
Demo Abstract: Debugging Wireless Sensor Network
Simulations with YETI and COOJA

Richard Huber, Philipp Sommer, and Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland
{rihuber,sommer, wattenhofer}@tik.ee.ethz.ch

ABSTRACT
Developing applications and protocols for wireless sensor
networks is a time consuming and error prone task, which
possibly includes many iterations of implementation and
testing. While simulations will probably not replace testbed
experiments completely, they are a time efficient tool for
rapid prototyping of sensor networks. Writing code and
testing an application is often done using a different set of
tools, e.g., a text editor and a simulation tool. To bridge
the gap between development and simulation, we demon-
strate the advantages of a seamless interconnection between
YETI, a feature-rich development environment for TinyOS,
and COOJA, a simulator for wireless sensor networks.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Design, Experimentation

Keywords
Sensor Networks, TinyOS, Debugging, Development, Simu-
lation

1. INTRODUCTION
Developing and debugging applications for wireless sensor

networks is know to be cumbersome and time consuming.
To address the challenges imposed by the embedded nature
of sensor nodes and fluctuating environmental conditions,
various hardware and software tools have been developed to
facilitate the debugging process. Debugging tools such as
a JTAG hardware adapter can be used to monitor a sin-
gle attached node. On the other hand, testbeds consisting
of dozens to hundreds of nodes allow to test and monitor
large scale applications under realistic settings. Simulation
tools are widely used in the initial phase of development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

1

2

3

Session Control Plugin

GDB Proxy

GDB Proxy

GDB Proxy

COOJA
Debug Launcher

GDB

GDB

GDB

YETI

Debug View

Socket

Socket

Socket

Socket

Figure 1: Interconnecting COOJA and YETI: Both
tools run as independent processes. They are con-
nected using TCP sockets to exchange metadata and
control the debugging process.

They make the execution of a program repeatable, and of-
fer an easy way to explore the parameter space of the im-
plementation in a controlled environment. Therefore, sev-
eral simulation tools have been developed by the sensor net-
work community, each emphasizing on a different aspect of
wireless sensor network research. Castalia [1] is mainly tar-
geted towards the realistic simulation of the wireless chan-
nel. TOSSIM [4] simulates TinyOS applications by replacing
low-level components of the nodes with its own implemen-
tation in order to balance between scalability and fidelity.
Both MSPSim/COOJA [3] (MSP430 platform) and Avrora
[5] (AVR platform) provide cycle-accurate simulations at the
hardware level.

2. CONNECTING COOJA AND YETI
We demonstrate how developers can benefit from the seam-

less interconnection of YETI, an integrated development en-
vironment for TinyOS, and the CCOJA/MSPSim network
simulator. Our approach offers TinyOS developers a graph-
ical solution to test their developed applications by simula-
tion, without the hassle of command line operations.

TinyOS Development. YETI [2] is an Eclipse plug-in for
TinyOS development, providing syntax highlighting, code
completion, and error detection.1 It is built around a sophis-
ticated parser for the nesC language and integrates seam-
lessly with any existing TinyOS tool chain.

WSN Simulation. The COOJA network simulator [3] is a
simulation environment for wireless sensor networks. It uses
MSPSim, a low-level emulator for MSP430 microcontrollers.
Even though MSPSim and COOJA have been developed for

1YETI is available from the project repository at
http://code.google.com/a/eclipselabs.org/p/yeti/

Figure 2: Basic work flow during a debug session: First, the simulation is configured in COOJA (1), and the
session control plug-in is started (2). Then, breakpoints can be added or removed in YETI’s nesC editor (3).
When the simulation is stopped at a breakpoint, the user can step through the code in YETI (4).

the Contiki operating system, they can also be used for the
simulation of TinyOS applications, since the program code is
emulated at the instruction level. COOJA and MSPSim can
be extended through a flexible plug-in architecture, which
allows to monitor and control almost every aspect of the
network and the simulated nodes.

System Architecture. By connecting simulations running
in COOJA with the debugging capabilities of YETI, we can
provide a powerful development and debugging environment
to the user. The software architecture of our approach is
depicted in Figure 1. Even though both tools are based on
Java, we decided in favor of a loosely coupling of the two
tools using TCP sockets, rather than integrating one tool
into the other.

GDB remote protocol. The GNU debugger (GDB) con-
tains debugging support for remote targets using a simple
command and response based protocol. Debugging com-
mands are sent by the host (GDB) to the remote target,
which answers with a corresponding response packet. We
implemented a remote debugging stub for GDB as a plug-in
for MSPSim/COOJA, which allows GDB to connect to a
simulated node using a TCP connection to a specific port.
This allows to set breakpoints in MSPSim through GDB,
and to read and/or modify the content of the node’s register
and memory space. GDB itself is already tightly integrated
into Eclipse’s C Development Tools (CDT), which are used
to provide debugging support with YETI.

Session control. Originally, GDB has been designed for
debugging a single process at a time only. Although re-
cent development of GDB improved support for debugging
multiple threads or processes, we decided to use a dedicated
socket connection to exchange information about the current
simulation between YETI and COOJA. Therefore, when the
user starts a new debugging session in Eclipse, a connection
to the session control plug-in on the COOJA side is estab-
lished, and YETI requests information about the running
simulation, e.g., the number of nodes and the paths to the
corresponding binary images. Furthermore, YETI queries
the session control plug-in for the TCP port at which the
corresponding GDB stub is listening for incoming debug ses-
sions. This allows the user to add and remove nodes to/from
a running debugging session on the fly. Each node in the
simulation is handled by a new GDB process within Eclipse.

3. USER INTERACTION
Connecting a TinyOS project in YETI with a COOJA

simulation for debugging purposes includes four simple steps,
as shown in Figure 2.

Simulation setup. In a first step, the simulation scenario
has to be configured in COOJA. This includes the setup of
the binary images executed by the simulated nodes and the
assignment of node positions. Furthermore, general simu-
lation parameters such as the communication range or the
packet loss may be adjusted.

Debug session. When launching a new debug session,
YETI spawns a new GDB process for each connected node in
the simulation. Building upon the familiar functionality of
Eclipse’s integrated debugging tools and views, the current
status and stack trace of each simulated node is shown.

Breakpoints. Inserting or removing breakpoints can be
done on a per node basis in YETI’s source code view of the
corresponding TinyOS module. The address of a breakpoint
is then sent to the corresponding GDB stub, which registers
the breakpoints in the COOJA simulator. Every time a
breakpoint is reached by a node, the simulation is stopped
and the content of the registers and the memory is updated
in YETI’s debugging view.

Read/modify node state. Register and memory of all
nodes being part of the simulation can be inspected and
modified as long as the simulation is paused, e.g., when a
node has reached a breakpoint. Changes to the value of
variables or registers made by the user are written back to
the COOJA simulation immediately.

4. REFERENCES
[1] A. Boulis. Castalia: Revealing Pitfalls in Designing Distributed

Algorithms in WSN. In SenSys, 2007.

[2] N. Burri, R. Flury, S. Nellen, B. Sigg, P. Sommer, and
R. Wattenhofer. YETI: An Eclipse Plug-in for TinyOS 2.1. In
SenSys, 2009.

[3] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrón. COOJA/MSPSim:
Interoperability Testing for Wireless Sensor Networks. In
Simutools, 2009.

[4] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In
SenSys, 2003.

[5] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable
Sensor Network Simulation with Precise Timing. In IPSN, 2005.

