
Algorithmic Channel Design1

Georgia Avarikioti2

ETH Zurich, Switzerland3

zetavar@ethz.ch4

Yuyi Wang5

ETH Zurich, Switzerland6

yuwang@ethz.ch7

Roger Wattenhofer8

ETH Zurich, Switzerland9

wattenhofer@ethz.ch10

Abstract11

Payment networks, also known as channels, are a most promising solution to the throughput12

problem of cryptocurrencies. In this paper we study the design of capital-efficient payment13

networks, offline as well as online variants. We want to know how to compute an efficient14

payment network topology, how capital should be assigned to the individual edges, and how to15

decide which transactions to accept. Towards this end we present a flurry of interesting results,16

basic but generally applicable insights on the one hand, and hardness results and approximation17

algorithms on the other hand.18

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis19

Keywords and phrases blockchain, payment channels, layer 2 solution, network design, payment20

hubs, routing21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

1 Introduction23

Cryptocurrencies such as Bitcoin [16] or Ethereum [1] have a serious throughput problem [6].24

They can process tens of transactions per second, whereas non-blockchain systems (credit25

card companies, inter-banking payment systems, paypal, etc.) can handle tens of thousands26

of transactions per second. Various proposals have been made in an attempt to solve this27

throughput problem, e.g., sharding [14, 13] or sidechains [4]. However, payment networks28

(also known as channels) [7, 17, 2] are widely accepted to be the most promising of these29

so-called “layer 2” solutions, since payment networks allow data to go off-chain securely.30

Duplex micropayment channels [7], Lightning [17] or Raiden [2] are fast and scalable31

payment networks, where transactions between two users are executed in off-chain two-party32

channels. The blockchain is involved when opening a channel, as the foundation of a channel33

must be registered with the blockchain. In exceptions, if the two parties of a channel are in34

disagreement, the blockchain may also be involved as a safety net when closing a channel.35

While the efficiency of channels is undisputed, payment networks have a reputation to be36

capital hungry and as such difficult to deploy. In this paper we want to better understand37

this demand for capital, studying the issue from an algorithmic perspective. We want to38

know the complexity an operator of a payment network, a Payment Service Provider (PSP),39

will face when setting up a payment network.40

© Georgia Avarikioti and Yuyi Wang and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zetavar@ethz.ch
mailto:yuwang@ethz.ch
mailto:wattenhofer@ethz.ch
http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Algorithmic Channel Design

1.1 From Payment Channels to Network Design41

Consider a PSP wants to create a payment network. The PSP can open a channel between42

any two parties; technically this can be achieved using multi-party channels [5], where the43

two parties and the PSP join a three-party channel funded only by the PSP.44

Algorithmically speaking, a payment network is a graph, where each undirected edge45

(u, v) is a payment channel between the parties u, v. When a channel (an edge) is established,46

PSP capital is locked into the channel on each side of the edge. This capital can then be47

moved on the channel, from u to v or vice versa, much like moving tokens from one side of48

an abacus to the other. For example, if initially a capital of 5 is locked on each side of the49

(u, v) channel, then a transaction with a value of 2 from u to v will reduce the capital on50

u’s side to 3, and increase the capital on v’s side to 7. Transactions can also be multi-hop,51

moving capital on each edge of the path, in the direction of the path of the transaction. The52

only constraint is that the capital on any side of any edge must be non-negative at all times.53

The PSP needs to decide how to design the network, i.e., which edges (channels) the PSP54

should establish. Moreover, the PSP needs to decide how much capital it should assign to55

these newly established edges, in particular how much capital on each side of every edge.56

Establishing a new channel not only involves capital (which is going to be reclaimed57

eventually), but will also cost (since each newly established channel needs to be registered58

with the blockchain). We model this channel opening cost as a constant, given that the fee59

the blockchain asks is (more or less) constant. The total cost is then the number of open60

channels (the edges of the network) times this constant cost to open each channel.61

Our goal is to define a strategy for the PSP regarding which transactions to execute in62

order to maximize profit (fees from transactions minus costs to set up channels) and minimize63

capital (cryptomoney that is temporarily locked into channels). Note that there is a trade-off64

between profit and capital, as more capital may allow to accept more transactions, earning fees65

for each transaction, hence increasing profit In particular, we discuss the following questions:66

What is the minimum capital needed to be able to accept a given set of transactions? What67

is the maximum profit we can achieve with a given capital? These questions are at the heart68

of understanding the Pareto-nature of the trade-off between profit and capital in payment69

networks.70

1.2 Related Work71

Current work on payment channels has mainly focused on designing routing algorithms for72

the implemented decentralized payment networks, such as the Lightning [17] and Raiden73

[2] networks. Prihodko et al. [18] present Flare, an efficient routing algorithm for the74

Lightning network by collecting information on the network’s local topology. Malavolta et75

al. [15] introduce the IOU credit network SilentWhispers where they use landmark routing76

to discover multiple paths and multi-party computation to decide the amount of capital to77

be locked on each path. Roos et al. [19] propose SpeedyMurmurs, a routing algorithm for78

payment networks that uses embedding-based path discovery to find routes from sender to79

receiver. However, all these protocols assume a network structure created by the individuals80

participating in the network. The goal is to discover the network topology and possible81

routes from sender to receiver of every transaction. Our objective is to design the optimal82

network structure assuming a central authority, the PSP.83

An active line of research on payment channels is the construction of secure and private84

systems that can act as payment hubs. Heilman et al. [9] propose a Bitcoin-compatible85

construction of a payment hub for fast and anonymous off-chain transactions through86

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:3

an untrusted intermediary. Green et al. [8] present Bolt (Blind Off-chain Lightweight87

Transactions) for constructing privacy-preserving unlinkable and fast payment channels.88

However, they do not analyze how expensive the construction of a payment hub is for a PSP.89

In this work, we answer the following questions: is a payment hub a good solution for a90

PSP? How much capital is required to build a payment hub compared to the capital of a91

capital-optimal network? These answers are highly relevant to the economic viability of a92

payment hub as a practical solution for payment networks, and ultimately whether payment93

networks can solve the eminent throughput problem of cryptocurrencies.94

Our paper can be seen as a cryptocurrency variant of classic work on network design. It is95

as such somewhat related to fundamental work starting in the 1970s. For example, Johnson96

et al. [11] prove that given a weighted undirected graph, finding a subgraph that connects all97

the original vertices and minimizes the sum of the shortest path weights between all vertex98

pairs, subject to a budget constraint on the sum of its edge weights is NP-hard. Another99

similar problem is the optimum communication spanning tree problem [10], whose input is a100

set of nodes, the distances and requests between them, and the goal is to find the spanning101

tree that minimizes the cost of communication (for each pair, the request multiplied by the102

sum of distance). Our channel design problem seems similar to these problems since the103

routing of a transaction matters, and our objective is to minimize the capital on the channels104

(like the original network design work wants to minimize the sum of the distances). However,105

in contrast with traditional network design, in payment networks the order of transactions106

matters, as the capital moves from one side of the channels to the other. Moving capital107

gives network design a surprising twist, as classic techniques do not work anymore. With108

the anticipated importance of payment networks, we believe one should have a fresh look at109

network design.110

1.3 Our Contribution111

We introduce an algorithmic framework for the channel network design problem. First, we112

study the offline problem, i.e., we are given the future sequence of transactions. We show that113

maximizing the profit given the capital assignments is NP-hard, even for a single channel.114

Then, we present a fully polynomial time approximation scheme for the single channel case.115

Later, we consider the case where the PSP wants to maximize its profit and thus execute all116

profitable transactions. We prove that a hub (a star graph) is a 2-approximation with respect117

to the capital. Moreover, we show the problem is NP-complete under graph restrictions.118

In addition, we examine online variants. First, we examine the online single channel case119

assuming the PSP wants to maximize its profit under capital constraints. We show that120

there is no deterministic competitive algorithm for adaptive adversaries. Later, we study the121

online channel design problem assuming all profitable transactions are executed. We show122

that the star graph yields an O(logC)-competitive algorithm, where C denotes the optimal123

capital.124

2 Notation and Problem Variants125

We assume the fee of a transaction on the blockchain to be constant, without loss of generality126

simply 1. The fee of a transaction in the payment network cannot be higher than the fee on127

the blockchain, or a potential user may prefer the blockchain over the payment network. A128

rational PSP will ask for a transaction processing fee which is as high as possible but lower129

than the blockchain fee, hence for 1− ε. In our analysis we will usually assume that ε→ 0.130

Let us now formally define the problems we will study.131

CVIT 2016

23:4 Algorithmic Channel Design

I Problem 1 (General Payment Network Design).132

Input: Capital C, profit P , the sequence of n transactions ti = (si, ri, vi) with 1 ≤ i ≤ n,133

each containing the sender node si, the receiver node ri and the value vi of the transaction ti.134

Output: Strategy S = {0, 1}n, a binary vector where the ith position is 1 if we choose to135

execute the ith transaction of the input and 0 else. The graph G(V,E,Cl, Cr) is the network136

we created to execute the chosen transactions, where V is the set of senders and receivers137

that participate in any transaction, E is the set of channels we open and Cl, Cr the capital138

on each side of each edge. Each transaction can be routed arbitrarily in G, denoted by by139

Se = {−1, 0, 1}n, for all e ∈ E, i.e., Se(i) = 1 (or −1) if transaction i is routed through140

edge e from left to right (from right to left, respectively) and Se(i) = 0 if transaction i is not141

routed through edge e.142

Our goal is to return (if it exists) a strategy S, a graph G and a routing Se subject to the143

following constraints:144

1. |S| − |E| ≥ P145

2. ∀e ∈ E,∀j ∈ {1, 2, . . . n}, −Cl(e) ≤
∑j
i=1 Se(i) · vi ≤ Cr(e)146

3.
∑
∀e∈E Cl(e) + Cr(e) + |E| ≤ C147

The first inequality guarantees that the fees of the accepted transactions minus the cost148

of opening the channels is at least as high as the intended profit. The second inequality149

makes sure that at any time the capital on each side of each channel is non-negative. The150

third inequality ensures that the used capital on the channels and the cost of opening the151

channels is at most the available capital.152

Problem 1 in all its generality is difficult, as it features many variables. Consequentially,153

we mostly focus on the most interesting special cases of Problem 1: We consider transactions154

on a single channel between just two nodes. And we consider minimizing the capital assuming155

all profitable transactions are executed. Formally the problems we examine are the following.156

I Problem 2 (Single Channel). Given a sequence of n transactions ti = (s, r, vi), where s and157

r are the nodes of the single edge e, a capital assignment Cr(e), Cl(e), and a profit P , decide158

whether there is a strategy S such that |S| ≥ P and ∀j ∈ [n], −Cl(e) ≤
∑j
i=1 S(i) ·vi ≤ Cr(e).159

I Problem 3 (Channel Design for All Transactions). Given a sequence of n transactions160

ti = (si, ri, vi), return the graph G(V,E) that achieves maximum profit with minimum capital161

C.162

I Problem 4 (Capital Assignment and Routing). Given a graph G(V,E), a sequence of n163

transactions ti = (si, ri, vi) and a capital C, determine whether all transactions can be164

executed in G with the given capital C.165

3 Offline Channel Design166

In this section, we study the offline channels network design problem, i.e., we assume we167

know the future transactions (for the next period). First, we explore the network topology168

for the general problem. Then, we examine the case where we are given a specific capital (or169

even a capital assignment) and we aim to maximize the PSP’s profit, hence execute as many170

transactions as possible. We focus on solving the problem for a single edge of the network,171

since even in this simple case the problem is challenging. Later, we focus on minimizing the172

capital given the PSP wants to execute all the profitable transactions.173

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:5

3.1 Graph Topology174

We first prove some observations concerning the optimal graph structure. We consider175

as optimal the solution that maximizes the profit while respecting the capital constrains176

(optimization version of Problem 1).177

I Lemma 5. The graph of the optimal solution does not contain any node that sends and178

receives less than two transactions.179

Proof. Assume node u is in the graph and sends and receives less than two transactions.180

Since u is part of the graph, it has at least one neighbor. Choose an arbitrary neighbor v181

of u, connect all remaining neighbors of u directly with v (if not already connected), and182

then remove u. For each neighbor w of node u, increase the capital of edge (w, v) in the183

new graph by the capital of the removed edge (w, u) (on both sides of the edge). Now all184

transactions routed originally through edge (w, u) can be routed in the new graph through185

edge (w, v), the new total capital needed is at most the same as the old capital, and there is186

enough capital to route all previously routable transactions. We denote by opt the profit of187

the optimal solution. The graph without u has at least one edge less. Thus, the profit of the188

new graph for (at least) the same set of transactions is at least opt− (1− ε) + 1 > opt, since189

setting up the channel (edge) (u, v) costs 1 but u’s transaction fees are at most 1− ε. So we190

are better off without node u. J191

Thus, during preprocessing we can safely remove all transactions that contain a node192

that is only sender of receiver of a transaction in this one transaction. The time complexity193

of this procedure is linear in the number of transactions.194

I Lemma 6. The optimal graph is not necessarily a tree (or forest).195

Proof. Suppose we are given the following sequence of transactions and capital C = 6a+ 6196

where a > 10:197

ti = (v2, v1, 1), for 1 ≤ i ≤ a198

ti = (v2, v3, 1), for a+ 1 ≤ i ≤ 2a199

ti = (v4, v3, 1), for 2a+ 1 ≤ i ≤ 3a200

ti = (v4, v5, 1), for 3a+ 1 ≤ i ≤ 4a201

ti = (v6, v5, 1), for 4a+ 1 ≤ i ≤ 5a202

ti = (v6, v1, 1), for 5a+ 1 ≤ i ≤ 6a203

For this example, we will show that the optimal solution that maximizes the profit given the204

capital C = 6a+ 6 returns a graph that contains a cycle.205

One solution is the graphG(V,E), where V = {v1, v2, v3, v4, v5, v6}, E = {(v1, v2), (v2, v3),206

(v3, v4), (v4, v5), (v5, v6), (v6, v1)}. The profit in G is 6a − 6, since all 6a transactions are207

executed and connect directly and 6 channels are opened. The spent capital is 6a+ 6 = C208

since we open 6 edges and lock capital a on the sender side of each edge.209

If the graph is not connected we lose at least a transactions and remove at most 6 edges.210

So, the total profit decreases by at least a− 4 > 6, hence the optimal graph is connected.211

Suppose now the optimal graph does not contain any cycle. Since the optimal graph is212

connected, it is a spanning tree. Let’s denote by ` the number of leaves in the tree with213

2 ≤ ` ≤ 5, since the spanning tree has 5 edges. If we want to have at least the profit of the214

cycle described above, we must deliver at least 6a− 1 transactions, since we only saved the215

opening cost of a single edge.216

We can see that the capital locked on the edges connecting these leaves is at least 2a`− 1,217

since, for every node, both transactions involved are either outgoing or incoming. For every218

CVIT 2016

23:6 Algorithmic Channel Design

other edge, the capital locked on it is at least a− 1. Therefore, the total number of locked219

capital is at least 2a`− 1 + (a− 1)(5− `) ≥ 7a− 4 > 6a+ 6 = C. J220

Due to the complexity of the problem we focus on a single channel. It turns out that221

even for this degenerate case, the problem is far from trivial.222

3.2 Single Channel223

We now focus on a single channel. We prove that even in this case the problem of choosing224

the transactions that maximize the profit given capital assignments is NP-hard and present225

an FPTAS.226

Specifically, we are given a sequence of transactions on a single edge of a network and their227

values, the capital assignment on the edge and a target profit. Our goal is to decide whether228

we can execute at least as many transactions as the given target profit while respecting the229

capital constraints. Since the number of edges is fixed and equal to 1 the profit now is the230

number of executed transactions (Problem 2). The problem is equivalent to a variant of the231

0/1 knapsack problem where each transaction represents an item. Each item has profit 1232

and either positive or negative size (values). The capacity of the knapsack is represented by233

the capital assignments and the goal is to maximize the profit while respecting the capacity.234

I Problem 7 (Fixed Weight Subset Sum (FWSS)). Given a set of integers U = {a1, a2, . . . , an},235

and integers A and l, is there a non-empty subset U ′ ⊆ U such that |U ′| = l and
∑
ai∈U ′ ai =236

A?237

I Lemma 8. FWSS is NP-hard.238

Proof. We will reduce Subset Sum (SS) [12] to FWSS.239

SS: Given a set of integers U = {a1, a2, . . . , an}, and integer A, is there a non-empty subset240

U ′ ⊆ U such that
∑
ai∈U ′ ai = A?241

Given an instance of SS, we define n different instances of FWSS, one for each possible242

value of l, where the set of integers U and the integer value A are the same for every FWSS243

instance as in SS. If one of the FWSS instances returns “yes” then we return “yes”, else we244

return “no”. If any instance of FWSS returns “yes”, then the same subset satisfies the SS245

problem, thus it must return “yes”. If all instances of FWSS return “no”, then there is no246

set satisfying the SS problem, since we checked all possible set sizes. Thus, SS must return247

“no” as well. The transformation is polynomial to the input. J248

I Theorem 9. Problem 2 is NP-hard.249

Proof. We will reduce Fixed Weight Subset Sum (FWSS) to Problem 2.250

Assuming we are given an instance of the FWSS, we present a polynomial time trans-251

formation to an instance of Problem 2. We first define the capital assignment on the edge252

Cr(e) = A(l + 1), Cl(e) = 0 and the profit P = l + n(l + 1). Then, we define the sequence253

of transactions as follows: vi = ai + A, ∀1 ≤ i ≤ n and vi = −A/n, ∀n < i ≤ n(l + 2). We254

will prove that there is a non-empty set that satisfies the FWSS problem if and only if we255

can choose transactions that satisfy the capital constraints and profit in the aforementioned256

instance.257

Assume we have a "yes" instance of the problem. Then, we have chosen at least P =258

l+n(l+ 1) transactions to execute. We will show that this corresponds to choosing l positive259

transactions that sum up to A(l + 1), thus to a solution of the FWSS problem. Towards260

contradiction, we examine the following three cases:261

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:7

If the number of positive transactions is less than l, the total profit is less than l+n(l+1),262

since there are only n(l + 1) negative transactions.263

If the number of positive transactions is more than l, then we violate the capital constraints,264

since
∑
i vi = A(l + 1) +

∑
i ai > A(l + 1) = Cr(e), where i corresponds to the chosen265

transactions.266

Suppose the l chosen transactions’ values sum to less than A(l + 1); suppose the sum267

is Al + σ with some σ < A. Then, then negative transactions to be executed can be at268

most lA
A/n + σ

A/n < ln+ n. Thus, the profit is strictly less than l + ln+ n. Contradiction.269

Thus, a "yes" instance of our problem implies a "yes" instance of the FWSS problem. For270

the other direction, we will prove that if there is no subsequence of transactions of size at271

least P that satisfies the capital constraints, then there is no subset of size l that sums to272

A in FWSS. Equivalently, we will show that if there is a subset of size l that sums to A273

in FWSS, then there exists a subsequence of transactions of size at least P that satisfies274

the capital constraints. Suppose there is a non-empty set U ′ ⊆ U such that |U ′| = l and275 ∑
ai∈U ′ ai = A. Then we can execute the l transactions that correspond to the chosen ai’s276

with exactly the Cr(e) capital, which will be transfered on Cl(e) = A(l + 1). Then, we can277

execute all the negative transactions since they are n(l + 1) many with values A/n, thus278

we need A(l + 1) = Cl(e) capital. Therefore, we can execute P = l + n(l + 1) transactions,279

achieving the required profit while satisfying the capital constraints. J280

Both FWSS and Problem 2 are also polynomially verifiable, hence NP-complete.281

The classic dynamic programming approach that typically yields a polynomial time algorithm282

when profits are fixed is not efficient since in this variation we cannot optimize using the283

minimum value at each step due to negative values. Instead, we present a fully polynomial284

time approximation scheme (FPTAS).285

Algorithm 1: MaxProfit
Data: number of transactions n, values of the sequence of transactions

vi ∈ R,∀1 ≤ i ≤ n, capital C, approximation factor ε.
Result: binary vector S = {0, 1}n that indicates which transactions to execute.
Let K = εV

n , where V = max1≤i≤n vi;
For all transactions 1 ≤ i ≤ n define v′i = b vi

K c;
Let T (i, j) = 0, for all 1 ≤ i ≤ n and 1 ≤ j ≤ n2

ε ;
for i = 1 to n do

for j = 1 to n2

ε do

T (i, j) =
{

max{T (i− 1, j), T (i− 1, j − v′i)} , if C
K ≥ j − v

′
i > 0

T (i− 1, j) , else

Store for every T (i, j) a n-binary vector Si,j that has value 1 in the k-th
position if the k-th transactions is chosen to be executed;

end
end
Return vector Si,j for the maximum T (i, j) such that

∑n
k=1 Si,j(k) · vk ≤ C;

CVIT 2016

23:8 Algorithmic Channel Design

I Theorem 10. Algorithm MaxProfit is a fully polynomial time approximation scheme for286

Problem 2.287

Proof. The running time of the algorithm is O(n
3

ε), which is polynomial in both n and 1
ε .288

We will prove that the profit of the output of algorithm MaxProfit is at least (1− ε) times289

the optimal. We denote by S the set of transactions returned by the algorithm, O the set290

returning the optimal profit and prof(X) the profit from the set of transactions X. Since we291

scaled down by K and then rounded down, for every transaction i we have that Kv′i ≤ vi.292

Therefore, the optimal set’s profit can decrease at most nK, prof(O)− prof ′(O)K ≤ nK.293

The dynamic program returns the optimal set for the scaled instance. Thus, prof(S) ≥294

prof(O)K ≥ prof(O)− nK = prof(O)− εV ≥ (1− ε)prof(O), since prof(O) ≥ V . J295

Scaling to many channels. Unfortunately, even when the graph is a tree, algorithm 1 does296

not scale efficiently. Creating an m-dimensional tensor for the dynamic program, where m297

are the edges of the tree, has time complexity O(Cmn) where C is the maximum capital298

from all edges. Even if we bound the capital by a polynomial on n the algorithm remains299

exponential due to the number of edges on the exponent. In the general case where the300

graph could contain cycles, the problem becomes even more complex. Now, we need to301

additionally consider all possible routes for each transaction; this adds an exponential factor302

on the running time of the algorithm.303

Since Problem 1 is complex, we study special cases that might be useful in practice and304

provide an insight to the general problem.305

3.3 Channel Design for Maximum Profit306

In this section, our goal is to find the minimum capital for which we can achieve maximum307

profit, i.e., execute all profitable transactions (Problem 3). At first, we note some simple308

observations for the graph structure. Then, we prove that any star graph is a 2-approximate309

solution with respect to the capital, but even the “best” star is not an optimal solution. Last,310

we prove the problem is NP-hard when there are graph restrictions.311

Throughout this section, we refer to the optimal solution of Problem 3 as the optimal network312

for maximum profit.313

I Lemma 11. When the capital is unlimited, the optimal network for maximum profit does314

not contain cycles.315

Proof. Suppose the optimal graph contains a cycle. We choose an arbitrary edge of the316

cycle, denoted e = (i, j), where i, j the nodes of edge e. We remove edge e and reroute all317

transactions using edge e through the path from i to j. This path exists since removing an318

edge from a cycle cannot disconnect the graph. The profit of the graph without e is the319

profit of the optimal graph plus 1 (the cost of opening edge e). This is a contradiction, since320

the optimal network maximizes the profit. J321

I Lemma 12. When the capital is unlimited, there exists an algorithm, with time complexity322

Θ(n), where n denotes the number of transactions, that returns the optimal network for323

maximum profit.324

Proof. We present the following algorithm:325

1. Traverse the input transactions and create a list L that contains the number of transactions326

between every two nodes (potential edges).327

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:9

2. Traverse list L as follows:328

If the number of transactions is at least 2 and adding the edge between the two nodes329

does not form a cycle, add the edge to the (initially empty) graph.330

The algorithm guarantees there is a path between every two nodes that want to execute at331

least two transactions (Lemma 5). Thus, all transactions that increase the PSP’s profit are332

executed. Moreover, the algorithm does not contain a cycle, so the output graph is minimal333

regarding the edges. The first argument maximizes |S| and the second minimizes |E| for334

the given sequence of transactions. Therefore, the algorithms returns a graph that achieves335

maximum profit (max |S| − |E|).336

The running time of the algorithm is linear to the number of transactions, Θ(n). J337

I Lemma 13. The optimal network for maximum profit is not necessarily a connected graph.338

Proof. Suppose the graph of the optimal solution is always connected. Assume now we339

are given the following sequence of transactions: t1 = (v1, v2, 1), t2 = (v1, v2, 1), t3 =340

(v3, v4, 1), t4 = (v3, v4, 1), t5 = (v1, v3). Since the optimal graph for this example is connected,341

there are at least three edges in the graph. Thus, the optimal profit is |S|−|E| ≤ 5(1−ε)−3 =342

2− 5ε. However, if we consider the graph with edges (v1, v2) and (v3, v4), the PSP’s profit is343

2− 4ε, greater than the profit of the optimal solution, which is a contradiction. J344

We refer to transactions that increase the PSP’s profit as profitable transactions. We assume345

all nodes participate in at least two transactions (Lemma 5).346

I Lemma 14. Not all transactions are profitable transactions.347

Proof. Suppose all transactions are profitable transactions. Lets assume we are given the348

following sequence of transactions: t1 = (v1, v2, 1), t2 = (v1, v2, 1), t3 = (v3, v4, 1), t4 =349

(v3, v4, 1), t5 = (v1, v3). It is straightforward to see that any solution that executes all350

transactions must return a connected graph. However, we showed in the proof of Lemma 13351

that the optimal graph for this example is not connected. Thus, there are transactions that352

are not executed in the optimal solutions and hence they are not profitable transactions. J353

Despite Lemma 13, we note that payment channels are monetary systems. As such, large354

companies are expected to participate in the network as highly connected nodes, ensuring355

that the optimal graph is one connected component. Thus, for the rest of the section we can356

safely assume that the optimal graph is connected.357

We will now define some formal notation to prove that choosing any star as the graph358

to route all transactions requires at most twice the capital of the optimal graph. This359

immediately implies we have a 2-approximation to Problem 3.360

Now, suppose we can update the capital of an edge before executing each transaction. This361

way we can guarantee there is enough capital on all channels for each transaction execution.362

These updates are for free, like assigning tokens, and we use them as a stepping stone to363

calculate the total capital (amortized analysis). Let us denote cG(uv, i) the additional capital364

required at the edge (u, v), for transaction ti with direction from u to v on graph G. Now,365

we have that the total capital on graph G, denoted by CG, is366

CG =
∑
∀(u,v)

∑
∀i

cG(uv, ti)367

Moreover, let opt denote the optimal graph and V the set of nodes involved in opt.368

We will show that the capital used to route a sequence of transactions on any star that369

contains the same set of nodes as the optimal graph is at most twice the capital used by the370

optimal solution for the same sequence.371

CVIT 2016

23:10 Algorithmic Channel Design

I Lemma 15. For any sequence of transactions t1, t2, . . . , tn, for any star graph S(V),372

CS ≤ 2Copt.373

Proof. We will show that we can execute on the star graph the same sequence of transaction374

as the optimal solution with twice as many tokens (amortized capital). Initially we have zero375

tokens on all edges on both the optimal and the star graph. Every time a new transaction ti376

comes the optimal solution finds a path from sender to receiver. For every edge (u, v) on377

this path the optimal solution assigns copt(uv, t) tokens. Then, we assign on the star, S,378

copt(uv, t) tokens on the edges mu and vm, where m is the central node on S. The only379

exceptions are the sender and receiver nodes, s and r respectively, where the tokens are380

initially placed on sm and mr to execute the transaction. Thus, for every transaction the381

sum of the tokens used on the star graph are twice the sum of the tokens used on the optimal382

solution. Therefore, the overall required capital on the star is at most twice the optimal383

capital, CS ≤ 2Copt.384

To complete our proof, we need to show we assigned in total enough tokens to execute the385

given sequence of transactions. When a new transaction comes from s to t, we only need to386

guarantee there enough tokens on sm and mt. Obviously, if a transaction needs additional387

tokens to be executed on the optimal graph then the aforementioned strategy guarantees the388

additional tokens for the star graph as well. If there are already some tokens on the optimal389

graph for the sender then either he was previously an intermediate node or a receiver node.390

In both those cases the same amount of tokens would have been stored on sm as well. With391

a similar argument, if there were some tokens for the last edge to reach the receiver on the392

optimal graph then r was either an intermediate node or a sender. Again, in both those393

cases the same amount of tokens would have been assigned to mr on the star. J394

I Theorem 16. Any star graph yields a 2-approximate solution for Problem 3.395

Proof. Follows immediately from Lemma 15. J396

I Lemma 17. The star graph is not an optimal solution for Problem 3.397

Proof. We present a sequence of transactions for which any star graph requires larger capital
to execute all transactions than the optimal solution, as illustrated in Figure 1. Moreover,
finding the optimal solution is not trivial in our example, even though we only consider
unitary transactions.
The sequence of transactions is the following

t1 = (v4, v2, 1), t2 = (v4, v7, 1), t3 = (v2, v6, 1), t4 = (v5, v2, 1), t5 = (v6, v5, 1),

t6 = (v4, v5, 1), t7 = (v3, v2, 1), t8 = (v2, v1, 1), t9 = (v1, v3, 1), t10 = (v3, v4, 1)
Figure 1 illustrates the optimal graph (not necessarily unique); the capital needed to execute398

all transactions is 6, which is the least possible since any tree with seven nodes has six edges399

and all of them are used at least one time with unitary values (in this example). There are400

seven different stars, one for each node as a center. It is easy to see that the capital needed401

for each one of them is at least 7, which is strictly larger than the optimal. J402

Discussion. The centralized nature of the star is quite convenient for a payment network403

operated by a PSP. The star alleviates the problem of participation incentives detected on404

decentralized payment networks; now the participants of the network can be online only405

when they want to execute a transaction. Although the star graph is not optimal, it is a good406

enough solution for a PSP, since the capital he needs to lock in the channels is at most twice407

the minimum. Thus, payment hubs are an economically viable solution for the throughput408

problem on cryptocurrencies.409

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:11

v1

v2

v3

v4 v5 v6

v7

1

1

1

1

1 1

Figure 1 The optimal graph and capital assignment to execute all transactions in the given
sequence. The capital locked on each channel is illustrated by the number (1) above each edge and
the position indicates the direction (in the initial state).

3.4 Channel Design with Graph Restrictions410

An interesting variation of the problem is when the network has restrictions (Problem 4).411

Instead of allowing all possible channels, we assume some of them cannot occur in real life. In412

this case, we are given a graph with all the potential channels, the sequence of transactions413

and the capital, and we want to find the induced subgraph that maximizes the profit. We414

prove that the problem of deciding whether all given transactions can be executed in the415

given graph with a fixed capital is NP-complete.416

The graph is given so the capital needed to open the channels is fixed in each given417

instance. Thus, we assume the capital corresponds solely to the capital we lock on the edges418

but not the one we require to open the channels.419

I Theorem 18. Problem 4 is NP-complete.420

Proof. We will reduce Partition, a known NP-complete problem [12], to Problem 4.
Partition: Given a finite set A = {a1, a2, . . . , am} and a size s(ai) ∈ Z+ for each ai ∈ A, is
there a subset A′ ⊆ A such that

∑
ai∈A′ s(ai) =

∑
ai∈A−A′ s(ai)?

Given an instance of Partition we define an instance of Problem 4 as follows:
Let v =

∑
ai∈A′ s(ai) +

∑
ai∈A−A′ s(ai). We consider the graph G(V,E) with four nodes

V = {b, c, d, e} and edges E = {eb, bd, dc, ec}. We define the capital C = 2v and the sequence
of n = m+ 4 transactions

{(d, b, v/2), (b, e, v/2), (d, c, v/2), (c, e, v/2), (e, d, s(a1)), (e, d, s(a2)), . . . , (e, d, s(an))}

We will prove that this instance of Partition is a “yes” instance if and only if all transactions
can be executed in G with the given capital C. We denote by T the last m transactions
defined above. Suppose all the transactions in the instance we defined can be executed using
the capital C. This implies we can divide T into two groups T ′, T − T ′ that each sum to
at most C/2 and route each group through one of the two paths from e to d in G. Since∑
ti∈T vi = C, we have |T ′| = |T − T ′| = C/2. We define the set A′ = {ai−4|ti ∈ T ′} ⊆ A.

It holds that ∑
ai∈A′

s(ai) =
∑
ti∈T ′

vi = C/2 =
∑

ti∈T−T ′

vi
∑

ai∈A−A′

s(ai)

For the opposite direction, suppose we cannot execute all transactions in G with capital C.421

Since the first four transactions can always be executed with capital C, we cannot execute422

all transactions in T with capital C. Thus, in the optimal solution we cannot partition the423

transactions in T in two groups T ′, T − T ′ with equal sum. Since we defined the values of424

transactions in T to be the sizes of the elements in A, we conclude there is no subset A′ ⊆ A425

such that
∑
ai∈A′ s(ai) =

∑
ai∈A−A′ s(ai). J426

CVIT 2016

23:12 Algorithmic Channel Design

4 Online Channel Design427

In this section, we study the online case, assuming no prior knowledge for the future428

transactions. When there is a transaction request we instantly decide whether to execute it429

or not through our network, assuming we have enough capital on the edges of the path we430

want to route the transaction. If there is not enough capital on some of the edges, we can431

refund a channel, which costs 1, the same as opening a new channel.432

4.1 Single Channel with Capital Constraints433

Similarly to the offline case, we first focus on the simpler case where we have a single edge434

and limited capital. The transactions arrive online, for each transaction we immediately435

decide whether it is accepted.436

I Theorem 19. There is no competitive algorithm for adaptive adversaries.437

Proof. Suppose we have a channel with Cr = Cl = 5. Transactions from left to right have438

positive values, those from right to left have negative values. Let us consider two different439

transaction sequences:440

1. (1, 5,−10, 10,−10, 10, . . .)441

2. (1, 4,−10, 10,−10, 10, . . .)442

Apart from the second transaction, both sequences are identical: The first transaction has443

value 1, starting with the third transaction we always move the complete capital with every444

transaction. The only difference is the second transaction.445

If some online algorithm accepts the first transaction, then the adversary presents the446

first sequence; if the online algorithm denies the first transaction, then the adversary reveals447

the second sequence. Therefore, no matter whether this online algorithm accepts the first448

transaction or not, it can at most accept one transaction, while the optimal offline algorithm449

can accept almost all transactions (in case of the first sequence, the offline algorithm only needs450

to deny the first transaction, in case of the second sequence it will accept all transactions). J451

4.2 Channel Design for Maximum Profit452

We assume again that we want to execute all transactions, thus the optimal graph does453

not contain cycles. Our objective is to minimize the capital, given all transactions will be454

executed through our payment network. Wlog, we assume the PSP is a node in the network.455

Similarly to the offline case, we show that constructing a star network to connect the nodes456

with payment channels is a good solution. Specifically, we present a log-competitive algorithm457

that takes advantage of the star graph structure.458

In Algorithm OnlineMaxProfit, we gradually form a star where the center is the PSP.459

At each step, we check whether there is enough capital on the edges to and from the center460

to execute the current transaction. If the capital on an edge is smaller that the value of the461

current transaction, we refund the channel and add to the capacity of this edge twice the462

value of the current transaction.463

I Theorem 20. Algorithm OnlineMaxProfit is Θ(logCopt)-competitive.464

Proof. The star is a 2-approximation to the optimal offline solution, thus we start with a465

competitive ratio of 2. The way we update the capacities, each time adding twice the value466

of the transaction if the capacity is less than the transaction’s value, yields also a competitive467

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:13

Algorithm 2: OnlineMaxProfit
Data: online sequence of transactions ti = (si, ri, vi)
Result: capital C
We denote by s the node corresponding to the PSP.
E ← ∅
C ← 0
for each transaction ti do

if si is not connected to s then
E ← E ∪ (si, s)
csi,s ← vi, cs,si

← vi
C ← C + 1

end
else if csi,s < vi then

csi,s ← csi,s + vi
cs,si

← cs,si
+ vi

C ← C + 1
end
else

csi,s ← csi,s − vi
cs,si ← cs,si + vi

end
For the case of ri we follow a similar (invert) procedure.

end
for all i 6= s do

C ← C + ci,s + cs,i
end
Return capital C

ratio of two on the edges’ capacities. Moreover, at each such step we at least double the468

capacity of an edge thus we reach the edge’s optimal capital, Ce, in logCe steps. If we sum469

over all edges, in total we refund the channels at most (n − 1) logCedges times, where n470

is the number of nodes in the network and Cedges the edges’ optimal capital of the offline471

solution. Therefore, algorithm OnlineMaxProfit returns C ≤ (n− 1) logCedges + 4Cedges,472

while the offline solution requires Copt = (n− 1) + Cedges. This yields a competitive ratio of473

Θ(logCopt). J474

5 Conclusion475

We introduced a graph theoretic framework for payment networks. We studied the problem476

for a specific epoch, i.e., for a fixed number of transactions. This restriction is due to477

privacy issues, such as timing attacks on the payment network that can leak information478

on the customers’ personal data. We tried to maximize the profit (the number of accepted479

transactions minus the number of generated channels) and to minimize the capital needed to480

execute these transactions. Due to the multi-objective nature, there are several versions of481

this problem. In this paper, we mainly focused on two interesting variations:482

1. How to choose transactions to execute on a single channel with given capital assignments483

to maximize the profit,484

2. How to design a network and assign capitals to accept all transactions and minimize the485

CVIT 2016

23:14 Algorithmic Channel Design

needed capital.486

It turns out, these two problems are challenging, as we show that the first problem and a487

variation of the second one are both NP-hard. We propose a dynamic programming based488

algorithm for the single channel problem and show that it is an FPTAS. For the network489

design and capital assignment problem, we show that stars achieve approximation ratio 2.490

In other words, hubs are not only an implementable and privacy-guaranteed solution, as491

mentioned in [9] and [8], but also a satisfactory solution for PSP from the profit-maximization492

point of view.493

We also studied the online versions of these problems. For the single channel case we494

show that it is impossible to design a competitive algorithm against an adaptive adversary.495

For the online channel design for maximum profit, we devise an O(logC)-competitive online496

algorithm based on the star structure.497

The results presented in this paper and the proposed algorithms can be applied to other498

fields such as traffic network design. For example, every airline would want to maximize499

the profit and to minimize the costs (of creating new routes and purchasing new airplanes).500

Interestingly, similar to what we discovered, hubs are indeed used by almost all airlines, e.g.,501

most flights of the Turkish airline departure from or fly to Istanbul.502

Apart from capital assignment, fee assignment of payment networks [3] is also related to503

the traffic network design problem. One need to pay for using highways in some countries504

(e.g., Greece, China and France), thus the companies need to decide which cities are connected505

by highways and how much one needs to pay for every path. In this way, the drivers prefer506

highways (analog to the payment channels) to other slow paths (analog to the main chain),507

and hence the profit is maximized.508

References509

1 Ethereum white paper. URL: https://github.com/ethereum/wiki/wiki/White-Paper.510

2 Raiden network. 2017. URL: http://raiden.network/.511

3 Georgia Avarikioti, Gerrit Janssen, Yuyi Wang, and Roger Wattenhofer. Pay-512

ment network design with fees. 2018. URL: https://github.com/zetavar/513

Payment-Network-Design-with-Fees/blob/master/Payment_Network_Design_with_514

Fees-Full_Version.pdf.515

4 Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew516

Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain innovations517

with pegged sidechains. 2014. URL: https://www.blockstream.com/sidechains.pdf.518

5 Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable Funding of Bit-519

coin Micropayment Channel Networks. In 19th International Symposium on Stabilization,520

Safety, and Security of Distributed Systems (SSS), Boston, Massachusetts, USA, November521

2017.522

6 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,523

Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wat-524

tenhofer. On scaling decentralized blockchains. In Financial Cryptography and Data Se-525

curity, pages 106–125. Springer Berlin Heidelberg, 2016.526

7 Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin527

duplex micropayment channels. In Andrzej Pelc and Alexander A. Schwarzmann, editors,528

Stabilization, Safety, and Security of Distributed Systems, pages 3–18, Cham, 2015. Springer529

International Publishing.530

8 Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized531

currencies. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-532

munications Security, CCS ’17, pages 473–489, 2017.533

https://github.com/ethereum/wiki/wiki/White-Paper
http://raiden.network/
https://github.com/zetavar/Payment-Network-Design-with-Fees/blob/master/Payment_Network_Design_with_Fees-Full_Version.pdf
https://github.com/zetavar/Payment-Network-Design-with-Fees/blob/master/Payment_Network_Design_with_Fees-Full_Version.pdf
https://github.com/zetavar/Payment-Network-Design-with-Fees/blob/master/Payment_Network_Design_with_Fees-Full_Version.pdf
https://github.com/zetavar/Payment-Network-Design-with-Fees/blob/master/Payment_Network_Design_with_Fees-Full_Version.pdf
https://github.com/zetavar/Payment-Network-Design-with-Fees/blob/master/Payment_Network_Design_with_Fees-Full_Version.pdf
https://www.blockstream.com/sidechains.pdf

G. Avarikioti, Y. Wang, R. Wattenhofer. 23:15

9 Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Gold-534

berg. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub. In Network535

and Distributed Systems Security Symposium 2017 (NDSS), February 2017.536

10 T. Hu. Optimum communication spanning trees. SIAM Journal on Computing, 3(3):188–537

195, 1974. URL: https://doi.org/10.1137/0203015, arXiv:https://doi.org/10.538

1137/0203015, doi:10.1137/0203015.539

11 D. S. Johnson, J. K. Lenstra, and A. H. G. Kan Rinnooy. The complexity of the540

network design problem. Networks, 8(4):279–285. URL: https://onlinelibrary.541

wiley.com/doi/abs/10.1002/net.3230080402, arXiv:https://onlinelibrary.wiley.542

com/doi/pdf/10.1002/net.3230080402, doi:10.1002/net.3230080402.543

12 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,544

Boston, MA, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.545

13 Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and546

Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. 2017.547

14 Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek548

Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM549

SIGSAC Conference on Computer and Communications Security, pages 17–30. ACM, 2016.550

15 Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhispers:551

Enforcing security and privacy in decentralized credit networks. In Network and Distributed552

Systems Security Symposium 2017 (NDSS).553

16 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.554

17 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant555

payments. 2015. URL: https://lightning.network.556

18 Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa557

Osuntokun. Flare: An approach to routing in lightning network. 2016.558

URL: https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_559

routing_in_lightning_network_7_7_2016.pdf.560

19 Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments561

fast and private: Efficient decentralized routing for path-based transactions. In Network562

and Distributed Systems Security Symposium 2018 (NDSS).563

CVIT 2016

https://doi.org/10.1137/0203015
http://arxiv.org/abs/https://doi.org/10.1137/0203015
http://arxiv.org/abs/https://doi.org/10.1137/0203015
http://arxiv.org/abs/https://doi.org/10.1137/0203015
http://dx.doi.org/10.1137/0203015
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230080402
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230080402
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230080402
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230080402
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230080402
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230080402
http://dx.doi.org/10.1002/net.3230080402
https://doi.org/10.1007/978-1-4684-2001-2_9
https://lightning.network
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf

	Introduction
	From Payment Channels to Network Design
	Related Work
	Our Contribution

	Notation and Problem Variants
	Offline Channel Design
	Graph Topology
	Single Channel
	Channel Design for Maximum Profit
	Channel Design with Graph Restrictions

	Online Channel Design
	Single Channel with Capital Constraints
	Channel Design for Maximum Profit

	Conclusion

