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When in Montreal ...




Montreal: Full of one way streets ....

“About 25 per cent of streets are one-way”
Valérie Gagnon, spokesperson for the city of Montreal



Navigating in Zurich
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Zurich: Full of one-way streets too...
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Formal Model

e Given a strongly connected directed graph G = (V/, E)
— All m edges have non-negative weights
— All n nodes have a unique ID

e A searcher starts from some node s
— With unlimited memory and computational power
— Has to explore the graph

e Agraph is called explored, if the searcher has visited all n nodes and
returned to the starting node s

e When the searcher arrives at a node, she knows all outgoing edges,
including their cost and the ID of the node at the end of the edges

cf. [Kalyanasundaram & Pruhs 1994, Megow et. al. 2011]



How good is a tour, how good is a strategy?

Cost of a tour:

Competitive ratios for:

atourT:

deterministic algorithms:

randomized algorithms:

Sum of traversed edge weights

costof T
cost of optimal tour

costof T
max .
Vtours T cost of optimal tour

expected cost of T

max -
Vtours T costof optimal tour



Applications of Graph Exploration

e One of the fundamental problems of robotics
cf. [Burgard et al. 2000, Fleischer & Trippen 2005]

e Exploring the state space of a finite automaton
cf. [Brass et al. 2009]

e A model for learning
cf. [Deng & Papadimitriou 1999]



Some Related Work

e Offline: Asymmetric Traveling Salesman problem
— Approximation ratio ofglogz n [Feige & Singh 2007]
— Randomized: O(logn/log logn) [Asadpour et al. 2010]

Undirected graph exploration: Directed Case
e General case: O(logn) [Rosenkrantz et al. 1977]

e Lower bound: 2.5 — £ [Dobrev & Krdlovi¢ & Markou 2012]

e Planar graphs: 16 [Kalyanasundaram & Pruhs 1994] O(n)

e Genusatmostg:16(1+ 2g) [Megow et al. 2011]

e Unweighted: 2 (I.b.: 2 — &, [Miyazaki et al. 2009])

e Does randomization help? factor of 4 at most



Exploring with a Greedy Algorithm

Achieves a competitive ratioofn — 1

Proof sketch:

Greedy uses n — 1 paths to new nodes and then returns
The greedy path P,,, from v to a not yet visited node w is a shortest path

Let T be an opt. Tour inducing a cyclic ordering of all n nodes in G, with the
tour consisting of n segments.

The path P,,, has by definition at most the cost of the whole part T,,,,, of the
tour T, which consists of at most n — 1 segments.

Therefore, the cost of each of the n segments
in T has to be used at most n — 1 times for the
upper cost bound of the greedy algorithm.



Exploring with a Greedy Algorithm — Unweighted Case
. .- . n 1 1
e Achieves a competitive ratio of 2 + >

* Proof sketch:
— The cost to reach the first new node is 1, then at most 2, then at most 3, ...
— If we sum this up, we get an upper bound of

1+424+3.+(n-2)+(n—-1D+Mn-1)

n
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— The cost of an optimal tour is at least n.



Lower Bounds for Deterministic Online Algorithms

“ e o o ....\[]

e No better competitive ratio than n — 1 is possible.

: . . 1 1, :
e Unweighted case: No better competitive ratio than g + P possible.

e Both results are tight.



Lower Bounds for Randomized Online Algorithms

e No better competitive ratio than % is possible.

e Proof sketch:

— When beingatanode v; ,with1l <i < g — 2, for the first time, then the
“correct” edge can be picked with a probability of at most p = 0.5.

— Expected amount of “wrong” decisions: 0.5 (g — 2) = % — 1.

— The cost of an optimal tour is 1.

: .. . 3 1. :
e Unweighted case: No better competitive ratio than g + 2 s possible.



Variations of the Model

e Randomized starting node?
e Choosing best result from all starting nodes?

e Possible solution: Duplicate the graphs, connect their starting nodes

e No better competitive ratio possible than

- % (deterministic online algorithms)

- % (randomized online algorithms)



Variations of the Model

e What if the searcher also sees incoming edges?

decreases lower bound decreases lower bound
by a factor of less than 2 by a factor of less than 1.5

e What if the searcher does not see the IDs of the nodes at the end of
outgoing edges, but knows the IDs of outgoing and incoming edges?

— Greedy algorithm still works with same ratio (all nodes have been visited if
all edges have been seen as incoming and outgoing edges)

— Lower bound examples also still work



Searching for a Node

e Not feasible in weighted graphs:

 Inunweighted graphs, lower bounds for competitive ratios:

Deterministic Randomized
m—1? (n-1) 1 , n® n
_ _Z ———+1€Qn?
4 4 5 €% 16 8 (n°)

2
e A greedy algorithm has a competitive ratio ofn? — % € 0(n?)



Adding Geometry

e searcher knows coordinates of nodes
e graphis Euclidean & planar



Adding Geometry




Adding Geometry




Adding Geometry




Adding Geometry

~ expected cost:
1 (11 b}
+ ~_n‘errors

optimal tour: |
* 2x "toptbottom™
e cost: ~2n ‘

2

« cost ~ ™%
3 " 8

n 5 1
lower bound of etgttEE Q(n)



Overview of our Results

competitivity
; N lower bound upper bound mult. gap
type of grap
(deterministic) general** n—1 n—1 sharp
(randomized) general*T ¢ T n—1 <4
(d.) unweighted general™ 5+ % — % 5+ % — % sharp
(r.) unweighted general® g+ % — % 5 + % — % < 4
(d.) euclidean planar n—2—¢ n—1 <1.25+4c¢€
(r.) euclidean planar Z ¢ n—1 <4+ e
(d.) unit w. euclidean planar o412 2411 <2
(r.) unit w. euclidean planar 431 e <4
(r.) geom. euclidean planar 16 + % + % — € n—1 <16 + €
—_1)2 _ 2
(d.) searching a node | - 41) (n4 D 1 22 <3
2 2
(r.) searching a node 5 — 8§ +1 -7 < 4.1
* also applies to planar graphs and graphs that satisfy the triangle inequality?
€, €/ denote any fixed value greater than 0
¢ also applies to complete graphs and graphs with any diameter from 1 to n — 1
T also applies to graphs with any max. incoming/outgoing degree from 2 to n — 1 and to
graphs with any minimum incoming/outgoing degree from 1 to n — 1
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