
Brief Announcement: k-Selection and Sorting in the SINR Model
Preliminary version of a brief announcement to appear at DISC’14

Stephan Holzer∗

holzer@mit.edu

MIT

Sebastian Kohler
sekohler@student.ethz.ch

ETH Zurich

Roger Wattenhofer
wattenhofer@ethz.ch

ETH Zurich

Abstract

We study algorithms and lower bounds for k-selection and sorting in the SINR model. For
the problem of finding the k-th smallest value in the network, we provide a O(log2 n) algorithm
based on the aggregation trees presented in [3]. We argue that any algorithm using this approach
has runtime Ω(log2 n/ log log n). We show that sorting can be done in Θ(n) time slots.

1 Introduction

Data aggregation is one of the most basic tasks in wireless networks. The goal of data aggregation
in a network is to compute some aggregation function such as the sum, maximum or the median
of (the input values of) the nodes. In the past 8 years the signal-to-interference-plus-noise-ratio
(SINR) model (or physical model, [2]) which is known to model interference more accurately than
graph-based models of wireless networks (see, e.g., [5]) has gained significant attention from an
algorithmic viewpoint. In [3], aggregation trees were presented that can directly be used to compute
distributive1 aggregation functions such as sum, maximum and minimum in time O(log n). We
study these aggregation trees with respect to a holistic aggregation function, namely finding the
k-largest value in a network (k-selection). For this generalization of computing the median we
provide an almost optimal algorithm using this approach. As a side-effect this demonstrates that
any speedup (which can be at most quadratic) can only be obtained using different techniques.
Finally we study sorting, another basic task when working with any kind of data, which is a
problem related to k-selection. We provide matching upper and lower bounds for this task in the
SINR model.
Note that our algorithm for k-selection does not explicitly use the SINR model and is based on the
aggregation trees obtained within the SINR model in [3], while our results on sorting are directly
obtained in the SINR model.

2 Model and Preliminaries

We consider a set V := {v1, v2, . . . , vn} of n := |V | nodes. Each node v ∈ V has an arbitrary
position posv ∈ R2 in the Euclidean plane. The Euclidean distance between two nodes u, v ∈ V is
denoted by d(u, v) := ‖ posv −posu ‖2. Each node v ∈ V has a unique ID idv ∈ [n] (We use the
notation [m] := {1, 2, . . . ,m} for m ∈ N) and is given an arbitrary input value xv ∈ [W] for some

∗Work has been done at ETH Zurich. At MIT the author is supported by the following grants: AFOSR Contract
Number FA9550-13-1-0042, NSF Award 0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-
0937274.

1An aggregation function f : Am 7→ B for an integer m and sets A and B is distributive if for all (a1, a2, . . . , am) ∈
Am and for every arbitrary partition I1 ∪̇ I2 ∪̇ . . . ∪̇ Ik = [m] for some k ≤ m there exists a function g : Bk 7→ B
such that f(a1, a2, . . . , am) = g(f({ai}i∈I1), f({ai}i∈I2), . . . , f({ai}i∈Ik)). For some j ∈ [k], we call f({ai}i∈Ij) a
subaggregate of f(a1, a2, . . . , am). An aggregation function is holistic if there is no constant bound on the storage size
required to describe a subaggregate.

W ∈ N. Time is slotted into discrete time steps of equal length and every node wakes up at the
same time. Local computation does not count towards the complexity-measure as we are interested
in communication complexity. Communication bandwidth is limited to only one message containing
Θ(1) values from [n] and Θ(1) values from [W] can be sent/received by a node in a single time step.
In each time step, each node v ∈ V can choose an arbitrary transmission power Pv ≥ 0. A message
sent by a node s is received by node r if Pr = 0 and the perceived SINR at r exceeds a constant

threshold β > 1, i.e., the SINR condition Ps/d(s,r)α∑
s′∈V \{s} Ps′/d(s

′,r)α+N ≥ β is satisfied. Here, α > 2 is

the constant path-loss exponent. The positions of the nodes, their IDs, n and W are known to all
nodes. We say a probabilistic event A happens with high probability (w.h.p.) if Pr[A] ≥ 1− 1/n.

3 k-selection Algorithm

We use the construction of a minimum-latency aggregation schedule (MLAS) presented in Section
7.1 in [3], which is based on the fact that in our model Ω(n) links of a minimum spanning tree of
V can be scheduled in a single time step. While the tree in [3] is stated to be directed towards
the root, we can also obtain such a tree with bidirectional links using the bidirectional version of
the amenability in [3]. Hence, we construct a tree spanning all nodes in the network on which
we can execute a convergecast (i.e., compute an aggregated value at the root of the tree) and a
broadcast (i.e., an inverse convergecast) with runtime O(log n) each. This is a prerequisite for
most aggregation functions (except distributive functions). We call this tree aggregation tree and a
schedule consisting only of convergecasts and broadcasts a level schedule. Let wk be the node with
the k-smallest input value (we may assume that no two input values are the same since we can
break ties by comparing the node IDs). The k-selection algorithm maintains a set C of candidates
for wk, that is initially equal to V , and iteratively removes candidates from C until it is a singleton
containing wk. One iteration consists of the following three steps with runtime O(log n) each.

1. Each candidate is assigned a unique temporary ID as follows in a bottom-up fashion with
respect to the tree. Each node v ∈ V counts the number cv of candidates in its subtree and
sends a request for cv temporary IDs to its parent. The root r eventually knows |C|. If r ∈ C,
r assigns itself a temporary ID from [|C|] and sends each child u an element of a partition of
[|C|] of size cu. Each node in V \ {r} proceeds similarly once it receives a set of temporary
IDs from its parent.

2. The root sends a value i chosen uniformly at random from [|C|] to every node in V . The
node with temporary ID i then returns its input value x to the root.

3. Let C< := {v ∈ C | xv < x}. First, |C<| is calculated and then sent to every node in V . If
|C<| ≥ k, then wk ∈ C<, otherwise, wk ∈ C \ C<. In either case, a constant fraction of the
candidates can be discarded.

Theorem 3.1. The k-selection problem can be solved in O(log2 n) time steps on an aggregation
tree with a level schedule.

The proof will be presented in the full version of this brief announcement.

4 Lower Bound for k-Selection

It has been shown in [3] that any distributive aggregation function can be computed in O(log n)
time steps in the SINR model with an MLAS. A matching lower bound is also mentioned in [3],
which extends to k-selection, as finding the minimum is a special case of k-selection (i.e., k-selection
with k = 1). Thus we could still hope for a quadratic speedup. However, this (if it is possible)
requires new techniques since we can show that by using a level schedule this can not be achieved.

2

Theorem 4.1. The number of time steps required to solve the k-selection problem w.h.p. in an
aggregation tree with a level schedule is in Ω(log2 n/ log log n).

We only present an outline of the proof. The formal proof can be found in the full version of this
brief announcement. The theorem is proved with two reductions. First, solving the k-selection
problem cannot be harder than solving the k-selection problem w.r.t. a subset of V . Second, it can
be shown that in every MLAS aggregation tree as constructed in [3], there exist two disjoint subsets
of V of size Ω(

√
n) with the property that sending a message from one set to the other requires

Ω(log n/ log logn) time steps, as pipelining (e.g. sending log n elements over a path of lenght log n
in time log n) is not possible in this construction. Thus any algorithm that solves the k-selection
problem on an aggregation tree with a level schedule can therefore be used to build an algorithm
that is Ω(log n/ log logn) times faster in the setting of the two-party k-selection problem (see [4]).
Those results together with a lower bound of Ω(log n) for the two-party k-selection problem shown
in [4] imply the lower bound stated in 4.1.

5 Sorting

We say that data in a network is sorted, when each node v ∈ V knows the idv-th smallest input
value in the network. For the sorting algorithm and the lower bound we only require α > 0. We
can sort the values in the network in n time steps as follows. In each time step t ∈ [n], node v
with ID t sends its value xv and every node u ∈ V \ {vt} sets Pu = 0. The value of Pvt is chosen
such that we have a single-hop network, that is the SINR exceeds β at the positions of every node
in V \ {vt}. Thus every node knows every input value in the network after n time steps and can
locally determine the specified output. Note that there are faster sorting algorithms for special
networks, e.g., if the nodes are placed in a grid [1].

Theorem 5.1. Every (possibly randomized) algorithm in the SINR model for sorting has runtime
Ω(n) in the worst case.

The proof of 5.1 is based on the following lemma and can be found in the full version of this paper.

Lemma 5.2. Let CA and CB be two non-overlapping discs in the Euclidean plane with radius
r each and let d be the minimum distance between any two points cA ∈ CA and cB ∈ CB. Let
A = {v ∈ V | posv ∈ CA} and B = {v ∈ V | posv ∈ CB}. If d > 4r/(β1/α − 1), then at most one
message can be sent from a node in A to a node in B (or vice versa) in a single time step.

Given a parition A ∪̇B = V as described in the lemma with |A|, |B| ∈ Θ(n), we can assign the
input values such that min{|A|, |B|} ∈ Θ(n) input values have to be interchanged bet ween A and
B in order to solve the sorting problem. This requires Ω(n) time steps by the lemma.

Acknowledgements: We thank Magnus Halldórsson for answering questions on his work [3].

References

[1] J.L. Bordim, K. Nakano, and H. Shen. Sorting on single-channel wireless sensor networks. In Proceedings of the
International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), pages 133–138, 2002.

[2] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory,
46(2):388–404, 2000.

[3] M.M. Halldórsson and P. Mitra. Wireless connectivity and capacity. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 516–526, 2012.

[4] F. Kuhn, T. Locher, and R. Wattenhofer. Tight bounds for distributed selection. In Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures (SPAA), pages 145–153, 2007.

[5] T. Moscibroda, R. Wattenhofer, and Y. Weber. Protocol Design Beyond Graph-Based Models. In 5th Workshop
on Hot Topics in Networks (HotNets), 2006.

3

