Xi, concluding that:

(1) if E[Y] > 0, then Xi drifts to the right and E[T (x)] =∞ for any x < −d;

(2) if E[Y] < 0, then Xi drifts to the left and E[T (x)] =∞ for any x > d; and

(3) if E[Y] = 0, then Xi is null-recurrent and E[T (x)] =∞ for any x such that
|x| > d.

In all three cases we reach a contradiction to the assumption that E[T (x)] is
finite for all x ∈ Z, thus establishing the following theorem.

Theorem 5.7. There exists no effective randomized FA-protocol for sync-ANTS
for n = 1.

5.5.2 No Deterministic PDA-Protocol

Consider a single agent controlled by a deterministic PDA-protocol. We denote
by S(i) the size of the stack, i.e., the number of symbols on the stack (directly)
after step i and by C(i) = (q, γ) the tuple of the state q ∈ Q and the top-
most stack symbol γ ∈ Γ (directly) after step i. Let C = Q × Γ be the set of
all configurations and observe that |C| is constant. As the behavior of a PDA
is fully determined by its state and the top-most stack symbol, the following
observation is immediate.

Observation 5.6. Let 0 < i1 < i2 be two different steps with C(i1) = C(i2)
and let i2 be the smallest such index. If S(i) ≥ S(i1) for all i1 ≤ i ≤ i2, then
C(j) = C(j + k · (i2 − i1)) for all i1 ≤ j ≤ i2 and k ∈ Z+

0 .

Note that the observation also implies that the agent executes the identical
sequence of actions between step i1 and i2.

Observe that, since any protocol must be able to run for an arbitrary time,
we can partition the set C into the configurations Cf containing all configura-
tions that are entered finitely often and the configurations C∞ that are entered
infinitely often during the execution of a given protocol. Observe that there
exists step i∞ such that C(i) ∈ C∞ for any step i > i∞. The following lemma es-
sentially states that after a certain step ir > i∞, the PDA will keep on repeating
its behavior with a finite period ∆ (see Figure 5.5 for an illustration).

Lemma 5.7. There exists an index ir > i∞ and a period ∆ ∈ Z+
0 such that for

all steps i with ir ≤ i < ir + ∆ we have C(i+ k ·∆) = C(i) for all k ∈ Z+
0 .

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA80

step ii∞ imin i′ i′ + ∆

S(i)

∆ ∆

Figure 5.5: The size S(i) of the stack varies for the different steps. All configurations
entered after step i∞ are entered infinitely often. The stack exhibits its minimal size
after i∞ at step imin while C(imin) is entered again for the first time at time i′. Then
the PDA will keep repeating its behavior after imin with period ∆ = i′ − imin.

Proof. Let smin ∈ Z+
0 be the minimum stack size after i∞ and let imin be the

smallest index i > i∞ for which S(i) = smin. Let i′ > imin be the smallest
step such that C(i′) = C(imin). By definition of imin there exists no index
i > imin with S(i) < S(imin). Thus, imin and i′ satisfy the preconditions of
Observation 5.6 and the claim follows for ir = imin and ∆ = i′ − imin.

As the PDA keeps on repeating its behavior after step ir with constant period
∆, the agent can only explore cells in a band of finite width after ir. As ir is
finite and thus E(ir), the set of cells explored up to round ir, is also finite,
Observation 5.4 implies the following theorem.

Theorem 5.8. There exists no effective deterministic PDA-protocol that for
sync-ANTS for n = 1.

5.5.3 Randomized PDA-Protocol for async-ANTS
The randomized protocol is an adapted version of the randomized FA-protocol for
three agents from Section 5.3.2. There, one agent repeatedly performs geometric
searches to a random cell in a geometrically distributed distance. It uses the two
other agents to find its way back to the origin in order to start the next iteration
of the search. A single agent employing a randomized PDA-protocol can do the
same by using the stack to record its distance to the origin and thereby, it can
perform a geometric search and then return to the origin for the next iteration.
More precisely, the agent performs a geometric search as in Section 5.3.2 but
whenever moving north/east/south/west, it pushes N/E/S/W, respectively, to
the stack. When one geometric search ends, the agent can re-track its steps by
walking north/east/south/west when reading S/W/N/E, respectively, and ends
up at the origin when the stack is empty. Then, it can start the next iteration.
It is easy to see that the analysis from Section 5.3.2 applies identically.

Theorem 5.9. There exists an effective randomized PDA-protocol for async-
ANTS for n = 1.

CHAPTER 5. TREASURE SEARCH WITH FEW MOBILE FINITE AUTOMATA81

5.6 Returning to the Origin

In this section we briefly explain the techniques through which the previously
mentioned protocols can be amended in order to guarantee that, upon locating
the treasure, all agents return to the origin in a timely manner, i.e., with a
constant multiplicative overhead in terms of the runtime.

For all deterministic protocols, the idea is simply that upon locating the
treasure, the agent(s) invert the search and progressively move closer towards
the origin in the same manner as they moved further away from the origin in
the search stage. More concretely, when the Explorer locates the treasure, it first
finishes the search of the current distance from the origin (the current triangle
or diamond in the 4-ant and 3-ant protocol, respectively) to move all guides into
a well-defined position. Then it starts a walk along the triangle/diamond in the
next distance but notifies the Guides that it meets on the way that the treasure
has been found and that they should also retrace their steps back towards the
origin. Clearly, this technique ensures that all the agents eventually end up at
the origin. In the two deterministic protocols involving PDAs, returning to the
origin is even simpler. After locating the treasure, the agents continue until they
arrive at the next axis and then, knowing the distance to the origin, they simply
walk back along the axis until they arrive at the origin.

As both randomized protocols involve that all agents repeatedly return to the
origin, the agents can just follow the same procedure upon locating the treasure.

5.7 Conclusion

The variety of results of this chapter are summarized in Table 5.1. While our
findings almost completely cover the landscape of problem configurations, Ta-
ble 5.1 essentially shows two gaps, which, in our opinion, represent interesting
open problems: Can two agents controlled by a randomized FA solve the syn-
chronous or asynchronous version of the ANTS problem? Is there an effective
FA-protocol for async-ANTS for three agents when no random bits are available?
We conjecture that the answer two both questions is “no”, but our efforts to
prove this have not been fruitful, yet.

Problem
FA PDA

sync async sync async
det rand det rand det rand det rand

One agent ×5.7 ×5.7 ×5.8 X5.9 ×5.8 X5.9

Two agents ×5.4 ? ×5.4 ? X5.5,5.6 X5.6

Three agents X5.2 X5.3 ? X5.3

Four agents X5.1

Table 5.1: The symbol × indicates that the given combination does not allow for an
effective protocol while X states that there does exist an effective protocol. Empty cells
follow immediately from other entries while cells marked with ? represent open problems.
The numbers in the superscript refer to the theorem establishing the respective result.

Part III

The Dark Side of Collaboration

82

6
The Power of Collusion in
Online Poker

An inherent property of distributed systems is the limited control over the in-
dividual entities. Even if there is a centralized component offering a particular
service, some of the participants may exploit the distributed nature of the system
in order to get a better service or to gain an unfair advantage. Such collusions
may be highly detrimental to the entire system. What is more, if there is no
verified one-to-one correspondence between the users of the system and their
online identities, a single user can potentially forge a large number of online
identities and use them to its advantage. Such an attack is commonly called a
Sybil attack.1

In this paper, we study the feasibility and the effectiveness of a Sybil attack
in a prototypical setting, online poker platforms, where collusion prevention is
of utmost importance. These platforms are indeed an ideal test case as it is
typically easy to create new player identities, a prerequisite for a Sybil attack.
Given that there are millions of players worldwide, and there is quite a lot of
money involved, it is further in the operators’ best interest to circumvent any
fraudulent behavior. While many operators claim that they monitor their sys-
tems for collusion attempts, little is known about the actual security mechanisms
employed by these platforms.

In order to perform such an attack, we implemented a central component
that interacts with a set of bots posing as regular online poker players. The bots
were instructed to play at poker tables with six players in total because these
tables are popular and the number of players is small enough so that the bots can

1The attack is named after a book about the treatment of a woman called Sybil for disso-
ciative identity disorder.

83

CHAPTER 6. COLLUSION IN ONLINE POKER 84

easily control a large part of the action at the table. We focused on No Limit
Texas Hold’em, the most popular variation of the standard card game poker,
where each player gets two cards, and five “community cards” are shared among
all the players.2 The bots exchange information on their two hand cards with
the other bots through the central component. This information is taken into
account when computing the odds of winning, which in turn is a key factor when
deciding whether to keep playing or to fold. Details about the implementation
of the bots and their strategy is provided in Section 6.2.

The contributions of this study are the following. We show that it is in-
deed feasible to run a successful Sybil attack, despite what the operators of such
platforms claim. While the operators state that they monitor the platform for
collusion attempts, our attack was not detected to the best of our knowledge.
As mentioned above, apart from investigating the feasibility of a Sybil attack,
the goal is also to analyze the direct impact of collusion. We quantify the effec-
tiveness of collusion by measuring the average gain at play money tables, when
employing different numbers of bots. Our bots easily achieve a positive gain,
which grows with an increasing number of bots, thereby revealing the effective-
ness of our scheme. The experiments and the results are discussed in detail in
Section 6.3.

6.1 Related Work

The Sybil attack [44] exploits the fact that it is hard or even impossible to pre-
vent a user from presenting itself as multiple (online) entities in any distributed
system without a trusted authority that is able to reliably associate each entity
with a distinct user. This limitation allows a single user to perform a collu-
sion attack. Collusion itself is a fundamental problem that has been studied
in various fields. A large body of work on collusion exists in the area of game
theory and, in particular, in economics: Researchers studied when collusion in
firms is an issue depending on the internal organization [78]. Optimal lending
contracts for banks, subject to potential collusion, have also been studied [77].
Collusion-proof mechanisms are further needed for auctions [20,28,71,92], a well
studied concept in game theory. Byzantine faults [86] in distributed systems
are related to collusion as the worst-case situations typically involve collusive
behavior among the Byzantine entities.

As there is typically no trusted authority in peer-to-peer networks, they are
vulnerable to Sybil and collusion attacks, and a lot of research has been con-
ducted on how to mitigate this problem. One approach is to combine subjective
reputations with short-term histories for verification [55]. Alternatively, cluster-
ing can be used together with quorum-based operations to minimize the effect of
multiple fake entities. This approach has to be combined with a random insertion
algorithm to reduce the risk of having many fake entities in the same cluster [7].
An interesting question is whether collusion actually occurs in such systems. An

2A player’s hand consists of the best five cards out of his two private and the five community
cards. See http://en.wikipedia.org/wiki/Texas hold ’em for a detailed explanation of the rules.

CHAPTER 6. COLLUSION IN ONLINE POKER 85

empirical study on the prevalence of collusion in Maze, a peer-to-peer file-sharing
system, has been carried out. Substantial evidence for collusion-like behavior has
indeed been found by analyzing traffic logs [110].

The game of poker has also been studied extensively. In one line of research,
the goal is to create a robot that plays competitively against human players,
similar to the research on chess. However, most research focuses on low-limit
poker in which the betting amounts adhere to a restricted format in order to
significantly reduce the complexity of the decision making process. Gilpin and
Sandholm introduced a new way to compute an abstraction of the game tree for
heads-up, i.e., two-player, low-limit Texas Hold’em [60]. Another approach is
to base game decisions on opponent modeling. Billings et al. found that robots
based on opponent modeling are “reasonably strong” when playing online against
human opponents at play money tables [24, 25]. An alternative strategy is to
consider recorded scenarios similar to the current game state and to make a
decision based on past outcomes [109]. Finally, strategies that converge to an
ε-Nash equilibrium have been proposed [91].

Surprisingly, there is little work on collusion attacks in online poker. It has
been shown that collusion could be detected in many cases by analyzing the game
data and modeling the player behavior [103]. The work most related to ours is
due to Simm who built a colluding poker robot for no limit Texas Hold’em [102].
His tests revealed that collusion can provide an advantage when playing against
other robots, i.e., the effectiveness against human opponents was not studied. To
the best of our knowledge, there is no work on the effectiveness of collusion on
online poker platforms. In particular, our setup in which (simple) robots collude
to gain an advantage over human players has not been considered before.

6.2 Colluding Bots

We will now discuss the technical details of our attack. Apart from describing
the architecture, the interaction between the components, and the bots’ poker
strategy, we will also present the identified collusion detection mechanisms that
are used by the poker platform and our techniques to overcome them.

6.2.1 Preliminaries

Our initial task was to identify a selection of online poker platforms suitable for
our purposes. We based the selection process on the following criteria:

1. We require the existence of a web-based game client since this makes it
much harder for the platform providers to detect our bot. Game clients
that run natively on computers have full access to the list of running pro-
cesses and other data, which enables them to detect our bot more easily.

2. Preferably, the bots can directly select a certain poker table. It is harder
to perform a Sybil attack when platforms automatically assign a table to
their players because this requires the bots to change tables until they find
each other.

CHAPTER 6. COLLUSION IN ONLINE POKER 86

3. The platform should have a sufficiently large user base in order to guarantee
that there are enough active tables at any point in time.

4. In order to test the strength of the security measures used in practice,
we specifically target platforms that claim to actively protect themselves
against cheating/colluding players and/or bots.

It is worth noting that since the majority of the large online poker platforms share
a common user base and just provide different clients or welcome bonuses, almost
all of them meet the third requirement. We managed to find a suitable state-
of-the-art platform that satisfies the other three criteria as well; however, we
refrain from disclosing its identity and simply refer to it as “the poker platform”
in the remainder of this paper in order not to tarnish the platform’s reputation.
It would further be unfair to state the name of the platform that we considered
because we presume that the attack is equally effective on other platforms as
well.

The poker strategy employed by our bots is deliberately kept simple in order
to be able to gauge the direct effect of collusion.

6.2.2 Architecture

This section gives a brief overview of the architecture behind our attack.

User Interface Interaction. Since no platform provides a programming in-
terface (API) to interact with the game client for obvious reasons, we had to
solve two basic problems: First, we need to acquire information from the game
client (available tables, current game situation, current bets, play options, com-
munity cards, etc.), and second, we have to send instructions to the client (select
a certain table, bet a certain amount, fold, leave the table, etc.). We solve the
former problem by repeatedly analyzing screenshots of the game client with a
combination of optical character recognition and pattern matching with previ-
ously acquired screenshots of sub-elements (buttons, displayed cards, etc.). This
allows us to create a logical representation of the important aspects of the current
game state, which can then be used by the bot for further processing. Sending
instructions to the game client is accomplished by simulating user interactions
such as clicking and typing using a third-party library. In order to foil potential
attempts by the poker platform to detect our bots, we introduced some random-
ness to the interactions (delays, click positions, bet sizes, etc.), which renders
the bots’ behavior more human-like.

Client-Server Model. Our bots communicate with each other through a
server, i.e., the server acts as the central component for information exchange.
When our attack is launched, all available bots start the web client, log into
the poker platform, and register with the server. Subsequently, the server co-
ordinates the collusion by instructing already registered bots which tables they
should join. As there is no need for direct communication between the bots,
they send all relevant data to the server from where it is distributed.

CHAPTER 6. COLLUSION IN ONLINE POKER 87

(a) Anti-Aliasing (b) No Anti-Aliasing

Figure 6.1: Character recognition/pattern matching is a challenging problem since the
same character might occur in different positions with varying formatting, colors, and
levels of post-processing.

6.2.3 Poker Strategies

As mentioned before, the main goal is to show the benefit of the collusion between
the individual bots and not to develop a sophisticated poker bot that is able to
play competitively against human opponents by itself. Naturally, we still require
a basic strategy to be able to play.

At the core of our strategy lies the odds calculation. Since the exact com-
putation would take too long due to the sheer number of possible hands, we
used the Monte Carlo method to approximate the winning odds by uniformly
sampling games and computing how often the bot’s hand would win.

The strategy is based on the following straightforward rule: A bot only stays
in the game if the expected win is larger than the expected loss. More formally,
if w is the amount it can win, c is the amount it must invest to stay in the game,
and p is the computed odds of winning, the ratio

ρ := wp

c(1− p)

must be greater than 1. Empirical tests revealed that other thresholds for ρ are
more appropriate depending on the game state. In total, we used four different
variants of this strategy using different parameters when to fold, call, or bet.
Since all variants are fundamentally the same, and due to lack of space, we
dispense with a more thorough discussion.

6.2.4 Collusion

Our basic collusion scheme is simple. The bots playing at the same table ex-
change information about their hand cards at the start of each round when the
hand cards are distributed to all players. This information is then used in the
odds calculation algorithm since all of these cards cannot appear as community
cards or hand cards of the other opponents, i.e., the bots already benefit from
the collusion at this stage.

In some scenarios, it is not easy to decide how many bots should stay in the
game, especially when no community cards have been revealed yet, i.e., before

CHAPTER 6. COLLUSION IN ONLINE POKER 88

the flop. In order to keep the strategy simple, we allow the bots to bet against
each other and to play independently using the poker strategy described in the
previous section only before the flop. After the flop, the bots decide collectively
which hand is the best with respect to the winning probability, and only the bot
with the best hand will raise or call to stay in the game. All other bots will fold
as soon as checking is not an option anymore.

6.2.5 Collusion Countermeasures

The poker platform uses several measures to prevent collusion among their play-
ers. First of all, it is not possible to establish two connections with the same IP
address. This limitation makes it harder to implement collusion schemes but, as
in our case, it is no obstacle for an attacker that has many addresses at his dis-
posal. We circumvented this constraint by using a separate virtual machine with
an individual IP address for each bot. A second, more severe restriction targets
the monetary transfer system. The poker platform requires all users who wish
to play at real money tables to provide identity information. More precisely, it
is possible to open up an account with fake information but an identity check
(passport scan) is required in order to transfer money to the account. As we did
not intend to deploy our bots at real money tables, this obstacle did not affect
us.

Besides those obvious methods to impede collusion, we assume that the poker
platform also applies some hidden functionality, which may include the profiling
of player actions, e.g., to detect behavior that is “too regular” for a human
player. This assumption is reasonable as many operators state that anti-cheating
mechanisms are running on their platforms. However, the effectiveness of these
mechanisms seems to be limited, given that our attack remained undetected —
at least to the best of our knowledge.

6.3 Evaluation

In this section we will present an evaluation of the experimental results of our
attack. We use the term game rounds when we talk about a number of rounds
played at a certain table independent of the number of bots at this table. Since
we are interested in the average gain per round and per bot, we introduce the
concept of a bot round, which refers to the number of game rounds multiplied
with the number of bots at the table. For example, if four bots play 50 game
rounds at the same table, then this amounts to a total of 200 bot rounds. Thus,
the average gain per bot round is equivalent to the gain per game round and per
bot.

Our Sybil attack was launched only at play money tables and ran for roughly
one month. The bots played about 6,000 bot rounds in total.

CHAPTER 6. COLLUSION IN ONLINE POKER 89

0 2,000 4,000 6,000
0

20

40

60

80
·103

Bot Rounds Played

G
ai

n
[B

B]

Figure 6.2: The overall gain at play money tables shows a trend of winning a little
over one big blind (BB) per bot round.

1 2 3
0

1

2

Number of Colluding Bots

G
ai

n/
Bo

t
R

ou
nd

[B
B]

Figure 6.3: The average gain per bot round at play money tables increases significantly
with the number of colluding bots. The charts for 1, 2, and 3 colluding bots show the
average gain over 4,178, 1,201, and 690 bot rounds, respectively.

6.3.1 Results

The overall gain of our bots on play money tables is depicted in Figure 6.2. On
average, the bots won slightly more than one big blind (BB) per bot round.
An explanation for this impressive performance of our bots is most certainly
the careless play at play money tables. This is due to the fact that every play
money account can be reset to 1,000 units at any time, which both encourages a
risky playing style and continuously increases the amount of play money in the
system.

More importantly, the impact of increasing the number of colluding bots at
the same table is shown in Figure 6.3. The chart clearly shows the benefit of
collusion: Three bots achieve a gain of more than two big blinds per bot, i.e.,
the gain is more than twice as high per bot compared to having a single bot at
the table.

CHAPTER 6. COLLUSION IN ONLINE POKER 90

6.4 Conclusion

The key finding in our study is that collusion among bots on an online poker
platform is feasible and provides a significant advantage. In particular, our
results show that collusive bots achieve a sizable return on investment over longer
periods of time at play money tables even with a limited game intelligence, and
that adding more bots results in a linear increase in the average gain per bot.

When attempting to generalize our results to real money tables, we first have
to observe that real money tables naturally attract players with much higher skill
levels, which engage in a significantly more serious play style. Hence, we expect
the individual performance of our bots to be significantly worse than on play
money tables. Implementing a smarter game strategy that goes beyond the basic
approach of basing all decisions solely on the expected win, e.g., by incorporating
techniques such as opponent modeling and profiling, (semi-)bluffing and so on,
should help to alleviate this short-coming.

Concerning our results on the effect of collusion between multiple bots, we
conjecture, that similar results should be observable also at real money tables
as knowing more about the cards in the deck can only help one’s game. We did
not attempt to verify this conjecture because of the obvious ethical pitfalls, but
our findings on play money tables are promising.

In light of these findings, it becomes an even more pressing need for poker
platform providers to come up with and deploy effective countermeasures to
protect their system from such collusion attacks. While our attack was not
detected, despite its simplicity and the little effort expended to conceal it, we
believe that it is possible to detect such attacks by monitoring the game state and
analyzing log data. In case of a collusion, the game logs will likely reveal certain
patterns that are not observed in regular play, such as groups of players that
often play together but rarely bet against each other. Creating a separate profile
for each player is another viable starting point for a detection mechanism. Apart
from collusion detection, some more effort should also be invested into collusion
prevention. A simple method is to tighten the control over the system, e.g.,
by placing players at randomly chosen tables, and disallowing frequent table
chances. While this step raises the bar for a successful Sybil attack, it comes
at the expense of the players’ freedom to play (together) at any table of their
choosing.

Part IV

Conclusions & References

91

7
Conclusions

At the beginning of this work, we set of with the goal to advance our current
understanding of various aspects of collaboration in distributed systems. We
have shown how collaboration can be incentivized in matching markets. In a
stable matching, partners are less likely to break up with each other in order to
find a better match as no mutually improving pairing exists. We then turned
towards mobile robots/agents and showed how they can work together to quickly
gather at a point in the plane and how a whole colony of ants or just a few
individual ants can collaboratively find a food source efficiently. Lastly, we
considered how one can abuse collaboration in the form of collusion to gain an
unfair advantage in online poker. These examples constitute a diverse selection
of the importance and the power of collaboration, whether in nature, technology,
games, or in our own lives.

Another area, in which the significance of collaboration cannot be empha-
sized enough is the kind of work that resulted in this thesis: research. All over
the world, thousands of young researchers are tilting against the windmills of
academia as PhD students or PostDocs. In all the competition for recognition
in the form of accepted papers at top conferences and journals or funding from
research grants, they often tend to forget that the main purpose of science is
not the progress of the individual but rather the advancement of knowledge per
se. Even more so, it is commonly accepted that collaboration among scientists
increases the efficiency of the involved individuals. Top-tier journals such as
Science or Nature show a positive correlation between the number of authors of
a publication and its impact and more than half of the Nobel Prizes in Physics,
for example, have been awarded to a group of people for their ground-breaking
collaborations. A recent study by Bahrami et al. [22] showed that, in general,
the outcome of a task improves when two people work together compared to

92

CHAPTER 7. CONCLUSIONS 93

their individual performance.
As a personal example from my PhD studies, I recall working alone on an

early version of the ANTS problem (covered in Chapter 4 and 5) and having
difficulties in how to approach our variant of the problem formally. After fiddling
around with the problem for quite some time without significant progress, I
turned to my fellow PhD student Jara Uitto and within barely two weeks, we
had drawn up the essence of the article that served as foundation for Chapter 4.

My hope is that scientists — and in particular young researchers — occasion-
ally remember the classic and pure character of science, in which collaboration
plays a central role. To conclude this work, I like to quote Isaac Asimov who
wittily summarizes my previous thoughts as follows.

“A knotty puzzle may hold a scientist up for a century, when it may
be that a colleague has the solution already and is not even aware of
the puzzle that it might solve.”

— Isaac Asimov, The Robots of Dawn

Bibliography

[1] Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous
mobile robots. In: Proceedings of the 15th ACM-SIAM Symposium on
Discrete Algorithms (SODA). (2004) 1070–1078

[2] Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Applied
Mathematics 8 (1984) 1–12

[3] Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On nash
equilibria for a network creation game. In: Proceedings of the 17th ACM-
SIAM Symposium on Discrete Algorithms (SODA). (2006) 89–98

[4] Albers, S., Henzinger, M.: Exploring unknown environments. SIAM Jour-
nal on Computing (SICOMP) 29 (2000) 1164–1188

[5] Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on
graphs (2002) Unfinished monograph, recompiled 2014, available at http:
//www.stat.berkeley.edu/˜aldous/RWG/book.html.

[6] Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random
walks, universal traversal sequences, and the complexity of maze prob-
lems. In: Proceedings of the 20th Annual Symposium on Foundations of
Computer Science (SFCS). (1979) 218–223

[7] Anceaume, E., Ludinard, R., Ravoaja, A., Brasileiro, F.: Peercube: A
hypercube-based P2P overlay robust against collusion and churn. In: Pro-
ceedings of the 2nd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO). (2008) 15–24

[8] Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In:
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA). (2007) 189–198

[9] Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless
point convergence algorithm for mobile robots with limited visibility. IEEE
Transactions on Robotics and Automation 15(5) (1999) 818–828

[10] Ando, H., Suzuki, Y., Yamashita, M.: Formation and agreement problems
for synchronous mobile robots with limited visibility. In: Proceedings of
the 1995 IEEE International Symposium on Intelligent Control (ISIC).
(1995) 453–460

94

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html

BIBLIOGRAPHY 95

[11] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Com-
putation in networks of passively mobile finite-state sensors. Distributed
Computing (2006) 235–253

[12] Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T.,
Roughgarden, T.: The price of stability for network design with fair cost
allocation. SIAM Journal on Computing (SICOMP) 38(4) (2008) 1602–
1623

[13] Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal
network design with selfish agents. In: Proceedings of the 35th ACM
Symposium on Theory of Computing (STOC). (2003) 511–520

[14] Arkin, E.M., Bae, S.W., Efrat, A., Okamoto, K., Mitchell, J.S.B., Pol-
ishchuk, V.: Geometric stable roommates. Information Processing Letters
109(4) (2009) 219–224

[15] Aspnes, J., Ruppert, E.: An introduction to population protocols. In
Garbinato, B., Miranda, H., Rodrigues, L., eds.: Middleware for Network
Eccentric and Mobile Applications. (2009) 97–120

[16] Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller,
M., Willmann, J., Gramazio, F., Kohler, M., D’Andrea, R.: The flight
assembled architecture installation: Cooperative construction with flying
machines. IEEE Control Systems 34(4) (2014) 46–64

[17] Augugliaro, F., Schoellig, A., D’Andrea, R.: Dance of the flying machines:
Methods for designing and executing an aerial dance choreography. IEEE
Robotics Automation Magazine 20(4) (2013) 96–104

[18] Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow.
In: Proceedings of the 37th ACM Symposium on Theory of Computing
(STOC). (2005) 57–66

[19] Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case
equilibria. Theoretical Computer Science (TCS) 361(2) (2006) 200–209

[20] Bachrach, Y., Zadimoghaddam, M., Key, P.: A cooperative approach to
collusion in auctions. ACM SIGecom Exchanges 10(1) (2011) 17–22

[21] Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the
plane. Information and Computation 106 (1993) 234–252

[22] Bahrami, B., Olsen, K., Latham, P.E., Roepstorff, A., Rees, G., Frith,
C.D.: Optimally interacting minds. Science 329(5995) (2010) 1081–1085

[23] Bajaj, C.: The algebraic degree of geometric optimization problems. Dis-
crete & Computational Geometry 3 (1988) 177–191

[24] Billings, D., Davidson, A., Schaeffer, J., Szafron, D.: The challenge of
poker. Artificial Intelligence 134(1-2) (2001) 201–240

BIBLIOGRAPHY 96

[25] Billings, D., Peña, L., Schaeffer, J., Szafron, D.: Using probabilistic knowl-
edge and simulation to play poker. In: Proceedings of the 16th National
Conference on Artificial Intelligence and 11th Innovative Applications of
Artificial Intelligence (AAAI/IAAI). (1999) 697–703

[26] Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed circle forma-
tion for anonymous oblivious robots. In: Proceedings of the 3rd Workshop
on Efficient and Experimental Algorithms (WEA). (2004) 159–174

[27] Chazelle, B.: Natural algorithms. In: Proceedings of the 20th ACM-SIAM
Symposium on Discrete Algorithms (SODA). (2009) 422–431

[28] Che, Y., Kim, J.: Optimal collusion-proof auctions. Journal of Economic
Theory 144(2) (2009) 565–603

[29] Chen, H.L., Roughgarden, T.: Network design with weighted players. In:
Proceedings of the 18th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). (2006) 29–38

[30] Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability
of correlated equilibria of linear congestion games. In: Proceedings of the
13th European Symposium on Algorithms (ESA). (2005) 59–70

[31] Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite conges-
tion games. In: Proceedings of the 37th ACM Symposium on Theory of
Computing (STOC). (2005) 67–73

[32] Chrystal, G.: On the problem to construct the minimum circle enclosing
n given points in a plane. In: Proceedings of the Edinburgh Mathematical
Society, Third Meeting. (1885) 30–35

[33] Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots
gathering problem. In: Proceedings of the 30th International Colloquium
on Automata, Languages and Programming (ICALP). (2003) 1181–1196

[34] Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms.
In: Proceedings of the 11th International Colloquium on Structural In-
formation and Communication Complexity (SIROCCO). Volume 3104 of
Lecture Notes in Computer Science. (2004) 79–88

[35] Cohen, R., Peleg, D.: Convergence properties of the gravitational al-
gorithm in asynchronous robot systems. SIAM Journal on Computing
(SICOMP) 34(6) (2005) 1516–1528

[36] Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In:
Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA). (2002) 413–420

[37] Défago, X., Konagaya, A.: Circle formation for oblivious anonymous
mobile robots with no common sense of orientation. In: Proceedings of

BIBLIOGRAPHY 97

the 2nd ACM International Workshop on Principles of Mobile Computing
(POMC). (2002) 97–104

[38] Degener, B., Kempkes, B., Kling, P., Meyer auf der Heide, F.: A contin-
uous, local strategy for constructing a short chain of mobile robots. In:
Proceedings of the 17th International Colloquium on Structural Informa-
tion and Communication Complexity (SIROCCO). (2010) 168–182

[39] Degener, B., Kempkes, B., Langner, T., auf der Heide, F.M., Pietrzyk,
P., Wattenhofer, R.: A tight runtime bound for synchronous gathering
of autonomous robots with limited visibility. In: Proceedings of the 23rd

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
(2011)

[40] Degener, B., Kempkes, B., Meyer auf der Heide, F.: A local O(n2) gather-
ing algorithm. In: Proceedings of the 22nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). (2010) 217–223

[41] Deng, X., Papadimitriou, C.: Exploring an unknown graph. Journal of
Graph Theory 32 (1999) 265–297

[42] Dieudonné, Y., Petit, F.: Self-stabilizing deterministic gathering. In:
Proceedings of the 5th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks (ALGOSENSORS). (2009) 230–241

[43] Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with
little memory. Journal of Algorithms 51 (2004) 38–63

[44] Douceur, J.: The sybil attack. In: Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS). (2002) 251–260

[45] Dynia, M., Kuty lowski, J., Lorek, P., Meyer auf der Heide, F.: Maintaining
communication between an explorer and a base station. In: Proceedings
of the 1st IFIP International Conference on Biologically Inspired Collabo-
rative Computing (BICC). (2006) 137–146

[46] Dynia, M., Kuty lowski, J., Meyer auf der Heide, F., Schrieb, J.: Local
strategies for maintaining a chain of relay stations between an explorer
and a base station. In: Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). (2007) 260–269

[47] Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics
17 (1965) 449–467

[48] Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices.
Journal of Research of the National Bureau of Standards 69 B (1965)
125–130

[49] Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How many
ants does it take to find the food? In: Proceedings of the 21th International

BIBLIOGRAPHY 98

Colloquium on Structural Information and Communication Complexity
(SIROCCO). (2014)

[50] Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS
problem with asynchronous finite state machines. In: Proceedings of the
41st International Colloquium on Automata, Languages and Programming
(ICALP). (2014)

[51] Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Pro-
ceedings of the 32nd Annual ACM Symposium on Principles of Distributed
Systems (PODC). (2013)

[52] Feder, T.: A new fixed point approach for stable networks and stable
marriages. Journal of Computer and System Sciences 45 (1992) 233–284

[53] Feinerman, O., Korman, A.: Memory lower bounds for randomized col-
laborative search and implications for biology. In: Proceedings of the 26th

International Symposium on Distributed Computing (DISC). (2012) 61–75

[54] Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative search
on the plane without communication. In: Proceedings of the 31st Annual
ACM Symposium on Principles of Distributed Systems (PODC). PODC
’12 (2012) 77–86

[55] Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust incentive techniques
for peer-to-peer networks. In: Proceedings of the 5th ACM Conference on
Electronic Commerce (EC). (2004) 102–111

[56] Feller, W.: An Introduction to Probability Theory and its Applications.
(1971)

[57] Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of
asynchronous robots with limited visibility. Theoretical Computer Science
(TCS) 337(1–3) (2005) 147–168

[58] Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph ex-
ploration by a finite automaton. Theoretical Computer Science (TCS)
345(2-3) (2005) 331–344

[59] Gale, D., Shapley, L.S.: College admissions and the stability of marriage.
The American Mathematical Monthly 69(1) (1962) 9–14

[60] Gilpin, A., Sandholm, T.: Better automated abstraction techniques for
imperfect information games, with application to texas hold’em poker. In:
Proceedings of the 6th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS). (2007)

[61] Gusfield, D., Irving, R.W.: The stable marriage problem: structure and
algorithms. (1989)

BIBLIOGRAPHY 99

[62] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. (1979)

[63] Irving, R.W.: Stable marriage and indifference. Discrete Applied Mathe-
matics 48(3) (1994) 261–272

[64] Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the
”optimal” stable marriage. Journal of the ACM (JACM) 34(3) (1987)
532–543

[65] Irving, R.W., Manlove, D.F., Scott, S.: The stable marriage problem
with master preference lists. Discrete Applied Mathematics 156 (2008)
2959–2977

[66] Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized gathering of
mobile robots with local-multiplicity detection. In: Proceedings of the
11th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS). (2009) 384–398

[67] Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous
mobile robots with dynamic compasses: An optimal result. In: Proceedings
of the 21st International Symposium on Distributed Computing (DISC).
(2007) 298–312

[68] Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation
game. Mathematics of Operations Research 29(3) (2004) 407–435

[69] Kim, D.H., Kim, J.H.: A real-time limit-cycle navigation method for
fast mobile robots and its application to robot soccer. Robotics and Au-
tonomous Systems 42(1) (2003) 17–30

[70] Kim, J.H., Shim, H.S., Kim, H.S., Jung, M.J., Choi, I.H., Kim, J.O.:
A cooperative multi-agent system and its real time application to robot
soccer. In: Proceedings of the IEEE International Conference on Robotics
and Automation. (1997) 638–643

[71] Klemperer, P.: What really matters in auction design. The Journal of
Economic Perspectives 16(1) (2002) 169–189

[72] Kling, P., Meyer auf der Heide, F.: Convergence of local communication
chain strategies via linear transformations: Or how to trade locality for
speed. In: Proceedings of the 23rd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). SPAA ’11 (2011) 159–166

[73] Knuth, D.E.: Marriages stables et leurs relations avec d’autres problèmes
combinatoires. (1976)

[74] Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: Approximate equilibria
and ball fusion. Theory of Computing Systems (2003) 683–693

BIBLIOGRAPHY 100

[75] Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer
Science Review 3(2) (2009) 65–69

[76] Kutylowski, J., Meyer auf der Heide, F.: Optimal strategies for maintain-
ing a chain of relays between an explorer and a base camp. Theoretical
Computer Science (TCS) 410(36) (2009) 3391–3405

[77] Laffont, J.: Collusion and group lending with adverse selection. Journal
of Development Economics 70(2) (2003) 329–348

[78] Laffont, J., Martimort, D.: Collusion and delegation. The RAND Journal
of Economics (1998) 280–305

[79] Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between
selection complexity and performance when searching the plane without
communication. In: Proceedings of the 33rd Annual ACM Symposium on
Principles of Distributed Systems (PODC). (2014)

[80] López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: Proceedings
of the 13th Canadian Conference on Computational Geometry (CCCG).
(2001) 125–128

[81] Meyer auf der Heide, F., Schneider, B.: Local strategies for connecting
stations by small robotic networks. In: Proceedings of the 2nd IFIP In-
ternational Conference on Biologically Inspired Collaborative Computing
(BICC). (2008) 95–104

[82] Ng, C., Hirschberg, D.S.: Three-dimensional stable matching problems.
SIAM Journal on Discrete Mathematics (SIDMA) 4 (1991) 245–252

[83] Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Eco-
nomic Behavior 35(1-2) (2001) 166–196

[84] Panaite, P., Pelc, A.: Exploring unknown undirected graphs. In: Proceed-
ings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA).
(1998) 316–322

[85] Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings
of the 33rd ACM Symposium on Theory of Computing (STOC). (2001)
749–753

[86] Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence
of faults. Journal of the ACM (JACM) 27(2) (1980) 228–234

[87] Prabhakar, B., Dektar, K.N., Gordon, D.M.: The regulation of ant colony
foraging activity without spatial information. PLoS Computational Biol-
ogy 8(8) (2012)

[88] Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete match-
ing. SIAM Journal on Computing (SICOMP) 10 (1981) 676–681

BIBLIOGRAPHY 101

[89] Reingold, O.: Undirected connectivity in log-space. Journal of the ACM
(JACM) 55 (2008) 17:1–17:24

[90] Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning
for robot soccer. Autonomous Robots 27(1) (2009) 55–73

[91] Risk, N.A., Szafron, D.: Using counterfactual regret minimization to cre-
ate competitive multiplayer poker agents. In: Proceedings of the 9th In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS). (2010) 159–166

[92] Robinson, M.: Collusion and the choice of auction. The RAND Journal
of Economics (1985) 141–145

[93] Romanishin, J., Gilpin, K., Rus, D.: M-blocks: Momentum-driven, mag-
netic modular robots. In: Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). (2013) 4288–4295

[94] Ros, R., Arcos, J.L., de Mantaras, R.L., Veloso, M.: A case-based ap-
proach for coordinated action selection in robot soccer. Artificial Intelli-
gence 173(9–10) (2009) 1014–1039

[95] Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in game-
theoretic modeling and analysis. (1990)

[96] Roughgarden, T.: Potential functions and the inefficiency of equilibria.
Proceedings of the International Congress of Mathematicians (ICM) 3
(2006) 1071–1094

[97] Roughgarden, T.: The price of anarchy is independent of the network
topology. Journal of Computer and System Sciences 67(2) (2003) 341–364

[98] Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the
ACM (JACM) 49(2) (2002) 236–259

[99] Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in
a thousand-robot swarm. Science 345(6198) (2014) 795–799

[100] Sasaki, T., Pratt, S.C.: Groups have a larger cognitive capacity than
individuals. Current Biology 22(19) (2012) 827–829

[101] Schulz, A.S., Stier Moses, N.E.: On the performance of user equilibria in
traffic networks. In: Proceedings of the 3rd ACM-SIAM Symposium on
Discrete Algorithms (SODA). (2003) 86–87

[102] Simm, J.: AI system for online poker. Master’s thesis, Tallinn University
of Technology (2007)

[103] Smed, J., Knuutila, T., Hakonen, H.: Can we prevent collusion in multi-
player online games? In: Proceedings of the 9th Scandinavian Conference
on Artificial Intelligence (SCAI). (2006) 168–175

BIBLIOGRAPHY 102

[104] Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile
robots with inaccurate compasses. In: Proceedings of the 25th Annual
ACM Symposium on Principles of Distributed Systems (PODC). (2006)
333–349

[105] Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic conges-
tion games. Algorithmica 47(1) (2007) 79–96

[106] Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Forma-
tion of geometric patterns. SIAM Journal on Computing (SICOMP) 28(4)
(1999) 1347–1363

[107] Suzuki, I., Yamashita, M.: Formation and agreement problems for anony-
mous mobile robots. In: Proceedings of the 31st Annual Allerton Confer-
ence on Communication, Control, and Computing. (1993) 93–102

[108] Vetta, A.: Nash equilibria in competitive societies, with applications to
facility location, traffic routing and auctions. In: Proceedings of the 43rd

IEEE Symposium on Foundations of Computer Science (FOCS). (2002)
416–

[109] Watson, I., Rubin, J.: CASPER: A case-based poker-bot. In: Proceed-
ings of the 21st Australasian Joint Conference on Artificial Intelligence:
Advances in Artificial Intelligence (AI). (2008) 594–600

[110] Yang, M., Zhang, Z., Li, X., Dai, Y.: An empirical study of free-riding
behavior in the maze P2P file-sharing system. Peer-to-Peer Systems IV
(2005) 182–192

[111] Zehnder, B.: Collusion in online poker pays off. Bachelor’s thesis, ETH
Zurich, Zurich, Switzerland (2012)

	Introduction
	Notational Conventions
	Collaborations and Contributions

	I Stable Matching
	Stable Matching in Metric Graphs
	Related Work
	Setting and Preliminaries
	Price of Anarchy
	Lower Bound on PoS(alpha)
	Price of Stability
	Conclusion

	II Mobile Agents with Restricted Capabilities
	Gathering of Mobile Robots with Limited Visibility
	Related Work
	Model
	The Gathering Algorithm
	The Lower Bound
	The Upper Bound
	Conclusion

	Treasure Search with Many Mobile Finite Automata
	Related Work
	Model
	Parallel Diamond Search
	An Almost Optimal Emission Scheme
	Optimal Diamond Search
	Conclusion

	Treasure Search with Few Mobile Finite Automata
	Model
	Four Agents
	Three Agents
	Two Agents
	One Agent
	Returning to the Origin
	Conclusion

	III The Dark Side of Collaboration
	The Power of Collusion in Online Poker
	Related Work
	Colluding Bots
	Evaluation
	Conclusion

	IV Conclusions & References
	Conclusions
	Bibliography

