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Abstract
Music recommender systems frequently utilize network-based models to capture relationships between

music pieces, artists, and users. Although these relationships provide valuable insights for predictions,

new music pieces or artists often face the cold-start problem due to insufficient initial information. To

address this, one can extract content-based information directly from the music to enhance collaborative-

filtering-based methods. While previous approaches have relied on hand-crafted audio features for this

purpose, we explore the use of contrastively pretrained neural audio embedding models, which offer a

richer and more nuanced representation of music. Our experiments demonstrate that neural embeddings,

particularly those generated with the Contrastive Language-Audio Pretraining (CLAP) model, present a

promising approach to enhancing music recommendation tasks within graph-based frameworks.
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1. Introduction

Music and artist recommendations have become a cornerstone of streaming services, profoundly

influencing how users discover and engage with music. Algorithmically generated playlists,

tailored to individual tastes, are integral to the listening experience, enabling users to find

music that suits their mood and environment, as well as discover new artists. For artists,

inclusion in these playlists can significantly boost their listener base, while exclusion poses

challenges for discovery. Music recommendation systems can be broadly categorized into

collaborative filtering-based approaches [1] and content-based approaches [2]. Collaborative

filtering leverages relational data, capturing relationships between artists or tracks from manu-

ally curated similarities, tags, and user listening behavior. Content-based approaches utilize

descriptive data to encapsulate the essence of an artist’s music, representing attributes like

melody, harmony, and rhythm. Hybrid recommender systems [3, 4] combine both types of data

to enhance recommendation quality. In recent years, contrastive learning approaches have

gained traction for their effectiveness in representing various types of data [5, 6]. One such

model, Contrastive Language-Audio Pretraining (CLAP) [7], maps text and audio into a joint

multi-modal space, offering a novel method for representing music. Our work explores the

utility of CLAP representations as descriptive data in music recommendation systems.
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As a proof-of-concept, we examine a graph-based artist-relationship prediction task, where

additional musical information has previously enhanced model performance [8]. The goal

is to predict relationships between previously unseen artists using the attached information.

By varying this information and incorporating CLAP embeddings, we evaluate its utility in a

controlled environment and benchmark the effectiveness of different representations.

2. Related Work

Artist SimilaritywithGraphNeural Networks. Graph Neural Networks (GNNs) [9] extend

deep learning techniques to graph-structured data, addressing the limitations of traditional

neural networks that require structured inputs. GNNs operate on graphs defined by nodes

and edges, leveraging message passing to aggregate and update node information based on

their neighbors. This approach has shown success in tasks such as node classification, edge

prediction, and graph classification [10]. GNNs lend themselves to music recommender tasks as

they can encode the structural, relational information together with additional features [11, 12].

The study by Korzeniowski et al. [8] introduces the OLGA dataset, which includes artist

relations from AllMusic
1

and audio features from AcousticBrainz [13]. Their GNN architecture

combines graph convolution layers with fully connected layers and was trained with a triplet

loss. Performance evaluations on an artist similarity task demonstrated that incorporating

graph layers and meaningful artist features significantly improved prediction accuracy over

using deep neural networks alone.

Neural Embeddings for Recommender Tasks. Various methods have been explored for

music similarity detection. Previous approaches used a graph autoencoder to learn latent

representations in an artist graph [14], or leveraging a Siamese DCNN model for feature

extraction and genre classification [15]. Oramas et al. [16] use CNNs to extract music information,

which, in contrast to our work, can not benefit from contrastive pertaining. Furthermore,

hybrid recommendation systems using GNNs have been applied in other domains, such as

predicting anime recommendations by combining user-anime interaction graphs with BERT

embeddings [17].

Contrastive Language-Audio Pretraining (CLAP) [7] learns the (dis)similarity between audio

and text through contrastive learning, mapping both modalities into a joint multimodal space.

Through the contrastive learning approach, even the audio embeddings alone maintain semantic

information, making it suitable for tasks such as music recommendation and artist similarity.

3. Neural Audio Embeddings for Artist Relationships

We investigate an established artist similarity task similar to the OLGA dataset to evaluate the

effectiveness of neural audio embeddings over classical audio features in music recommendation

tasks. This dataset comprises a large graph of artists, and the performance of our model is

assessed based on its ability to predict new relationships between previously unseen artists,

1
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represented as nodes within the graph. Each node is annotated with features extracted from the

music produced by the respective artist. Previous research demonstrated that incorporating

musical information significantly improves model performance [8]. We extend this analysis by

extracting CLAP embeddings from the music and comparing their effectiveness against other

feature sets. Our goal is to determine if CLAP embeddings provide better representations.

3.1. Experimental Setup

Our setup is inspired by the approach of Korzeniowski et al. [8] on OLGA, where artists are

represented as connected nodes based on their relationships described in AllMusic. Following

the same methodology, we create an updated version of the original dataset. This allows us to

ensure that the song for which we extract features from AcousticBrainz is consistent with the

song for which we create CLAP embeddings. We start with the same set of artists and collect

additional information during preprocessing, specifically the categorical features for moods and

themes of an artist, which we use during evaluation. Low-level music features for songs were

retrieved from AcousticBrainz, and CLAP embeddings were computed using the LAION CLAP

model from tracks on YouTube. In contrast to the original OLGA dataset, we only use one song

per artist and do not aggregate the features over multiple songs. Due to constantly changing

information on AllMusic, some artists without connections to other artists or missing matches

on MusicBrainz or AcousticBrainz had to be dropped. Overall, this reduced the total number

of artists from 17,673 in the original to 16,864 in our version. We reuse the split allocation of

the OLGA dataset, which is possible since every artist in our dataset is present in the OLGA

dataset as well. This resulted in 13,489 artists in the training, 1,679 artists in the validation,

and 1,696 artists in the test split. We utilize the same loss functions and GNN backbone as

proposed by Korzeniowski et al. [8], but with a uniform sampling based on triplets instead of

distance-weighted sampling. More specifically, we employed the triplet loss, finding that using

both endpoints as anchors performed better than randomly selecting one endpoint. Euclidean

distance was used for the loss, and the Normalized Discounted Cumulative Gain (NDCG) serves

for the evaluation. For the graph neural network layers, we experimented with SAGE [18],

GatedGCN [19], and GIN [20], with SAGE demonstrating the best performance.

We vary two primary aspects in our experiments: the number of graph layers and the

node features. The number of graph layers ranges from zero to four and is varied to assess

the contribution that the graph topology can make to the task. With zero graph layers, the

architecture only utilizes an MLP to make predictions and does not consider the graph topology,

thus serving as a baseline for models that use GNN layers. As the number of graph layers

increases, nodes can aggregate information from a larger neighborhood, enhancing the model’s

capacity to learn from the graph structure. For node features, we use random features as a

baseline and experimented with AcousticBrainz features, CLAP features, and Moods-Themes

features. We also test combinations of these non-random features.

3.2. Results

Figure 1a compares the performance of models using random features, AcousticBrainz fea-

tures, Moods-Themes features, and CLAP features. The baseline model, which does not utilize
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(a) Comparison of CLAP features with Random,

Moods-Themes, and AcousticBrainz features.

CLAP outperforms all other features when used

with enough layers.
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(b) Comparison of various feature combinations.

With fewer layers, feature combinations per-

form better than single features, whereas they

perform on par for more layers.

Figure 1: Comparison of input features used for the artist relationship prediction task. We report
the mean performance and indicate the standard deviation over three seeds for each configuration,
testing all setups with 0 to 4 GNN layers. The 0-layer configuration serves as the baseline, where no
message-passing is performed, and only the input features are used to predict node pairs.

any graph convolution layers, performs significantly worse than models incorporating graph

topology information. Performance generally improves with the addition of more graph layers.

Random features consistently underperform, while CLAP features show better results with

increased layers in comparison to the others. Moods-Themes features perform well without

graph layers but only achieve results similar to random features with four layers, indicating that

the information they provide can be compensated by knowledge of the neighborhood around an

artist. Based on these findings, we conclude that CLAP embeddings are effective in enhancing

music recommendation tasks and provide information that is missing in other features.

We further compare combinations of CLAP embeddings with other features to assess their

effectiveness. Our analysis in Figure 1b reveals that for lower layer numbers, the combination

of features can greatly increase performance in comparison to single features (as depicted in

Figure 1a). For more layers, the tested feature combinations approach the performance of the

model that only uses CLAP features. This could mean that the other features do not provide

much additional value for the task or that the information gained from the graph topology is

sufficient to compensate for it. Overall, feature combinations that include CLAP perform better,

while we can see a clear increase of AcousticBrainz + Moods-Themes over the single feature

baselines.

Limitations Our experimental evaluation has two main limitations: the potential for model

architecture improvements and the limited representation of artists using only one song.

First, regarding model architecture, there is room for enhancement through more advanced

techniques, such as distance-weighted sampling, more sophisticated GNN layers, or Graph

Transformers. We anticipate these improvements would likely lead to better overall performance.

However, our conclusions primarily focus on the relative performance gains of different feature

sets. We believe these relative differences would remain consistent even with improved models



and training techniques, though absolute performance might increase.

Second, we only use a single song to represent each artist. This approach could introduce

variability based on the choice of the song, potentially affecting the performance of the features.

A more comprehensive representation involving multiple songs per artist could provide a more

robust understanding, but this would require careful consideration of how to aggregate these

song embeddings. Additionally, there is potential for exploring different versions of CLAP or

other audio embedding models. Nevertheless, the fact that we achieved consistent performance

gains even with just one song per artist demonstrates the effectiveness of CLAP embeddings as

a viable approach for music recommendation, which was the primary objective of this study.

4. Conclusion

In this work, we explored the use of CLAP embeddings as descriptive data for music recom-

mendation systems. Our experiments focused on a graph-based artist-relationship prediction

task, comparing the effectiveness of various feature representations, including AcousticBrainz,

CLAP, and a combination of both. Our results indicate that models incorporating CLAP em-

beddings significantly outperform those using traditional features, particularly as the number

of graph convolutional layers increases. This highlights the potential of CLAP embeddings

to capture rich and relevant information about music, thereby enhancing the performance of

music recommendation systems.
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