Risks and Returns of Uniswap V3 Liquidity Providers

Advances in Financial Technologies (AFT'22) Lioba Heimbach, Eric Schertenleib, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

Decentralized exchanges (DEXes)

real reserves support trading up to price boundaries

real reserves support trading up to price boundaries

virtual reserves used to simulate CPMM

 $p(\bigcirc)_{t_1} = 1$ $p(\diamondsuit)_{t_1} = 1000$

 $p(\bigcirc)_{t_2} = 1$ $p(\clubsuit)_{t_2} = 2000$

impermanent loss: describes the risk for liquidity providers of seeing the value of their reserved tokens decrease in comparison to holding the assets

impermanent
$$loss_{t_1 \rightarrow t_2} \approx -6\%$$

Fees

Fees

fees: received by liquidity providers for every trade in liquidity pool

Return

return: compares the value of the liquidity to holding the assets from the initial injection

price

price

Liquidity position

Liquidity position

Liquidity position

Simulation of daily asset price

Black-Scholes market model

Simulation of daily asset price

Black-Scholes market model

$$S(t) = S(0) \exp\left(\mu t - \frac{\sigma^2}{2}t + \sigma W(t)\right)$$

Simulation of daily asset price

Probability and time in the money (ITM)

Probability and time in the money (ITM)

Optimal position width

$$F \propto \frac{T_{ITM}}{\alpha}$$

Optimal position width

Optimal position width

DAI-USDC ($f \in \{0.01\%, 0.05\%\}$)

normal pair: both cryptocurrencies traded in the pools are established currencies

DAI-USDC ($f \in \{0.01\%, 0.05\%\}$)

normal pair: both cryptocurrencies traded in the pools are established currencies

DAI-USDC ($f \in \{0.01\%, 0.05\%\}$)

USDC-WETH ($f \in \{0.05\%, 0.3\%\}$) WBTC-WETH ($f \in \{0.05\%, 0.3\%\}$)

Position width

Position lifetime

Conditional value at risk (CVaR)

Thank You! Questions & Comments?

Advances in Financial Technologies (AFT'22) Lioba Heimbach, Eric Schertenleib, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

Decentralized exchanges (DEXes)

Return

return: compares the value of the liquidity to holding the assets from the initial injection

$$R(S_0, S_1, S_l, S_u, F) = \frac{V_{pos} + F - V_{hold}}{V_{hold}}$$

general liquidity pool statistics performance statistics of liquidity positions general liquidity pool statistics performance statistics of liquidity positions

Position lifetime

Position width

Position size

Number of position

Pool liquidity

Volume vs. volatility

general liquidity pool statistics performance statistics of liquidity positions

Volatility of returns

