
Efficient Computation of Maximal Independent Sets
in Unstructured Multi-Hop Radio Networks

Thomas Moscibroda
Computer Engineering and Networks Laboratory

ETH Zurich, 8092 Zurich, Switzerland
moscitho@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, 8092 Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

Abstract— When being deployed, ad-hoc and sensor networks
are unstructured and lack an efficient and reliable communi-
cation scheme. Hence, the organization of a MAC layer is the
primary goal during and immediately after the deployment of
such networks. Computing a good initial clustering facilitates this
task and is therefore a vital part of the initialization process. A
clustering based on a maximal independent set provides several
highly desirable properties. Besides yielding a dominating set
of good quality, such a clustering avoids interference between
clusterheads, thus allowing efficient communication. We propose
a novel algorithm that works under a model capturing the
characteristics of the initialization phase of unstructured radio
networks, i.e., asynchronous wake-up, scarce knowledge about
the topology of the network graph, no collision detection, and
the hidden terminal problem. We show that even under these
hard conditions, the algorithm computes a maximal independent
set in polylogarithmic time.

I. INTRODUCTION

One of the main characteristics of ad-hoc and sensor net-
works is that the communication infrastructure is provided
by the nodes themselves. When being deployed, the nodes
of such networks initially form a chaotic unstructured radio
network, which means that no reliable and efficient communi-
cation pattern has been established yet. Before any reasonable
communication can be carried out, nodes must structure the
network, i.e., they must set up a medium access scheme. The
problem of initializing and structuring radio networks is of
great importance in practice. Even in an ad-hoc network with
a small number of devices such as Bluetooth, the initialization
tends to be slow. In a multi-hop scenario with large number
of nodes the time consumption for establishing a reasonable
communication pattern increases even further. In this paper,
we are going to study this vital transition from a unstructured
to a structured network, the initialization phase.

One frequent approach to solving the problem of bringing
structure into a multi-hop radio network is clustering [1],
[2], [3], [4], [5]. Clustering allows the formation of virtual
backbones enabling efficient routing and broadcasting [6], it
improves the usage of scarce resources such as bandwidth
and energy [7], and — most important to this paper —

The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 5005-67322.

clustering is crucial in realizing spatial multiplexing in non-
overlapping clusters (TDMA or FDMA). Hence, computing
a good initial clustering is a major step towards establishing
an efficient MAC layer on top of which higher-level protocols
and applications can subsequently be built.

What is a good clustering? Depending on the specific
network problem at hand, the answer to this question may be
varying. But in light of the wireless and multi-hop nature of ad-
hoc and sensor networks, a good clustering should satisfy (at
least) two properties. In order to allow efficient communication
between each pair of nodes, every node should have at least
one clusterhead in its neighborhood. From a graph theory point
of view, this first property demands a dominating set (and
preferably a minimum dominating set). A dominating set in a
graph G = (V, E) is a subset S ∈ V such that each node is
either in S or has a neighbor in S. The use of (connected)
dominating sets for clustering networks has been motivated
and investigated in literature, e.g. in [8], [9], [10], [11], [12],
[13].

This identification of clustering to the notion of a domi-
nating set, however, does not cover the second need arising
in ad-hoc and sensor networks. It has been motivated in [2],
[14] that it is undesirable to have neighboring clusterheads.
In particular, if no two clusterheads are within each other’s
mutual transmission range, the task of establishing an efficient
MAC layer is greatly facilitated because clusterheads will
not face interference. This second property imposed on the
clustering of ad-hoc and sensor networks leads to the well-
known concept of a maximal independent set in a graph
G = (V, E). An independent set (IS) S of G is a subset of V
such that ∀u, v ∈ S, (u, v) /∈ E. S is a maximal independent
set (MIS) if any node v not in S has a neighbor in S.

The importance of a MIS in the context of clustering
wireless networks has been widely acknowledged [14], [15].
Several algorithms for the construction of a virtual backbone
(for example for allowing efficient routing) are based on
computing a MIS [8], [16], [12], [17]. Due to its additional
constraint, computing a MIS is a harder problem than comput-
ing a dominating set. Additionally, it is worth noting that any
MIS is a 4O + 1-approximation for the minimum dominating
set problem on the unit disk graph [12], where O denotes the
size of the optimal solution. In other words, by computing
a MIS, we obtain a clustering which has all advantages of

a high-quality dominating set and moreover has the property
that clusterheads do not interfere. Hence, a MIS provides an
excellent initial clustering. Note that the computation of a MIS
is also a key building block for coloring algorithms as all nodes
in a MIS can be safely assigned the same color.

In view of our goal of setting up a MAC scheme in a newly
deployed network, it is obvious that a clustering algorithm
for the initialization phase must not rely on any previously
established MAC layer. Instead, we are interested in a simple
and practical algorithm which quickly computes a clustering
completely from scratch. Note that this precludes algorithms
working under any sort of message passing model in which
messages can be sent to neighbors without fearing collision
due to the hidden terminal problem.

In total absence of any MAC layer support, algorithms for
clustering in a newly deployed network must be capable of
working under particularly harsh conditions. Specifically, these
conditions are captured by the following model assumptions
[18]:

• The network is a multi-hop network, that is, there exist
nodes that are not within their mutual transmission range,
resulting in problems such as the well-known hidden
terminal problem. Some neighbors of a sending node
may receive a message, while others are experiencing
interference from other senders and do not receive the
message.

• Our model allows nodes to wake-up asynchronously. In
a multi-hop environment, it is realistic to assume that
some nodes wake up (e.g. become deployed, or switched
on) later than others. Consequently, nodes do not have
access to a global clock. It is important to observe the
manifold implications of asynchronous wake-up. If all
nodes started the algorithm simultaneously, we could
easily assume an ALOHA style MAC-layer where each
node sends with probability Θ(1/n). It is well known that
this approach leads to a quick and simple communication
scheme on top of which efficient clustering algorithms
can be used. If nodes wake-up asynchronously, however,
the same approach results in an expected linear runtime
if only one single node wakes-up for a long time. In
order to achieve a polylogarithmic runtime in the case of
asynchronous wake-up, more sophisticated protocols are
required.

• Nodes do not feature a reliable collision detection mech-
anism. In many scenarios (particularly when considering
the lack of an established MAC protocol during the
initialization phase!) not assuming any collision detection
mechanism is realistic. Nodes may be tiny sensors with
equipment restricted to the minimum due to limitations in
energy consumption, weight, or cost. It has further been
argued that the no collision detection assumption makes
sense in the presence of noisy channels [19]. The sending
node itself does not have a collision detection mechanism
either, that is, a sender does not know how many (if
any at all!) neighbors have received its transmission
correctly. Given these additional limitations, algorithms

without collision detection tend to be less efficient than
algorithms with collision detection. Note that the absence
of a reliable collision detection mechanism precludes
using standard protocols such as Busy Tone Multiple
Access (BTMA) [20].

• Nodes have only limited knowledge about the total num-
ber of nodes in the network and no knowledge about
the nodes’ distribution or wake-up pattern. Particularly,
they have no a-priori information about the number of
neighbors.

In this paper, we show that polylogarithmic time is enough
to compute a MIS clustering even under this harsh model. We
present a randomized algorithm which has practical relevance
in the initialization phase of ad-hoc and sensor networks due to
its being fast and simple and because it works in total absence
of any existing MAC layer.

A literature review is given in Section II. Section III
formally introduces the model in detail and the algorithm is
presented in Section IV. The algorithm’s analysis is given in
Sections V and VI. Section VII concludes the paper.

II. RELATED WORK

Before being studied in the context of clustering ad-hoc
and sensor networks, the computation of a MIS has been
the focus of extensive research on parallel complexity. It
has been shown in [21] that the MIS problem is in NC,
meaning that a polylogarithmic running time is achievable on
a PRAM containing a polynomial number of processors. A
major breakthrough in the understanding of the computational
complexity of MIS was the ingenious randomized algorithm
by Luby [22], achieving a runtime of O(log n) on a linear
number of processors under the CRCW PRAM model of
computation. Unfortunately, Luby’s algorithm cannot be easily
transformed to work under our model since it assumes syn-
chronous wake-up, knowledge about the neighborhood, and
collision-free communication. Recently, time lower bounds
for the distributed construction of MIS have been given in
[23]. At least Ω(

√
log n/ log log n) and Ω(log Δ/ log log Δ)

communication rounds are required to obtain a MIS, Δ being
the largest degree in the network.

A model related to the one used in this paper has been stud-
ied in the context of analyzing the complexity of broadcasting
in multi-hop radio network yielding a vast and rich literature,
e.g. [24], [25]. The same model has also been the focus
of research on two important problems called initialization
problem and leader election problem in single-hop radio
networks, e.g. [26], [27]. A striking difference to our model
is that these algorithms consider synchronous wake-up, i.e.,
nodes have access to a global clock and it is assumed that
all nodes start the distributed algorithm at the same time. In
the case of ad hoc and sensor networks distributed over a
large geographical area, guaranteeing that all nodes start the
distributed algorithm simultaneously appears to be difficult in
practice. Moreover, if (sensor) nodes are deployed dispersed
in time, it may even be impossible. As mentioned in the

introduction, the additional difficulties imposed by asynchrony
lead to new algorithmic designs.

A model featuring asynchronous wake-up has been studied
in recent papers about the wake-up problem in single-hop radio
networks [28], [29]. In comparison to our model, these papers
define a much weaker notion of asynchrony. Particularly, it is
assumed that sleeping nodes are woken up by a successfully
transmitted message. In a single-hop network, the problem of
waking up all nodes hence reduces to successfully transmitting
one single message. Recently, the wake-up problem has also
been studied in the multi-hop case in [30]. While this definition
of asynchrony leads to a variety of interesting combinatorial
problems, it it unsuited for modeling the situation of newly
deployed ad hoc and sensor networks.

Our results for the construction of a maximal independent
set in unstructured radio networks partly build on a previous
paper for the same model [18]. In [18], a randomized algorithm
which computes a constant approximation for the minimum
dominating set problem in the same model is introduced. In
fact, in Section V-A we are going to make use of some of the
results obtained in [18] as a starting point for the analysis of
our algorithm for maximal independent sets. Concluding this
section, we would also like to mention that a model similar
in spirit, yet even in more restricted than the one used in this
paper has recently been studied in [31].

III. MODEL

Having already given some intuition in Section I, we now
describe the model in more detail. We consider multi-hop
radio networks without collision detection. Nodes are unable
to distinguish between the situation in which two or more
neighbors are sending and the situation in which no neighbor is
sending. Further, in Sections IV and V, we assume that nodes
have access to three independent communication channels Γ 1,
Γ2, and Γ3. In practice, this may be realized using an FDMA
scheme. Having three communication channels simplifies the
analysis, but in Section VI we show it is not a fundamental
necessity. Even a single communication channel suffices to
compute a MIS in polylogarithmic time.

Nodes may wake up asynchronously at any time. We call a
node sleeping before its wake-up, and awake thereafter. Only
awake nodes can send or receive messages. Sleeping nodes
are not woken up by incoming messages. Observe that this
asynchronous model is more general than the usually studied
synchronous wake-up model in which all nodes start their
local algorithm at the same time. In fact, synchronous wake-
up is just one possible scenario captured by the asynchronous
model. In the other extreme case, only one of the n nodes may
wake up while the others remain sleeping for an arbitrarily
long time.

We consider Unit Disk Graphs (UDG) to model the net-
work. In a UDG G = (V, E), there is an edge (u, v) ∈ E
iff the Euclidean distance between u and v is at most 1. It
is important to note however that due to asynchronous wake-
up, some nodes may still be asleep, while others are already
sending. Hence, at any time, there may be sleeping nodes

which do not receive a message in spite of their being within
the transmission range of the sender.

Nodes have only scarce knowledge about the network graph.
In particulary, they have no information on the number of
nodes in their neighborhood or even the density of nodes in
the network. Nodes merely have an upper bound n̂ for the total
number of nodes n = |V | in the graph. While n is unknown,
all nodes have the same estimate n̂. It has been shown in [29]
that without any estimate of n, even in the single-hop case
every algorithm requires at least time Ω(n/ log n) until one
single message can be transmitted without collision. Hence,
assuming n being completely unknown would ultimately pre-
clude polylogarithmic clustering algorithms. In practice, is it
usually possible to give a rough upper bound on the number of
nodes in the network in advance. Further, note that nodes can
be placed completely arbitrarily, i.e., our analysis does not rely
on any kind of probabilistic (e.g. uniform) node distribution.

For the sake of simplicity, we assume — for the analysis
of the algorithm — that time is divided into time-slots.
However, we attach great importance to the observation that
our algorithm does not rely on synchronized time-slots in any
way. Since nodes do not have access to a global clock and
synchronizing time-slots may be an expensive task, such an
assumption would not always be realistic1. In this paper, it
is solely for the purpose of analyzing the algorithm that we
assume slotted channels. This simplification of the analysis
is justified by the standard trick introduced in the analysis
of slotted vs. unslotted ALOHA [32]. In [32], it is shown
that the realistic unslotted case and the idealized slotted case
differ only by a factor of 2, because a single packet can
cause interference in no more than two successive time-slots.
Similarly, by analyzing our algorithm in an “ideal” setting with
synchronized time-slots, we obtain a result which is only by
a constant factor faster as compared to the unslotted setting.

In each time-slot, a node can either send or not send. A
node receives a message in a time-slot only if exactly one
node in its neighborhood has sent a message in this time-slot.
However, in the multi-channel case, nodes are able to correctly
receive messages from the three channels simultaneously. The
variables pv and qv denote the probabilities that node v
sends a message in a given time-slot on channel Γ1 and Γ2,
respectively.

We conclude the section with a well-known mathematical
fact.

Fact 3.1: For all n, t, such that n ≥ 1 and |t| ≤ n,

et

(
1 − t2

n

)
≤
(

1 +
t

n

)n

≤ et.

IV. ALGORITHM

We start with an intuitive outline of the algorithm. For
the sake of clarity, the algorithm is divided into three parts.

1It has been argued that by interfacing with a Global Positioning System
(GPS), keeping local clocks synchronized has become technically possible.
The accuracy provided by commercially available systems is more than
sufficient for stations of a radio network to synchronize [27]. Nonetheless,
our algorithm does not rely on this assumption.

Algorithm 1 MIS-Algorithm (Main-Loop)

state := uncovered; excited := false;
upon wake-up do:

1: for j := 1 to 2δ · �log3 n̂/ log log n̂� do
2: wait();
3: od
4: counter := 0;
5: for j := �log n̂� to 0 by −1 do
6: p := 1/

(
2j+β

)
;

7: for i := 1 to γ · �log n̂� do

8: b :=
{

1 with probability p
0 with probability 1 − p

9: if b = 1 then
10: send() on Γ1;
11: start candidacy();
12: stop executing main-loop;
13: fi
14: od
15: od

Candidacy Phase():
16: loop

17: b :=
{

1 with probability q
0 with probability 1 − q

18: if b = 1 then
19: excited := true;
20: send(counter) on Γ2;
21: fi
22: if excited then
23: counter := counter + 1;
24: fi
25: if counter = δ · �log3 n̂/ log log n̂� then
26: state := MIS;
27: send on Γ3 with probability 1/6 forever;
28: fi
29: end loop

Each node first executes the main-loop. When sending the first
message, the main-loop is stopped and the start candidacy()
procedure is called, which runs until termination. In parallel,
the algorithm’s reception triggers are invoked upon receiving
any messages. Note however, that in accordance to our model,
a message can only be received (i.e., the reception trigger
invoked) if the node does not send in the same time-slot.

The algorithm consists of two main phases. The purpose
of the main loop is the selection of candidates which will
subsequently compete for joining the MIS in a candidacy-
phase. More precisely, a node becomes candidate when send-
ing its first message on channel Γ1 (lines 10 and 11). The
main-loop is designed as to bound the number of candidates
simultaneously executing the candidacy-phase, therefore en-
abling a quick election of MIS nodes. This selection in the
candidacy-phase takes place entirely on channel Γ2. While Γ1

and Γ2 correspond to communication in the main-loop and

Receive Triggers:
(Only executed if the node does not send a
message in the same time-slot.)
upon receiving msg on Γ1 do:

if not candidate then
restart main-loop at line 1;

fi

upon receiving msg (c′) on Γ2 do:
Δc := |c′−counter|;
if candidate and Δc ≤ 8 log n̂ then

counter := −�8 log n̂�;
fi

upon receiving msg on Γ3 do:
state := covered;
terminate();

in the candidacy-phase, respectively, Γ3 is reserved for nodes
having already joined the MIS.

Note that due to asynchronous wake-up, the candidacy-
phases of different nodes are not aligned with each other.
On the contrary, just as they can start the main-loop at
different times, nodes may join the candidacy-phase later than
others. Moreover, unless a node has received a message from
a neighbor, it has no knowledge whether other nodes have
previously joined the main-loop or candidacy-phase. In fact,
overcoming the absence of any such knowledge is one of the
key challenges when designing algorithms for our model.

In more detail, the algorithm works as follows. A node starts
executing the main loop upon waking up. At first, nodes wait
for messages (on all channels) without sending themselves
(lines 1-3). The reason is that nodes (re)starting the main-
loop should not interfere with nodes currently competing in a
candidacy-phase. The main part of the algorithm (starting in
line 5) works in rounds, each of which contains γ · �log n̂�
time-slots. A node becomes candidate (and starts executing
the start candidacy() procedure) upon its first sending on
channel Γ1. Starting from a very small value, a node doubles
its sending probability in each round, therefore increasing its
chance to become candidate. As soon as it receives a message
on Γ1, however, it quits the current execution of the main-
loop and restarts at line 1. In the analysis of the main-loop’s
properties in Subsection V-A, we give a bound on the number
of nodes simultaneously being candidates. We will then go
on to show that each time a restart occurs, some node in the
2-neighborhood will join the MIS within the required time-
bounds. We call nodes in the waiting loop inactive and nodes
in the main part of the algorithm active.

Having bounded the number of candidates, the candidacy-
phase works as follows. In each time-slot, a candidate sends
on Γ2 with probability q. After sending the first time, a node
becomes excited and starts increasing a counter in every time-
slot. This counter is attached to each message. Upon receiving

a message on channel Γ2 by another candidate, the receiver
compares the sender’s counter c ′ with its own. In case its
own value is within 8 log n̂ of the sender’s counter, a node
resets its own counter. This prevents two neighboring nodes
from joining the MIS shortly in succession. It is interesting to
notice that this method of comparing counters is sufficiently
powerful to avoid long cascading chains of resettings. Once a
node’s counter reaches δ · �log3 n̂/ log log n̂�, the node joins
the MIS and immediately starts sending on channel Γ3 with
constant probability. Since no two nodes’ counter reaches the
threshold within 8 log n̂ time-slots, there is sufficient time for
the first MIS node to inform its neighbors, thus ensuring that
no two neighbors join the MIS.

The algorithm’s parameters q and β are defined as

q := log log n̂/ log2n̂ β := 6.

Intuitively, the choice of q is motivated by two contradicting
aims. On the one hand, q must be large enough such that some
node will join the MIS within the desired runtime. On the other
hand, a small q ensures that no two neighboring nodes join the
MIS. In Subsection V-B, we prove that the choice of q results
in exactly one node in each “neighborhood” joining the MIS.
The parameter β is defined as to maximize the probability of
a successful computation [18]. The parameters δ and γ can be
used to tune the trade-off between running-time (small δ and
γ) and probability of success (large δ and γ).

V. ANALYSIS

This section contains the main theoretical contribution of
this paper. We show that with high probability the algorithm
computes a MIS in time O

(
log3n̂/ log log n

)
. Note that for the

analysis, it is sufficient to assume n̂ = n, because solving MIS
for n′ < n cannot be more difficult than for n. If it were, the
imaginary adversary controlling the wake-up schedule of all
nodes could simply decide to let n − n′ sleep infinitely long,
which is indistinguishable from having n ′ nodes. Subsections
V-A and V-B analyze the events on channels Γ1 and Γ2,
respectively. The algorithm’s runtime is derived in Subsection
V-C. For the sake of clarity, we will sometimes omit the ceiling
signs as imposed by the algorithm. Further, we assume n to
be large enough, such that log3n̂/ log log n ≥ 8 logn. A more
rigorous analysis leads to the same results.

A. Main-Loop

In this subsection, the term sum of sending probabilities
refers to channel Γ1. We cover the plane with circles Ci of
radius r = 1/2 in a hexagonal lattice, as shown in Figure
1. Let Di be the circle centered at the center of Ci having
radius R = 3/2. It can be seen in Figure 1. that Di is (fully
or partially) covering 19 smaller circles Cj . Note that every
node in a circle Ci can hear all other nodes in Ci. Nodes
outside Di are not able to cause a collision in Ci.

Our analysis of the main loop builds on two lemmas ob-
tained in [18]. In that paper, the authors propose an algorithm
which computes an asymptotically optimal dominating set. In
the following, we introduce both lemmas up to a level of detail

Ci

R

r

Di

Fig. 1. Circles Ci and Di

necessary to understand our results. For details and the proofs,
we refer to [18]. We first need the following definition:

Definition 5.1: Consider a circle Ci. Let t be a time-slot in
which a message is sent by a node v ∈ Ci on channel Γ1 and
received (without collision) by all other nodes in C i. We say
that circle Ci clears itself in time-slot t.

The first key lemma given in [18] is a probabilistic bound
on the sum of sending probabilities in a circle C i. The idea
is that once the sum of sending probabilities in Ci surpasses
the (constant) threshold 1/2β, Ci will clear itself within the
next γ · �log n̂� rounds with high probability. In particular, the
probability is high enough as to ensure that the same property
holds for all circles throughout the algorithm. This intuition
is formalized in the following lemma, the proof of which is
based on induction over all time-slots in which the sum of
sending probabilities in an arbitrary Ci surpasses 1/2β.

Lemma 5.1: The sum of sending probabilities of nodes in
a circle Ci is bounded by

∑
k∈Ci

pk ≤ 3/2β with probability
at least 1 − o

(
1

n2

)
. The bound holds for all Ci in G with

probability at least 1 − O
(

1
n

)
.

With Lemma 5.1, we can now bound the number of candi-
dates in each circle Ci before a clearance. This is done in two
steps. First, we compute the number of collisions in a circle
before a clearance occurs. Secondly, Lemma 5.3 establishes an
upper bound on the number of new candidates per collision.
Consequently, combining both results leads to a bound on the
number of candidates before a clearance and concludes our
analysis of the main-loop.

We say that a collision in Ci occurs if more than one node
in Di is sending on Γ1 in a particular time-slot.

Lemma 5.2: Let F be the number of collisions in a circle
Ci between two subsequent clearances (or before the first
clearance). For some constant τ ≤ 8, it holds F < τ log n
with probability at least 1 − o

(
1

n2

)
.

It remains to establish a bound on the number of new
candidates per collision.

Lemma 5.3: Let D be the number of nodes in C i send-

ing in a time-slot. Given the occurrence of a collision, the
expected number of sending nodes (i.e., new candidates) is
E [D|D ≥ 2] ∈ O(1). Furthermore, D ∈ O(log n/ log log n)
with probability 1 − o

(
1

n2

)
.

Proof: Since the nodes send independently of each other,
we can bound the conditional expectation as

E[D|D ≥ 2] ≤ 2 + E[D] = 2 +
∑

k∈Di

pk

≤
Lemma 5.1

2 + 19 · 3
2β

∈ O(1) .

The high probability result can be derived using the upper
tail Chernoff bound. Let μ = E[D|D ≥ 2] and δ =
τ log n/ log log n for some constant τ . For P+ defined as
P [X > (1 + δ)μ], it holds that

P+ <

(
e−δ

(1 + δ)1+δ

)μ

Taking the logarithm of P+, this term simplifies to

log P+ < μ (−δ · log e − (1 + δ) log (1 + δ))

≤ − μτ log n

log log n
log (1 +

τ log n

log log n
)

≤ − μτ log n

log log n
(log (τ log n) − log log log n)

≤ −μτ log n ·
(

1 − log log log n

log log n

)
≤ −2 logn

for large enough τ > μ/2. The lemma now follows from
P+ < 2−2 log n ≤ n−2.

Combining Lemmas 5.2 and 5.3 we have thus established an
O
(
log2n/ log log n

)
upper bound on the number of candidates

emerging in a circle Ci before its clearance.

B. Candidacy-Phase

Upon sending on Γ1 in the main-loop of the algorithm, a
node becomes candidate and competes for joining the MIS.
In this subsection, we are going to show that each candidate
will either join the MIS or will be covered by a MIS node
within time 2δ · log3 n/ log log n. Based on the analysis of
the previous subsection, we can bound the number of nodes
simultaneously executing the candidacy phase() procedure. In
particular, we know by Lemmas 5.2 and 5.3 that with high
probability, there are at most τ log2n/ log log n candidates
emerging in Ci before a clearance, for a constant τ . Further,
all but the sending node restart the main loop after a clearance,
and the sending node itself stops executing the main loop
altogether. Due to the waiting loop at the beginning of the
algorithm, no node in Ci is going to compete for becoming
candidate during the next 2δ · log3 n/ log log n time-slots. In
other words, nodes after a clearance do not interfere with the
current candidacy-phase due to their being inactive. The same
holds for all Ci ∈ Di and hence, the number of candidates
within the transmission range of a node v may not exceed
19τ log2n/ log log n. This crucial observation allows us to

separate candidacy phases in a circle Di and analyze them
individually because a node’s candidacy phase does not take
longer than 2δ · log3 n/ log log n time-slots, as shown in the
sequel.

Lemma 5.4: Let tm be the time-slot in which node vm joins
the MIS. The counter of all neighboring nodes v c, (vm, vc) ∈
E, at time tm is at most c ≤ 2δ log3 n/ log log n − 8 logn
with high probability.

Proof: Let vc be a neighboring node having counter
c > δ log3 n/ log log n − 8 log n by the time tm. Assume for
contradiction that vc exists. By the definition of the algorithm,
vm must have sent in time-slot tm − δ log3 n/ log log n and
vc must have sent within the subsequent 8 log n time-slots.
Afterwards, vc has not received a message from vm. If it had,
it would have reset its counter. The probability Precv(t) that
vc receives a message from vm in an arbitrary time-slot t is

Precv(t) ≥ log log n

log2n

(
1 − log log n

log2n

)d(t)

where d(t) denotes the number of candidates within the
transmission range of vc at time t. We know that d(t) is in
the range between 1 and 19τ log2n/ log log n. Precv(t) is a
monotonously decreasing function in d(t) and therefore,

Precv(t) ≥ log log n

log2n

(
1 − log log n

log2n

) 19τ log2n
log log n

∈ Ω(log log n/ log2n).

The probability that this event does not occur in any of the
δ · �log3 n̂/ log log n̂� time-slots following tm can be shown
to be n−νδ , for some constant ν by applying Fact 3.1. By
choosing δ accordingly, this probability can be made arbitrarily
small.

Let Ei denote the circle with radius 5/2 centered at the
center of Ci. Further, let tc be the time-slot in which a node
vc becomes candidate in Di. The following lemma shows that
with high probability, at least one node in E i (possibly more)
joins the MIS within time tc + 2δ log3 n/ log log n.

Lemma 5.5: For every candidate vc, either vc joins the MIS
or a neighboring candidate v ′

c, (vc, v
′
c) ∈ E, joins the MIS

within time tc + 2δ log3 n/ log log n with high probability.
Proof: The main idea is that once a candidate vc sends

without collision at time ts, it will either join the MIS at
time ts + δ log3 n/ log log n or a neighboring candidate will
join the MIS before. Let c(vc) be the value of vc’s counter
at time ts. As the message is sent without collision, all
neighboring candidates v ′

c having counter values in the interval
[vc−�8 logn�, . . . , vc+�8 logn�] will set c(v′c) := −�8 logn�
due to the received message on Γ2. That is, only nodes with
much larger counter values than c(v) will keep on counting
without resetting. Consequently, after time-slot ts, it holds that

|c(vc) − c(v′c)| > �8 logn� (1)

for all neighboring candidates v ′
c. By sending the message

at time ts, vc has become excited and hence, c(vc) is in-
creased in each subsequent time-slot. By equation (1), no

neighboring candidate will be able to cause a reset of vc’s
counter after ts. In absence of any such neighbor with close
enough counter, there is no way to prevent c(v c) from reaching
δ · �log3 n̂/ log log n̂�, which enables vc to join the MIS.

It remains to be shown that with high probability, one candi-
date in Di sends without collision in the interval [tc, . . . , tc +
δ log3 n/ log log n], such that the above observation can con-
clude the proof. Let t be an arbitrary time-slot. Again, d(t)
denotes the number of candidates within the transmission
range of the first candidate in Di. The probability Psuc(t)
that one node sends without collision is given by

Psuc(t) =
d(t) log log n

log2n

(
1 − log log n

log2n

)d(t)−1

.

Psuc(t) being a concave function in d(t), we can focus our
attention on the two border values d(t) ≥ 1 and d(t) ≤
19τ log2n/ log log n, for all tc ≤ t ≤ tc + δ log3 n/ log log n.
For d(t) = 1, Psuc(t) simplifies to

Psuc(t) =
log log n

log2n

while for d(t) = 19τ log2n/ log log n, we have

Psuc(t) = 19τ ·
(

1 − log log n

log2n

) 19τ log2n
log log n −1

≥
Fact 3.1

19τe−19τ

(
1 − log log n

log2n

)
≥

n≥4
15τe−19τ ∈ Ω(1).

Putting things together, the probability of a successful time-
slot is lower bounded by

Psuc(t) ≥ min { log log n

log2n
, 15τe−19τ}

throughout the considered time interval. The probability P n

that no candidate sends without collision in the interval
[tc, . . . , tc + δ log3 n/ log log n] is therefore

Pn ≤
(

1 − min
{ log log n

log2n
, 15τe−19τ

}) δ log3 n
log log n

≤ max
{
n−δ, n− 15τe−19τ δ log2n

log log n
}
.

For large enough δ, this probability becomes arbitrarily small.
Thus, with high probability, at least one node will send without
collision within the first δ log3 n/ log log n time-slots of the
candidacy-phase. Since the same argument can be repeated for
every node, the lemma follows from the observation stated at
the beginning of the proof.

We are now ready to state the main correctness theorem.
Theorem 5.6: With high probability, no two neighboring

candidates join the MIS, i.e., the resulting independent set is
correct.

Proof: Let vm be a MIS node. Assume for contradiction
that v′

m, (vm, v′m) ∈ E, is the first node violating the MIS
condition. By Lemma 5.4, v ′

m joins the MIS at least 8 logn

time-slots after vm. During these time-slots, vm sends with
constant probability 1/6 on channel Γ3. It is well-known that
in a unit-disk graph, v ′

m can have at most 6 independent
neighbors (i.e., MIS nodes). The probability that v ′

m has
received no message by vm can thus easily be shown to be
Precv ∈ O

(
n−2

)
. Observe that the same argument holds for

nodes which area already covered by (up to 6) MIS nodes by
the time of their wake-up.

C. Running Time

Finally, we derive the algorithm’s running time. In view
of Lemma 5.5 and Theorem 5.6, every node will either join
the MIS or become covered within time δ log3 n/ log log n
upon becoming candidate. We require the following simple
observation which immediately follows from the algorithm’s
definition.

Lemma 5.7: Consider a circle Ci and let ti be the time-
slot in which the first node vc ∈ Ci executes line 5 of the
main-loop. With high probability, there is a node in D i which
becomes candidate before time ti + γ log2n.

Proof: By the definition of the algorithm, vc sends with
pvc = 2−β on Γ1 after log n rounds (unless vc receives a
message from a neighbor in which case the claim holds). The
probability Pno that vc does not send in any of this round’s
γ log n time-slots can be made arbitrarily small by choosing
γ large enough, i.e.

Pno ≤
(

1 − 1
2β

)γ log n

≤
Fact 3.1

n−γ/2β

.

We are now ready to prove the claimed running time of the
algorithm.

Theorem 5.8: Every node v ∈ G either joins the MIS or
becomes covered by a neighboring node joining the MIS
within time O

(
log3n/ log log n

)
upon waking up.

Proof: By Lemma 5.5, we know that if a node w ∈ D i

becomes candidate at time tw, it will be covered (possibly by
joining the MIS itself) before tw + 2δ log3 n/ log log n. This
implies that there is a node vm ∈ Ei joining the MIS before
ti + 2δ log3 n/ log log n, where ti is defined as the first time-
slot a candidate emerges in Di.

Consider an arbitrary node v ∈ Ci. By Lemma 5.7, we know
that 2δ log3n/ log log n+γ log2n ∈ O

(
log3n/ log log n

)
time-

slots after its wake-up, v will either become candidate or there
will be another candidate in Di, from which v has received
a message. In the first case, v will be covered within the
next 2δ log3 n/ log log n time-slots by Lemma 5.5. In the latter
case, at least one node in Ei joins the MIS within the same
period. If this node covers v, we are done. If not, we know that
the same conditions as above hold in the remaining, uncovered
part of Ei, because the waiting period before the main-loop
guarantees that a node cannot take part in the same candidacy-
phase twice. The above argument can thus be repeated. Each
time v either joins the MIS or becomes covered or one node
in Ei joins the MIS in time O

(
log3 n/ log log n

)
.

By Theorem 5.6, no two neighboring nodes join the MIS.
Hence, the number of different nodes joining the MIS in E i

is bounded by a constant because no more than a constant
number of nodes with transmission range 1 can be packed in
a circle Ei of radius 5/2 such that no two nodes are within
each other’s mutual transmission range. In other words, at most
a constant number of repetitions are required and it follows
that node v is covered by a node in the MIS (possibly itself)
within time O

(
log3 n/ log log n

)
upon its wake-up. The same

argument holds for every node v ∈ G which concludes the
proof.

Our analysis is concluded by combining Theorems 5.6 and
5.8 in the following Corollary.

Corollary 5.9: With high probability, the algorithm com-
putes a correct MIS such that each node is covered within
time O

(
log3 n/ log log n

)
upon waking up.

VI. SINGLE-CHANNEL

Realizing independent communication channels by means
of an FDMA scheme may not always be desirable or possible.
In this section, we show that a MIS clustering can be efficiently
computed in the most basic single-channel setting, too. We
do so by adapting a technique developed in [31]. Intuitively,
the idea is to simulate each time-slot in the multi-channel
model by a number of time-slots in the single-channel model.
In particular, we show that the algorithm’s time complexity
remains polylogarithmic.

For the mapping to the single-channel case, assume that
all senders sending on any channel in the multi-channel case
send on a single common channel Γ. It is clear that this
can lead to additional collisions. When simulating multiple
channels with a single channel, we must guarantee that each
successful transmission in the multi-channel case corresponds
to a successful transmission in the single-channel case. The
critical cases are those in which a node receives a message in
the multi-channel case, but does not receive it in the single-
channel case, due to a collision caused by the mapping. For
instance, the situation when one node sends on Γ1 and a
collision occurs on Γ2 and Γ3 is a critical case, because the
message on Γ1 is not received on Γ when simulating the
three communication channels with a single one. If, however, a
collision occurs on all channels, it is not a critical case since
no message is successfully transmitted in the multi-channel
case. Our simulation algorithm must ensure that a message
can be successfully transmitted in all critical cases.

In accordance to [31], let s and t be time-slots in the
single-channel and multi-channel model, respectively. We sim-
ulate each time-slot t with 3α log3n/ log log n time-slots s
for a large enough constant α. The idea is that each node
sending on Γ1, Γ2, or Γ3 in t randomly sends on the
single common channel Γ with probability log log n/ log2n
during the “middle” α log3n/ log log n time-slots (i.e., t ∈
[α log3n/ log log n . . . 2α log3n/ log log n−1]) corresponding
to t. During the first and last α log3n/ log log n time-slots,
such a node will not send. A node not sending on any channel
in t remains quiet during the entire interval. This approach

follows the intuition that α log3n/ log log n time-slots suffice
to “spread” the (at most) O

(
log2n/ log log n

)
senders on each

channel in time, enabling each one of them to send without
collision at least once.

Formally, the simulation algorithm is defined as follows.
We write send(t) = 1 if a sender sends in time-slot t and
send(t) = 0, otherwise. Further, let λ := α log3n/ log log n
and p := log log n/ log2n. Each node simulates time-slot t by
3λ single-channel time-slots s1 . . . s3λ in the following way:

send(t) = 0 ⇒ ∀si ∈ [s1 . . . s3λ] :
send(si) := 0

send(t) = 1 ⇒ ∀si ∈ [s1 . . . sλ , s2λ+1 . . . s3λ] :
send(si) := 0

send(t) = 1 ⇒ ∀si ∈ [sλ+1 . . . s2λ] :

send(si) :=
{

1, with prob. p
0, with prob. 1 − p

Let suc(t) = 1 denote that a message has been successfully
transmitted in time-slot t, and suc(t) = 0 otherwise. We can
state the following lemma, the proof of which is similar to the
one given in [31] and is omitted due to space limitations.

Lemma 6.1: Time-slot t can be simulated
by O

(
log3n/ log log n

)
time-slots si, i ∈

[1 . . . 3α log3n/ log log n], for a large enough constant
α such that suc(t) = 1 ⇔ ∃i : suc(si) = 1 with probability
1 − O

(
1/n2α

)
.

Note that due to asynchronous wake-up, we cannot and
do not assume that intervals of length 3λ are aligned among
nodes. Thanks to the “buffer-periods” at the beginning and end
of each interval, we do not rely on such an assumption. Having
Lemma 6.1, it is now straightforward to correctly simulate the
entire algorithm with a single channel within polylogarithmic
running time: All nodes simulate each of their time-slots with
the algorithm given above, leading to the following Theorem.

Theorem 6.2: The MIS algorithm in the single-channel
model has time-complexity O(polylog(n)). With high proba-
bility, all critical steps are executed like in the multi-channel
algorithm.

Proof: Time-complexity follows from Theorem 5.8 and
Lemma 6.1. For correctness, we compute the probability
P that all critical steps are correctly simulated. Since the
algorithm’s execution takes at most C ·n log3n/ log log n steps
for a constant C in the multi-channel case, P is

P ≥
(

1 − 1
n2α

)Cn log3n
log log n

∈ 1 − O
(

log3n

nα

)
.

VII. CONCLUSIONS

How can we structure the chaos existing during the deploy-
ment of an ad-hoc or sensor network? In this paper, we have
tried to provide an answer by analyzing the initialization phase
of unstructured multi-hop radio networks. Immediately after
deployment, organizing an efficient medium access scheme is

probably the most urgent task at hand, and computing a good
initial clustering is one of the key ingredients to solving it.

We have proposed a novel algorithm which computes a
maximal independent set in polylogarithmic time even under a
model featuring many of the realities of unstructured networks.
Besides being a dominating set of excellent quality, a MIS
has the additional property that no two clusterheads interfere.
This is particularly desirable in the initialization phase of ad-
hoc and sensor networks, facilitating the construction of an
efficient MAC layer.

We believe that due to its being fast and simple, our
algorithm has practical relevance in a variety of scenarios,
particularly in newly deployed ad-hoc and sensor networks.
Analyzing important issues such as energy-efficiency in the
unstructured radio network model is an interesting and promis-
ing field for future research.

ACKNOWLEDGEMENTS

We would like to thank Rohan Fernandes and Miguel
Mosteiro for various helpful comments and in particular, for
pointing out an improvement of Lemma 5.5. We would also
like to thank Fabian Kuhn for valuable discussions.

REFERENCES

[1] D. J. Baker and A. Ephremides, “The Architectural Organization of a
Mobile Radio Network via a Distributed Algorithm,” IEEE Transactions
on Communications, vol. COM-29, no. 11, pp. 1694–1701, 1981.

[2] S. Basagni, “Distributed Clustering for Ad Hoc Networks,” in Proceed-
ings of the IEEE International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN), pp. 310–315.

[3] M. Chatterjee, S. K. Das, and D. Turgut, “An On-Demand Weighted
Clustering Algorithm (WCA) for Ad-Hoc Networks,” in Proceedings of
IEEE GLOBECOM 2000. ACM Press, 2000, pp. 1697–1701.

[4] M. Gerla and J. Tsai, “Multicluster, mobile, multimedia radio network,”
ACM/Baltzer Journal of Wireless Networks, vol. 1, no. 3, pp. 255–265,
1995.

[5] C. R. Lin and M. Gerla, “Adaptive Clustering in Mobile Wireless
Networks,” IEEE Journal on Selected Areas in Communications, vol. 16,
pp. 1265–1275, 1997.

[6] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating Sets and Neigh-
bor Elimination-Based Broadcasting Algorithms in Wireless Networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 12.

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocol for Wireless Microsensor Networks,”
in Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences, 2000, pp. 3005–3014.

[8] K. Alzoubi, P.-J. Wan, and O. Frieder, “Message-Optimal Connected
Dominating Sets in Mobile Ad Hoc Networks,” in Proceedings of the
3rd ACM Int. Symposium on Mobile Ad Hoc Networking and Computing
(MOBIHOC), EPFL Lausanne, Switzerland, 2002, pp. 157–164.

[9] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Discrete
Mobile Centers,” in Proceedings of the 17th annual symposium on
Computational geometry (SCG). ACM Press, 2001, pp. 188–196.

[10] L. Jia, R. Rajaraman, and R. Suel, “An Efficient Distributed Algorithm
for Constructing Small Dominating Sets,” in Proceedings of the 20th

ACM Symposium on Principles of Distributed Computing (PODC),
2001, pp. 33–42.

[11] F. Kuhn and R. Wattenhofer, “Constant-Time Distributed Dominating
Set Approximation,” in In Proceedings of 22nd ACM Int. Symposium
on the Principles of Distributed Computing (PODC), 2003, pp. 25–32.

[12] P. Wan, K. Alzoubi, and O. Frieder, “Distributed construction of con-
nected dominating set in wireless ad hoc networks,” in Proceedings of
Infocom 2002, 2002.

[13] J. Wu and H. Li, “On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks,” in Proc. of the 3rd Int.
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (DialM), 1999, pp. 7–14.

[14] S. Basagni, “A Distributed Algorithm for finding a Maximal Weighted
Independent Set in Wireless Networks,” in Proceedings of the 11th

IASTED International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS), 1999, pp. 517–522.

[15] K. Alzoubi, P.-J. Wan, and O. Frieder, “Maximal Independent Set,
Weakly-Connected Dominating Set, and Induced Spanners in Wireless
Ad Hoc Networks,” International Journal of Foundations of Computer
Science, vol. 14, no. 2, pp. 287–303, 2003.

[16] M.Cardei, X.Cheng, X.Cheng, and D. Z. Du, “Connected Domination
in Ad Hoc Wireless Networks,” in Proceedings of the 6th International
Conference on Computer Science and Informatics, 2002.

[17] Y. Wang and X.-Y. Li, “Geometric Spanners for Wireless Ad Hoc
Networks,” in Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), 2002.

[18] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Radio Network Clustering
from Scratch,” in Proceedings of 12th Annual European Symposium on
Algorithms (ESA), 2004.

[19] R. Bar-Yehuda, O. Goldreich, and A. Itai, “Efficient Emulation of Single-
Hop Radio Networks with Collision Detection on Multi-Hop Radio
Networks with no Collision Detection,” Distributed Computing, vol. 5,
pp. 67–71, 1991.

[20] F. A. Tobagi and L. Kleinrock, “Packet Switching in Radio Channels:
Part II - The Hidden Terminal Problem in Carrier Sense Multiple Access
and the Busy Tone Solution,” vol. COM-23, no. 12, pp. 1417–1433,
1975.

[21] R. M. Karp and A. Widgerson, “A fast Parallel Algorithm for the
Maximal Independent Set Problem,” in Proceedings of the 16th Annual
ACM Symposium on Theory of Computing (STOC), 1984, pp. 266–272.

[22] M. Luby, “A Simple Parallel Algorithm for the Maximal Independent
Set Problem,” SIAM Journal on Computing, vol. 15, pp. 1036–1053,
1986.

[23] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “What Cannot Be Com-
puted Locally!” in Proceedings of 23rd ACM Symposium on Principles
of Distributed Computing (PODC), 2004, pp. 300–309.

[24] R. Bar-Yehuda, O. Goldreich, and A. Itai, “On the time-complexity of
broadcast in radio networks: an exponential gap between determinism
randomization,” in Proceedings of the 6th annual ACM Symposium on
Principles of Distributed Computing (PODC). ACM Press, 1987, pp.
98–108.

[25] E. Kushilevitz and Y. Mansour, “An Ω(D log(N/D)) Lower Bound for
Broadcast in Radio Networks,” SIAM Journal on Computing, vol. 27,
pp. 702–712, 1998.

[26] T. Hayashi, K. Nakano, and S. Olariu, “Randomized Initialization
Protocols for Packet Radio Networks,” in Proceedings of the 13th

International Parallel Processing Symposium (IPPS), 1999, pp. 544–
548.

[27] K. Nakano and S. Olariu, “Energy-Efficient Initialization Protocols
for Single-Hop Radio Networks with no Collision Detection,” IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 8, 2000.

[28] L. Gasieniec, A. Pelc, and D. Peleg, “The Wakeup Problem in Syn-
chronous Broadcast Systems (Extended Abstract),” in Proceedings of the
19 th ACM symposium on Principles of Distributed Computing (PODC).
ACM Press, 2000, pp. 113–121.

[29] T. Jurdzinski and G. Stachowiak, “Probabilistic Algorithms for the
Wakeup Problem in Single-Hop Radio Networks,” in In Proceedings of
13 th Annual International Symposium on Algorithms and Computation
(ISAAC), ser. Lecture Notes in Computer Science, vol. 2518, 2002, pp.
535–549.

[30] B. S. Chlebus and D. R. Kowalski, “A Better Wake-Up in Radio
Networks,” in Proceedings of 23rd ACM Symposium on Principles of
Distributed Computing (PODC). ACM Press, 2004, pp. 266–274.

[31] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Initializing Newly
Deployed Ad Hoc and Sensor Networks,” in Proceedings of 10th

Annual International Conference on Mobile Computing and Networking
(MOBICOM), 2004.

[32] L. G. Roberts, “Aloha Packet System with and without Slots and
Capture,” ACM SIGCOMM, Computer Communication Review, vol. 5,
no. 2, pp. 28–42, 1975.

