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ABSTRACT
All too often a seemingly insurmountable divide between
theory and practice can be witnessed. In this paper we try
to contribute to narrowing this gap in the field of ad-hoc
routing. In particular we consider two aspects: We propose
a new geometric routing algorithm which is outstandingly
efficient on practical average-case networks, however is also
in theory asymptotically worst-case optimal. On the other
hand we are able to drop the formerly necessary assump-
tion that the distance between network nodes may not fall
below a constant value, an assumption that cannot be main-
tained for practical networks. Abandoning this assumption
we identify from a theoretical point of view two fundamen-
tamentally different classes of cost metrics for routing in
ad-hoc networks.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations, routing and layout ;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems;
C.2.2 [Computer-Communication Networks]: Network
Protocols—routing protocols

General Terms
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1. INTRODUCTION
An ad-hoc network consists of mobile nodes equipped with
radio devices. If the source and the destination of a mes-
sage are not within mutual transmission range, the message
can be relayed by intermediate nodes, a process known as
ad-hoc routing. In this paper we study geometric routing,
which assumes a) that each network node is informed about
its own and about its neighbors’ positions and b) that the
source of a message knows the position of the destination.
The employment of position information becomes more and
more realistic with increasing availability of inexpensive po-
sitioning systems. The same goal could also be achieved by
local information exchange with fixed beacon nodes. Simi-
larly the location of the destination could be learned via an
overlay (e.g. peer-to-peer [21, 27]) information system. But
also a scenario is conceivable, where a message needs to be
sent to any node in a given area (also called “geocasting”
[16, 22]). Since none of the intermediate nodes is required to
maintain routing lists, geometric routing can be considered
a lean version of source routing [14].

Our geometric routing algorithm GOAFR+ (pronounced as
“gopher-plus”) combines—similarly to earlier proposals [4,
6, 15, 20]—two concepts called greedy routing and face rout-
ing. In greedy routing mode the algorithm forwards the
routed message at each network node to the neighbor clos-
est to the destination. Already in simple configurations, the
message can however reach a “dead end”, a node without
any “better” neighbor. Such cases are overcome by the em-
ployment of face routing, which explores the boundaries of
faces of the planarized network graph. GOAFR+ uses an
“early fallback” technique to return to greedy routing as
soon as possible. Our simulations show that—additionally
restricting its search to an adaptively resized area—the algo-
rithm is even more efficient than similar algorithms analyzed
earlier on average (random) graphs. On the other hand our
theoretical analysis proves that GOAFR+ is asymptotically
optimal in the worst case.

Theoretical analysis of routing algorithms often has to make
irritating or far-fetched assumptions, which would hardly
ever hold in practice. In this paper we are able to drop one
such assumption, the Ω(1)-model introduced in [19], which
assumes that the distance between network nodes cannot
fall beneath a constant minimum bound. Graphs with this
restriction have also been called civilized [7] or λ-precision
[13] graphs in the literature. We introduce a general notion
of a cost metric, defined as a nondecreasing function of the



length of the edge over which a message is sent. We show
that the behavior of cost functions for edge length approach-
ing zero proves crucial for the cost of routing. We observe
that in theory cost metrics fall into two classes: Linearly
bounded cost functions are bounded from below by a linear
function; for super-linear functions such a bounding linear
function does not exist. With cost metrics from the for-
mer class, a clustering technique allows the construction of
a routing backbone, which extends GOAFR+’s asymptotic
optimality to networks with nodes of arbitrarily small dis-
tance. With cost functions from the latter class on the other
hand an example graph can be constructed for which there
exists no geometric routing algorithm whose execution cost
is competitive with the cost of the optimal path.

After giving an overview of related work in the following
section, we state the model used in this paper in Section 3.
In Section 4 we introduce our routing algorithm GOAFR+,
prove its asymptotic optimality, and present simulation re-
sults. Section 5 introduces a definition of general cost met-
rics for routing, identifies two classes of metrics, linearly
bounded and super-linear, and describes the consequences of
this classification on the cost of routing. Section 6 finally
summarizes the paper.

2. RELATED WORK
The early proposals of geometric routing—suggested over a
decade ago—were of purely greedy nature: At each interme-
diate network node the message to be routed is forwarded to
the neighbor closest to the destination [8, 12, 23]. This can
however fail if the message reaches a local minimum with
respect to the distance to the destination, that is a node
without any “better” neighbors. Also a “least deviation an-
gle” approach (Compass Routing in [17]) cannot guarantee
message delivery in all cases.

The first geometric routing algorithm that does guarantee
delivery was Face Routing introduced in [17] (called Com-
pass Routing II there). Face Routing reaches the destina-
tion after O(n) steps, n being the number of network nodes.
There have been later suggestions for algorithms with guar-
anteed message delivery [4, 6]; at least in the worst case,
however, none of them outperforms original Face Routing.
Yet other geometric routing algorithms have been shown to
reach the destination on special planar graphs without any
runtime guarantees [2]. [3] proposed an algorithm competi-
tive with the shortest path between source and destination
on Delaunay triangulations; this is however not applicable to
ad-hoc networks, since Delaunay triangulations may contain
arbitrarily long edges, whereas transmission ranges are lim-
ited. Accordingly [10] proposed local approximation of the
Delaunay Graph, however without improving performance
bounds for routing. A more detailed overview of geometric
routing can be found in [24].

In [19] we proposed Adaptive Face Routing AFR. The execu-
tion cost of this algorithm—basically enhancing Face Rout-
ing by the employment of an ellipse restricting the search-
able area—is bounded by the cost of the optimal route. In
particular, the cost of AFR is not greater than the squared
cost of the optimal route. We also showed that this is the
worst-case optimal result any geometric routing algorithm
can achieve.

Face Routing and also AFR are not applicable for practical
purposes due to their strict employment of face traversal.
There have been proposals for practical purposes to combine
greedy routing with face routing [4, 6, 15], however without
competitive worst-case guarantees. In [20] we suggested, to
the best of our knowledge, the first algorithm to combine
greedy and face routing in a worst-case optimal way; in or-
der to remain asymptotically optimal, this algorithm could
however not include falling back as soon as possible from
face to greedy routing, an obvious improvement for the av-
erage case performance.

In this paper we use a clustering technique in order to drop
the Ω(1)-model assumption from [19]. Clustering for the
means of ad-hoc routing has been proposed by various re-
searchers [5, 18]. A closely related approach is the construc-
tion of connected dominating sets as routing backbones [11,
26].

3. MODEL AND PRELIMINARIES
In this paper we assume that network nodes are placed in
the Euclidean plane �2 . In order to represent ad-hoc net-
works we adopt the widely used model, where every node
has the same transmission range, without loss of generality
normalized to 1. The resulting graph, having an edge be-
tween two nodes u and v iff the Euclidean distance |uv| ≤ 1,
is a unit disk graph.

To measure the quality of a routing algorithm, we attribute
to each edge e a cost which is a function of the Euclidean
length of e.

Definition 3.1. (Cost Function) A cost function c :
]0, 1] �→ �+ is a nondecreasing function, which maps any
possible edge length d (0 < d ≤ 1) to a positive real value
c(d) such that d′ > d =⇒ c(d′) ≥ c(d). For the cost of an
edge e ∈ E we also use the shorter form c(e) := c(d(e)).

Note that ]0, 1] really is the domain of a cost function c(·),
i.e. c(·) has to be defined for all values in this interval and
in particular, c(1) < ∞. The cost model defined by such
cost functions includes all popular cost measures such as
the link distance metric (c(d) :≡ 1), the Euclidean distance
metric (c(d) := d), energy (c(d) := dα for α ≥ 2), as well as
hybrid measures which are positive linear combinations of
the above metrics.

For convenience we also define the cost of paths, a sequence
of contiguous edges, and algorithms. The cost c(p) of a path
p is defined as the sum of the costs of its edges. Analogously,
the cost c(A) of an algorithm A is defined as the sum of the
costs of all edges which are traversed during the execution
of an algorithm on a particular graph.

For our routing algorithm the network graph is required to
be planar, that is without intersecting edges. For this pur-
pose we employ the Gabriel Graph. A Gabriel Graph (on a
given node set in the Euclidean plane) is defined to contain
an edge between two nodes u and v iff the circle having uv as
a diameter does not contain a witness node w. This graph
features two important properties: a) It can be computed lo-
cally (each node merely inspecting its neighbors’ positions)



and b) its construction on G preserves an energy-minimal
path between any pair of network nodes, which—by equiv-
alence of cost metrics (Section 5.1)—entails that the con-
struction of the Gabriel Graph on G’s nodes also preserves
G’s distance properties up to constants.

In our analysis we use the concept of a unit disk graph whose
nodes do not have more than a constant number of neigh-
bors. A unit disk graph G is a bounded degree unit disk graph
with parameter k if none of its nodes has degree greater than
k.

We consider geometric routing algorithms [19]. The aim of
the algorithm is to forward a message from a given source s
to a given destination t over the edges of the network graph
while complying with the following rules:

- Each node knows its own and its neighbors’ positions.

- The source s is informed about the destination t’s po-
sition.

- A node is allowed to store only local information or
temporarily present packets in transit.

- A packet may contain control information about at
most O(1) nodes.

According to these rules geometric routing algorithms are
inherently of local nature.

Finally we assume routing to take place much faster than
node movement: A routing algorithm executes on temporar-
ily stationary nodes.

4. GOAFR+

In this section we introduce the GOAFR+ (pronounced as
“gopher-plus”) algorithm. We prove that the algorithm is
asymptotically optimal if the network graph is a bounded
degree unit disk graph. The construction of a bounded de-
gree unit disk graph from a general unit disk graph will be
discussed in Section 5.2.1. Our simulation results show that
GOAFR+ is also efficient on average case graphs.

4.1 The GOAFR+ Algorithm
The GOAFR+ algorithm is a combination of greedy routing
and face routing. Whenever possible the algorithm tries to
route greedily, that is by forwarding the message at each in-
termediate node to the neighbor located closest to the desti-
nation t. Doing so, however, the algorithm can reach a local
minimum with respect to the distance from t, that is a node
um none of whose neighbors is located closer to t than um

itself.

In order to overcome such a local minimum, GOAFR+ ap-
plies a face routing technique, borrowing from the Face Rout-
ing algorithm originally introduced in [17]. Face Routing
proceeds towards the destination by exploring the bound-
aries of the faces of a planarized network graph, employing
the local right hand rule (in analogy to following the right
hand wall in a maze). Additionally the algorithm restricts
itself to a searchable area occasionally being resized during

algorithm execution. With this approach the algorithm be-
comes asymptotically optimal with respect to its execution
cost compared with the cost of the optimal path. A similar
concept was introduced in [19].

Having escaped the local minimum, the algorithm continues
in greedy mode. Since greedy forwarding is—above all in
dense networks—more efficient than face routing in the av-
erage case, the algorithm should for practical purposes fall
back to greedy mode as soon as possible. In [20] we studied
a family of similar algorithms combining greedy and face
routing. We observed that algorithm variants with heuris-
tics employed for early fallback to greedy mode (such as the
“First Closer” heuristic having the algorithm resume greedy
routing as soon as meeting a node closer to the destination
than where the current face routing phase started) lose their
asymptotic optimality with respect to the shortest path. It
appeared that, once in face routing mode, an algorithm is
required to explore the complete boundary of the current
face in order to be asymptotically optimal.

Contrarily to this conjecture, the GOAFR+ algorithm does
not necessarily explore the complete face boundary in face
routing mode and yet does conserve asymptotic optimality.
For this purpose the algorithm employs two counters p and
q to keep track of how many of the nodes visited during the
current face routing phase are located closer (p) and how
many are not closer (q) to the destination than the starting
point of the current face routing phase; as soon as a cer-
tain fallback condition holds, GOAFR+ directly falls back to
greedy mode. Besides being asymptotically optimal, how-
ever, simulations show that in the average case GOAFR+

even outperforms the best (not asymptotically optimal!) al-
gorithms considered in [20].

In particular GOAFR+ consists of the following steps:

GOAFR+

The algorithm parameters ρ0, ρ, and σ are chosen prior to
algorithm start and remain constant throughout the exe-
cution. For the algorithm to work correctly, they have to
comply with the conditions 1 ≤ ρ0 < ρ and 0 < σ.1

0. Begin at s. Initialize C to be the circle centered at t
with radius rC := ρ0 |st|.

1. (Greedy Routing Mode) Repeat taking greedy steps
until either reaching t or a local minimum. In the for-
mer case the algorithm terminates, in the latter case
continue with step 2. Whenever possible, reduce C’s
radius (rC := rC/ρ) as long as the currently visited
node stays within C.

2. (Face Routing Mode) Let ui be the currently vis-
ited local minimum. Start exploring the boundary of
Fi, the face containing the connecting line uit in the
immediate environment of ui. When completing Fi’s
exploration and returning to ui, advance to the node
visited so far closest to t and continue with step 1.
If no visited node is closer to t than ui, report graph

1In our simulations ρ0 = 1.4, ρ =
√

2, and σ = 1
100

proved
to be good choices for practical purposes.
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Figure 1: The GOAFR+ algorithm starts from � in

greedy mode. At node � it reaches a local minimum,

a node without any neighbors closer to �. GOAFR+

switches to face routing mode and begins to explore the

boundary of face � (in clockwise direction). At node �

the algorithm hits the bounding circle � and turns back

to continue the exploration of � ’s boundary in the op-

posite direction. After each step the counters � and �

are updated. At node 	 the fallback condition � 
 � �

holds (� = 2� � = 4 with the assumption 14 � � � 12);

GOAFR+ falls back to greedy mode and continues to

finally reach �. (Gradual reduction of �’s size during

GOAFR+’s execution is not shown.)

disconnection to s (using GOAFR+). During the ex-
ploration of Fi’s boundary use two counters p and q
to keep track of the number of nodes visited on Fi’s
boundary: p counts the nodes closer to t than ui and
q the nodes not located closer to t than ui. Take a
special action if one of the following conditions holds:

2a. Hitting C for the first time, turn back and con-
tinue exploring Fi’s boundary in the opposite di-
rection.

2b. C is hit for the second time: If none of the visited
nodes is closer to t than ui, enlarge C (rC :=
ρ rC) and continue with step 2 as if started from
ui. Otherwise advance to the node visited so far
closest to t and continue with step 1.

2c. If p > σ q, that is, we have visited (up to a
constant factor σ) more nodes on Fi’s boundary
closer to t than nodes not closer to t, advance to
the node seen so far closest to t (if this is not the
currently visited node) and continue with step 1.

4.2 GOAFR+ is Asymptotically Optimal
In the following we prove that GOAFR+ is asymptotically
optimal on bounded degree unit disk graphs. In Section 5.1
we will prove that on bounded degree unit disk graphs all
cost metrics (defined according to Definition 3.1) are equiv-
alent up to constants. In Section 5.2 we will show that such
a graph can be constructed from a general unit disk graph
(that is of unbounded degree). By these means GOAFR+

can be extended to perform asymptotically optimally on
general unit disk graphs for a certain class of cost metrics.

The GOAFR+ algorithm runs on a planar graph. As men-
tioned in Section 3 we employ the Gabriel Graph for this

purpose. In our analysis we therefore assume GOAFR+ to
run on GGG, the intersection of the bounded degree unit
disk graph G and the corresponding Gabriel Graph.

We begin the analysis of GOAFR+ by stating a fact on the
number of nodes in a given two-dimensional region:

Lemma 4.1. Let R ⊂ �2 be a two-dimensional convex
region with area A(R) and perimeter p(R). Further, let V ⊂
R be a set of points inside R. If the unit disk graph of V is a
bounded degree unit disk graph with parameter k (all degrees
are at most k), the number of points in V is bounded by

|V | ≤ (k + 1)
8

π
(A(R) + p(R) + π) .

Proof. In order to prove Lemma 4.1, we first consider
the disks with diameter 1. All nodes inside such a disk
are less than 1 apart and are therefore adjacent in the unit
disk graph. Since the number of neighbors of each node is
bounded by k, each disk with diameter 1 contains at most
k + 1 nodes. In order to give a bound on the number of
nodes inside the region R, we therefore have to find an up-
per bound on the number of disks with diameter 1 needed
to completely cover R. We can cover the whole plane with
disks of diameter 1 by placing the disks on an orthogonal
grid such that the horizontal and the vertical distances be-
tween the centers of two neighboring disks are 1/

√
2 (see

Figure 2). By counting the number of disks intersecting R,
we get a bound on the number of disks needed to cover R.
We see that all disks intersecting R are completely inside
the region R′, where R′ is defined as the locus of all points
whose distances from R are at most 1, i.e. we add a border of
width 1 to R. Let A′ be the area covered by R′. The number
of disjoint disks with diameter 1 which can be placed inside
R′ is bounded by 4A′/π (the area of a disk with diameter 1
is π/4) and since in the above defined grid of disks no point
in �2 is covered by more than 2 disks, the number of disks
needed to cover R can be bounded by 8A′/π. Thus, the
number of nodes in V is at most (k + 1)8A′/π.

In order to get the area A′, it is sufficient to consider the
case where R is a convex polygon. The general case then
follows by limit considerations. We get A′ by adding A(R)
(the area of R) and the area of the border around R. As
illustrated in Figure 2, the border can be broken down into
rectangles and sectors of circles. For each side of the polygon
R we obtain a rectangle of width 1, and since all the angles
of the sectors add up to 2π, the sectors add up to a disk
of radius 1. For A′ we therefore get A′ = A(R) + p(R) + π
where p(R) denotes the perimeter of R. This concludes the
proof.

A smaller constant than 8/π could be obtained by placing
the disks on a hexagonal grid and considering the portion of
the area which is only covered by a single disk.

GOAFR+ uses a circle C centered at t to restrict itself to a
searchable area. During the algorithm execution the radius
rC is adapted in predefined steps according to the current
distance from t. In particular, the values potentially as-
sumed by rC form a geometric sequence rCi = rmax ( 1

ρ
)i, i =



Figure 2: Covering a convex region with a grid of

equally sized disks

0...k, where rmax depends on the length and the shape of
the optimal path from s to t (cf. proof of Theorem 4.5) and
ρ is one of GOAFR+’s predefined constant algorithm pa-
rameters. Since rC can both increase and decrease during
algorithm execution, the steps taken in a circle Ci with ra-
dius rCi need not occur consecutively. In the following we
consider the steps taken by the algorithm in a fixed circle
Ci.

Lemma 4.2. If s and t are connected within the circle Ci,
GOAFR+ reaches t. If s and t are not connected, GOAFR+

reports so.

Proof. We first assume there is a connection from s to
t within Ci. For the definition of a round we distinguish
three cases: According to the current algorithm execution, a
round can be either a) a greedy step, b) a face routing phase
terminated by early fallback, or c) a face routing phase ter-
minated after exploration of the complete boundary of the
current face and advancing to the node closest to t. We show
that after every round the algorithm is closer to t than before
that round: This holds in case a), since a greedy step can
only reduce the distance to t, and in case b), as the fallback
condition can only hold immediately after incrementing the
counter p (that is after visiting at least one closer node) and
since the algorithm then advances to the node seen so far
closest to t; in case c) the algorithm approaches t, since the
boundary of the currently explored face—this face contains
points closer to t than where this round started—contains
a point closer to t iff there is a connection to t. (Note that
graphs can be constructed, where a face F ’s boundary con-
tains points but not nodes that are closer to t than a given
boundary node, in which case the algorithm could fail. Since
we employ the Gabriel Graph, such cases can however not
occur: The algorithm can forward to the a face boundary’s
node closest to t.) Since the algorithm reduces the distance
to the destination with each round, it finally reaches t.

If s and t are not connected within Ci, GOAFR+—in face
routing mode—either hits Ci twice without finding a node
closer to t (in which case the algorithm will continue on a
bigger circle, which is beyond the scope of this lemma), or
it explores the complete boundary of the current face (cf.

above case c)) without finding a node closer to t, which is
the case iff s and t are not connected at all.

Lemma 4.3. Let c′F (GOAFR+) be the cost of all face rout-
ing steps taken when exploring the boundary of face F within
the circle Ci. c′F (GOAFR+) is less than γ cF for a constant
γ and cF being the total cost of traversing F ’s boundary
once.

Proof. We first show that the lemma holds for the link
distance metric, c(e) ≡ 1 for any edge e: The total number
of edges traversed by GOAFR+ when exploring F is less
than γc�F , where c�F is the number of edges traversed when
traveling around F once.

We assume that the boundary of face F is involved in k
face routing rounds, and that for 1 ≤ j ≤ k, sj is the node
where round j is started. Let pj (qj) be the final value
of the counter p (q) in round j. According to the fallback
condition in step 2c of the algorithm we have pj > σ qj .
Let Pj (Qj) be the set of nodes visited in round j closer
(not closer) to t than sj . Since a node can be counted for a
second time after hitting Ci, we have |Pj | ≤ pj ≤ 2 |Pj | and
|Qj | ≤ qj ≤ 2 |Qj |. Furthermore we define Nj to be the set
of nodes newly visited in round j. Since after each round—
a greedy step or the exploration of a face—the algorithm is
strictly closer to t than before that round, all nodes closer to
t must be newly visited ones, that is Pj ⊆ Nj . Since we also
have to account for the steps taken by the algorithm, when
proceeding—once the fallback criterion holds—to the node
seen so far closest to t, the number of steps taken in round
j is not greater than 2 (pj + qj). In summary we obtain for
the total cost of the algorithm on F :

k�
j=1

2 (pj + qj) <
k�

j=1

2 (1 +
1

σ
) pj ≤

k�
j=1

4 (1 +
1

σ
) |Pj |

≤
k�

j=1

4 (1 +
1

σ
) |Nj | ≤ 4 (1 +

1

σ
) c�F ,

the last step following from
�k

j=1 |Nj | ≤ c�F .

If the fallback criterion never holds during F ’s exploration
(which is only possible in the final round for F ), the al-
gorithm traverses F ’s complete boundary and advances to
the node closest to t, which incurs additional cost less than
2 c�F .

The lemma holds for the link distance metric. Since the
algorithm is assumed to run on a bounded degree unit disk
graph, the lemma also holds for any other cost metric (cf.
Section 5.1).

Lemma 4.4. The total cost of the steps taken by GOAFR+

within the circle Ci with radius rCi is in O
�
r2

Ci

�
.

Proof. According to the previous lemma we have
c′F (GOAFR+) ≤ γ cF for all steps performed in face routing
mode. Summing up over all faces in Ci we obtain�

F∈Ci

c′F (GOAFR+) < γ ·
�

F∈Ci

cF ≤ γ · 2
�
e∈Ci

c(e),



the last step following from the fact that each edge e is ad-
jacent to at most two faces. To account for the greedy steps
we add another

�
e∈Ci

c(e), since any edge can be traversed

at most once in greedy mode (each round—a greedy step
or the exploration of a face—taking the algorithm strictly
closer to t). Since we employ a planar graph, with the fact
that (in a graph with more than three edges) each face is
adjacent to at least three edges and using the Euler polyhe-
dral formula we obtain that |Ei| ∈ O(|Vi|), where |Ei| is the
number of edges and |Vi| the number of nodes in Ci. The
lemma finally follows with

�
e∈Ci

c(e) ∈ O(|Ei|)—resulting
from the equivalence of the link distance metric with any
other metric on bounded degree unit disk graphs (cf. Sec-
tion 5.1)—and Lemma 4.1.

As described above, GOAFR+ employs a set of bounding
circles whose radii form a geometric sequence. This together
with the fact that the maximum radius is bounded by the
Euclidean length of an optimal path from s to t, leads to
the following theorem.

Theorem 4.5. Let p∗ be an optimal path from s to t. On
a bounded degree unit disk graph GOAFR+ reaches t with
cost O

�
c2(p∗)

�
, if s and t are connected, which is asymp-

totically optimal. If s and t are not connected, GOAFR+

reports so to the source.

Proof. Let c�(p
∗) be the Euclidean length of a shortest

path from s to t. If s and t are connected, the circle cen-
tered at t and with radius c�(p

∗) completely contains p∗.
Since GOAFR+ only enlarges the bounding circle if it does
not contain a path from s to t, and according to GOAFR+’s
radius update policy with the constant factor ρ, the max-
imum radius reached is smaller than ρ c�(p

∗). In order to
compute the total cost of the algorithm we add up the cost
expended in each used circle. According to Lemma 4.4 and
Lemma 4.1 it is sufficient to consider the areas of all em-
ployed circles. Let rmax be the radius of the largest used
circle. For some k ≥ 0 the areas of all used circles sum up
to

k�
i=0

π

�
rmax ·

�1

ρ

�i
�2

=
1 − �

1
ρ

�2(k+1)

1 − � 1
ρ

�2 πr2
max

<
1 − �

1
ρ

�2(k+1)

1 − � 1
ρ

�2 π(ρ c�(p
∗))2

∈ O
�
c�(p

∗)2
�
.

With the equivalence of cost metrics—including the Eu-
clidean metric—on bounded degree unit disk graphs, this
holds for any metric. Asymptotic optimality follows from
the lower-bound example in [19, Figure 8].

If s and t are not connected, GOAFR+ detects so (case c)
in proof of Lemma 4.2) and reports back to the source using
the same algorithm.

4.3 Average-Case Efficiency
The GOAFR+algorithm includes greedy routing and an ear-
ly fallback mechanism intended to reduce the algorithm cost
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Figure 3: Performance of routing algorithms in crit-

ical network density range around 4.5 nodes per unit

disk. Mean performance values for GOAFR+ (solid line),

GOAFRFC (dashed), GOAFR (dash-dotted), and GPSR

(dotted) plotted against the left y axis. The network

connectivity and greedy success rate are plotted for ref-

erence (in gray against right y axis).

on average case graphs. In order to assess the algorithm’s
average case performance we employed the custom simula-
tion environment introduced in [20]. The simulations were
carried out on graphs generated by randomly and uniformly
placing nodes on a square field of side length 20 units and
by randomly choosing a source-destination pair. In [20]
we identified a critical network density range around 4.71
(≈ 1.5π) nodes per unit disk. Situated between low densi-
ties, where only in trivial cases s and t are connected at all,
and high densities, where in most cases greedy routing will
succeed in finding a good path, this density range forms a
challenge to routing algorithms: Generally the length of the
shortest path from the source to the destination is signifi-
cantly longer than their (Euclidean) distance.

Figure 3 depicts the measured performance values of four
routing algorithms around this critical network density. For
each simulated network density the plotted performance val-
ue is the mean of the ratios between the algorithm cost and
the cost of the shortest path (with respect to the link dis-
tance metric) measured on 2000 generated (network, source,
destination) triples: Low performance values are rated good.
The network connectivity rate—showing in how many of the
generated networks s and t are connected—and the greedy
success rate—representing how often the algorithm reaches
t by employment of greedy routing alone—are depicted for
reference and identification of the critical density range.

Figure 3 contains the performance values for the GPSR al-
gorithm [15], for GOAFR and GOAFRFC [20], as well as for
GOAFR+. The GPSR algorithm combines greedy and face
routing, including early fallback, does however not employ
the concept of a bounding searchable area. Making use of
this concept, the GOAFR algorithm becomes asymptotically
worst-case optimal, yet is not efficient in practice, since—



once in face routing mode—always complete face boundaries
are explored. In order to avoid this effect, an early fallback
heuristic is applied by the GOAFRFC algorithm. This al-
gorithm showed best average-case performance in [20], is
however not asymptotically worst-case optimal. GOAFR+

in contrast shows clearly better performance values for the
critical density range—exploiting successive reduction of the
bounding area size—and at the same time is also asymptot-
ically optimal in the worst case.

5. COST METRIC
In this section we discuss the properties of cost metrics de-
fined according to Definition 3.1 in the context of geometric
routing. We first show that all possible such cost metrics are
equivalent up to constant factors on bounded degree unit
disk graphs. In a second part we prove that when consider-
ing general unit disk graphs (without bounded degree) the
cost functions are divided into two classes, linearly bounded
and super-linear. We show that employing a backbone con-
struction GOAFR+’s optimality can be extended to general
unit disk graphs for linearly bounded cost functions. With
super-linear cost metrics on the other hand, a lower bound
graph proves that there exists no geometric routing algo-
rithm whose cost is bounded with respect to the shortest
path.

5.1 Bounded Degree Unit Disk Graphs
For the proof of GOAFR+’s asymptotic optimality on
bounded degree unit disk graphs in Section 4.2 we employed
the equivalence of all cost metrics on such graphs. This
equivalence up to a constant factor is shown in the following
lemma.

Lemma 5.1. Let c1(·) and c2(·) be cost functions as de-
fined in Definition 3.1 and let G be a bounded degree unit
disk graph with node set V and maximum node degree k.
Further let p be a path from s ∈ V to t ∈ V on G such that
no node occurs more than once in p, i.e. p is cycle-free. We
then have

c1(p) ≤ αc2(p) + β

for two constants α and β, i.e. c1(p) ∈ Θ(c2(p)).

Proof. Let cd(x) := x be the cost function of the Eu-
clidean distance metric. We show that for any cost function
c there exist constants α1, β1, α2, and β2 such that

c(p) ≤ α1cd(p) + β1 and (1)

c(p) ≥ α2cd(p) + β2. (2)

This means that all cost functions are in Θ(cd(p)) and partic-
ularly c1(p) ∈ Θ(cd(p)) and c2(p) ∈ Θ(cd(p)), which proves
the lemma.

We start with Inequality (1). Let c�(x) :≡ 1 be the cost
function of the link distance metric. Now pick a node u
from the path p. Because u has at most k neighbors, we
leave the disk with radius 1 around u after at most k + 1
steps when starting at u and walking along p. Therefore,
the total Euclidean distance of any k + 1 subsequent edges
of p is at least 1. We then have

c�(p) < (k + 1)�cd(p)� < (k + 1)cd(p) + k + 1.

Because cost functions are monotone increasing, we have
c(e) ≤ c(1) for any edge e and any cost function c(·). There-
fore, we get

c(p) < c(1) · c�(p) ≤ (k + 1)c(1) (cd(p) + k + 1) ,

which proves Inequality (1). Note that as soon as the cost
function c(·) is fixed, c(1) is a constant since we required c(x)
to be defined for all x∈ ]0, 1]. In order to obtain Inequality
(2), we observe that a path p′ of length cd(p′) ≥ 1 has at
least one edge e′ of length cd(e′) ≥ 1/(k + 1): If p′ consists
of m < k+1 edges, the longest edge of p′ has at least length
1/m; if p′ consists of k+1 or more edges, we use the fact that
k + 1 subsequent edges of p have a total Euclidean length
of at least 1. We now partition p into maximal consecutive
subpaths of length smaller than 2. All but the last of these
subpaths have a Euclidean length which is at least 1 and
therefore we have

c(p) ≥ c

	
1

k + 1



·
�

cd(p)

2

�

> c

	
1

k + 1



·
	

cd(p)

2
− 1



,

which concludes the proof.

As an application of Lemma 5.1 we obtain the following
lemma.

Lemma 5.2. Let G be a bounded degree unit disk graph
with node set V . Further let s ∈ V and t ∈ V be two nodes
and let p∗

1 and p∗
2 be optimal paths from s to t on G with

respect to the metrics induced by the cost functions c1(·) and
c2(·), respectively. We then have

c1(p
∗
2) ∈ Θ(c1(p

∗
1)) and c2(p

∗
1) ∈ Θ(c2(p

∗
2)),

i.e. the costs of optimal paths for different metrics only differ
by a constant factor.

Proof. By the optimality of p∗2, we obtain

c2(p
∗
1) ≥ c2(p

∗
2). (3)

p∗
1 and p∗

2 are cycle free and therefore we can apply Lemma
5.1. We then obtain

c2(p
∗
1) ∈ Θ(c1(p

∗
1)) and c1(p

∗
2) ∈ Θ(c2(p

∗
2)). (4)

Combining Equations (3) and (4) yields c1(p
∗
2) ∈ O(c1(p

∗
1)).

But by the optimality of p∗
1 we have c1(p

∗
2) ≥ c1(p

∗
1) and

therefore, c1(p
∗
2) ∈ Θ(c1(p

∗
1)) holds. The second equation of

the lemma then follows by symmetry.

5.2 General Unit Disk Graphs
In this section we consider the problem of geometric ad-
hoc routing on general unit disk graphs (i.e. of unbounded
degree). As shown in the following the behavior around
0 divides the cost functions defined according to Defini-
tion 3.1 into two natural classes. The cost functions lower-
bounded by a linear function are called linearly bounded
cost functions, the cost functions not bounded by a linear
function are called super-linear cost functions.

linearly bounded: ∃m > 0 : c(d) ≥ m · d, ∀ d ∈ ]0, 1],

super-linear: �m > 0 : c(d) ≥ m · d, ∀ d ∈ ]0, 1].



Of the standard cost measures the link distance and the
Euclidean metric are linearly bounded, whereas the energy
metric is super-linear. The lower bound example of Sec-
tion 5.2.2 exploits the property that with super-linear cost
functions it is possible to construct chains with nodes of
distance approaching zero which allow to cover a finite Eu-
clidean distance “for free” in the limit.

We now give an algorithm which is asymptotically optimal
for linearly bounded cost functions. We subsequently show
that there is no geometric ad-hoc routing algorithm whose
cost is bounded by the cost of an optimal path for super-
linear cost functions.

5.2.1 Linearly Bounded Cost Functions
First we describe our algorithm as it can be applied to an
arbitrary unit disk graph G and for all linearly bounded
costs. In a precomputation phase a routing backbone GBG

is calculated. GBG is a subgraph of G such that a) GBG

is a bounded degree unit disk graph and b) the nodes of
GBG form a connected dominating set of G. Consequently,
all nodes of G have at least one neighbor in GBG. The
distributed construction of a subgraph of G with properties
a) and b) is described in a number of publications (e.g. [1,
9, 25]).

As the backbone contains a dominating set of the underly-
ing graph, every regular node (a node not in the backbone)
can be associated to one of its dominators. Since this can
be regarded as a clustering of all regular nodes around their
dominators, we call this graph the Clustered Backbone Graph
GCBG. In order to route a message from a regular node s to
a regular node t, the message will first be sent to s’s associ-
ated dominator and then routed along the Backbone Graph
to t’s associated dominator before finally being forwarded
to t itself. Note that while the Backbone Graph is bounded
in degree, this is not the case for the Clustered Backbone
Graph, since a dominator can have arbitrarily many domi-
natees.

The following lemma shows that a route over the backbone
is competitive with the optimal route for the link metric.

Lemma 5.3. The Clustered Backbone Graph is a spanner
with respect to the link metric, i.e. a best path between two
nodes on the Clustered Backbone Graph is longer than a path
between the same nodes in the underlying unit disk graph by
a constant factor only.

Proof. Follows from [25, Lemma 5].

This property of the Clustered Backbone Graph does not
only hold for the link distance metric, but for all linearly
bounded cost functions.

Lemma 5.4. The Clustered Backbone Graph GCBG is a
spanner with respect to any linearly bounded cost metric c(·),
i.e. the cost of an optimal path on GCBG is only by a con-
stant factor greater than the cost of an optimal path on the
underlying unit disk graph G.

Proof. Let c�(·) be the link distance metric. By Lemma
5.3, we have a path p′� on GCBG such that c�(p

′
�) ∈ Θ(c�(p

∗
� ))

where p∗
� is an optimal link distance path on G. Let p∗

denote an optimal path with respect to the cost c(·) on G.
We then have to show that c(p′

�) ∈ O(c(p∗)). The Euclidean
length of p∗ is cd(p

∗) where cd(·) denotes the cost function of
the Euclidean distance metric. We partition p∗ into maximal
subpaths of length at most 1. Because two consecutive such
subpaths have a total length greater than 1, we get at most
� 2 cd(p∗)� subpaths. We define the path p′ by replacing
each subpath with a direct edge. Note that all edges of p′

have length at most 1. The link distance cost c�(p
′) of p′ is

upper-bounded by c�(p
′) ≤ 2cd(p∗) + 1. By the optimality

of p∗
� , we also have c�(p

′) ≥ c�(p
∗
� ) ∈ Θ(c�(p

′
�)). And because

with respect to the metric c(·), each edge of p′� has cost at
most c(1), we have c(p′�) ≤ c(1)c�(p

′
�). Together, we get

c(p′
�) ∈ O(cd(p

∗)) . (5)

Note that c(1) is a constant because c(x) has to be defined
for all x ∈ ]0, 1]. Since c(·) has to be a linearly bounded
cost function, we have c(x) ≥ m · cd(x) for a constant m >
0. Therefore also c(p∗) ≥ m · cd(p

∗), and combined with
Equation (5) we obtain

c(p′
�) ∈ O(c(p∗)) .

Our routing algorithm GOAFR+ works on planar graphs.
There are several standard approaches to obtain a planar
subgraph of the unit disk graph, one of which is the Gabriel
Graph (GG). We will now show that the Gabriel Graph has
all required properties. It is well known that the intersection
between the Gabriel Graph and the unit disk graph (GG ∩
UDG) is connected iff the UDG is connected. It is also well
known that GG∩UDG contains an energy optimal path (see
Figure 7 in [19]). This leads to the next lemma.

Lemma 5.5. Let G be a bounded degree unit disk graph
with node set V and let GGG be the intersection of G and
the Gabriel Graph of V . Further, we fix two nodes s ∈ V
and t ∈ V . Let c(·) be a cost function and p∗ and p∗

GG be
optimal paths with respect to the metric c(·) on G and on
GGG, respectively. We then have

c(p∗
GG) ∈ Θ(c(p∗)),

i.e. GGG is a spanner for all cost functions.

Proof. As already mentioned, it is well known that GGG

contains an optimal path with respect to the metric corre-
sponding to the cost function c(d) := d2 (in fact, this also
holds for exponents α > 2). By applying Lemma 5.2, we
now see that the optimal energy path p∗

E is competitive for
all cost functions c(·), i.e. c(p∗E) ∈ Θ(c(p∗)).

We are now ready to apply GOAFR+ on general unit disk
graphs. In a precomputation phase the Clustered Backbone
Graph and its intersection with the Gabriel Graph (on the
nodes of GCBG) are constructed. Then the routing from
source s to destination t works as follows.
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Figure 4: Lower bound graph for super-linear cost func-

tions

- If s and t are neighbors in G (the unit disk graph),
the message is directly sent from s to t; otherwise, s
sends the message to one of its dominators if s is not
a dominator itself.

- Then we use GOAFR+ to route the message along
the Gabriel Graph edges of the Clustered Backbone
Graph. As soon as we arrive at a node whose Eu-
clidean distance to t is at most one, the message is
directly sent to t. Note that there has to be such a
node on the boundary of one of the faces we visit.

Theorem 5.6. Let the cost of the best path between a
given source-destination path with respect to a given linearly
bounded cost metric be c. The cost of GOAFR+ as described
above with respect to the same metric then is O(c2). This is
asymptotically optimal among all possible geometric ad-hoc
routing algorithms for linearly bounded cost metrics.

Proof. The case where s and t are direct neighbors fol-
lows from the fact that the cost function has to be linearly
bounded. For the other cases we use that the intersection
of the Gabriel Graph (on the nodes of GCBG) and the Clus-
tered Backbone Graph is a spanner for linearly bounded cost
functions (Lemmas 5.4 and 5.5) and that GOAFR+ has the
given worst case cost on all bounded degree unit disk graphs
(Theorem 4.5). Optimality follows from Theorem 4.5, since
the Ω(c2) lower bound graph is also a Clustered Backbone
Graph.

5.2.2 Super-Linear Cost Functions
For the remainder of this section we consider geometric ad-
hoc routing on general unit disk graphs for super-linear
cost functions. Unlike for linearly bounded cost functions,
the cost of a geometric ad-hoc routing algorithm cannot be
bounded by the cost of an optimal path in this case.

Theorem 5.7. Let the best route with respect to a super-
linear cost function c(·) for a given source destination pair
be p∗. Then, there is no (deterministic or randomized) geo-
metric ad-hoc routing algorithm whose cost is bounded by a
function of c(p∗).

Proof. We construct a family of unit disk graphs in the
following way (see Figure 4). We choose a positive integer

n and place n + 1 nodes on a straight (say horizontal) line
such that two neighboring nodes have distance 0 < d < 1.
Starting with the first node, we mark every �2/d�th node.
For every marked node ui we then place a node vi such that
uivi has length 1 and such that all the new nodes lie on
a line which is parallel to the line where we put the first
n + 1 nodes. This yields k vertical edges of length one. The
distance between two such edges is D = �2/d�d. Note that
1 < D ≤ 2 because we have chosen d to be smaller than
1. The number of marked nodes (i.e. the number of such
edges) k is then bounded by

k =

�
dn

D

�
≥
�

dn

2

�
>

dn

2
− 1. (6)

Now we choose an arbitrary marked node (we call it w) and
the corresponding vi. At vi we add two other vertical edges
and arrive at node w′ which has distance 3 from the line with
the original n+1 nodes. Symmetrically to the original n+1
nodes, we now place another row of n + 1 nodes (including
w′) on a horizontal line with distance 3. Figure 4 illustrates
this construction. We choose an arbitrary node of the top
n + 1 nodes for the source s. The destination t is chosen
arbitrarily from the bottom n+1 nodes. The optimal route
p∗ from s to t then first goes from s to w, then from w to
w′ and finally from w′ to t. The cost of p∗ can be bounded
by c(p∗) ≤ 2nc(d) + 3c(1).

We want this cost to be constant and therefore choose c(d) =
1/n, yielding d = c−1(1/n). Note that since c(·) has to be
nondecreasing, c−1(·) is well-defined as long as there are no
intervals where c(·) is constant. For those intervals we define
c−1(·) to take any of the possible values. For the cost of the
optimal path c(p∗) we now get a constant value (c(1) is a
constant!), i.e. c(p∗) ∈ Θ(1). In order to get the cost of a
geometric ad-hoc routing algorithm A, we observe that A
has no information about the location of w and therefore has
to test all possible nodes by using the k edges of length 1.
For a deterministic A we can always place w such that it is
the last marked node which is tried. For a randomized A we
can place w such that the expected number of needed trials
is at least k/2. For the cost c(A) of any geometric ad-hoc
routing algorithm we therefore get c(A) ∈ Ω(k)c(1) = Ω(k).
Plugging d = c−1(1/n) into Equation (6), we get

k >
1

2
nc−1(1/n) − 1,

and for n approaching infinity we then obtain

lim
n→∞

k ≥ lim
n→∞

1

2
nc−1(1/n) − 1

=
1

2
lim
y→0

c−1(y)

y
− 1

=
1

2
lim
x→0

x

c(x)
− 1 = ∞,

where we substituted y := 1/n in the first step and x :=
c−1(y) in the second step. The last limit is ∞ by the def-
inition of c(·), a super-linear cost function, which implies
that limx→0 c(x)/x = 0 if this limit exists. (For convenience
we assume that the limit exists. Otherwise the same re-
sult can be achieved by “tuning” the graph more closely to
the cost function.) Therefore, the cost of any algorithm A
is unbounded with respect to the best path p∗, which has
constant cost.



6. CONCLUSION
Trying to help bridging the chasm between theory and prac-
tice in the field of ad-hoc routing, we proposed in this paper
the geometric routing algorithm GOAFR+, which is more
efficient than any previously studied algorithm on average
case graphs, while being also in the worst case asymptoti-
cally optimal. We defined a general cost model for routing
algorithms and observed that all possible cost functions fall
into two classes, linearly bounded and super-linear. For lin-
early bounded cost functions GOAFR+ could be extended
such that the formerly necessary Ω(1)-model restriction on
node distances could be dropped. With super-linear cost
functions an example graph was presented, for which there
exists no geometric routing algorithm of cost competitive
with the shortest path.

Of the most popular cost metrics—link distance (hop), Eu-
clidean distance. and energy metric—the first two are lin-
early bounded, whereas the energy metric is super-linear. In
practical wireless ad-hoc networks, however,—also in sys-
tems with adaptable transmission power—the energy re-
quired for the transmission of a message will never drop
below a certain base energy even for minimum transmis-
sion distance. Consequently also for power-adaptive trans-
mission the cost function will be linearly bounded. For all
practical cost metrics it is therefore possible to drop the
Ω(1)-model assumption and still remain asymptotically op-
timal by employment of the backbone construction.
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