
Effectively Capturing Attention Using the Capture Effect

Michael König
Distributed Computing Group

ETH Zürich, Switzerland
mikoenig@ethz.ch

Roger Wattenhofer
Distributed Computing Group

ETH Zürich, Switzerland
wattenhofer@ethz.ch

ABSTRACT
We propose a new class of wireless transmission schemes
decoupling synchronization headers from payloads to cre-
ate new transmission primitives involving a second sender.
By transmitting a synchronization header only we can let
nearby nodes receive fragments of a packet without having
to receive that packet’s synchronization header, and by using
the capture effect we can overwrite portions of the payload
of longer ongoing packets.

We explore two scenarios potentially benefiting from such
schemes. A) First, we consider crossing a network chasm
over which all links are of poor quality: by broadcasting a
fabricated packet header on the receiving side of the chasm
all receiving nodes are informed to record the packet to the
best of their ability. B) Second, we investigate the inser-
tion of short high-priority packets into longer lower-priority
transmissions from a different sender. This has the advan-
tage that high-priority senders do not need to wait for the
medium to become free but can begin sending at once, while
receivers lose only the affected portion of their already in-
coming low-priority packets.

Further, we examine two techniques to reduce the amount
of symbol decoding errors caused by using a mismatching
synchronization header: 1) careful transmission timing and
2) correction of deterministic symbol decoding errors. In
scenario A) these techniques improve the chance of every
part of a packet being received successfully by some node
on the receiving side of the chasm from 5% to up to 30%.
In scenario B) we reach successful decoding of the injected
packet in up to 70% of cases.

In proof of concept implementations on a testbed of TelosB
nodes we confirm the soundness of our methods.

CCS Concepts
•Networks → Link-layer protocols; Wireless access
networks; Sensor networks; •Hardware → Wireless de-
vices; Wireless integrated network sensors;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Sensys 2016 November 14–16, 2016, Stanford, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4263-6. . . $15.00

DOI: http://dx.doi.org/10.1145/2994551.2994560

Keywords
Capture Effect, Packet Injection, Power Control, Concur-
rent Transmission, Medium Access Control, Wireless Sensor
Networks

1. INTRODUCTION
Wireless networks have been around for a long time, and

almost always the participating nodes adhere to a simple
setup: There is a sender which transmits data to a single re-
ceiver or a set of receivers. More recently, this setup increas-
ingly includes multiple antennas on both sides (multiple-
input and multiple-output, MIMO). However, conceptually,
we still have a single sender trying to transmit a packet to
a (set of) receiver(s).

In this paper, we introduce a third party, a “third man”
in the form of a second sender. This second sender tries
to capture the attention of the receiver(s) using the cap-
ture effect. The second sender ignores the standard rules
of wireless communication, and blatantly transmits during
the transmission of the first sender. The second transmitter
could transmit during the payload of the original packet, or
during its header. We want the second sender to be stronger
than the first sender, either by being closer to the receiver(s),
or by transmitting with more power.

We present two scenarios benefiting from such unortho-
dox behavior. However, we believe that the general idea of
having a second sender may have potential beyond our two
examples.

Our first scenario addresses networks with partially low
density, e.g., where a few nodes failed and the network was
separated into two or more parts that can hardly commu-
nicate with each other. Consider the case of a spread out
multi-hop wireless network containing a “chasm”, i.e., a vir-
tual or physical gap between two parts of the network across
which links are very poor, as illustrated in Figures 1 and 2.
Even if the network still forms a connected graph via routes
around the chasm using only stable links, these detours in-
cur a large latency and medium usage overhead due to the
additional hops packets have to make.

By sending across the chasm we might collect several par-
tially incorrectly received packets at multiple nodes at the
receiving side. These erroneous copies may then be pieced
together to obtain a completely correct copy of the sent
packet. However, if already the synchronization header is
not received correctly at a node, that node will not recog-
nize the incoming packet and hence will not be able to record
it. By employing a node broadcasting a fake synchroniza-
tion header on the receiving side, we are able to ensure that

Figure 1: Chasm scenario: connection from the red
node to bottom half of the graph via A) stable edges
around the right side versus B) unstable crossing
edges (dashed and in gray).

Figure 2: Alternative chasm scenario: the network
is partitioned by a wall without any stable edges
crossing it.

every node which is a candidate for receiving at least parts
of the packet is listening. This improves the chances of cor-
rectly receiving every part of the packet in some cases from
less than 5% to about 30%.

The second scenario we discuss makes use of what we
call the packet-in-packet communication primitive: Here,
the second sender does not transmit during the header, but
during the payload of the first sender’s packet. As such, the
second sender may inject a short packet into concurrently
ongoing transmissions using the capture effect. Doing so,
the time and control message overhead for avoiding collision
between high-priority and low-priority traffic can be reduced
to a minimum. This is particularly beneficial when the high-
priority traffic consists of short spontaneous bursts.

Naively sending a high-priority packet into an ongoing
transmission with a sufficient power differential for the cap-
ture effect to occur (about 4-5 dB on TelosB) results in the
inserted packet being decoded correctly in only about 5%
of cases. However, with proper improvements, we can bring
this value up to 70%.

In particular, we apply two techniques to improve the suc-
cess rates in both scenarios: 1) improving transmission syn-
chronization and 2) repairing misinterpreted symbols where

possible.
1) By improving transmission synchronization we increase

the chance of the symbols of the strong/injected and the
weak/base packet to overlay closely enough, such that the
symbols have a high chance of being decoded properly. In
the chasm scenario this results in a complete packet trans-
mission in 25% of cases. For packet-in-packet this improves
the correct decoding rate to about 40%.

2) Among the remaining bad cases we observe many to
experience a deterministic mapping of values on the injected
symbols. By reversing this mapping we are able to repair
some of the bad cases, raising the total correct decoding rate
to 30% in the chasm scenario and to 70% in the packet-in-
packet scenario.

We implemented proofs of concept of these techniques
based on Contiki for both scenarios on the popular sensor
node TelosB and tested them on the office building testbed
FlockLab [14].

2. RELATED WORK
In recent years, wireless sensor networks have been an

area of active research. The inherent multi-hop topology as
well as the unique properties of the wireless medium enabled
the inception of several new communication primitives. In
particular, most recently, ways to induce constructive inter-
ference through concurrent forwarding of a single transmis-
sion have been explored [4, 3]. Constructive interference can
boost signal quality and allows rapid network flooding with-
out the overhead of a carefully planned flooding schedule.
Another example is the deliberate use of the capture effect,
which was previously thought of as a nuisance. Yet it is
now counted on more and more to resolve collisions without
experiencing destructive interference, which most classical
models would predict [22, 11]. Our work mainly falls into
this field of work on medium access primitives. However,
one of our scenarios also deals with the topic of unreliable
links.

Lu et al. [15] proposed the Flash flooding protocol, in
which a flooding schedule is forgone in favor of letting every
reached node simply broadcast a few times. The capture
effect enables correct reception at nodes receiving packets
from different neighbors at sufficiently different strengths.
The protocol also implements fallback mechanisms to en-
sure flooding is able to proceed at nodes which experience
only destructive interference due to the arriving signals be-
ing too similar in strength. This approach was shown to
reach flooding latencies close to the theoretical optimum,
reducing previous latency values by up to 80%.

Flury et al. [5] proposed Slotos, which among other con-
cepts features an alarm propagation system, in which alarms
are propagated as a simple recognizable waveform. In this
system, whenever a node would notice the alarm waveform,
it would start sending this waveform itself. Due to the cap-
ture effect and only requiring a short glimpse of the alarm
waveform, destructive interference is not an issue, and the
alarm is able to spread quickly and reliably. Clearly, the
downside of this approach is its inability to carry meaning-
ful data beyond the presence of the alarm itself. Gotzhein
et al. [7] presented Black Burst Synchronization, employing
a similar approach, offering multi-hop synchronization via
collision-resistant “black bursts”.

Dutta et al. [2] discovered that automatic acknowledg-
ments of multiple nodes having received the same packet will

in fact be synchronized so well as to cause constructive in-
terference. Automatic acknowledgments are a common wire-
less transceiver feature that allows an immediate response to
correctly received packets (as verified by the packet’s check-
sum). As the acknowledgment is completely handled by the
hardware, this feature avoids any variable desynchronizing
delays the microprocessor software may cause.

Ferrari et al. [4] took this idea of synchronizing to the end
of a previously received packet one step further and proposed
Glossy : instead of sending an acknowledgment, which does
not allow for the transmission of meaningful data, they pre-
pare a full response packet during the reception of the incom-
ing packet. By immediately issuing its transmission when
the transceiver indicates the completion of the reception of
the incoming packet the variable delays microprocessor soft-
ware can introduce is minimized. As the packet contents
sent by the different responders still have to be the same to
allow constructive interference, this approach is best-suited
for flooding. The constructive interference leads to improved
signal strengths, making weaker and longer links more vi-
able. Further, the rapid forwarding leads to exceptionally
short flooding durations. Several recent protocols are based
on the rapid data dissemination capability of Glossy [3, 12,
1, 24] and various studies on its reliability and the conditions
for creating constructive interference have been conducted
[25, 23].

For the scenarios examined in this paper, a Glossy-like
mechanism is not applicable, as 1) the presence of a common
reference packet for all senders is not guaranteed and in fact
impossible in the case of the chasm and 2) these scenarios
aim to have the two senders start sending at different times
rather than simultaneously.

Unreliable links have been studied from various different
angles. Zuniga et al. [26] proposed an analytical model pre-
dicting the behavior of links in the transitional region be-
tween stable and nonexistent communication. On the other
hand, adapting behavior to deal with intermittently missing
links has been proposed: Su et al. [20] developed a set of
routing algorithms dealing efficiently with intermittent out-
ages in links, while Seth et al. [19] came up with a system
to facilitate communication in rural areas piggybacking on
vehicles.

Santhapuri et al. [17] proposed a hardware feature allow-
ing a transceiver to disengage from the reception of an on-
going transmission and lock onto a newly started stronger
one. To do so they proposed the hardware keep scanning
for syncwords even during transmission reception, similar
to the way we detect injected packets. However, the ap-
proaches we present in this paper do not rely on such hard-
ware support, but instead make do with the capabilities of
run-of-the-mill transceivers. Further, in most cases of the
packet-in-packet scenario we are able to recover after the in-
jected packet and correctly receive the remaining tail end of
the original packet.

To the best of our knowledge, cleanly injecting and de-
coding packets in packets as we study in this paper has not
been attempted yet.

3. CONCEPTS

3.1 Preliminaries
In the following we will discuss the basics of wireless re-

ceiver operation relevant to our undertaking. The details

Preamble

4

SFD

1

Length

1

Payload

Length - 2

Checksum

2

Figure 3: IEEE 802.15.4 PHY layer packet format
plus checksum footer (technically part of the MAC
layer) [8]. The values on top designate the length
of the respective segment in bytes. The preamble
consists of only zero symbols and the SFD (Start
of Frame Delimiter) is a pair of constant symbols.
The checksum is a simple 16-bit CRC value of the
payload.

of the parts of a transmission vary slightly between wireless
standards, but the presented primitives are only loosely tied
to the IEEE 802.15.4 standard [8] we used. See Figure 3 for
an overview of the IEEE 802.15.4 packet format.

When a packet is transmitted it is usually prepended a
preamble and a synchronization word (sometimes called start
of frame delimiter, SFD). Together, the preamble and the
synchronization word form the synchronization header. The
preamble is a predefined pattern of symbols used to let lis-
tening receivers synchronize to the correct phase of symbols
and chips. In IEEE 802.15.4 it consists of ‘0’ symbols only.
The synchronization word is a constant string of symbols
to mark the start of the packet, which signals receivers to
start recording the following symbols. If a receiver does not
hear the synchronization word of a transmission, it will not
decode the signal and perceive it as noise.

At the head of a packet there usually is a length field
specifying the number of bytes in the payload, and thus also
the duration of the transmission. Receivers use this field to
know how many symbols to decode. A common feature of
receivers is to “lock on” to a transmission once they received
its header including the length: they commit to decoding
that packet in its entirety no matter how bad the signal
quality may get. This is intended to allow the application
to still make use of the non-broken parts of a packet even if
part of the packet reception was disrupted.

Finally, a packet usually contains a checksum over its
length and payload to allow telling whether the whole packet
was received correctly. However, if there are any errors, the
checksum does not help in determining their location.

The capture effect occurs when multiple signals arrive at
a receiver concurrently and the strongest signal is stronger
than the noise plus the other signals by some threshold.
In this case, the receiver will decode the strongest signal
without error, completely ignoring the other signals. When
a receiver is already receiving a packet, it does not scan
for further synchronization headers. Thus, an overlapping
packet may not be recognized as a packet, even if it is strong
enough to induce the capture effect. Instead, a stronger but
later packet essentially writes its data over the payload of
the weaker packet as it is being received. This means that
the overwritten data of the weaker packet is lost, but it
also means that the stronger packet is not lost. In many
cases the receiver can find the stronger packet’s data (and
headers) either directly in the weaker packet’s payload (if
the two packets’ symbol phases were well-synchronized) or
after descrambling the received symbols (see Section 6).

1b1f21ffdedededededededededededededededededede

1b1f229fd3dedededededeeed2dedddededededede8ede

1b1f21ffdeded4dededededededededededededededede

1b1f21ffde2ede1ed77eddd92ed2ded0deded7dede6e94

Figure 4: An example of a single short packet after
being received by 3 different receivers, exhibiting
seemingly independent decoding errors. The first
line shows the packet as it was sent.

3.2 The Chasm
Consider the situation described in Figures 1 and 2: tra-

ditionally, to send a packet to the other side of the chasm,
one would use the multi-hop route using the stable edges.
This route, however, causes a high latency for the packets
and incurs a noticeable overhead in medium usage. Worse,
sometimes this route may not even exist, and without being
able to send across the chasm the network graph would be
disconnected.

In the chasm scenario we isolate this situation and explore
what is possible using the weak links only, hence avoiding
the detour. We assume the weak links to have a near zero
chance of transmitting a complete packet correctly, while
still being capable of correctly decoding some symbols now
and then. If after a cross-chasm transmission the nodes on
the receiving side exchange what symbols they got, they may
be able to piece together the complete packet and verify its
correctness using the checksum field.

For this setup to be viable, errors in the transmission
should not occur at or near the sender. Instead, they should
occur in the decoding stage at each receiver, independently
of the other receivers. We found this assumption to be cor-
rect in our setup by comparing the received symbols of mul-
tiple receivers for the same packet. An illustrative example
can be seen in Figure 4.

As mentioned above, the receivers will in fact only record
incoming data if a correct synchronization header is received.
We cannot make the assumption that this will always be
the case for our receivers in the chasm scenario, since the
symbols of the synchronization header are just as likely to
not be received correctly as any of the data symbols. In other
words, we will not get any information about the packet
from the portion of receivers which failed to recognize the
synchronization header.

To solve this problem we propose having another node on
the receiving side of the chasm send out a synchronization
header as well as a large packet length field, but not trans-
mit any packet payload, just before the cross-chasm packet
arrives (see Figure 5). This header should be easily recog-
nizable by all the receivers due to their proximity and cause
them to start recording symbols.

Note that this does require knowledge of when the next
cross-chasm packet will arrive. This may be determined
from a pre-determined schedule or be agreed upon in a pre-
vious cross-chasm packet. It also implies maintaining a
synchronization error low enough to ensure the cross-chasm
packet is sent during the fake packet. In IEEE 802.15.4 the
duration of a maximum length payload is about 5.1 ms. This
dictates a maximum absolute synchronization error of 2.5 ms
for short cross-chasm packets. The longer the cross-chasm
packets are, the more stringent the synchronization needs

Figure 5: By having the green node send out a
synchronization header first we can ensure that all
the nodes with a chance of receiving parts of the
cross-chasm packet are indeed listening and record-
ing symbols.

to be, up to a symbol level synchronization at maximum
length. An alternative would be to try and detect packets
by monitoring the energy levels on the channel. However,
this approach is prone to false positives from noise and non-
chasm transmissions. Due to the large overhead incurred,
we propose to employ this primitive only when the detour
alternatives are prohibitively long or nonexistent.

In our implementation we pre-assign all nodes their re-
spective roles (cross-chasm sender, wakeup sender and re-
ceivers) and establish a proof of concept for the ideas above.
We consider short cross-chasm packets only and no other
traffic within the network. Integrating the transmission prim-
itive into a more general and adaptive protocol is left to
future work.

3.3 Packet-In-Packet
For this scenario imagine a network of nodes being used

both for low-priority bulk data transmission and short, ir-
regularly occurring high-priority messages. One traditional
approach would be to use a schedule guaranteeing time slots
for high-priority traffic. This comes with a large overhead
to the low-priority traffic even during times without high-
priority traffic. To avoid the overhead of scheduling one
could instead use an opportunistic channel access scheme:
trying to send as soon as the channel appears free (using
clear channel assessment, CCA). This approach has trouble
guaranteeing traffic prioritization in busy networks as low-
priority traffic may starve out high-priority traffic. Addi-
tionally, the hidden and exposed terminal problems become
problematic [9]. To improve traffic prioritization, one could
impose time-slotting on the network. By then delaying low-
priority messages by a constant time high-priority messages
are allowed to access the channel first. This, however, still
does not solve the hidden and exposed terminal problems.

Further, traditional approaches have in common that they
require high-priority messages to wait at least until all cur-
rently ongoing conflicting low-priority messages have fin-
ished. The packet-in-packet primitive we propose makes
use of the capture effect with the aim to allow high-priority
messages to be sent regardless of any ongoing low-priority
messages, i.e., immediately upon traffic emergence. If a

low-priority message is already being received when a high-
priority message arrives, it will overwrite and be decoded
as part of the low-priority message’s payload. We say, the
high-priority message is injected into the low-priority mes-
sage. Again, we present a proof of concept implementation
of this basic primitive. Integrating it into a proper protocol
or a MAC layer is left to future work.

For this scheme to work we need to be able to reliably
induce the capture effect, i.e., we need high-priority traffic
to always be at least 4-5 dB stronger than any low-priority
traffic at the intended receivers. This can be accomplished
one of two ways: 1) placing the receiver significantly closer
to the high-priority sender than to the low-priority sender,
or 2) using transmit power control, which requires the used
links to be capable of operating at different transmit power
settings. If this condition is fulfilled, no additional overhead
is imposed on low-priority traffic beyond the data lost as a
direct result from high-priority data taking its place. Other-
wise, the additional hops necessitated by the unavailability
of certain links too weak or too strong to induce the capture
effect may offset this primitive’s usefulness.

In addition, this scheme relies on low-priority packets to
be at least 2-3 times longer than high-priority packets to
be able to operate efficiently. This is because a tail portion
of an injected high-priority message will be lost if its trans-
mission does not finish before the end of the low-priority
base packet it was injected into. This is a result of the
aforementioned behavior of receivers to record exactly as
many symbols as specified in the packet header of the packet
whose synchronization header was recognized. The shorter
the high-priority messages are in relation to the length of the
low-priority packets, the less frequently such a loss occurs.

Detecting the potential presence of an injected packet is
trivial using a checksum covering the whole payload as is
commonly attached as a packet footer: if the checksum check
fails, there may be an injected packet. To find the injected
packet, one may simply search the payload for the symbol se-
quence of the synchronization header. Similarly, the length
of the injected packet can be determined, and thus the exact
portion of the payload that was overwritten is known. To
verify the suspected injected packet, its own regular footer
checksum can be used. Extracting further injected packets
from the same base packet is possible following the same
procedure. Note that we cannot distinguish the injection of
a packet from the unlikely coincidence of a regular payload
containing a synchronization header and valid packet length
together with a matching packet checksum.

Depending on the link quality one may assume the re-
maining non-overwritten symbols of the packet to be cor-
rect in spite of the lack of a correct checksum. However, to
ascertain the correctness in the case of an injected packet,
additional checksums across parts of the payload or forward
error correcting codes could be used. Naturally, the data
that was overwritten will need to be transmitted again at a
later time.

4. EXPERIMENT SETUP

4.1 Hardware
We employed the popular Tmote Sky sensor node (also

known as “TelosB”) [16] as testing hardware. It features
the TI MSP430 16-bit CPU and the TI CC2420 wireless
transceiver. The SFD (“start of frame delimiter”) pin of the

Figure 6: An example of the modulation of the
pseudo-random chip sequence of 32 chips for the ‘0’
symbol on the I and Q phases. The figure is taken
from the IEEE 802.15.4 standard [8]. (TC = 0.5 µs,
i.e., the chip rate is 2 MChips/s)

CC2420 is connected to a timer capture pin on the MSP430.
This enables capturing the timer register at the exact time
the CC2420 finishes sending or receiving the SFD byte at the
start of a transmission. This is used in MAC layer times-
tamping, which we use for clock synchronization (see Sec-
tion 5.1).

The CC2420 conforms with the IEEE 802.15.4 standard
[8] and provides features such as automatically computing
a packet’s checksum and inserting it into the packet footer.
The packet structure was shown in Figure 3.

On the physical layer, each byte is represented by two sym-
bols: first, one representing the least-significant 4 bits of the
byte, followed by a symbol representing the most-significant
4 bits. The IEEE 802.15.4 standard assigns a pseudorandom
chip sequence of 32 chips to each of the 16 possible symbol
values. Each chip directly corresponds to an interval of a
certain waveform on the carrier medium. Figure 6 shows
an example encoding of the zero symbol, 16 microseconds
in length. When receiving a symbol, the receiver will deter-
mine the received symbol to be the one whose pseudorandom
chip sequence correlates the most with the received signal.
We would expect the pseudorandom chip sequence design
to cause a desynchronized waveform (as would be caused
by a poorly synchronized injected packet) to be decoded to
an “arbitrary” (pseudorandom) wrong symbol; however, as
shown in Section 6, this is not always the case.

Our experiments are conducted on the FlockLab testbed
[14] spread over the floor of an office building using a chan-
nel whose band experienced low to medium outside inter-
ference. We observed instances of the motivating scenarios
described in earlier sections in this testbed while using each
node’s maximum possible transmit power. Unfortunately,
the wireless environment conditions proved very prone to
fluctuations caused by changing conditions such as the clos-
ing or opening of doors or changes in temperature or humid-
ity. To obtain reproducible results, we had to rely on the
transmit power control options of the CC2420. The avail-
able output powers on the CC2420 range from −30 dBm to
0 dBm with a noticeably larger degree of granularity in the
higher power options.

4.2 The Chasm
We choose a sending node and a set of receiving nodes

to represent the two sides of the chasm, such that there are
stable links with roughly equal qualities between the sender
and each receiver when the sender uses its maximum trans-
mit power. Additionally, these links should falter at approx-
imately the same transmit power value. We then designate
a node amongst the receiving nodes to be responsible for

Wakeup Header

Weak Packet

Symbol String

Len Dummy
Payload

Preamble SFD Len Payload Chcksum

f7214365-0000b7b16000ffff00112233445566778899aabbccddeeffffffffffff3a22----- ...

Header

Figure 7: The symbol string the receiver would ideally receive in the chasm scenario, each letter corresponding
to one symbol representing 4 bits. The symbols are given in order, i.e., each byte’s least significant 4 bits
come first. ‘-’ denotes a symbol slot where no node was sending anything; the values of these slots will be
determined by the noise in the environment.

Base Packet

Injected Packet

Symbol String

Len Payload

Preamble SFD Len Payload Chcksum

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

Header

Header

Figure 8: The symbol string the receiver would ideally receive in the packet-in-packet scenario. The individual
packet fields of both the outer base packet and inner injected packet are shown. Note that the preamble,
SFD and checksum of the outer packet are missing as they are already removed by the transceiver by the
time software can read the symbol string.

sending the wakeup synchronization header. It should have
a good link to all the other receiving nodes at its maximum
transmit power. In our experiments, this node will not par-
ticipate in receiving the packets from the sender. However,
it might occasionally be able to, if it happens to receive the
synchronization header from the sender correctly. For the
results presented in this paper we used 4 receiving nodes
plus the wakeup header sending node, but in practice any
number of receivers is imaginable. Even a single receiver
may profit from the wakeup header, although it is unlikely
to receive the whole packet correctly.

The test procedure consists of several rounds in which,
first, the sender broadcasts a packet at maximum transmit
power for synchronization purposes. This will allow the node
responsible for later broadcasting the wakeup synchroniza-
tion header to update its clock and to know approximately
when the weak packets will arrive. In practice, this shortcut
for announcing weak packet arrival times is not available or
there would be no reason to use this scheme in the first place.
Instead, to achieve initial synchronization, one would need
to either use a route around the chasm or rely on getting
a single packet through by normal transmission, which may
happen with a small percentage chance (see Figure 15).

The main part of a round then consists of several pack-
ets of length 29 (58 symbols without headers) being sent by
the sender at a weaker power P < Pmax. 256 microseconds
before every second of these packets the wakeup node will
send a synchronization header and a packet header specify-
ing the maximum packet length (127) at maximum trans-
mit power. If a receiving node receives a synchronization
and packet header, it will store the entire received raw sym-
bol string, no matter which of the two possible headers it
received. The symbol string is then evaluated manually,
ignoring the CC2420’s automated checksum test. By alter-
nating between sending weak packets with and without the

wakeup synchronization header, we can directly measure the
advantage gained through our method, independent of fluc-
tuations in the environment.

To send a synchronization and packet header only, the
wakeup node starts transmitting a packet of maximum length.
However, it then deliberately does not supply the CC2420
with enough data bytes to continue transmitting beyond the
first 3 bytes. This causes a buffer underflow to occur, auto-
matically causing the CC2420 to stop transmitting. The re-
ceivers of this packet will, however, not notice the ceasing of
the transmission and continue recording symbols to the best
of their ability as discussed in Section 3.1. The chosen ad-
vance time of 256 microseconds corresponds to 16 symbols.
This allows the wakeup sender to finish sending its synchro-
nization and packet headers (8 symbols) and the 3 bytes of
dummy data (6 symbols) before the weak packet from the
sender arrives. Figure 7 illustrates the symbol strings sent
and what is received in the ideal case.

Each round ends with every receiver reporting to the sender
how many packets it received when no wakeup synchroniza-
tion header was sent. These packets are sent at maximum
transmit power to be able to cross the virtual chasm. Us-
ing this feedback the sender can adapt its choice of P to be
able to concentrate on the interesting transmit power val-
ues: values such that no single receiver is likely to receive
the packet completely all by itself. In practice, the range of
interesting values settles after only a few dozen rounds, i.e.,
the remaining rounds all repeatedly scan a window of the
same few values for P .

We noticed that over 95% of the packets that were received
without a wakeup header were received completely without
error. Effectively, if a link happened to be stable enough
to receive the complete synchronization header, it also was
stable enough to receive the packet completely without error
95% of the time. To reduce the filtering at the synchroniza-

3

16

28

27 24

23

32

31
10

Figure 9: A subset of the wireless sensor node
testbed we used for our practical tests with three
particular node triplets used for packet-in-packet ex-
periments highlighted. The second, stronger senders
are indicated by thicker arrows.

tion header, we decided to use a shorter preamble of only 2
instead of 4 bytes, shortening the synchronization header to
3 instead of 5 bytes. In the interesting transmit power range,
this dramatically increased the number of packets received
without a wakeup header, but lowered the ratio of packets
received without any error to 0-25%.

4.3 Packet-In-Packet
We choose triplets of 2 sending nodes (B and I) and 1

receiving node (R), where node B will send the base packet
and node I will send the injection packet. These triplets are
selected such that at node R node I’s signal is at least 5
dB stronger than node B’s, to facilitate the capture effect.
Further, we also ensure that node B’s link still has a high
packet reception ratio (> 98%) in normal operation without
packet injections. Finally, both senders should be able to
hear the receiver for synchronization purposes. If necessary
we use the transmit power control options of the CC2420 to
achieve this constellation. See Figure 9 for a few example
triplets.

The test procedure again consists of several rounds which
start with a packet broadcasted for synchronization pur-
poses. Then, node B begins transmitting a packet of length
40 bytes at a designated time after the synchronization packet.
Node I aims to begin transmission 320 microseconds after
the base packet. This delay corresponds to 20 symbols or 10
bytes, ideally placing the second signal at the fourth payload
byte of the base packet.

Both packets contain a short header of 4 bytes we use to
store packet metadata such as sender, receiver and packet
type. After, the inserted packet’s payload contains 16 bytes
repeating each of the 16 possible symbols twice, which will
be useful for demonstrating symbol mapping, see Section 6.
The base packet’s payload is filled with the symbol of value
15 (or ‘f’). This choice of packet contents was made for pre-
sentation purposes in this paper. In practice, any data can
be used as our tests show the packet contents not to influ-
ence the success in decoding the injected packet. Figure 8
shows the symbol string the receiver would receive in the
ideal case, and details the locations and sizes of the packets’
fields.

Without closer synchronization we would expect to cor-
rectly decode the injected packet’s symbols in on average at
most 1 of 16 cases. In the other cases we would expect the
chip string to be misaligned with the symbol boundary so
much that the waveform is interpreted to be a different one
of the 16 pseudorandom chip sequences.

4.4 Baseline Results
Using the packet-in-packet scenario as example, we present

the results one would obtain without applying either of the
two improvements discussed in the next two sections.

In practice, the success rate is only 4.8%, slightly less than
the predicted 1

16
= 6.25%. For intuition, examine Figure 10,

which shows a representative sample of 17 received symbol
strings. Every letter corresponds to a symbol in symbol
transmission order, i.e., for every byte the 4 least-significant
bits come first. Unexpected symbol values are marked in
blue. Since not a single preamble was detected, all non-‘f’
symbols are classified as errors in the body of the underlying
packet.

It is easy to see the lack of tight synchronization in the
variation of the first and last affected symbol of the under-
lying packet. However, a certain regularity in the erroneous
symbols can be observed. In some cases we can exploit this
to salvage some of these scrambled lines, see Section 6.

At the bottom of Figure 10 the distribution of correctly
received symbols can be found. The red line for the injected
packet is almost completely constant at around 5% for the
duration of the injection. This means, when an injected
packet’s preamble was correctly decoded, the remainder of
the packet was nearly always also completely without er-
ror. The uneven distribution of the base packet’s successes
is caused by the varying densities of ‘f’ symbols caused by
the injection. This is due to certain of the injected packet’s
symbols appearing to be more likely to be mapped to an ‘f’
than others. Finally, note the “tail” of the base packet some-
times experiencing symbol errors even after the transmission
injection has ceased.

5. TRANSMISSION SYNCHRONIZATION

5.1 Clock Synchronization
There are two clocks accessible to the MSP430 CPU on

the TelosB: a 32 kHz (215 Hz) quartz crystal and a digitally
controlled oscillator (DCO), which also serves as the CPU’s
clock. While the DCO is considerably less reliable than the
quartz crystal in both long-term clock speed stability and
short-term jitter, it supports frequencies up to 5 MHz. Using
Contiki we regularly adjust the DCO frequency to stay as
close as possible to 222Hz ≈ 4MHz.

As the quartz crystal exhibits low jitter but has a low res-
olution and the DCO is very jittery but of higher resolution,
we combine the two into a single clock. This way, we attempt
to get the best from both worlds: high long-time stability
but a high resolution. Effectively, we are resetting the DCO
clock every quartz crystal tick, such that the lowest 7 bits of
the DCO timer register directly extend the precision of the
quartz crystal timer register. This approach was previously
proposed by Schmid et al. [18]. For the upcoming calcula-
tions we also include another 8 “decimal” digit bits in the
timestamp. Finally, these combined timestamps are stored
in 64-bit integers, as 32-bit integer timestamp values would
roll over every 4 seconds.

727100ffff22222222d103132299992233445566770011aabbccddeeff889960600ff3ffcfcf

727100ffff11111111c07202118888112233445566770099aabbccddeeff885757ffffffffff

727100fffff77777777a6506077eeee7700112233445566ff8899aabbccddee3535fffffffff

727100fffff6666666595475766dddd6677001122334455eeff8899aabbccdd2424fffffffff

727100fffff77777777a6506077eeee7700112233445566ff8899aabbccddee3535fffffffff

727100fffff5555555b423f6557c0ce56617d0911223346d829c58799aab70f1313fffffffff

727100fffffd4d4444d03703ed4b7874d091f4b33447733f58199c3bbecff7b3b35fffffffff

727100fffff66668816209e5b664444162d314e001149002f35775b6329064e02bffffffffff

727100ffff11111111c07202118888112233445566770099aabbccddeeff885757ffffffffff

727100fffffd4d4414d03703ed4b2b74d09112b338452f3596179657bec3ab93b35fffffffff

727100ffff44444444ff2535444bbbb4556667700112333cddeeeff8899abb0202ffffffffff

727100ffff33333333e2142433aaaa3344556677000122bbccddeeff8899aa71711fffffffff

727100fffffeeeeeeee1f9cacee7552eecc88e9aa88f9dd6644006127334455acacfffffffff

727100ffffdddddddd0fb9fedd8b88ddefff8d99a8bbffff8794a5ddecff889b9bffffffffff

727100ffff22252522b7637f22f33332a644556657667bb12e6664e01604f366d6ffffffffff

727100fffff66868666219e5b66b7b86550a1d800f1ee30eed5b7cb8279617eb209fffffffff

727100fffff6666666695475766dddd6677001122334455eeff8899aabbccdd2424fffffffff

0 10 20 30 40 50 60 70
0%

50%

100%

Symbol Position

S
u
cc

es
s

R
a
te

base injected

Figure 10: Loose Synchronization, No Symbol Remapping. Sample and correctness rate on a per symbol
basis.

To transmit synchronization information we use MAC layer
timestamping [6]. This technique generally involves captur-
ing the local time at the start of an arriving or departing
packet and storing that same timestamp in the footer of an
outgoing packet. The captured local time of incoming pack-
ets can then be compared to the time in the packet to obtain
an accurate value for the clock difference between the nodes
at the start of the packet.

As the quartz crystals of different nodes exhibit slightly
different tick rates, clocks of two once synchronized nodes
will slowly drift apart at an almost constant rate. To coun-
teract this drift, we keep a moving window of the information
of several past synchronization points and perform linear re-
gression to compute the current drift speed and extrapolate
future time values. For details on this procedure please re-
fer to the work of Lenzen et al. [13]. We found values of
4-8 stored synchronization points to be reasonable in both
accuracy and speed of adapting to drift speeds changing due
to environmental factors such as temperature changes.

As a result, our synchronization error remains within about
±0.2 microseconds in 70% of cases and within±0.5 microsec-
onds in 95% of cases when synchronizing at least once every
couple of seconds.

5.2 Transmission Timing
Recently, a way of very accurately timing multiple trans-

missions using reference packets has been popularized by
Glossy [4]. Unfortunately, this approach is unsuitable for
us as we do not want to send packets simultaneously, but
rather one at some arbitrary point in time after the other
has started.

Hence, we need to rely on using the available clocks to
find the point in time at which to issue the transmission

command. A naive busy wait would repeatedly compute
the current time after drift compensation and compare it
to the target transmission time. However, 64-bit integer
operations on a 16-bit CPU are comprised of hundreds of
instructions and often dozens of branches. Such a busy wait
loop cycle would require a rather long and unpredictable
time, wasting a lot of precision in the process. Ideally, we’d
want to transmit as precisely as a single DCO cycle.

To reach this goal, we employed several techniques. First,
to avoid the costly multiplication instructions in every loop
iteration, we apply our linear regression model “backwards”
to compute the local time value corresponding to the tar-
get “global” transmission time target. This local time value
can then be converted into the expected values of the 16-bit
timer registers, allowing for much cheaper integer compar-
isons. Next, we compute the exact cycle count of the result-
ing inner loop, now consisting of a MOV, a CMP and a JLO
instruction. Instructions on the MSP430 require different
amounts of cycles, but the amounts are known at compile
time. Hence, we know our final inner busy-wait loop is 8
DCO cycles in length. This allows us to align entering the
loop with the target time by using a jump table in front of
the loop to execute up to 7 NOP instructions prior to the
loop. These techniques are described in detail in [10].

We found that in 65% of cases the amount of DCO cycles
the CC2420 takes to begin transmitting after receiving the
corresponding strobe is constant. This means, in these 65%
of cases we get to send exactly at the time we want at DCO
precision. In over 99% of cases the transmission time is off
by at most 1 DCO cycle. However, for the problem at hand
even an error of 1 cycle, corresponding to 0.25 microseconds,
is likely to severely disrupt transmission synchronization.

1 2 3 4 5 6 7 8 9
0%

0.5%

1%

1.5%

2%

2.5%

#Bad Symbols

O
cc

u
rr

en
ce

s
Loose Synchronization

Tight Synchronization

Figure 13: Distribution of the number of misinter-
preted symbols after the injected packet. Not pic-
tured: in 91% of cases none of the symbols are bro-
ken.

5.3 Packet-In-Packet Improvements
Now 38.4% of cases allow correct decoding of the injected

packet. Figure 11 shows another representative sample of
received symbol strings. Blue indicates errors in the base
packet (as before), green indicates the recognized and cor-
rectly decoded injected packet, and red indicates errors part
of the injected packet (although there are no such errors in
this sample).

Again, the injected packet barely experiences any internal
symbol errors, and its symbol decoding success rate remains
constant, this time at around 40%. The base packets’ appar-
ent peaks in decoding successes during the injection period
is in fact misleading, as the injected packet’s correctly de-
coded ‘f’ symbols are interpreted as also matching the base
packet and occur at static offsets.

Note that the tail of the base packet is still experienc-
ing decoding errors. Figure 13 shows the distribution of the
number of symbol errors in the tail. While both with loose
and tight synchronization the tail is decoded completely cor-
rectly in about 91% of cases, loose synchronization appears
to more often only incur a single symbol error. There is also
a tendency visible for all of the remaining 8-9 tail symbols to
be corrupted. This may be explained by the demodulation of
correct but slightly misaligned symbols sometimes throwing
the synchronization of the demodulator off permanently.

6. MAPPING SYMBOLS

6.1 Mapping Symbols
In the last sample (Figure 11) a large degree of determin-

ism in the symbol decoding error can be observed in many
of the broken packets. In fact, there appears to be a one-
to-one mapping between actual and misinterpreted symbol
values in most cases, albeit there appear to exist 7 different
mappings. Based on the symbols which were received at the
location of the preamble of the inner packet we can identify
which mapping took place. If we denote by a the value of

NoWakeup WithWakeup
0%

20%

40%

60%

80%

100%

A
n
y
th

in
g

R
ec

ei
v
ed

Node 6

Node 32

Node 31

Node 1

Figure 14: Percentage of received packets with and
without the wakeup synchronization header at all 4
receivers of a test run.

the preamble symbols and by s the correct symbol value,
the 7 one-to-one mappings m(s, a) for 1 ≤ a ≤ 7 are:

m(s, a) = s− (s mod 8) + ((s + a) mod 8)

We can exploit the bijectiveness of these mappings to re-
verse them to reconstruct the original symbols in the ma-
jority of cases.

There are no simple one-to-one symbol mappings for the
remaining cases of 8 ≤ a ≤ 15. This is easy to see when
examining the pairs of symbols in the payload of the injected
packet not being recognizable as pairs anymore. However, it
is likely that some information can still reliably be decoded,
as certain pairs of subsequent symbols should also follow an
exploitable deterministic mapping, judging by the interplay
of the predefined chip sequences when time-shifted.

To detect injected packets after such a symbol mapping
within the base packet, we not only search for the synchro-
nization word (preamble + SFD) as before, but also for the
synchronization word with each of the 7 mappings applied.
If one is found, the respective mapping is then used to decode
the length, payload and checksum of the injected packet.

7. RESULTS

7.1 The Chasm
The wakeup synchronization header sent at maximum power

by a close neighbor unsurprisingly increases the number of
cases in which any symbols were recorded to essentially 100%
(see Figure 14).

Figure 15 shows how often every symbol in the packet was
received correctly at least once. For lower transmit power
settings – emulating the case of weak links – in the range
from 7 to 10, corresponding to transmit powers from -15
dBm to -10 dBm [21], our scheme raises the chance of receiv-
ing a complete copy of the packet from 5% to 30%. Without
the symbol remapping only 25% are achieved.

As the transmit power increases regular transmissions with-
out wakeup reach > 99% reliability. This is because fre-
quently one of the receivers receives a perfect copy of the

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100fffff4e444442a756c44eeee44e5667ebc0b1cf3cc6deef634839a7e60f0ffffffffff

727100ffff5555555b413f6557e0ee5031dd0911223f66d8795581996abbefd31fffffffffff

727100ffff33333333e2142433aaaa3344556677000122bbccddeeff8899aa7171ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff4e4e44442a75fc442eee44e56677d00112f3cc6deefff8899abbb0222ff5ff9cfc

727100fff55555555584366555cccc5666770011223344deeeff8899aabbcc1313ff66fffff6

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff5555555b476f6557ccc55661770011223344deeeff8899aabbcc1313ffffffffff

727100ffff6666666595475766dddd6677001122334455eeff8899aabbccdd2424ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646c595c555cc

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff11111111c07202118888112233445566770099aabbccddeeff885757ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffffc6c6c66cee6bebc66f666cb12263445566e7e43f4aee6cdde0667878ffffffffff

0 10 20 30 40 50 60 70
0%

50%

100%

Symbol Position

S
u
cc

es
s

R
a
te

base injected

Figure 11: Tight Synchronization, No Symbol Remapping. Sample and correctness rate on a per symbol
basis.

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100fffff4e444442a756c44eeee44e5667ebc0b1cf3cc6deef634839a7e60f0ffffffffff

727100ffff5555555b413f6557e0ee5031dd0911223f66d8795581996abbefd31fffffffffff

727100ffff00000000b7617100ffff00112233445556778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff4e4e44442a75fc442eee44e56677d00112f3cc6deefff8899abbb0222ff5ff9cfc

727100fff500000000b7611000ffff01112233445566778999aabbccddeeff4646ff66fffff6

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff5555555b476f6557ccc55661770011223344deeeff8899aabbcc1313ffffffffff

727100ffff6666666595475766dddd6677001122334455eeff8899aabbccdd2424ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646c595c555cc

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

727100ffffc6c6c66cee6bebc66f666cb12263445566e7e43f4aee6cdde0667878ffffffffff

0 10 20 30 40 50 60 70
0%

50%

100%

Symbol Position

S
u
cc

es
s

R
a
te

Figure 12: Tight Synchronization, With Symbol Remapping. Sample and correctness rate on a per symbol
basis.

3 4 5 6 7 8 9 10 11 12
0%

20%

40%

60%

80%

100%

Transmit Power Setting

O
cc

u
rr

en
ce

s

No Wakeup

Wakeup, No Mapping

Wakeup, With Mapping

Figure 15: Percentage of cases in which at least 1
complete copy of the sent weak packet could be re-
assembled. Up to transmit power 10, our approach
of adding a wakeup synchronization header signifi-
cantly improves the chances.

packet by itself, while our approach still suffers from the
penalties induced by using a mismatching synchronization
header. Hence, we do not recommend using our approach
for any and all links, but rather only for chasm-like scenarios
in which only weak links are available.

Figure 16 shows the number of correct symbols received
on average within the transmit power setting range of 6 to
10 at each of the individual receivers. While the node with
the best link (node 6) only gained about 65% of additional
correct symbols, overall the number of correct symbols re-
ceived more than doubled. As which symbols are correctly
received for a receiver is independent of the other receivers
(see Section 3.1), it stands to reason such an increase directly
improves the chances of being able to assemble a complete
correct copy of the packet.

The test run used for these plots contained 3800 samples,
3000 of which were taken within the transmit power setting
range of 6 to 10.

7.2 Packet-In-Packet
In the packet-in-packet scenario, applying both techniques

increases the success rate for decoding the injected packet
completely without error to 64.3%. Tolerating up to 3 sym-
bol errors, a success rate of 70% is reached. Figure 12 shows
the same sample as in Figure 11, but with symbol remap-
ping applied. It is easy to see that some of the erroneous
lines from before have been corrected. However, in some
instances a few symbols were corrupted (marked in red).
Peculiarly, judging from the success rate graph at the bot-
tom, some locations in the packet are particularly prone to
symbol errors not following the mapping.

Figure 17 shows the distribution of the number of sym-
bol errors in the decoded injected packet given that its syn-
chronization word was intact and recognizable. While the
number of errors appears to be higher when applying sym-
bol mapping, this is merely due to the fact that in these
cases additional synchronization words could be salvaged.

NW WW/NM WW/WM

0

10

20

30

40

50

#
S
y
m

b
o
ls

R
ec

ei
v
ed

C
o
rr

ec
tl

y

Node 6

Node 32

Node 31

Node 1

Figure 16: Average number of correct symbols re-
ceived (out of 58) with and without the wakeup
synchronization header at all 4 receivers of a test
run. NW/WW = No/With Wakeup, NM/WM =
No/With Symbol Mapping.

These additional instances appear to be particularly prone
to symbol errors, although the extent is low enough to still
preserve most of the packet data. Further, tighter synchro-
nization appears to reduce the occurrences of these errors.

The total amount of recovered packets can be seen in Fig-
ure 18, subdivided by the combination of applied techniques.
Enforcing a limit on the number of symbol errors hurts the
performance of the cases employing symbol remapping, as
is to be expected. However, allowing up to 3 symbol errors
almost completely closes the gap to the number of cases in
which the synchronization word of the injected packet was
at all detected. Recalling our injected packet being 46 sym-
bols in length (when excluding the synchronization word),
an error of 3 symbols appears rather acceptable.

The test run used for these plots used the node triplet
R = 23, I = 24, B = 27 and contained 1900 samples for
loose and tight synchronization each.

8. CONCLUSION AND FUTURE WORK
We explored the possibilities unfolding when mixing and

matching synchronization headers and packet payloads as is
made possible by inducing the capture effect. Correctly in-
terpreting the resulting sometimes jumbled symbol string is
not trivial and certainly not as efficient as with a matching
synchronization header. However, we showed that some sce-
narios may nevertheless profit: A) bridging a chasm which
is only crossed by weak links and may otherwise only be
crossed taking a long detour – or not at all, if the network
graph is not connected otherwise, and B) propelling high-
priority packets across a network without any waiting or
any control message overhead, barely disturbing low-priority
traffic. The resulting gains we observed in our experiments
are best summarized by Figures 15, 16 and 18.

Integrating such new transmission primitives into exist-
ing systems and MAC layers will no doubt carry an addi-
tional overhead we did not have to deal with in our proof
of concept implementations. Exploring the tradeoffs of such

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

#Bad Symbols

O
cc

u
rr

en
ce

s
Loose, No Mapping

Tight, No Mapping

Loose, With Mapping

Tight, With Mapping

Figure 17: Distribution of the number of bad sym-
bols within the injected packet once the injected
packet’s preamble has been read correctly.

integrations promises to be an interesting topic for future
work.

Although we conducted all our experiments using the IEEE
802.15.4 standard, we believe these primitives to, in princi-
ple, be feasible in most wireless standards using temporally
separated symbols for modulation. We also expect this style
of communication to be able to benefit many other scenarios
beyond the two presented in this paper.

The results of our solution to the chasm scenario undoubt-
edly leave room for improvements. One aspect worth further
research is the use of multiple senders, ideally synchronized
well enough cause constructive interference in some subset
of the receivers. Another promising direction is the use of
forward error correcting codes to improve complete recep-
tion ratios at the cost of bandwidth. Such a scheme may
also benefit the packet-in-packet primitive.

We see the main application of the packet-in-packet prim-
itive in enabling high-priority messages to be sent and re-
ceived at almost any time, in spite of ongoing lower-priority
transmissions. This significantly reduces the latency these
high-priority messages would otherwise incur, possibly ac-
cumulating further at every hop. Another imaginable appli-
cation are data aggregation algorithms, using planned data
insertions from many different nearby nodes to quickly form
a single packet containing the aggregated data. To reduce
the overhead of individual packets in this controlled sce-
nario, one could shorten the synchronization word and omit
or shorten the checksum footer.

In the remaining failure cases often some of the preamble
symbols are recognizable, but there is no reversible one-to-
one symbol mapping. It may be interesting to explore the
interplay of the chip sequences defined by IEEE 802.15.4
under varying degrees of desynchronization in future work.
We believe that computing the original string of symbols no
matter the time shift is generally not possible. However, by
smartly choosing the symbol combinations used to carry the
data of the injected packet, always retrieving all the data
correctly may be possible. In the best case, this may even

LS/NM LS/WM TS/NM TS/WM
0%

20%

40%

60%

80%

O
cc

u
rr

en
ce

s

Syncword found

At most 3 symbol errors

At most 0 symbol errors

Figure 18: Success rates for decoding the in-
jected packets using the different techniques.
LS/TS = Loose/Tight Synchronization, NM/WM
= No/With Symbol Mapping.

allow dropping the stringent synchronization requirement at
the cost of perhaps doubling the injected packet’s length.

9. ACKNOWLEDGMENTS
We would like to thank Silvia Santini as well as the anony-

mous reviewers for their comments and suggestions.

10. REFERENCES
[1] M. Doddavenkatappa and M. C. Chan. P3: a practical

packet pipeline using synchronous transmissions for
wireless sensor networks. In IPSN’14, Proceedings of
the 13th International Symposium on Information
Processing in Sensor Networks, April 15-17, 2014,
Berlin, Germany, pages 203–214. IEEE/ACM, 2014.

[2] P. Dutta, R. Musaloiu-Elefteri, I. Stoica, and
A. Terzis. Wireless ack collisions not considered
harmful. In 7th ACM Workshop on Hot Topics in
Networks - HotNets-VII, Calgary, Alberta, Canada,
October 6-7, 2008, pages 19–24. ACM SIGCOMM,
2008.

[3] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-power wireless bus. In The 10th ACM Conference
on Embedded Network Sensor Systems, SenSys ’12,
Toronto, ON, Canada, November 6-9, 2012, pages
1–14. ACM, 2012.

[4] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh.
Efficient network flooding and time synchronization
with glossy. In Proceedings of the 10th International
Conference on Information Processing in Sensor
Networks, IPSN 2011, April 12-14, 2011, Chicago, IL,
USA, pages 73–84. IEEE, 2011.

[5] R. Flury and R. Wattenhofer. Slotted programming
for sensor networks. In Proceedings of the 9th
International Conference on Information Processing in
Sensor Networks, IPSN 2010, April 12-16, 2010,
Stockholm, Sweden, pages 24–34. ACM, 2010.

[6] S. Ganeriwal, R. Kumar, and M. B. Srivastava.
Timing-sync protocol for sensor networks. In
Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, SenSys 2003,
Los Angeles, California, USA, November 5-7, 2003,
pages 138–149. ACM, 2003.

[7] R. Gotzhein and T. Kuhn. Black burst
synchronization (BBS) - A protocol for deterministic
tick and time synchronization in wireless networks.
Computer Networks, 55(13):3015–3031, 2011.

[8] Institute of Electrical and Electronics Engineers. IEEE
Standard 802.15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks
(LR-WPANs).

[9] A. Jayasuriya, S. Perreau, A. Dadej, and S. Gordon.
Hidden vs exposed terminal problem in ad hoc
networks. PhD thesis, ATNAC, 2004.

[10] M. König and R. Wattenhofer. Maintaining
constructive interference using well-synchronized
sensor nodes. In International Conference on
Distributed Computing in Sensor Systems, DCOSS
2016, Washington, DC, USA, May 26-28, 2016, pages
206–215. IEEE, 2016.

[11] M. König and R. Wattenhofer. Sharing a medium
between concurrent protocols without overhead using
the capture effect. In Proceedings of the International
Conference on Embedded Wireless Systems and
Networks, EWSN 2016, Graz, Austria, 15-17 February
2016, pages 113–124. Junction Publishing, Canada /
ACM, 2016.

[12] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos:
versatile and efficient all-to-all data sharing and
in-network processing at scale. In The 11th ACM
Conference on Embedded Network Sensor Systems,
SenSys ’13, Roma, Italy, November 11-15, 2013, pages
1:1–1:14. ACM, 2013.

[13] C. Lenzen, P. Sommer, and R. Wattenhofer.
Pulsesync: An efficient and scalable clock
synchronization protocol. IEEE/ACM Trans. Netw.,
23(3):717–727, 2015.

[14] R. Lim, F. Ferrari, M. Zimmerling, C. Walser,
P. Sommer, and J. Beutel. Flocklab: a testbed for
distributed, synchronized tracing and profiling of
wireless embedded systems. In The 12th International
Conference on Information Processing in Sensor
Networks, IPSN 2013, Philadelphia, PA, USA, April
8-11, 2013, pages 153–166. ACM, 2013.

[15] J. Lu and K. Whitehouse. Flash flooding: Exploiting
the capture effect for rapid flooding in wireless sensor
networks. In INFOCOM 2009. 28th IEEE
International Conference on Computer
Communications, 19-25 April 2009, Rio de Janeiro,
Brazil, pages 2491–2499. IEEE, 2009.

[16] J. Polastre, R. Szewczyk, and D. E. Culler. Telos:
enabling ultra-low power wireless research. In
Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks, IPSN
2005, April 25-27, 2005, UCLA, Los Angeles,
California, USA, pages 364–369. IEEE, 2005.

[17] N. K. Santhapuri, J. Manweiler, S. Sen, R. R.
Choudhury, S. Nelakuditi, and K. Munagala. Message
in message (MIM): A case for shuffling transmissions
in wireless networks. In 7th ACM Workshop on Hot
Topics in Networks - HotNets-VII, Calgary, Alberta,
Canada, October 6-7, 2008, pages 25–30. ACM
SIGCOMM, 2008.

[18] T. Schmid, P. Dutta, and M. B. Srivastava.
High-resolution, low-power time synchronization an
oxymoron no more. In Proceedings of the 9th
International Conference on Information Processing in
Sensor Networks, IPSN 2010, April 12-16, 2010,
Stockholm, Sweden, pages 151–161. ACM, 2010.

[19] A. Seth, D. Kroeker, M. A. Zaharia, S. Guo, and
S. Keshav. Low-cost communication for rural internet
kiosks using mechanical backhaul. In Proceedings of
the 12th Annual International Conference on Mobile
Computing and Networking, MOBICOM 2006, Los
Angeles, CA, USA, September 23-29, 2006, pages
334–345. ACM, 2006.

[20] L. Su, C. Liu, H. Song, and G. Cao. Routing in
intermittently connected sensor networks. In
Proceedings of the 16th annual IEEE International
Conference on Network Protocols, 2008. ICNP 2008,
Orlando, Florida, USA, 19-22 October 2008, pages
278–287. IEEE Computer Society, 2008.

[21] Texas Instruments. 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver. CC2420 Data Sheet.

[22] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and
D. Culler. Exploiting the capture effect for collision
detection and recovery. In Proceedings of the 2nd
IEEE Workshop on Embedded Networked Sensors,
pages 45–52. IEEE Computer Society, 2005.

[23] D. Yuan and M. Hollick. Let’s talk together:
Understanding concurrent transmission in wireless
sensor networks. In 38th Annual IEEE Conference on
Local Computer Networks, Sydney, Australia, October
21-24, 2013, pages 219–227. IEEE Computer Society,
2013.

[24] D. Yuan, M. Riecker, and M. Hollick. Making ‘glossy’
networks sparkle: Exploiting concurrent transmissions
for energy efficient, reliable, ultra-low latency
communication in wireless control networks. In
Wireless Sensor Networks - 11th European Conference,
EWSN 2014, Oxford, UK, February 17-19, 2014,
Proceedings, volume 8354 of Lecture Notes in
Computer Science, pages 133–149. Springer, 2014.

[25] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele.
On modeling low-power wireless protocols based on
synchronous packet transmissions. In 2013 IEEE 21st
International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication
Systems, San Francisco, CA, USA, August 14-16,
2013, pages 546–555. IEEE Computer Society, 2013.

[26] M. Zuniga and B. Krishnamachari. Analyzing the
transitional region in low power wireless links. In
Proceedings of the First Annual IEEE
Communications Society Conference on Sensor and
Ad Hoc Communications and Networks, SECON 2004,
October 4-7, 2004, Santa Clara, CA, USA, pages
517–526. IEEE, 2004.

