
DISS. ETH NO. 24379

Adding more PHY to the MAC:
Exploiting Physical Layer Effects in Wireless Networks

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Michael König

M. Sc., ETH Zurich, Switzerland

born on 06.08.1990

citizen of
Germany

accepted on the recommendation of

Prof. Dr. Roger Wattenhofer, examiner
Prof. Dr. Olaf Landsiedel, co-examiner

2017

TIK-Schriftenreihe-Nr. 171

Abstract

Traditional wireless algorithms all too often ignore the special qualities of
the wireless medium. In this thesis, we propose new wireless transmission
primitives for various applications and evaluate each of them on a wireless
sensor network. In particular, we focus on integrating two properties into
our primitives: the availability of transmission power control and the capture
effect.

First, we consider the problems of traffic prioritization and running mul-
tiple wireless algorithms in parallel. We propose a technique allowing to
simultaneously run multiple algorithms of different priorities, with minimal
overhead in terms of bandwidth and latency. This is done by assigning each
priority a range of admissible received signal strengths at each node, and
employing the capture effect to automatically enable reception of only the
strongest incoming signal. The setup is transparent to the algorithms: each
appears to have complete access to the network’s resources as long as no
algorithm of a higher priority wishes to use them. We discuss which prop-
erties of the network graph and the wireless hardware are beneficial to our
technique.

Second, we demonstrate the feasibility of achieving constructive interfer-
ence using commodity wireless sensor nodes. In contrast to previous work,
our technique does not rely on global external events as reference, but in-
stead aims to minimize the errors in clock synchronization and transmission
timing. Our evaluation shows that our technique is able to achieve con-
structive interference in over 30% of cases, even after multiple minutes of
sleep.

Third, we propose a class of transmission primitives which decouple pack-
ets’ synchronization headers from their payloads, such that two or more
different senders may contribute to a single received packet. We explore
2 applications: 1) enabling reception attempts of very weak packets, e.g.,
across a network chasm, and 2) the injection of shorter packets into longer
ongoing transmissions. We investigate ways to vastly reduce the problems
incurred by using a mismatching synchronization header for reception. In
practice, we are able to successfully decode up to 30% of cross-chasm packets
and up to 70% of injected packets.

Fourth, we examine how transmission power control can improve wire-
less schedules. Based on the classic RAND scheduling algorithm we develop
a version employing power control called PowerRAND. The schedules gen-
erated by PowerRAND are 20–25% shorter, i.e., achieve a 25–33% higher
throughput than RAND. Our practical evaluation shows that these sched-
ules are just as feasible in practice. Further, we discuss how power control
provides flexibility to schedules in the face of changing environments.

Zusammenfassung

Traditionelle drahtlose Algorithmen ignorieren allzu häufig die speziellen
Qualitäten des drahtlosen Mediums. In dieser Dissertation stellen wir neue
drahtlose Übertragungsprimitiven für diverse Anwendungen vor und evalu-
ieren jedes auf einem drahtlosen Sensornetzwerk. Wir konzentrieren uns ins-
besondere auf die Integration von zwei Eigenschaften in unsere Primitiven:
die Verfügbarkeit von regulierbaren Sendestärken und den Erfassungseffekt.

Erstens betrachten wir die Problemstellungen von Verkehrspriorisierung
und dem parallelen Ausführen mehrerer drahtloser Algorithmen. Wir schla-
gen eine Technik vor, die es erlaubt zugleich mehrere drahtlose Algorithmen
verschiedener Prioritäten auszuführen, mit minimalen Extrakosten an Band-
breite und Latenz. Dazu wird jeder Priorität ein Intervall von zulässigen Si-
gnalempfangsstärken an jedem Knoten zugewiesen, und der Erfassungseffekt
eingesetzt, um automatisch nur das Empfangen des stärksten eintreffenden
Signals zu ermöglichen. Dieser Aufbau ist den Algorithmen transparent:
jeder scheint vollständigen Zugang zu den Netzwerkressourcen zu haben,
so lange kein Algorithmus einer höheren Priorität sie zu nutzen wünscht.
Wir erörtern welche Eigenschaften des Netzwerkgraphen und der drahtlo-
sen Geräte vorteilhaft für unsere Technik sind.

Zweitens demonstrieren wir die Realisierbarkeit des Erzielens von kon-
struktiver Interferenz mittels handelsüblicher Sensorknoten. Im Kontrast zu
vorigen Werken verlässt sich unsere Technik nicht auf globale externe Ereig-
nisse als Referenz, sondern sie versucht stattdessen die Fehler in Uhrensyn-
chronisation und Übertragungszeitpunkt zu minimieren. Unsere Evaluation
zeigt, dass unsere Technik in über 30% der Fälle konstruktive Interferenz
erzielen kann, sogar nach mehreren Ruheminuten.

Drittens stellen wir eine Klasse von Übertragungsprimitiven vor, die bei
Paketen die Synchronisationskopfteile von den Nutzlasten trennt, sodass
zwei oder mehr verschiedene Sender zu einem einzelnen empfangenen Paket
beitragen können. Wir untersuchen 2 Anwendungen: 1) das Ermöglichen
von Empfangsversuchen von sehr schwachen Paketen, z.B. über eine Netz-
werkschlucht, und 2) die Injektion von kürzeren Paketen in längere laufen-
de Übertragungen. Wir erforschen Wege, um die Probleme, die man sich
durch die Verwendung falscher Synchronisationskopfteile zum Empfang ein-
handelt, erheblich zu reduzieren. In der Praxis können wir bis zu 30% der
Querschluchtpakete und bis zu 70% der injizierten Pakete erfolgreich deko-
dieren.

Viertens prüfen wir wie regulierbare Sendestärken drahtlose Sendepläne
verbessern können. Basierend auf dem klassischen Sendeplan-Algorithmus
RAND entwickeln wir eine Version, die regulierbare Sendestärken einsetzt,
namens PowerRAND. Die von PowerRAND generierten Sendepläne sind

20–25% kürzer, d.h., erzielen einen 25–33% höheren Durchsatz als RAND.
Unsere praktische Evaluation zeigt, dass diese Sendepläne in der Praxis
gleichermaßen durchführbar sind. Ferner erörtern wir wie regulierbare Sen-
destärken Sendeplänen Flexibilität in Anbetracht sich ändernder Umgebun-
gen verleihen.

Acknowledgements

My time as a PhD student in the Distributed Computing Group was a very
interesting and formative experience. I gained a lot of insight into the inner
workings of universities as well as the academic research machinery – and
even got to contribute myself, which I greatly enjoyed doing. However, the
thesis that you are now reading would not have been possible without the
help of many people that I would like to thank in the following.

First, I want to thank my supervisor Roger Wattenhofer for giving me the
opportunity to write my thesis in his group and supporting me throughout
the time. While allowing me to freely pursue my research, he was still always
able to offer helpful advice and ideas. His sense for viable paper topics was
invaluable to my publication efficiency and kept me going when the going
got tough.

Then, I would also like to thank my co-referee Olaf Landsiedel for taking
the time to review this thesis and to serve on my committee.

Furthermore, there are also the other people that made my time in the
Distributed Computing Group a wonderful experience; my colleagues and
co-workers. I want to thank (in alphabetical order) Barbara Keller for semi-
regularly surrendering Jara and her living room to StarCraft, Beat Fut-
terknecht for eating administrative problems for breakfast, Benny Gächter
for spreading the gospel of C++, Christian Decker for emanating Bitcoin
education, Conrad Burchert for providing a new unit of measure and mod-
ding a game for me, Darya Melnyk for being one of the few reliable tögglers,
David Stolz for always being ready to strike up a conversation, little Georg
for trying to be rude and being a reliable cake supplier, Gino Brunner for
carrying the student burden for most of the group, Jara Uitto for his Finnish
approach to everything, Jochen Seidel for being a pragmatic Byzantine and
keeping StarCraft alive, Klaus-Tycho Förster for being a beacon of kindness

and a partner in crime providing the group’s pun supply, Laura Peer for
bringing up many a programming puzzle, Manuel Eichelberger for unlock-
ing my office every morning, Pankaj Khanchandani for staying late but still
being available for töggeli, Pascal Bissig for not compromising on taste and
his evil töggeli shots, Philipp Brandes for turning on the lights and being
my most dedicated subject, Roman Lim for his excellent wireless testbed
support, Samuel Welten for supervising many a ridiculous student thesis in-
volving smartphones, Sebastian Brandt for both splitting and wearing lots
of hair, Simon Tanner for being a reliable office mate, Stefan Schindler for
being a Rust evangelist, Stephan Holzer for being a relaxed office mate,
Thomas Ulrich for his creative ideas, Tobias Langner for showing genuine
passion in most things he does, Yuval Emek for being a great nanny, and
Yuyi Wang for always being helpful.

Last but not least, I want to thank the people most important in my
life: my parents Kirsten and Stefan, my sister Sandra, as well as my grand-
parents for always having supported me in my computer science education
and doctoral studies, and my dear friends Marcel, Patrick, Till, Tim and
Wolfram for always being up for a game or a silly side project when I needed
to take my mind off work.

Contents

1 Introduction 1

2 Protocol Layering 5
2.1 Introduction . 5
2.2 Related Work . 8
2.3 The Capture Effect . 10
2.4 Layering Protocols . 14
2.5 Example Application . 21
2.6 Test Results . 25
2.7 Summary and Future Work 27

3 Maintaining Constructive Interference 33
3.1 Introduction . 33
3.2 Related Work . 34
3.3 Experiment Setup . 36
3.4 Timing Requirements . 38
3.5 Clock Synchronization . 40
3.6 Transmission Synchronization 44
3.7 Constructive Interference . 48
3.8 Summary and Future Work 53

4 Capturing Attention Using the Capture Effect 55
4.1 Introduction . 55
4.2 Related Work . 58
4.3 Concepts . 59
4.4 Experiment Setup . 64

4.5 Transmission Synchronization 70
4.6 Mapping Symbols . 71
4.7 Results . 72
4.8 Summary and Future Work 76

5 Tempering Wireless Schedules 79
5.1 Introduction . 79
5.2 Related Work . 82
5.3 Link Model . 84
5.4 Prediction Model . 88
5.5 Tempering RAND . 90
5.6 Experiment Setup . 95
5.7 Results . 98
5.8 Summary and Future Work 104

6 Conclusion 107

1
Introduction

Over the last two decades, wireless technology has become a mainstay of
our everyday lives. Mobile devices connect to the Internet over Wi-Fi and
communicate locally using Bluetooth. Cell phones connect to wide-reaching
cellular networks, and modern navigational systems are unthinkable without
the position estimations obtained from GPS signals. It is estimated that over
60% of the population of both Western Europe and North America uses a
smartphone at least once a month [59]. But not only mobile devices are
able to profit from wireless technology: battery-powered sensor nodes may
be deployed completely without any wired infrastructure, yet still are able to
form large multi-hop sensor node networks for easy sensor data aggregation.
Due to these networks’ self-reliance, they are found in various applications,
but especially in long-term monitoring. Examples include the monitoring
of structural integrity in buildings [50], wheel wear in trains [29], wide-area
weather conditions [71] and avalanche risk [30].

Wireless communication faces unique challenges and opportunities stem-
ming from the shared nature of the wireless medium. Most notably, all
transmissions are broadcast transmissions by default, i.e., they are heard
and may be received by all receivers “in range” of the sender. One particular
implication of this property is that, unlike in most modern wired networks,
the signals of simultaneous transmissions will compete at each prospective

CHAPTER 1. INTRODUCTION 2

receiver, acting as interference to each other. If two links (sender-receiver
pairs) are able to transmit data reliably individually, they may not be able
to do so concurrently: depending on the environment’s geometry, both, only
one, or even neither may be able to transmit successfully.

In spite of the widespread usage of wireless technology, these special
properties are still frequently abstracted away. This is usually done in favor
of simplicity, but comes at the cost of less efficient medium usage. For ex-
ample, multi-hop wireless networks are often modeled as a graph in which
two nodes are connected by an edge if and only if they are able to com-
municate. A transmission is then expected to be successful only if only a
single neighbor – namely the intended sender – of an intended receiver is
transmitting for the duration of the transmission. In reality, a link may be
feasible even in presence of interfering links, if the interfering links’ signals
are sufficiently weaker at the receiver: due to path loss and obstacles a link’s
signal may be strongly attenuated once it arrives at the receiver. Another
option rarely considered by today’s wireless protocols is power control, i.e.,
the ability to configure different transmissions to use different transmission
powers. This option can, for example, be used to reduce the transmission
power for already strong links, such that they cause less interference, and
to ensure that the desired transmission is received at a contested receiver.

Breaking these imperfect abstractions and simplifications will be the
general theme of this thesis. We propose several protocols and techniques
drawing benefits from doing away with the above restrictions, and verify
each of them in practice. We conduct all our experiments on TelosB wire-
less sensor nodes [62] (often also referred to as “Tmote Sky”) deployed in
the FlockLab testbed [46], which is situated in an office building and as
a result experiences typical background noise as well as an ever-changing
environment. Hence, all our practical results are based on the low-power
and low-bandwidth IEEE 802.15.4 wireless standard. However, we believe
each of our approaches to be applicable to a majority of today’s wireless
standards.

We begin by considering the problem of priority traffic in Chapter 2.
Most wireless systems suffer from the lack of a dedicated control plane: high-
priority control messages have to contend for medium access the same as any
other message. Existing methods providing quality of service guarantees in
this setting rely upon opportunistic sending or on scheduling mechanisms,
and as a result incur undesirable tradeoffs in either latency or impact on reg-
ular non-priority traffic. We present a technique to simultaneously execute
multiple protocols of different priorities, without compromising bandwidth
or latency of regular traffic not affected by priority traffic. Using power con-
trol and moderately tight synchronization we exploit the capture effect to
give each protocol almost complete access to the network’s resources as long

CHAPTER 1. INTRODUCTION 3

as no protocol of higher priority wishes to use them. We examine which im-
pact the properties of the network graph and the capabilities of the wireless
hardware have on the effectiveness of our technique. We suggest an example
scenario of a wireless sensor network of fire detectors, with a low-priority
protocol collecting statistical data and confirming aliveness, while a high-
priority protocol wishes to report fire alarms to a base station as quickly as
possible. Our testbed implementation of this example application achieves
near optimal latency and bandwidth for priority traffic while not disturbing
low-priority traffic where it is separated sufficiently in space or time.

We investigate achieving constructive interference (CI) on sensor nodes
in Chapter 3. I.e., the ability to avoid interference of two or more identical
incoming signals by synchronizing the signals well enough. As an added
benefit, the resulting signal has a higher signal strength than any single of
the senders alone would have been able to create. Traditionally, achieving
CI required specialized timekeeping hardware. Recently, the ability and
interest to employ CI distributedly at any time using groups of ordinary
single antenna wireless sensor nodes have grown. The IEEE 802.15.4 wireless
standard we are working with uses a chip frequency of 1 MHz. This means
signals need to be synchronized with an error below 0.5 µs to allow for
CI. Hence, excellent clock synchronization between nodes as well as precise
transmission timing are required. We implemented and tested a prototype
addressing the implementation challenges of synchronizing the nodes’ clocks
up to a precision of a few hundred nanoseconds and of timing transmissions
as accurately as possible. Our results show that, even after multiple minutes
of sleep, our approach is able to achieve CI in over 30% of cases, in scenarios
in which any influence from the capture effect can be ruled out. This leads
to an increase in a packet’s chance of arrival to 30–65%, compared to 0–
30% when transmitting with either less synchrony or different data payload.
Further, we find that 2 senders generally increase the signal power by 2–3 dB
and can double the packet reception ratio of weak links.

In Chapter 4, we propose a new class of wireless transmission schemes
decoupling synchronization headers from payloads to create new transmis-
sion primitives involving a second sender. By transmitting a synchronization
header only, we can let nearby nodes receive fragments of a packet without
having to receive that packet’s synchronization header, and by using the
capture effect we can overwrite portions of the payload of longer ongoing
packets. We explore two scenarios potentially benefiting from such schemes.
A) First, we consider crossing a network chasm over which all links are of
poor quality: by broadcasting a fabricated packet header on the receiving
side of the chasm all receiving nodes are informed to record the packet to
the best of their ability. B) Second, we investigate the insertion of short
high-priority packets into longer lower-priority transmissions from a differ-

CHAPTER 1. INTRODUCTION 4

ent sender. This has the advantage that high-priority senders do not need
to wait for the medium to become free but can begin sending at once, while
receivers lose only the affected portion of their already incoming low-priority
packets. Further, we examine two techniques to reduce the amount of sym-
bol decoding errors caused by using a mismatching synchronization header:
1) careful transmission timing and 2) correction of deterministic symbol de-
coding errors. In scenario A) these techniques improve the chance of every
part of a packet being received successfully by some node on the receiving
side of the chasm from 5% to up to 30%. In scenario B) we reach successful
decoding of the injected packet in up to 70% of cases.

Lastly, in Chapter 5, we demonstrate that the often overlooked feature
of power control can in fact be lucrative for wireless algorithms to incor-
porate. In particular, we present PowerRAND, an extension of the simple
yet reliable classic RAND scheduling algorithm. Further, we explore how
to deal with the challenges of a changing environment which all scheduling
algorithms face. For such problems, power control provides a unique flex-
ibility. To optimize the utilization of a wireless channel, time slotting and
scheduling tailored to the traffic demands have proven to be one of the most
efficient methods in high load networks. Traditionally, the work in this area
was focused merely on finding sets of links that could send simultaneously.
As transmission power control is a widespread feature in hardware, this adds
an additional degree of freedom to schedule creation: how strongly should
each sender transmit? Theory results show that it is possible to construct
scenarios in which power control allows creating shorter schedules. In prac-
tice, theory is not the same as practice. For example, the range of possible
transmission power values is limited and not arbitrarily fine-grained. Our
results show that using power control we can obtain 20–25% shorter sched-
ules, which is equivalent to an increase of 25–33% in overall throughput.
Additionally, by rewarding links being scheduled a second time within the
same schedule, we are able to further improve slot utilization, i.e., achieve
a higher average throughput per slot. In our experiments we confirm that
these schedules are just as reliable as schedules not employing power control.

We conclude in Chapter 6 with a short summary of what we learned and
an outlook towards possible future work.

2
Protocol Layering

2.1 Introduction

While the deployments of wireless networks continue to grow in number and
size year by year, protocol designers are still struggling to understand how
to most efficiently use the wireless medium. Not only is operational disrup-
tion through environmental noise caused by other networks or microwave
ovens oftentimes unpredictable in urban settings, but due to the broadcast
nature of wireless transmissions, nodes participating in a network frequently
experience interference with nearby nodes of the same network.

To tackle this medium access problem given a fixed frequency spectrum,
generally one of two approaches is used: (1) opportunistic sending (CSMA)
or (2) scheduling (TDMA).

(1) Opportunistic sending follows a first-come-first-serve philosophy and
hopes for a free channel at the time of traffic emergence, sending imme-
diately, asking questions later. After sending, an explicit or implicit ac-
knowledgment from the recipient is required to determine whether the trans-
mission was successful or needs to be repeated. Variants of opportunistic
sending such as clear channel assessment (CCA) and request-to-send/clear-
to-send (RTS/CTS) have been proposed to reduce the number of haphazard
collisions, but suffer from hidden or exposed terminal problems and intro-

5

CHAPTER 2. PROTOCOL LAYERING 6

duce overhead in terms of packets sent and latency, which especially in the
case of RTS/CTS may quickly grow very noticeable [48,64,77].

(2) The alternative is to employ one or more nodes with the role of
scheduling authorities. These nodes manage the permissions to send pack-
ets in their immediate network neighborhood. Each node is either allotted
a periodically recurring time slot for sending, or may need to first explicitly
request a reservation for the channel from its local scheduler(s). This ap-
proach may completely avoid collisions during regular operation but incurs
latency and possibly also bandwidth penalties. While generally opportunis-
tic sending is preferred for its simplicity and flexibility in most scenarios,
the scheduling approach has also found its way into widely deployed systems
such as Bluetooth [34].

Clearly, neither approach is optimal in all scenarios, nor is every sce-
nario served well by either approach. For example, consider the case of an
emergency signal needing to travel to a destination node in as little time as
possible. Using opportunistic sending, progress may stall almost indefinitely
when the network is under heavy load, while a scheduling approach might
reserve every second slot for emergency messages which guarantees arrival
in twice the minimum possible time at the cost of halving the number of
slots available for regular non-emergency traffic. Hybrid MAC layers such
as Z-MAC [65] have been proposed, with the goal of combining the advan-
tages of CSMA and TDMA. Z-MAC realizes this by dynamically switching
between CSMA and TDMA based on network load.

Network mechanisms designed to ensure fairness or more specifically
offering guarantees about network performance are grouped under the term
quality of service (QoS). While QoS research for wireless networks is an area
with a wealth of history, certain aspects of wireless networks are yet to be
fully understood and utilized. Among these is the so-called capture effect
(also known as physical layer capture). For a long time, protocol designers
tried to avoid collisions whenever possible, working under the assumption
that any collision of wireless packets at a receiving node inevitably leads to
the failure of that node to decode any of the messages. This loss rate has
been shown to have been significantly overestimated [73, 76]. This is due
to the capture effect, a phenomenon which oftentimes allows the receiver
of a wireless transmission to continue correctly decoding the transmission,
in spite of interference caused by other transmissions starting during the
original transmission.

We consider a “protocol” to be a self-contained distributed algorithm
using the network to transmit messages, coping with lost messages and
usually avoiding collisions where possible. In this chapter, we propose a
technique to “layer” such protocols of different priority levels on top of each
other using the capture effect, effectively enabling a priority process to use

CHAPTER 2. PROTOCOL LAYERING 7

almost all the resources of a network, while at the same time allowing lower
level processes separated from the priority traffic in space and/or time to
use the network at no additional overhead. Note that giving unrestricted
resource access to a protocol necessarily implies that it may starve all lower-
priority protocols. We also propose a mechanism to only administer a share
of the resources to a protocol, but this unavoidably introduces a latency
overhead.

We require a certain degree of clock synchronization (clock difference
below 160 µs between any pair of nodes with distance at most two hops)
to be able to make best use of the capture effect, and impose the notion of
time slots on the network. Hence, we assume that at least one of the lay-
ered protocols contains a component periodically resynchronizing all nodes.
Furthermore, we require the wireless hardware to offer transmission power
control, which is a common feature even among older hardware.

The basic idea is to cause the capture effect whenever a node would
receive multiple packets in the same time slot. This is done by choosing the
transmission power of each node such that it falls into one of multiple pre-
computed bands of reception power at the intended receiving node. Given
these bands are separated well enough, the receiving node will almost always
(in over 98% of cases) be able to decode the packet in the strongest band
without error. This implicit prioritization lets us avoid the overhead caused
by more explicit measures such as schedules. On the other hand, there
are some inherent disadvantages tied to our technique, namely the need for
time slotting and the predetermination of transmission powers, removing
the ability to intentionally save energy on short links and to save hops with
long links requiring the highest possible transmission power.

We specifically target wireless sensor networks (WSNs), which typically
form networks with a relatively large connectivity graph diameter and favor
node quantity over advanced wireless capabilities. Our technique accom-
modates these conditions particularly well. For example, as higher layer
protocols only disturb their immediate neighborhood in the connectivity
graph, more spread out networks are more likely to benefit.

We tested our technique on an example alarm reporting protocol. Our
implementation is based on Contiki [12] and achieves near optimal alarm
reporting latency and almost no packet loss on the high-priority layer, while
when under load indeed causing comparatively little disturbance to the un-
derlying low-priority traffic which we use to ensure node liveness and keep
the nodes’ clocks synchronized.

CHAPTER 2. PROTOCOL LAYERING 8

2.2 Related Work

Already in 1976, the capture effect in FM receivers was modeled by Leent-
vaar et al. [40]. To combat it they proposed using bandlimiting at the
receiver. The capture effect is not a phenomenon limited to FM transmis-
sions. Ash [1] showed that it is possible to obtain an equivalent and even
stronger effect in AM receivers.

While the capture effect had at first been considered undesirable, it was
soon ascribed inadvertent performance boosts in common wireless scenarios
such as slotted ALOHA [9] and everyday 802.11 traffic [48, 76]. Soon, a
number of environmental influences like noise, path loss, shadowing and
fading were identified to be contributing to the capture effect’s potency as
a general packet reception enhancer [6, 44].

Other research was conducted on the details of packet timing, as common
transceiver hardware does not facilitate switching reception from one packet
to another mid-demodulation. Thus, if a much stronger packet starts during
the reception of a weaker one, both packets are lost (save for the leading
portion of the weaker one). A well-studied quirk of the capture effect is that
it may occur even when the stronger signal arrives after the weaker one, as
long as it still arrives before the end of the synchronization header of the
weaker signal [36, 73,76,78].

The obvious solution to the “stronger packet arrives too late” problem is
to continuously scan the medium for synchronization headers, even during
packet reception. This requires more specialized hardware support, but has
nevertheless already been thoroughly investigated [36, 39, 52, 76]. To make
best use of the capability to switch to stronger packets during reception
(also known as “message in message”), Manweiler et al. [52] discuss how
careful ordering of transmissions enables the parallel utilization of tradi-
tionally conflicting sender-receiver pairs.

When it comes to low-power wireless networks such as those comprised
of sensor nodes, the meticulous study by Son et al. [73] provides a solid
foundation. While they find that occurrence of the capture effect can be
guaranteed given a large enough SINR value, they find a significant gray
region of up to 6 dB to exist in practice. Further, they find the SINR
threshold to be heavily dependent on the transmitting hardware and the se-
lected transmission signal strength. Yuan et al. [78] continue this study and
propose a packet reception model for concurrent transmissions, including
the special case of constructive interference.

Nyandoro et al. [60] consider the scenario of an 802.11 access point and
several clients split into low-priority and high-priority clients. They propose
using a significantly higher sending power for the high-priority clients. Due
to the capture effect collisions between packets from high and low-priority

CHAPTER 2. PROTOCOL LAYERING 9

clients will then always be solved in favor of the high-priority client. Patras
et al. [61] go as far as to suggest deliberately fluctuating sending power levels
in order to make the capture effect more likely to occur in case a collision
takes place. They show that in practice this can translate to throughput
gains of up to 25%. As links become more heterogeneous, though, this effect
decreases, and instead an increase in fairness can be observed.

Lu et al. [49] proposed the Flash flooding protocol, in which a flooding
schedule is forgone in favor of letting every reached node simply broadcast
a few times. The capture effect enables correct reception at nodes receiv-
ing packets from different neighbors at sufficiently different strengths. The
protocol also implements fallback mechanisms to ensure flooding is able to
proceed at nodes which experience only destructive interference due to the
arriving signals being too similar in strength. This approach was shown to
reach flooding latencies close to the theoretical optimum, reducing previous
latency values by up to 80%.

Liang et al. [45] created RushNet, a data delivery framework harness-
ing the capture effect to achieve low-overhead prioritization similar to the
work in this chapter. RushNet distinguishes low-priority bulk transfer and
latency-sensitive high-priority traffic, which exactly matches our example
application (see Section 2.5). In contrast, our technique is designed for use
with arbitrary wireless protocols and supports a larger number of traffic
priorities where link qualities permit.

Various approaches to coordinate simultaneously running protocols com-
peting for medium access have been suggested. Flury et al. [20] proposed
“slotted programming”, dividing time into slots and assigning every pro-
tocol a fixed portion of the slots. This framework is implemented in a
fashion transparent to the protocols, effectively making them independent
and modular building blocks for larger systems. Note that in contrast to the
method presented in this chapter, slotted programming incurs a significant
penalty on the total throughput when protocols are unable to make use of
the scheduled slots assigned to them.

The same work also includes a proposal for an alarm mechanism: Flury
et al. suggest alarmed nodes transmit a specific waveform at maximum
power. Other nodes, upon detecting the waveform, become alarmed and
start transmitting the waveform as well, thus spreading the alarm. The
authors find that, even without synchronization between the nodes, the col-
lision of the signals is not detrimental to the spread of the alarm. However,
extending this scheme to alarm signals carrying more information than the
alarm’s presence itself appears to be difficult. Additionally, these alarm
signals are undirected and will prevent any regular traffic in the network.

Cidon et al. [8] propose establishing a control plane for Wi-Fi networks
by inserting high-power “flashes” into regular packets. These flashes are a

CHAPTER 2. PROTOCOL LAYERING 10

waveform of far higher amplitude than the rest of the signal and are added
to regular data symbols, effectively erasing those symbols. By exploiting the
underlying OFDM encoding, which sends multiple redundant copies of each
data bit either separated in time or frequency, they are able to insert on the
order of 50,000 flashes per second without causing a packet loss rate of more
than 1%. The occurrence and spacing of these flashes may then be chosen to
represent out-of-band data. While this approach does not require additional
frequency bands or time slots for control messages, its main disadvantage is
its reliance on specialized hardware.

For the specific scenario of time-critical alarm message propagation, Li
et al. [42] propose incorporating slots allocated for emergency messages into
a regular scheduling mechanism, but to employ slot stealing to avoid wasting
network bandwidth in the absence of emergencies. A short while after the
start of a slot assigned to emergency messages, if the slot is detected to
remain unused, nodes may steal and use the remainder of the slot to send
regular traffic. They further provide a simulation framework tailored to such
wireless alarm systems. In constrast to our work, their method relies on an
explicit scheduling mechanism to designate recurring slots for emergency
messages. This incurs an overhead in latency and does not scale well to a
larger number of distinct priorities, as the time required to detect slot use
grows and thus further erodes the concept of time slotting.

A different approach, employed to great effect by cellular networks tech-
nologies such as LTE, is to send and receive on multiple different frequency
bands, allowing to use a subset of them as an independent control plane [22].
In contrast, we do not consider the use of multiple frequency bands and re-
strict ourselves to simple wireless transceivers able to send and receive on a
single band at a time only.

2.3 The Capture Effect

In this section, we will go into detail about the capture effect and its inner
workings, as it is integral to the method we propose. Furthermore, we will
discuss the exact parameters for its occurrence we measured on the hardware
and testbed we will be using for our example implementation.

The capture effect is a term describing the general phenomenon of wire-
less receivers being able to decode the strongest of multiple signals without
error, effectively completely ignoring the weaker signals. Standard wireless
hardware is designed to send and receive wireless data strings in the form
of discrete packets, which may be inserted into the noisy carrier medium at
arbitrary points in time. Due to this, harnessing the capture effect on such
hardware is limited to a certain set of scenarios.

CHAPTER 2. PROTOCOL LAYERING 11

Typically, wireless receivers use specific pre-defined chip patterns to de-
tect the start of a transmission, so-called synchronization headers. They
serve multiple purposes: For one, they allow to, with a high probability,
identify a starting transmission amongst the environmental noise and hence
avoid mistaking noise for a transmission even in settings where transmis-
sions create signals barely stronger than the noise. Another purpose, whose
side-effect is particularly important for summoning the capture effect, is the
aligning of the receiving wireless transceiver’s internal clock with the phase
of the signal. This essentially means that once a receiver has detected a
synchronization header, it can configure itself to easily decode the following
data symbols and stream their values into some kind of memory.

As a result, upon hearing a synchronization header, receivers effectively
commit to receiving a particular transmission, locking their clocks to that
transmission’s phase and often also its length (which in many physical layer
protocols is transmitted amongst the first few data symbols). This behavior
is especially desirable when bursts of noise frequently occur in the envi-
ronment, but partially corrupted packets may still be valuable, either due
to error correcting codes or simply full data integrity not being a critical
requirement.

When two or more signals can be heard at a receiver simultaneously, they
act as noise to each other, i.e., cause interference for one another. Generally,
it is impossible to decode the weaker signal(s), unless the hardware is capable
of more advanced techniques, such as decoding and subtracting the stronger
signals first or using a coding scheme such as CDMA. However, our proposed
method is aimed at scenarios employing simple sensor nodes and does not
rely on such functionality. Hence, we will assume that when a stronger
transmission starts during the reception of a weaker transmission, the weaker
transmission is certain to become corrupted.

On the other hand, when the stronger transmission starts first, it can
nearly always be received completely without error. This is in spite of the
fact that a prediction based purely on the signal powers and the classical
SINR model will conclude that data corruption would occur for a signifi-
cant range of power differences. The locking onto the phase of the signal
effectively diminishes the influence of competing transmissions and lowers
the SINR threshold required to be met for correct reception.

Due to the nature of the use of synchronization headers, the require-
ment, that the stronger transmission comes first, is significantly eroded: The
weaker transmission may come first, as long as its synchronization header
is not completely received before the synchronization header of the stronger
transmission begins. This happens because the stronger synchronization
header destroys the end of the weaker synchronization header, hence, the
receiver no longer considers the weaker signal to be a valid packet. Further,

CHAPTER 2. PROTOCOL LAYERING 12

Packet A (strong) Packet B (weak)

∆ < −dA correct correct
−dA < ∆ < 0 correct not at all

0 < ∆ < τ1 correct not at all
τ1 < ∆ < τ2 tapering chance not at all
τ2 < ∆ < dB not at all partially corrupted
dB < ∆ correct correct

Table 2.1: Listing of the possible outcomes of two packets arriving at the same
receiver simultaneously. ∆ specifies the time difference tA− tB between the arrival
times of the two packets and di denotes the duration of packet i. τ1 and τ2 denote
two thresholds between which the probability of a correct reception of packet A
tapers off.

in some scenarios the window for the stronger transmission to arrive has
been reported to extend even into the first 3 bytes of the weaker transmis-
sion [78].

A summary of the outcomes in each possible scenario for 2 packets can
be seen in Table 2.1. Of special interest here are the constants τ1 and τ2,
which dictate the timing thresholds required for the capture effect to occur.
We expect these to closely match the length of the synchronization header.

To find the exact values of τ1 and τ2 for our specific hardware and testbed
setup, we conduct a few experiments pitting two senders against each other
to try to successfully transmit a packet to a single receiver. To mimic actual
protocol performance as close as possible we only use the hardware’s innate
ability to keep time and synchronize clocks. Hence, the receiver periodically
sends a packet both senders use to synchronize their local clocks to the
receiver’s. The period is chosen to keep the clock error strictly below ±0.5µs,
which is close to optimal considering the clocks’ frequency of 4 MHz. We will
discuss the details of achieving such synchronization precision in Chapter 3.
In the remaining slots, both senders send packets with varying transmit
power levels or delays.

Figure 2.1 shows the results for one sender using a significantly larger
sending power and, due to links of similar quality being used, significantly
higher received signal strength. We observe the probability of the receiver
capturing the stronger packet to fall to zero roughly over the interval from
τ1 ≈ 150 µs to τ2 ≈ 165 µs. At the bitrate of 250 kbit/s 160 µs correspond
to 10 symbols or 5 bytes, which matches the length of the synchronization
header (4 bytes of preamble plus the immediately following SFD (start of
frame delimiter) byte). The spread τ2 − τ1 ≈ 16 µs matches the length of

CHAPTER 2. PROTOCOL LAYERING 13

130 135 140 145 150 155 160 165 170 175 180 185 1900%

20%

40%

60%

80%

100%

∆ (Delay Sender A) [µs]

Pa
ck

et
R

ec
ep

tio
n

R
at

io
(P

R
R

) Sender A
Sender B

Figure 2.1: Occurrence probability of the capture effect at a receiver plotted
against the time difference between the two incoming packets. Sender A’s signal
was significantly stronger averaging at −69 dBm RSS (Received Signal Strength),
compared to Sender B at −82 dBm RSS. 130 samples were taken per delay value.

one symbol and is roughly centered around ∆ = 160 µs.
It is worth noting that the study by Yuan et al. [78], also using TelosB

motes, measured the transition window to be τ1 ≈ 128 µs to τ2 ≈ 224 µs,
resulting in a spread of roughly 6 symbols or 3 bytes. We are not completely
certain about the cause of this discrepancy, but presume the difference in
path quality to play a significant role: we used 3 nodes part of the testbed,
located in different rooms, while they had placed the nodes in clear line of
sight at a distance of 1 meter.

We also measured the effect of signal strength difference on capture prob-
ability. Figure 2.2 shows our results for the case of both senders sending
simultaneously (|∆| < 1 µs), but one sender varying its transmission power.
To determine the difference in RSS and counteract the fluctuation of the
link qualities over time, we additionally measured each sender’s RSS value
within at most 0.5µs of each sample. We observe the gap threspower between
either of the senders having their packets captured with a high probability,
say PRR > 90%, to be about 5 to 7 dB. This roughly matches the values
cited in existing literature, e.g., [73]. It is worth noting, however, that the
gap size threspower likely depends on the environment, since in most exist-
ing models a higher noise floor implies needing a higher signal power to beat
the SINR threshold required for successful capture. Further, we find that

CHAPTER 2. PROTOCOL LAYERING 14

−12 −10 −8 −6 −4 −2 0 +2 +4 +6 +80%

20%

40%

60%

80%

100%

(RSSA −RSSB) [dB]

Pa
ck

et
R

ec
ep

tio
n

R
at

io
(P

R
R

)

Sender A
Sender B

Figure 2.2: Occurrence probability of the capture effect at a receiver plotted
against the power difference between the two incoming packets. Sender A’s trans-
mit power was varied over its whole available range, producing RSSA values from
−89 dBm to −68 dBm, while Sender B’s transmit power was kept constant, pro-
ducing RSSB values from −79 dBm to −76 dBm. 40 samples were taken for each
of the available 32 transmit power values, resulting in a total of 1108 compara-
ble instances, i.e., instances in which we were able to measure both senders’ RSS
values.

the probability of either packet to be received successfully drops to around
5% when the signal strengths are identical.

In conclusion, we observe that in order to be able to reliably call on
the capture effect in a slotted setup (see next section), competing senders
should have a clock difference below 160 µs and a power difference above
5 dB. This level of synchronization we can achieve by synchronizing about
once every few minutes.

2.4 Layering Protocols

2.4.1 Slot Logic
Traditionally, executing multiple protocols in parallel is likely to incur a
penalty on the utilization of the network resources and/or the performance
of the protocols themselves. For example, if two protocols access the medium
alternatingly using time slots, up to half the slots may be wasted, while one
of the protocols is idle and the other has demand for more than its share

CHAPTER 2. PROTOCOL LAYERING 15

of time slots. Further, in this scenario, information propagation latency is
doubled, as no information can leave a node sooner than 2 slots after its ar-
rival. Using more opportunistic approaches, such as when using CSMA/CA
(Carrier Sensing Multiple Access with Collision Avoidance), the problems
mentioned above do not occur: any number of idle protocols do not influ-
ence the network’s utilization or the performance of the other protocols.
However, when the load on the network becomes too large, unfairness and
starvation become threats to effective operation.

In this section, we will detail our proposed method of parallelizing, or lay-
ering, k protocols with the aim of combining the benefits of the approaches
mentioned above: no unused network resources under load, while also of-
fering fairness and prevention of starvation. Further, our method allows
prioritization of protocols, giving higher-priority protocols almost complete
access to the network’s resources at the cost of possible starvation of lower-
priority protocols in areas of the network not sufficiently separated from
the high-priority traffic in space or time. Finally, this section will discuss
how network topology and environment influence the number of layers our
method can support.

The core idea is to deliberately provoke the capture effect at every node
whenever it is destined to receive multiple packets at the same time. To
do so, we enforce time slotting and require the clock difference between
any two nodes within a node’s immediate neighborhood to be below τ1 (see
Section 2.3). By ensuring all potentially competing packets start within a
time interval of length τ1, we obtain that which packet is to be received in
a time slot is solely dependent on the arriving packets’ signal strengths, but
not on their relative timings. Given a sufficient spread in signal strengths,
the capture effect is almost certain to enable successful reception of the
packet with the strongest signal. We will discuss why this assumption is a
reasonable one to make below.

The next piece of the scheme is to use transmission power control at each
sender to specify the “layer” of each packet. As nodes may have varying
distances and link qualities to each other, the transmission power cannot
simply be derived from the layer of the packet to be sent, but must consider
the destination node. In effect, for every receiving node a set of incoming
signal strength intervals needs to be chosen, different enough to be distin-
guishable by the capture effect, but similar enough to fit within the range
of signal strengths each of the neighboring nodes can produce. Thus, for
every sending node, for each of its neighbors and for each of the layers the
correct sending power needs to be determined.

Finally, every protocol is uniquely assigned to a layer. We label the
layers 1, . . . , k, where the protocol of layer k has the highest priority and
the protocol of layer 1 has the lowest. Every slot, every node executes

CHAPTER 2. PROTOCOL LAYERING 16

Algorithm 1: Pseudocode for Slot Logic
out← ∅
foreach protocol Pl with layer l ∈ {1, . . . , k} do

Pl.compute slot()
if Pl.outgoing packet 6= ∅ then

out← Pl.outgoing packet
Pl.outgoing packet ← ∅

if out 6= ∅ then
Transmit out this slot (using the correct power for out’s target
and layer).

else
Listen this slot.
in← incoming packet
if in 6= ∅ then

Pin.layer.process packet(in)

Algorithm 1: First, it performs each protocol’s slot computation separately,
while storing the packet the highest layer protocol wants to send (out) and
discarding all others. If any packet was chosen this way, it is sent at the
sending power corresponding to its destination and protocol layer. If no
packet was chosen, the node listens for the duration of that slot and delivers
any received packet to the correct protocol.

This setup attempts to give each protocol the illusion of being the only
protocol present. This is achieved by protocols experiencing a “packet loss”
if a protocol of higher layer is active at the same time: if a higher layer is
overriding the sending of a lower layer packet, that lower layer packet simply
appears to have been lost in transit; conversely, if a packet of a higher layer is
overriding the reception of a lower layer packet, that packet’s fate appears
indistinguishable from true packet loss as well. As occasional packet loss
is a common occurrence in almost every environment due to noise bursts
or interference, most wireless algorithms are innately capable of recovering
from a loss of packets. Hence, they are perfectly suitable to be used as lower
layer protocols. The highest layer protocol experiences no packet loss due
to the presence of other layers (with one exception noted below), but is still
subject to the usual environmental impediments. If the environment is in
fact controlled enough to not suffer any such packet loss, as might be the
case in clinical settings such as perhaps data centers, a protocol relying on
a low packet loss ratio may be used as the highest layer.

We do not consider queuing packets from multiple protocols desiring to
send from the same node in the same slot, as this would tamper with pos-

CHAPTER 2. PROTOCOL LAYERING 17

sible protocol-internal slot schedules of protocols whose packets have been
delayed. This would damage the illusion, and require significant changes
to the way protocols for use in the lower layers are designed, such that
common known protocols can no longer easily be used. Simulating packet
loss is hence a cleaner solution, while the option of allowing layering-aware
protocols to immediately know if their packet was dropped, such that they
may queue it for the next slot if desired, is still available.

There is one scenario, however, in which the illusion inevitably breaks
down. As we are assuming that the wireless hardware is not capable of
receiving while transmitting, a problem occurs when a node is choosing to
send in a slot due to a protocol of layer i, but would in the same slot receive a
packet on layer j > i. Here the protocol of layer j will experience packet loss
due to a lower layer protocol. Unfortunately, it is impossible to prevent this
scenario from occurring without also introducing significant overhead to all
other scenarios: if the traffic demand on layer j can occur spontaneously, for
instance, to propagate an alarm event, every node’s layer i protocol may be
in any state, including having chosen to send in that particular slot. If one
forces layer i a priori to not send in certain slots, the latency and bandwidth
penalties tied to TDMA are inevitable.

We found that for applications, in which the highest level protocol aims
to achieve the lowest latency possible (such as the example application dis-
cussed in Section 2.5), a reasonable workaround is to send every high-priority
packet twice in successive time slots. Note that while this does double the
amount of packets sent, the latency only increases when the described sce-
nario indeed occurs. Running common algorithms, a node that is sending
in slot t is unlikely to send again in slot t+ 1 as there would not have been
any input in slot t to instigate another outgoing transmission. This is even
true if multiple layers wanted to send in slot t, as all their packets would
have been either sent or discarded in slot t. Hence, a high-priority packet
sent in two successive time slots is bound to arrive in at least one of the two
slots.

2.4.2 Power Choices
The main difficulty now lies in ensuring a good spread in the signal strengths
of all packets received at each node in the same slot. One assumption we
make is that the individual protocols avoid causing multiple of its packets
to collide at the same node. This is reasonable especially for protocols
following the traditional school of thought, which dictates all simultaneous
packet arrivals to be fatal collisions. Given this assumption and the fact that
every protocol runs on its own unique layer, all packets arriving at a node
in the same slot belong to different layers and should thus have sufficiently

CHAPTER 2. PROTOCOL LAYERING 18

different signal strengths for the capture effect to be able to enable reception
of the strongest packet.

There exists a tradeoff between the number of available layers (and thus
number of parallelizable protocols) and the achievable spread of received sig-
nal strengths at each node. The network topology and in particular the ho-
mogeneity of the network’s link qualities play a large role in enabling a higher
number of layers to be well separated at each node. “Well-separatedness”
requires the difference in received signal strength between every pair of lay-
ers to exceed the threshold of threspower (which we found to be at least 5 dB
on our testbed, see Section 2.3). We found that in a perfectly homogeneous
setting where every link is either of high quality (high range of powers us-
able for successful transmissions) or not of significant power, the number of
available layers becomes maximal. Using our hardware we found up to 4 or
5 sending powers to be distinguishable at a receiver, see Figure 2.3(a). Such
a high number of layers (4 or more) is likely only feasible in settings with a
high degree of control over node positioning and environmental influences.

More commonly, networks contain varying levels of heterogeneity, with
some areas containing only long-distance/low-quality links, some areas more
tightly packed with low-distance/high-quality links, and many areas be-
ing cases in between. For our hardware, especially these in-between cases
spell trouble due to the granularity of selectable sending powers decreas-
ing sharply as power values decrease, see Figure 2.4. As a direct result, a
bottleneck for the number of layers forms at nodes with both long-distance
and short-distance links. In the example of Figure 2.3(b), the low-quality
link of Sender D can only provide receive powers in the range from -89 to
-78 dBm, a range which Sender A cannot reach with any power setting.
In Figure 2.3(c), while no extremely high-quality links are included, the
higher-quality links still offer only a very low power granularity in the range
feasible for lower-quality links.

We find that for our hardware 2 clearly distinguishable layers are possible
in essentially all topologies, but identify the occurrence of both “long” and
“short” links at a single node as the main bottleneck. Note that the cause
for the bottleneck is not present in nodes which have only long or only short
links, as in these cases the links’ power ranges overlap very well. Essentially,
the smaller the upper bound on the difference between the longest and
shortest link at any node in the network, the higher the number of available
layers.

When faced with the problem of the network supporting too few well-
separated layers, there are several possible solutions. For one, the problem
may be addressed directly by excluding or repositioning such mixed-link
nodes or some of their neighbors. Another alternative is to employ wire-
less transceivers offering better-suited transmission power control options.

CHAPTER 2. PROTOCOL LAYERING 19

3 7 11 15 19 23 27 31

−50

−60

−70

−80

−90

(a)
R

SS
[d

B
m

]

3 7 11 15 19 23 27 31

−50

−60

−70

−80

−90

(b)

R
SS

[d
B

m
]

Sender A
Sender D

3 7 11 15 19 23 27 31

−50

−60

−70

−80

−90

(c)

TX Power Setting

R
SS

[d
B

m
]

Figure 2.3: Shown are the RSS (received signal strength) values for different
output powers for different links at the same receiver.
(a) Two links of similar quality easily allow 4 layers to be differentiated (horizontal
lines). A possible fifth layer could identify with powers below -88 dBm.
(b) An example of a node with an extremely short distance neighbor (Sender A).
No power setting allows a packet from Sender D to be captured while Sender A is
sending as well.
(c) An example of a typical node with no very close neighbors. 2 layers are sup-
ported by all links.

CHAPTER 2. PROTOCOL LAYERING 20

3 7 11 15 19 23 27 31
−30

−20

−10

0

TX Power Setting

O
ut

pu
t

Po
w

er
[d

B
m

]

Figure 2.4: The 32 available output power settings on the CC2420 wireless
transceiver [75]. Note that half the available values cover only a 7 dB interval
and settings below 3 are not usable.

Finally, in some scenarios compromising the quality of the layer separation
a bit by lowering the required signal strength spread at each receiver may
be feasible, especially if only few or unimportant nodes are affected. Lat-
ter may lead to occasional inadvertent inversion of packet priorities and
true destructive packet collisions, which some applications may be able to
tolerate.

If one wishes to have multiple protocols to have the same priority and be
entitled to equal share of the medium, it is not advisable to assign both pro-
tocols the same layer of receive powers. Since packets of the same strength
arriving at a node will not trigger the capture effect but instead lead to de-
structive packet collisions, none of the packets would be decoded correctly.
Instead, we recommend having a separate layer for each protocol, but rotat-
ing through the protocol assignments for the layers on a slot number basis.
I.e., for two protocols, simply swap their layer assignments every c slots.
We suggest choosing the value of c to be around 50 to 100 to avoid each
protocol suffering very frequent packet loss when both protocols are under
load.

CHAPTER 2. PROTOCOL LAYERING 21

8

33

3

6

16

22

28

18 27 24

23

32
31

10

Figure 2.5: A part of the FlockLab testbed which we used to conduct our ex-
periments on. An example of a convergecast tree with node 8 as the root node is
shown. Yellow edges indicate links not part of the tree. To avoid collisions within
the convergecast layer, no two sibling branches connected by links may execute
simultaneously. Hence, every node, once it is woken, first queries all its black edge
children in parallel, and then, in a second step, its blue edge children.

2.5 Example Application

To verify and measure the effectiveness of our method on real world wireless
sensor networks, we chose an example application highlighting the supposed
benefits of our method and implemented it on FlockLab [46] which spans
the floor of an office building (see Figure 2.5).

We consider the scenario of fire detectors covering the rooms of a building
with the goal of reporting the outbreak of a fire as quickly as possible to a
base station, or root node, which to the network is just a normal node with a
special role. The root node has a wired connection to the building facilities
and can escalate the alarm if it is informed of a fire by one of its neighbors.
In its wireless capability it matches a regular node and as such it can only
hear a local neighborhood of nodes, necessitating the propagation of a fire
alarm over multiple hops.

Additionally, we require the liveness and proper functioning of all nodes
to be regularly verified so that defunct nodes may be replaced in a timely
manner. We regard these liveness tests to be of less urgency than the fire
alarms and thus do not mind fire alarms having priority access to the wireless

CHAPTER 2. PROTOCOL LAYERING 22

medium. Hence, in our model the liveness tests will be executed as a protocol
on layer 1, while the fire alarm propagation will take place as a protocol on
layer 2.

We model each fire detector as a TelosB sensor node extended with a
smoke sensor, though for this experiment we only simulate a virtual smoke
sensor to make alarm generation easier. The TelosB sensor node features a
CC2420 wireless transceiver [75], which supports the IEEE 802.15.4 wire-
less standard [32] and is capable of either sending or receiving on a single
frequency at a time. It uses a synchronization header for detecting the start
of packets and offers output power control, but does not provide any more
advanced features such as message in message or decoding more than one
transmission at a time. For all intents and purposes it fulfills the ideal of
a “standard” low-power wireless interface as was referred to in Sections 2.3
and 2.4.

2.5.1 Layer 1
We design the layer 1 protocol as a parallelized convergecast on a tree over-
laid onto the network connectivity graph. Every node knows of its parent
and its children in the tree as well as the adjacency relationships between its
child branches. The root node repeatedly initiates convergecasts and will,
whenever a node is indicated as missing or defunct by the output of the con-
vergecast, generate an appropriate alert for that node’s replacement. This
layer will also resynchronize a node’s clock whenever it receives a message
from its parent in the tree. This ensures the packet transmission synchro-
nization requirements for achieving the capture effect hold over the time of
the deployment.

The states each node goes through as it participates in the convergecast
are depicted in Figure 2.6. The root node begins a convergecast by waking
up itself and skipping to qwake (since it has no parent). Other nodes start
in qsleep and wait for a request from their parent. After acknowledging the
request (qackrequest) their parent will send some of its children proceed mes-
sages (qwake), while the remaining children only receive acknowledgments
and will have to wait at first (qwaitproceed). After “proceeding” a node wakes
its children with a request of its own and then proceeds to qchoose.

Once a node has woken all its children it will start querying subsets of its
children (qsendproceed), such that the branches of no two chosen children are
adjacent in the same subset. With every proceed message, every addressed
child is assigned a recurring slot during which it may confirm the query
(not pictured) and then later send a response, once it has gathered all the
information from its branch. Once a subset of branches has completed,
by each branch either sending a report or not responding for 3 subsequent

CHAPTER 2. PROTOCOL LAYERING 23

qsleepstart qackrequest

qwaitproceed

qwake

qchoose

qrespond

qsendproceed

qcollect

request from parent

ack confirmed

proceed
from
parent

proceed from parent

(all children ack’d)

(all branches done)

(branches remain)

response confirmed

(chosen branches responded)

Figure 2.6: A high-level overview of the states each nodes traverses during the
parallelized convergecast. Resends and root specific transitions were omitted for
clarity.

queries, the process is repeated for another subset of branches. Finally,
when a node has gathered all the information from its subtree it will wait
for one of its designated response slots and report to its parent (qrespond).

Anytime a node needs to send messages to multiple of its children at
the same time, it will combine these messages into one and send it at the
highest power any of the links requires for layer 1. While this may strain
the layering system in certain configurations, the effects were negligible in
practice. Hence, we followed through with this approach for its efficiency
and simplicity. An additional benefit is the compliance with the assumption
that no node would ever send in two subsequent slots.

Further, every query and every report is explicitly acknowledged. If an
acknowledgment is lost, the query or report will be resent after randomized

CHAPTER 2. PROTOCOL LAYERING 24

exponentially growing backoff intervals until an acknowledgment is received
or, in the case of a query, the recipient is pronounced dead after 3 attempts.
Once a node is determined to be dead, it will be ignored for the remainder
of the convergecast and the root node, upon receiving the aggregated node
data, can notify building personnel to manually check on the potentially
broken node. If a node retrying reports is queried for a new convergecast,
it will snap out of its clearly erroneous state and participate as per usual in
the new convergecast.

2.5.2 Layer 2
The fire alarm propagation is implemented on layer 2, i.e., a layer with a
higher priority than the convergecasts described above. When an alarm
event occurs it is propagated along a tree towards the root, a tree similar or
even identical to the one used by layer 1. We simulate smoke alarm events
occurring randomly and independently with a chance of 1% each slot. In a
first test series, we trigger the event at one random node only (SA). In a
separate test series we trigger multiple alarm events (MA) at different nodes
simultaneously or with a few slots delay as might happen in the case of the
outbreak of a real fire.

Multiple simultaneous alarms introduce an additional difficulty to the
layer 2 protocol. As mentioned in Section 2.4.1, even the protocol with
highest priority needs to deal with packet loss due to addressed nodes possi-
bly not listening as they might be sending out a packet of their own on layer
1. The solution mentioned previously, to repeat all packets of the highest
layer once in the subsequent slot, is not sufficient here due to the possible
presence of multiple alarms, which in our setting all need to have the same
priority (as we only have 2 layers available) and are hence expected to pos-
sibly collide destructively. Thus, we additionally implemented implicit and
explicit acknowledgments for alarm propagation. When a node receives an
alarm packet from a descendant in the tree, it forwards it in both of the
next two slots and then listens. If it hears an ancestor in the tree propagate
the alarm, it takes this as an implicit acknowledgment and calms down, i.e.,
no longer spreads the alarm. If it does not hear the alarm propagated, it
repeats it another two times after a random exponentially growing backoff
period, and listens again. A node which hears the same alarm again (after
it had already propagated it) does not propagate it again. If the sender was
a direct descendant, it sends back an explicit acknowledgment.

We also considered solving the collision of multiple alarms by tracking the
received signal strength indicator (RSSI) when no packet is being received
in a slot. We expected to see a signal strength similar to or stronger than
that of a layer 2 packet, which would indicate that an alarm had occurred

CHAPTER 2. PROTOCOL LAYERING 25

for certain, even if the exact data of the alarm was unavailable. This would
allow us to pass on the existence of an alarm without incurring a latency
penalty from the alarm collision. Unfortunately, experiments showed the
RSSI to not be reliable enough of a measure for the presence of layer 2
packets, producing an unacceptably high rate of either false positives or
false negatives.

2.5.3 Discovery
To determine the trees to be used by layers 1 and 2 as well as the different
reception power levels for each layer at each node, we initially perform a
“discovery” phase. The goal of this phase is to record the quality of each
link in the network, compute the trees with the smallest possible height
and then inform each node of its parent, its children and all the parameters
required for operation as listed above.

While in our experiments we needed to perform this phase only a single
time, in practice it would likely be desirable to repeat this phase every so
often to deal with changes in the wireless environment, as, for instance,
may easily be caused by the closing of doors or the increasing of a room’s
air temperature or humidity. Such repeated runs may for the most part be
executed solely on layer 1 without impacting the operationally critical alarm
propagation on layer 2, the potential exception being tests of links at higher
sending powers. In our experience, some links’ qualities can drastically
change every few seconds, while others are stable for days. Reasonably, one
would not perform a complete discovery as often as every few seconds or
minutes, but rather on the order of hours while testing known fluctuating
links more frequently.

2.6 Test Results

We compare the performance of our method to a traditional approach, which
does not incorporate the capture effect but for comparability’s sake adheres
to the time slotting. It will, however, still execute both of the protocols (con-
vergecast and alarm propagation) and is aware of their relative priorities.
Hence, it will prefer forwarding alarm packets over sending convergecast
related packets, but will use the same transmission power for all packets.
Additionally, we compare the latency of the alarms as well as the dura-
tions of the convergecasts to the best physically possible values. Since these
values usually are not obtainable without a dose of luck with regards to low-
reliability long-range links, we do not expect these values to consistently be
met.

CHAPTER 2. PROTOCOL LAYERING 26

Alarms Convergecasts

Traditional (SA) 78% 98%
Layering (SA) 100% 88%
Traditional (MA) 59% 98%
Layering (MA) 79% 88%
Traditional (MA with Acks) 100% 75%
Layering (MA with Acks) 100% 88%

Table 2.2: Experiment A: Percentages of successful alarms and convergecasts.

Alarms Convergecasts

Traditional (SA) 79% 98%
Layering (SA) 98% 87%
Traditional (MA) 50% 97%
Layering (MA) 65% 53%
Traditional (MA with Acks) 82% 66%
Layering (MA with Acks) 98% 50%

Table 2.3: Experiment B: Percentages of successful alarms and convergecasts.

In the first test series we consider the described algorithm without alarm
acknowledgments (and thus without resends) in the scenario of single alarms
(SA) only. We do, however, still repeat every alarm propagation packet in
the subsequent slot to avoid losing it to a layer 1 packet being sent at
the destination node. For the second and third test series we tested the
algorithm with and without acknowledgements in the scenario of multiple
alarms (MA). We present the results for two representative experiment runs
with different topologies. Experiment A used 11 nodes and executed 462
convergecasts and 231 alarms. Experiment B used 14 nodes and focused
on an increased alarm density by doubling the probability for an alarm to
occur in each slot to 2%, executing 311 convergecasts and 528 alarms. For
both experiments, the convergecasts and alarms were divided evenly among
the 3 test series and 2 approaches. The experiments took approximately 50
minutes each.

Tables 2.2 and 2.3 list the portions of alarms and convergecasts which
were successful in each setting. An alarm is successful if it did not get lost,
i.e., reached the root node eventually. A convergecast is successful if it com-

CHAPTER 2. PROTOCOL LAYERING 27

pleted correctly and collected data from every single node. The tendency
of the layered approach to promote alarms over convergecasts even more
than the traditional approach is clearly visible: while our layering approach
generally suffers from fewer successful convergecasts, it beats the successful
alarm ratio of the traditional approach, reaching an almost certain alarm
delivery. The difficulty of dealing with multiple alarms without acknowl-
edgements is also apparent, as alarms inevitably get lost. Of special note is
the fact that while the traditional approach reaches the same 100% alarm
successes as us using acknowledgements in experiment A, it suffers a larger
convergecast success penalty.

Figures 2.7 and 2.8 show the CDF (cumulative distribution function)
for the alarm delay. The delay of an alarm is defined as the number of
slots it takes to reach the root node minus the physical minimum number
of slots required to traverse the multi-hop path from its origin to the root.
This allows for a comparison between alarms originating at different nodes.
We observe our approach beating the traditional one in each category, not
least because it suffers fewer lost alarms, with the exception of “MA with
acknowledgements” in experiment A. For single alarms we achieve an alarm
delay of 2 slots or less in 85% resp. 94% of cases, which is excellent consider-
ing the optimal reference alarm delay taking unreliable long-distance links
into account. As was to be expected, overall the maximum delay experi-
enced without acknowledgements is around 4 slots, while acknowledgements
allows alarm reporting to be drawn out considerably.

Figures 2.9 and 2.10 shows a similar CDF for convergecast delays, de-
fined as a convergecast’s duration minus the minimum amount of slots our
algorithm requires for the convergecast even if not a single packet was lost.
The considerably worse performance of our approach here is due to it caus-
ing the layer 1 algorithm increased packet loss in order to support layer 2.
Also of note is the general increase in delay for both approaches as more
layer 2 traffic is introduced, both by adding acknowledgements and resends
and by increasing the amount of alarms.

2.7 Summary and Future Work

We presented a method to execute multiple protocols in parallel, giving
each protocol the illusion of being the only one and having complete access
to the network’s resources. When a higher-priority protocol uses network
resources, such as the ability of a node to send or receive a packet in a spe-
cific slot, lower-priority protocols experience this as packet loss, as sending
priority or the capture effect drop lower-priority packets.

Further, in theory our method causes no overhead in terms of time slot

CHAPTER 2. PROTOCOL LAYERING 28

0 5 10 150%

20%

40%

60%

80%

100%

Alarm Delay [slots]

C
D

F

Traditional (SA)
Layering (SA)
Traditional (MA)
Layering (MA)
Traditional (MA with Acks)
Layering (MA with Acks)

Figure 2.7: Experiment A: Distributions of alarm delay.

0 5 10 150%

20%

40%

60%

80%

100%

Alarm Delay [slots]

C
D

F

Figure 2.8: Experiment B: Distributions of alarm delay.

CHAPTER 2. PROTOCOL LAYERING 29

0 5 10 15 20 250%

20%

40%

60%

80%

100%

Convergecast Delay [slots]

C
D

F

Traditional (SA)
Layering (SA)
Traditional (MA)
Layering (MA)
Traditional (MA with Acks)
Layering (MA with Acks)

Figure 2.9: Experiment A: Distributions of convergecast delay.

0 5 10 15 20 250%

20%

40%

60%

80%

100%

Convergecast Delay [slots]

C
D

F

Figure 2.10: Experiment B: Distributions of convergecast delay.

CHAPTER 2. PROTOCOL LAYERING 30

use and latency. To confirm this, we implemented an example applica-
tion with 2 protocols of different priorities and measured their performance.
The results show very few packet losses and essentially optimal latency for
the higher-priority protocol, while it causes additional losses to the lower-
priority protocol compared to a traditional approach. In the scenario that
both approaches can avoid loss of high-priority packets, our method does so
while incurring less overhead to the lower-priority protocol.

Our technique does come with some downsides, most notably the removal
of the individual protocols’ ability to employ some options directly related
to the physical layer. These options include power control, knowledge about
corrupted packets, the use of the capture effect and the ability to not use
time slotting. For many algorithms these features may be non-critical or
even completely irrelevant. For others it may make this technique unsuitable
or require significant changes. Further, the connectivity graph is likely to
lose some edges on one or more layers whose target reception power ranges
cannot be met by the respective senders’ transmission power ranges. This
especially affects the availability of long-range links on the lower-priority
layers.

Our technique proves to be flexible concerning hardware and existing
protocols, allowing it to be deployed without much additional overhead be-
yond implementing the discovery phase and basic slot logic. We have shown
simple low-power hardware such as TelosB to be sufficient and pointed out
how our technique is capable of masking the existence of competing pro-
tocols, allowing many protocols to simply be “dropped in” on one of the
layers, possibly even on-the-fly. Some protocols may greatly benefit from
being aware of the other protocols, for instance, by knowing when their
packet was dropped already at the sender, or by even directly communi-
cating with the higher layer protocols on the same node. We believe this
work to nevertheless be a useful first step in the direction of exploring such
multi-layer protocols.

Incidentally, our technique is also a feasible fairness provider in many
situations. While in its basic implementation it will in fact allow any pro-
tocol to completely starve all protocols with a lower priority, as discussed
in Section 2.4.2, by periodically reassigning the layers to different protocols,
each protocol can be assigned an arbitrary share of the network resources
when averaged over longer periods of time. However, our approach is likely
not suitable for applications with a need for temporally more fine-grained
QoS. This is under the assumption that under load each protocol is able to
work more efficiently if it is the top active layer for its critical region for
longer consecutive time intervals than for many smaller ones, separated by
spurs of time with possibly 100% packet loss.

Power consumption was not examined as part of our tests. We believe

this issue to be almost orthogonal to the problems discussed here, as duty
cycling and rate of packets sent are not affected by the proposed method.
If nodes are unable to maintain synchronization through a sleep phase, care
needs to be taken that they are resynchronized before attempting to send a
packet intended to evoke the capture effect. On TelosB hardware, however,
staying below the synchronization error threshold of 160µs for longer periods
of time is very easy due to its 32 kHz crystal oscillator (with a tick length of
about 31 µs) being able to power-efficiently and accurately keep time even
when the CPU is in sleep mode. While operation on higher-priority layers
does require larger transmission powers, for many applications the proposed
method may remain a desirable choice, especially if high-priority messages
are more of an exception than a rule (as in our fire alarm example).

Promising future work includes applying this method to wireless hard-
ware with a finer power control granularity, especially at the low power end.
We expect such hardware to make it significantly easier to support a larger
number of layers while still having a clear separation of layers. In general, it
is also worth investigating the capture effect parameters for a layering setup
on other hardware, as hardware more amenable to exhibiting the capture
effect may loosen the requirements on synchronization or layer separation.

If the lack of absolute network resource control for higher layers proves
to be an issue (i.e., if lower layers are preventing reception of high layer
packets by sending lower layer packets), various solutions may be worth
exploring. For example, one could depart a little from strict slotting and
have higher layers send their packets a few dozen symbol durations earlier,
as to allow prevention of lower layer sending. Alternatively, a mechanism
by which higher layers completely reserve some nodes for a period of time
is imaginable and may be very effective depending on the application.

3
Maintaining Constructive Interference

3.1 Introduction

In recent years, the benefits of constructive interference (CI) have been
discovered for wireless sensor networks: By synchronizing identical signals
well enough, the interference caused by the collision is not destructive but
rather unnoticeable or even strengthening. On the one hand, this allows
the development of algorithms which can expect identical packets not to
destructively interfere. On the other hand, more unstable and longer links
can be used more reliably through the strengthening of the signal.

Traditionally, the frugal nature of sensor node hardware and timekeeping
moved synchronizing clocks and transmissions out of reach for commodity
sensor nodes. In the past, several workarounds have been proposed to nev-
ertheless enable the signals of separate nodes to interact meaningfully:

• One way is to provide a highly accurate external global clock source
by some means, e.g., GPS, with each sensor node.

• Another approach is to forgo the ability to send fully articulated data
packets – and to simply transmit waveforms instead, which are unlikely
to fatally destructively interfere [20].

33

• Most recently, Glossy [19] explored how to leverage incoming reference
packets to send a packet immediately afterwards with an almost con-
stant delay. When multiple nodes use the same reference packet (or
different well-synchronized reference packets), their outgoing packets
are then synchronized enough to achieve CI.

All of these approaches have in common that they try to avoid dealing
with the rather unreliable internal clocks of commodity sensor nodes. In
this chapter, we explore the possibilities of creating synchrony sufficient for
harnessing CI without relying on any of these workarounds. By meticulously
keeping time using the available local clocks to extrapolate a global time
value, and by minimizing the variance in packet departure delay, we manage
to at least partially obtain this goal. In particular, we present a proof of
concept implementation achieving CI on the popular TelosB sensor nodes,
confirming the viability of our approach: Even for only 2 senders we obtain
an increase in signal strength of at least 2 dB in 60% of cases and an increase
in packet reception ratio of 20–35% when signal strengths are equal. For
ideal results, we need the last synchronization of the senders to lie at most 20
seconds in the past when attempting to send simultaneously, but even after
multiple minutes of sleep our approach can benefit from CI. We carefully
compare several parameters in order to understand the limits of CI on sensor
nodes. For instance, already a synchronization error in the order of 1 µs is
problematic. More precisely, as we are using the IEEE 802.15.4 standard,
the transmissions need to start within less than 0.5µs of each other to avoid
destructive interference.

Hence, a significant part of this chapter is dedicated to synchronizing the
clocks of the sensor nodes, maintaining this synchrony and, finally, precisely
dictating the time span of the wireless transmission. Clock synchronization
for wireless nodes in general is a well-studied problem, but the synchroniza-
tion precision requirements by our setup are more stringent than those of
the common use cases such as TDMA.

3.2 Related Work

3.2.1 Clock Synchronization
Time synchronization between network nodes has been studied for a long
time even before wireless nodes became widespread. The 30 years old Net-
work Time Protocol (NTP) [55] is still in use today for time synchroniza-
tion between two machines over the Internet, achieving accuracies of about
10 ms. Recently, adjustments have been proposed improving its accuracy
to about 1 millisecond [43], which is still off by a factor of over 1000 from

the precision we require.
Wireless networks face additional challenges [16] but also have addi-

tional options at their disposal due to the different nature of their medium.
Römer [67] proposes a synchronization algorithm focusing on sparse ad
hoc networks. Dozer [3] minimizes energy consumption by keeping sender-
recipient pairs synchronized over long periods of time and only rarely waking
them for brief scheduled rendezvous exchanges. To maintain synchrony in
spite of clock drift, the drift is modeled and compensated for. We employ a
similar scheme, see Section 3.5.3.

RBS [15] makes use of the broadcasting nature of every wireless transmis-
sion to synchronize multiple nodes with a single transmission. RBS achieves
synchronization accuracy on the order of microseconds. TPSN [21] builds a
hierarchical tree structure for synchronization from a root node. TPSN also
introduces the concept of MAC layer timestamping, which we build upon in
this work (see Section 3.5.2). FTSP [53, 54] floods periodical synchroniza-
tion waves through the network, improving accuracy to around 1µs. Further
improvements for synchronizing networks of nodes are RITS [68], reactively
synchronizing nodes using global events, and RATS [37] and PulseSync [41],
which propose rapid network-wide flooding while employing schedules to
avoid collisions.

An analysis of the single-hop and multi-hop performance of the different
synchronization protocols and a proposal for a non-hierarchical synchroniza-
tion method improving the multi-hop case can be found in [31].

3.2.2 Constructive Interference
Already early on, primarily flooding algorithms became privy to the possible
gains of using non-interfering signals and thus being able to flood the net-
work without the overhead of building and adhering to a flooding schedule.
We distinguish single and multiple source flooding: while in single source
flooding a node desires to disseminate information or an event in the whole
network, in multiple source flooding any number of nodes may raise redun-
dant alarm events which need to be propagated. Lu et al. [49] proposed the
single source flooding protocol Flash, which relies on the capture effect to
resolve collisions between neighboring nodes at the flooding front.

Slotos [20] implemented multiple source flooding in form of an alarm sys-
tem in which an alarm signal, a simple waveform, was propagated through
a network by nodes which received the alarm starting to send out the signal
as well. In this case the concurrent signals were not artificially aligned but
the resulting amount of destructive interference was acceptable to the pro-
tocol, as the signal did not carry any data beyond its existence. Similarly,
Black Burst Synchronization (BBS) [23] employs non-destructively interfer-

ing pulses, so called “black bursts”. Dutta et al. [13] discovered that auto-
matic acknowledgments of multiple nodes having received the same packet
will in fact be synchronized so well as to cause constructive interference. Au-
tomatic acknowledgments are a common wireless transceiver feature that al-
lows an immediate response to correctly received packets (as verified by the
packet’s checksum). As the acknowledgment is completely handled by the
hardware, this feature avoids any variable desynchronizing delays the mi-
croprocessor software may cause. While essentially all of these approaches
have the common disadvantage of having very little control over the data
being sent, this is well suited for multiple source flooding, as such events
typically are not expected to carry detailed information.

More recently, Ferrari et al. [19] took the idea of synchronizing to the
end of a previously received packet one step further and proposed Glossy:
instead of sending an acknowledgment, which does not allow for the trans-
mission of meaningful data, they prepare a full response packet during the
reception of the incoming packet. By immediately issuing its transmission
when the transceiver indicates the completion of the reception of the in-
coming packet, the variable delays microprocessor software code paths and
clock skew can introduce are minimized. As the packet contents sent by
the different responders still have to be the same to allow constructive in-
terference, flooding is the main application for this approach as well. The
constructive interference leads to improved signal strengths, making weaker
and longer links more viable. Further, the rapid forwarding leads to excep-
tionally short flooding durations. Several recent protocols are based on the
rapid data dissemination capability of Glossy [11,18,38,79] and various stud-
ies on its reliability and the conditions necessary for creating constructive
interference have been conducted [78,80].

To achieve CI, Glossy relies on tying the departure time of each packet
to the end of the incoming transmission of a previous packet. One of the
main goals of this chapter is to do away with this restriction, yet still attain
CI for data packets rather than be restricted to mere events.

3.3 Experiment Setup

3.3.1 Hardware
The TelosB sensor node [62] we use for our experiments is mainly comprised
of a 16-bit RISC microcontroller, the TI MSP430, and a TI CC2420 wireless
transceiver. The clocks available to the MSP430 are a 32 kHz (215 Hz) quartz
crystal as well as an internal digitally controlled oscillator (DCO) which
serves as the pulse generator for the instruction execution. The frequency of
the DCO is very prone to being skewed through fluctuations in temperature

and voltage, but can generally be configured to be anywhere in the range
from 100 kHz to 5 MHz.

The CC2420 is tailored to support IEEE 802.15.4 and offers many con-
venience features such as framing given packet data including automatically
including a 16-bit CRC checksum field in the packet footer. We rely on this
checksum mechanism as our main way to tell whether a received packet has
been corrupted. The CC2420 offers a range of transmit powers from -30
dBm to 0 dBm (see Figure 2.4). We make use of this feature as it is easier
to adjust the output power than to physically move the nodes every time
changes in the environmental conditions require it (see Section 3.7).

We made use of an installation of 30 of these sensor nodes part of Flock-
Lab, placed at various locations on a floor of an office building near the
ceiling, some inside enclosed offices, some on the hallway. This allowed us
to consider a variety of real life scenarios.

3.3.2 Software
On the sensor nodes we run code based on Contiki [12] version 2.7. We
chose Contiki because it allows making the kind of low-level modifications
we required the easiest. In particular, we overhauled the clock module which
is concerned with using the MSP430’s Timer A (configured with the 32 kHz
quartz crystal as clock source) to count elapsed seconds and periodically test
for expired user-defined timers. We decrease the time span between timer
interrupts to 2−10 seconds, and instead of counting elapsed seconds we count
the occurrences of overflow interrupts for the Timer A timer register.

Contiki also offers a mechanism to periodically re-configure the DCO to
best match the desired frequency. We make use of this to keep the DCO
frequency near 222 Hz (roughly 4 MHz), the highest supported power-of-two
multiple of the quartz crystal frequency (215 Hz). This essentially subdivides
each tick of the quartz crystal into 27 sub-ticks, i.e., increasing the combined
precision by 7 bit (see Section 3.5.1).

The DCO is usually turned off to conserve energy during idle low-power
phases of the processor. While our approach allows such sleep phases, we
naturally do require the DCO to have been running since at least the last
quartz crystal tick to be able to provide accurate timestamps. This incurs
an overhead of up to 2−15 seconds of DCO operation after each wake-up.

We also configure the CC2420 driver to not use CCA (clear channel as-
sessment) for packet transmission and extend it to support recording 64-bit
timestamps on incoming packets and adding 64-bit timestamps to outgoing
packets (see Section 3.5.2).

For the process of the experiments themselves see Section 3.7.1.

Figure 3.1: A figure from the CC2420 Manual [75] illustrating the pseudo-random
modulation pattern (chip sequence) of the ‘0’ symbol on the I and Q phases. TC

is defined to be 0.5 µs, i.e., the chip rate is 1 Chip/TC = 2 MChips/s.

3.4 Timing Requirements

The IEEE 802.15.4 standard [32] specifies the encoding of the raw logical
data stream to electromagnetic signal as follows: First, the data is segmented
into groups of 4 bits, called “symbols”. Each of the 16 possible symbols is
then mapped to a certain pseudo-random noise sequence of 32 binary “chips”.
Finally, the chip sequences are concatenated and modulated using O-QPSK,
i.e., every chip is modulated alternatingly onto the I and Q phases, offset by
half a chip duration. At a chip rate of 2 MChips/s this pans out to 62,500
symbols per second or a 250 kbit/s data rate. See Figure 3.1 for an example
modulation of the zero symbol (corresponding to 4 zero bits).

In the ideal case all the senders’ (identical) chip sequences arrive at the
recipient node at the same time overlapping each other at a random (car-
rier) phase offset, likely causing CI and thus increasing the signal strength.
Unfortunately, such alignment does not come easily, and in the remainder
of this section we will discuss the different sources of signal misalignment.

As an upper limit for the acceptable signal shift between two signals we
can identify TC = 0.5µs, half the duration of a single chip within one of the
two phases. If the signal shift is any greater, every chip of the second signal
will superimpose the chip subsequent to the corresponding chip of the first
signal more than the actually corresponding chip. This upper limit of 0.5µs
is certainly not tight as that is merely the point at which chips certainly
cannot be unambiguously matched to a signal anymore. In practice, we are
aiming for a signal shift of 0.2µs or lower to ensure a strong CI effect. When
using a set of more than 2 senders, we aim to minimize the shift between
every pair of signals.

We identify 3 main sources of signal misalignment between the signals
of two senders A and B: the clock synchronization error eclock, the trans-
mission timing error etransmit, and the difference in the signal travel times

etravel:
etotal = eclock + etransmit + etravel

!
� 0.5 µs

Each of the components can be positive or negative and thus they can cancel
each other out. They are defined as follows.

The clock synchronization error is simply the difference in the senders’
views of the global clock value. We discuss reducing this error in detail in
Section 3.5.

eclock = clockA − clockB

The transmission timing error of a node is the delay the node starts the
transmission after a given desired local time. The difference in transmission
timing errors (delays) at each node forms etransmit. We discuss reducing
this error in detail in Section 3.6.

etransmit = etransmitB − etransmitA

Finally, the travel time error is the difference between each sender’s
signal’s travel time.

etravel = traveltimeB − traveltimeA

The travel time error is of note because at the precision of time we are work-
ing with here – tens of nanoseconds – the travel time of the electromagnetic
waves becomes significant, even in a testbed located on a medium-sized of-
fice building floor. For instance, if one of the senders is 30 meters further
away from the receiver than the other the difference in signal travel time is
100 nanoseconds.

We tried measuring these travel times by measuring the round-trip times
of links and subtracting the time the responding node measured between
the arrival of the incoming and the departure of the outgoing packet. Two
factors thwarted this attempt: Firstly, the CC2420 transceiver we are using
experiences a “data latency”, which denotes the time between the sender
and the receiver activating their SFD (“start of frame delimiter”) pin, which
indicates the start of an incoming or outgoing transmission. This delay is
apparently caused by the processing of the non-packet signal in the receiver
and specified to be 3µs by the CC2420’s data sheet. Our measurements show
that this delay is probably closer to 3.6µs and that it can fluctuate by several
dozen nanoseconds in subsequent measurements. Secondly, we observed the
round-trip time to vary by hundreds of nanoseconds over the course of a
day. This is likely caused by environmental effects, such as temperature
influencing the wireless transceiver’s clock and the opening and closing of
doors in the office building changing the actual travel times, although we
doubt that hundreds of nanoseconds of difference can be explained by travel

0 2 4 6 8 10
−10

0

+10

+20

+30

+40

Time [ms]

C
lo

ck
D

el
ta

[2
−

22
s]

Figure 3.2: The delta between the quartz crystal clock and the DCO clock over
the span of 10 ms, sampled at every fourth tick of the quartz crystal.

time changes. In the end, we did not come to a conclusive explanation and
decided to simply make best effort to eliminate this error: we pick senders
at roughly equal distance to the recipient node and adjust for the “data
latency” with a constant time offset of 3.6 µs.

3.5 Clock Synchronization

3.5.1 Merged Clocks
In general, quartz crystals exhibit a more stable and thus more desirable
behavior than digitally controlled oscillators (DCOs), both in terms of long
term drift as well as short term frequency stability. The TelosB possesses 2
quartz crystals: a 32768 Hz one attached to the MSP430 for general high-
accuracy timekeeping, and a 16 MHz one attached to the CC2420 transceiver
used for signal processing and as data rate reference. Unfortunately, the
latter is not accessible to the CPU, so we need to make do with the MSP430’s
built-in DCO as sole source for high granularity clock ticks: It offers a
resolution of about 0.24µs, compared to the resolution of the 32 kHz quartz
crystal of about 30 µs.

To get the best from both worlds – the stability of the quartz crystal
and the precision of the DCO – we build a hybrid clock, similar in spirit to
the method proposed by Schmid et al. [70]. The 215 Hz quartz crystal has

Figure 3.3: The final layout of our timestamps with the different clock sources in
different rows. The quartz clock has priority over the DCO clock, so actually only
7 bits of the DCO clock are used. No clock we use is able to specify the lowest 8
bits, but these bits allow for storing extra precision when a timestamp is the result
of arithmetic operations.

priority and ensures relatively high stability over the long term while the
DCO, set to a speed as close to 222 Hz as possible, fills out the time span
in between the quartz crystal ticks with 222/215 = 27 finer-grained ticks.
To accomplish this, we configured the MSP430 to copy the current value of
the DCO clock (a 16-bit counter) at each quartz crystal tick into a special
capture register. The MSP430 allows doing this in parallel with regular
instruction execution at no additional overhead. A complete current time
value could then be obtained by subtracting the current DCO counter from
the value in the special capture register and using the result as 7 bits of
additional precision together with the current quartz crystal counter. Addi-
tionally, we keep the number of times the quartz crystal counter overflowed
in a variable. This variable is incremented in an overflow interrupt handler
causing a negligible overhead every 2 seconds. Figure 3.2 shows how a sep-
arate DCO clock would move in relation to the quartz crystal. Not only is
there a clear drift and oscillating behavior (both of which could be accounted
for to some degree), but there also is a notable amount of randomness that
would make relying on the DCO alone as a clock source a poor choice.

As all the MSP430’s registers only hold 16 bits, the question of the size
for timestamps arises, as for the transmission between nodes they should be
unambiguous, at least within a period of several seconds. 16-bit variables
do not suffice as the DCO clock alone wraps around 256 times a second.
32-bit variables would only wrap every 1024 seconds or roughly 17 minutes,
but since we want to enhance our timestamps by an additional 8 bits of
precision when extrapolating (see Section 3.5.3), we settled on 64-bit vari-
ables. Such variables are well supported by our compiler (a GCC variant

for the MSP430), but special care has to be taken when performing arith-
metic operations on variables of this size, as they quickly grow to require
hundreds of instructions on 16-bit RISC CPUs such as the MSP430. The
final layout of our timestamps can be seen in Figure 3.3. The precision of
these timestamps is 2−30 seconds, roughly a nanosecond, and the range is
sufficiently large (several years).

3.5.2 MAC Layer Timestamping
To synchronize the sending nodes’ clocks, a reference node sends a couple
of synchronization packets at the start of each round (see Section 3.7.1). To
transmit synchronization information we employ MAC layer timestamping
[21]. This technique generally involves capturing the local time at the start
of an arriving or departing packet using an specialized output pin of the
wireless transceiver (the aforementioned “SFD pin”) connected to a timer
capture input pin of the CPU. The sender writes the captured timestamp to
the footer of the outgoing packet while the transmission of the of the packet
is ongoing. The receiver in turn can then compare its captured timestamp
to the timestamp contained in the footer to obtain an accurate local time
value for the shared event of the start of the packet.

Contiki’s CC2420 driver already provides this feature, but only supports
16-bit timestamps from the 32 kHz quartz crystal. We extend the driver
to support our mixed-source 64-bit timestamps. As mentioned above, as-
sembling such a 64-bit timestamp from its individual components requires
a fair amount of instructions on this architecture – a total of 55 in our case.
Further, we also already apply drift compensation at this stage, which re-
quires the multiplication of two 64-bit integer variables, which result in an
additional few hundred instructions. As our synchronization packets are 60
bytes in length, which require roughly 2 ms or 8500 CPU cycles to transmit,
there is still ample time to compute this timestamp and insert it at the end
of the packet.

3.5.3 Drift Compensation
Although the properties of quartz crystals are generally rock-solid, their fre-
quencies are not completely set in stone: temperature changes affect their
frequency and multiple instances of the same crystal may have slightly differ-
ent frequencies. In a system with multiple such quartz crystals this leads to
observable clock drift: clocks which were synchronized at some point in time
may drift apart as a result of their ever so slightly varying speeds. Worse,
these speeds change over time as the environment temperature changes.

To combat this, we implemented a drift compensation mechanism based
on linear regression with a rolling buffer: For the last k received synchro-
nization packets we store (locali, offseti) pairs, where locali is the local
time at which the ith synchronization packet was received and offseti =
globali − locali was the clock offset at that time. We then compute on the
last k values:

drift = locali · offseti − locali · offseti

local2i − locali
2

baseoffset = offseti − drift · locali

where exp denotes the average of the expression exp for i ∈ {n, n − 1, n −
2, . . . , n − k + 1} and n denotes the number of received synchronization
packets. To extrapolate an estimate of the global time we compute:

globalest(local) = local + baseoffset + drift · local.

For the size of the rolling buffer we found k = 8 to be adequate, adapting
to changes quickly enough, while avoiding wild fluctuations from noise and
outliers. Other settings with less frequent synchronization rounds might
find smaller values to suit their needs better.

While drift compensation is absolutely crucial in situations where nodes
are not re-synchronized for longer periods of time, it can already offer sub-
stantial benefits after shorter periods when high precision is required. To be
able to store and forward global timestamps computed using the formulas
above while preserving the gained precision, we append 8 additional bits to
our timestamps (see Figure 3.3).

Figure 3.4 shows the quality of the clock synchronization that we were
able to achieve using both MAC layer timestamping and drift compensa-
tion. We observe most instances (over 70%) to be spread uniformly be-
tween −250 and +250 nanoseconds. We cannot hope to improve this by
much since our clocks are only granular to 2−22 seconds. Hence, each clock
reading introduces an error distributed uniformly at random in the interval
[−2−23 seconds,+2−23 seconds] (roughly [−120 ns,+120 ns]).

Figure 3.5 shows the development of the synchronization error between
two nodes which were synchronized a couple of times at the start (to allow
for drift detection) and then not anymore. Clearly, not employing drift
compensation when not re-synchronizing nodes over longer periods of time
is fatal to the synchronization error. The almost constant slope shows why
linear regression is the right tool to combat clock drift. We also see in
this example that, in spite of drift compensation, the synchronization error
exceeds 0.5µs after about 25 seconds. Hence, when attempting simultaneous
sending, the most recent synchronization should ideally not lie further than
10 or 20 seconds in the past.

−600 −400 −200 0 +200 +400 +6000%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Synchronization Error [ns]

C
D

F

Figure 3.4: The distribution of the clock synchronization error a single node is
detecting while being re-synchronized every few seconds. For this plot the sample
size was 1934.

In conclusion, we solved the problem of single-hop clock synchronization
on TelosB as well as possible but still have to admit an error eclock of up to
250 nanoseconds. However, as the error is almost uniformly distributed, we
will hit cases as good as |eclock| ≤ 50 nanoseconds over 20% of the time.

3.6 Transmission Synchronization

Even if our clock was perfectly synchronized to the global clock, transmit-
ting a packet exactly at some given time is not a simple task. Once the
transmission of a packet has begun, its synchronization error will no longer
change, since its transmission is now controlled by the CC2420’s 16 MHz
quartz crystal. However, the delay between reaching the desired departure
time and beginning the transmission is not necessarily constant. It can be
split into two parts: the time between reaching the desired departure time
and issuing the STXON command strobe (requesting the transmission of a
previously loaded packet) to the transceiver, and the time between issuing
STXON and the actual start of the packet transmission. We measured the
latter of these two by comparing the DCO clock values right before issuing
the STXON command and at the SFD event (see Section 3.5.2). The dis-
tribution of the measured values are shown in Table 3.1. The fluctuations
are well within the limits of the frequency noise the DCO experiences (see

0 120 240 360 480 600 720 840 960

0

+1

+2

+3

+4

+5

Time [s]

Sy
nc

hr
on

iz
at

io
n

Er
ro

r
[m

s] Without Drift Compensation
With Drift Compensation

0 30 60 90 120 150
−8

−6

−4

−2

0

Time [s]

Sy
nc

hr
on

iz
at

io
n

Er
ro

r
[µ

s]

Figure 3.5: Synchronization error of a single node over time.

tSFD − tSTXON Instance Count Fraction of Total

1593 15 0.26%
1594 893 15.71%
1595 3726 65.53%
1596 1049 18.45%
1597 3 0.05%

Σ 5686 100.00%

Table 3.1: Measured STXON→SFD times collected from a single test run with
15 nodes. The time differences are specified in DCO ticks.

Figure 3.2). While it is possible that there is a small variable delay, it is not
discernible and we assume this time span to be constant.

It remains to scrutinize the time span between reaching the target time
and issuing STXON. Initially, we employed busy waiting: once the target
time was close, we stop relinquishing control to the operating system and
enter a loop in which all we do is query the time until the target time
has been passed. Immediately after, we call the driver routine to start the
transmission (one of the first instructions of which is to issue STXON).

Listing 3.1: Simple Busy Wait
if (TargetTime - GetGlobalTime() < 10 ms) {

while (TargetTime > GetGlobalTime())
; // do nothing

cc2420_driver.transmit();
}

This approach experiences a large variance in loop exit times and thus
transmission times (relative to the target time) due to the large amount
of instructions within the loop: assembling the local timestamp requires
55 instructions, computing the global time from it requires at least 110 in-
structions and comparing it to the target time requires 22 instructions. To
address this problem we made 3 changes. The first change was to apply
our model of the global time “backwards” to compute the target local time
before entering the busy wait loop. The second change was to decompose
the target local time into its 3 clock sources (see Figure 3.3) and spin on
the 3 16-bit clocks one after another. These two changes reduce each loop
to the minimum of 4 instructions. See Listing 3.2 for an approximate im-
plementation. TAR is the quartz counter register, TBR is the DCO counter
register and TBCCR6 contains the value of TBR at the last quartz crystal
tick.

Listing 3.2: Busy Wait Split by Clock Sources
void await(uint64_t local_target) {

uint16_t target_tarof = (local_target >> 23) & 0xFFFF;

while (TAR_overflows < target_tarof)
;

uint16_t target_tar = (local_target >> 7) & 0xFFFF;
while ((TAR - target_tar) & 0x8000)

;

uint16_t target_tbr = (local_target & 0x007F) + TBCCR6;
while ((TBR - target_tbr) & 0x8000)

;
}

It is worth noting that not every instruction requires the same amount of
time to be executed. However, due to the absence of caches and pipelining
in the MSP430’s architecture, the execution time of any given instruction
can be specified exactly in terms of a number of CPU cycles, which directly
correspond to the impulses generated by the DCO.

Listing 3.3: Busy Wait Assembly
.L36:

mov &__TBR, r15 ; 3 cycles
sub r12, r15 ; 1 cycle
cmp #0, r15 ; 2 cycles
jl .L36 ; 2 cycles

The third and final change we made was to insert NOPs (1-cycle “no
operation” instructions) ahead of the final loop to ensure we exactly matched
the target time when exiting the final loop. The four instructions comprising
the loop execute in exactly 8 cycles (see Listing 3.3), so before the loop we
wait for (target tbr - TBR) mod 8 cycles by using a jump table into a
series of NOPs. We note that we could save 2 cycles by merging the cmp
and jl instructions into a single jn instruction (2 cycles), an optimization
which our compiler did not apply. However, such a change would affect the
achieved synchronization only in extremely rare cases.

After applying these optimizations, the time offset between the target
time and the issuing of the STXON command strobe was constant in over
80% of cases. By artificially delaying the next periodic timer interrupt before
entering the last busy-wait loop to a point 1 ms in the future, this number
increased to > 99% of cases.

The constant delay is easily adjusted for, leaving the only remaining
transmission error we can observe the delay between issuing STXON and
registering the SFD event as measured by the DCO clock. Note that in this
case the DCO clock is used only for measuring and does not in any way

influence the wireless transceiver preparing for the transmission. Thus, it is
a reasonable assumption that the jitter seen in Table 3.1 is merely a product
of the DCO’s instability, albeit we cannot rule out that the transceiver itself
introduces a small variable delay.

Finally, as with clock synchronization, we suffer a transmission error
etransmit of up to 250 nanoseconds, the resolution of our most precise clock,
independent of the clock synchronization error. However, this error is also
distributed uniformly in the interval [−2−23 seconds,+2−23 seconds] and in
a certain fraction of all samples |etransmit| will be acceptably small.

3.7 Constructive Interference

3.7.1 Experiment Procedure
A particular concern when designing the experiments was to ensure we would
be able to discern which transmissions were successful due to CI and which
were successful due to the capture effect. For the capture effect to occur,
the “captured” transmission needs to be slightly stronger than the sum of
the remaining transmissions’ signal powers. On our testbed we found the
required extra signal power to vary between 2 or 3 dB, highly depending on
the nodes (see Figure 3.6). As link qualities in real life scenarios and on our
testbed can easily vary by ±3 dB within minutes or sometimes even mere
seconds, completely avoiding power settings in which the capture effect can
occur is not feasible. To nevertheless be able to detect the capture effect,
we thus frequently measure the quality of every link used. For a detailed
explanation of the capture effect refer to Section 2.3.

In our experiments we considered several tuples of nodes, where one node
of each tuple was designated the receiver and was known to have somewhat
stable links to the other nodes, the senders. We proceed in rounds, in which
first we let all senders send simultaneously twice: first with the same data
packet and then with data packets individual to the senders. Then, as a
second stage, each of the senders sends alone once. Finally, the receiver gives
the senders feedback on the round and optionally also supplies them with
fresh synchronization information. During each round the senders keep their
sending powers constant. The purpose of the second stage is to ensure we
know the received signal strengths (RSS) for all senders. Because a round
takes less than half a second, we make the assumption that the wireless
environment does not change significantly during the vast majority of all
rounds. Knowing the difference in RSS values is vital for us, as it allows us
to discern successful receptions which may have been caused by the capture
effect, as discussed above. We fix one of the senders’ transmission powers
at a medium value, such that the other senders will be able to create RSS

values both stronger and weaker than the fixed sender. These other senders
iterate over a range of power settings whose limits are regularly adapted
based on the feedback received between rounds.

3.7.2 Results
First, consider the case of 2 senders. Figure 3.6 shows the relation between
the difference in received signal strengths (RSS) and the packet reception
ratio (PRR) for senders sending the same data versus sending different data,
in which case the senders would set every symbol of the packet payload to a
symbol corresponding to their ID. A large positive RSS difference means
sender B, which is iterating over different transmission powers over the
rounds, was received a lot stronger than sender A, whose transmission power
stays constant. Which sender was received can be seen when different data
is sent, as is shown by the dashed lines. These plots are particularly in-
teresting because they highlight the interplay of CI and the capture effect:
if either sender is received a lot more strongly than the other, it will be
received correctly regardless of it sending a different packet. However, as
the signal powers become more similar, destructive interference occurs more
often. By sending the same data, we are able to avoid a portion of the
destructive interference, strongly implying the occurrence of CI.

We were able to observe CI to varying degrees for any triplet of nodes, as
long as the senders are capable of creating signals with similar strength at the
receiver. As a result of CI the PRR observed at equal RSS increases by 25–
35% of samples. The width of the gap between one sender dominating and
the other sender dominating appears to be a property of the hardware and
environment of a certain node tuple, but does not appear to be connected
to the CI we achieve.

Figure 3.7 displays the distribution of the signal strength gained through
CI at equal RSS for 2 senders. We observe a large variation both due to an
inherent gray area in link quality and due to the variation in transmission
synchrony achieved. However, in over 65% of cases we measure an increase
of signal strength by 2 dB or more.

We also conducted experiments with 3 and 4 senders, making an even
larger case for CI as the capture effect is known to occur less and less as
the number of senders increases [49]. Tables 3.2, 3.3 and 3.4 display the
PRRs aggregated in two different ways for one run with 3 senders and one
run with 4 senders. Empty cells correspond to configurations with fewer
than 5 samples. While there is a significant fluctuation in values due to the
unavoidably low number of samples in many cells, as we cannot dictate the
RSS values, a few clear trends can be observed. Most visibly, the same data
case usually exhibits a PRR 25–40% higher than the different data case.

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +60%

20%

40%

60%

80%

100%

(a)

PR
R

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +60%

20%

40%

60%

80%

100%

(b)

PR
R

−6 −5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +60%

20%

40%

60%

80%

100%

(c)

RSSB −RSSA [dB]

PR
R

Same Data Different Data (Either Sender)
Different Data (Sender A) Different Data (Sender B)

Figure 3.6: The PRR plotted against difference in RSS for two senders for 3
different node triplets, clearly showing CI occurring at a RSS difference close to
zero for each triplet, while the capture effect causes larger differences to almost
always succeed. (a) and (b) show two pairs of senders with differing behavior. (c)
depicts the result of deliberately mistiming one of the senders by 1 µs, preventing
any CI from occurring.

−3 −2 −1 0 +1 +2 +3 +4 +50%

5%

10%

15%

20%

25%

30%

RSSsame −RSSdiff [dB]

Fr
ac

tio
n

Figure 3.7: The distribution of of the measured RSS gain of simultaneous sending
versus either of the two senders, given both senders sending at the same power.

Same Data 0 1 2 3 4 5

0
1 32% 35%
2 39% 35% 34%
3 67% 36% 40% 41%
4 43% 48% 41%
5 58% 59% 51% 46% 42% 56%

Different Data 0 1 2 3 4 5

0
1 0% 2%
2 0% 0% 1%
3 7% 3% 2% 0%
4 14% 9% 8%
5 83% 50% 21% 3% 3% 0%

Table 3.2: The PRRs measured in an experiment with 3 senders. The results
are split by RSS difference between the senders: rows correspond to the differ-
ence between the weakest and second weakest sender, columns correspond to the
difference between the weakest and strongest sender. (Column/row labels are in
dB.)

Same Data 0 2 6 10

0 34%
2 36% 38% 56%
4 51% 48% 52% 50%
6 70% 91% 78% 62%
8 100%

Different Data 0 2 6 10

0 2%
2 1% 2% 0%
4 23% 10% 12% 0%
6 80% 78% 50% 24%
8 67%

Table 3.3: The same data as in Table 3.2, aggregated differently: the results are
split by average RSS difference to the strongest sender (rows) and the variance
amongst the powers of the non-strongest senders (columns). (Column/row labels
are in dB.)

Same Data 0 2 4 6 8 10

0 10%
2 23% 24% 36% 21% 17%
4 30% 32% 30% 18% 9% 56%
6 25% 34% 36% 33% 22%
8 50% 50% 50%

Different Data 0 2 4 6 8 10

0 0%
2 1% 0% 0% 0% 0%
4 1% 1% 2% 0% 0% 0%
6 4% 6% 9% 6% 6%
8 30% 28% 29%

Table 3.4: The same aggregation as in Table 3.3, but for a different experiment
with 4 senders.

Further, the capture effect, whose occurrence can easily be discerned from
the different data case, occurs more often the further the strongest sender’s
signal strength is from the rest (bottom left in Table 3.2, bottom and to
a lesser degree also left in Tables 3.3 and 3.4). Finally, particularly high
values can be found in the bottom right of Table 3.2, which are likely a
result of the possibility of the two much stronger signals invoking both CI
as well as the capture effect to survive the occasional timing errors in the
weakest signal.

As a further confirmation of our approach, we also conducted a few runs
of the experiment in which we configured one of the senders to deliberately
send 1µs late. The expectation is to have this completely remove all possibil-
ity for CI. The result of one such run can be seen in Figure 3.6(c), exhibiting
almost no CI at all. This underlines the importance of the synchronization
precision we strove for. Similarly, when increasing the resynchronization in-
terval we found the effect to diminish after varying periods of time: in some
cases as soon as after 30 seconds, in others not for multiple minutes. This
can be attributed to the clock synchronization error rising due to changes
in clock drift which drift compensation can no longer account for (see Fig-
ure 3.5).

For the packets sent by the senders we used payload sizes ranging from 12
to 26 bytes. Together with the 2 final checksum bytes, 4 bytes of preamble
and 1 SFD byte, transmissions were thus 19−−33 bytes or 608−−1056 µs
in length. The different packet sizes did not exhibit a significant difference
in performance.

3.8 Summary and Future Work

We determined a bound for the total allowable error for CI to occur, and
considered three the error sources of clock synchronization error, transmis-
sion synchronization error and travel time error:

etotal = eclock + etransmit + etravel

!
� 0.5 µs

We reduced eclock by combining the TelosB’s 32 kHz quartz crystal with
the MSP430’s DCO to obtain a stable 4 MHz clock, and we reduced etransmit

by optimizing our transmission code path down to the CPU cycle. Both of
these values were minimized into the range of the length of a single clock
tick (2−22 s). In an attempt to reduce etravel, we picked senders such that
they had roughly the same distance to the receivers.

Using our example implementation we conducted several experiments
with 2 to 4 senders trying to create CI by simultaneously sending the same
packet to a recipient node. To ensure packets were not arriving merely due

to the capture effect we also sent packets with differing data. Our results
show an increase in signal strength of at least 2 dB in 60% of cases for
2 senders, and an increase in PRR of 20–35% for any amount of senders
when signal strengths are equal. Considering we expected to only meet
the necessary signal alignment requirements in the fraction of samples, in
which both eclock and etransmit happened to be small enough, these 20–35%
appear quite satisfactory and are likely mainly held back by the precision
of the underlying hardware.

While our implementation and results are based on the TelosB and the
802.15.4 standard, we believe the concepts to apply in a similar fashion to
most sensor nodes and wireless standards. Further, there are two properties
the TelosB was lacking, which were stunting our results: 1) a clock with a
precision a magnitude higher than the used chip length and 2) a transceiver
designed for a similar precision in transmission timing.

In conclusion, we showed that maintaining the option of CI on commod-
ity sensor node hardware over longer periods of time is feasible, through
extraordinary inter-node synchronization and without incurring the over-
head of a global “wave” of synchronizing packets before every transmission
requiring CI.

4
Capturing Attention Using the
Capture Effect

4.1 Introduction

Wireless networks have been around for a long time, and almost always
the participating nodes adhere to a simple setup: There is a sender which
transmits data to a single receiver or a set of receivers. More recently, this
setup increasingly includes multiple antennas on both sides (multiple-input
and multiple-output, MIMO). However, conceptually, we still have a single
sender trying to transmit a packet to a (set of) receiver(s).

In this chapter, we introduce a third party, a “third man” in the form
of a second sender. This second sender tries to capture the attention of the
receiver(s) using the capture effect. The second sender ignores the standard
rules of wireless communication, and blatantly transmits during the trans-
mission of the first sender. The second transmitter could transmit during
the payload of the original packet, or during its header. We want the sec-
ond sender to be stronger than the first sender, either by being closer to the
receiver(s), or by transmitting with more power.

We present two scenarios benefiting from such unorthodox behavior.
However, we believe that the general idea of having a second sender may

55

have potential beyond our two examples.
Our first scenario addresses networks with partially low density, e.g.,

where a few nodes failed and the network was separated into two or more
parts that can hardly communicate with each other. Consider the case of a
spread out multi-hop wireless network containing a “chasm”, i.e., a virtual
or physical gap between two parts of the network across which links are
very poor, as illustrated in Figures 4.1 and 4.2. Even if the network still
forms a connected graph via routes around the chasm using only stable links,
these detours incur a large latency and medium usage overhead due to the
additional hops packets have to make.

By sending across the chasm we might collect several partially incorrectly
received packets at multiple nodes on the receiving side. These erroneous
copies may then be pieced together to obtain a completely correct copy of the
sent packet. However, if already the synchronization header is not received
correctly at a node, that node will not recognize the incoming packet and
hence will not be able to record it. By employing a node broadcasting a
fake synchronization header on the receiving side, we are able to ensure that
every node which is a candidate for receiving at least parts of the packet is
listening. This improves the chances of correctly receiving every part of the
packet in some cases from less than 5% to about 30%.

The second scenario we discuss makes use of what we call the packet-in-
packet communication primitive: Here, the second sender does not transmit
during the header, but during the payload of the first sender’s packet. As
such, the second sender may inject a short packet into concurrently ongoing
transmissions using the capture effect. Doing so, the time and control mes-
sage overhead for avoiding collision between high-priority and low-priority
traffic can be reduced to a minimum. This is particularly beneficial when
the high-priority traffic consists of short spontaneous bursts.

Naively sending a high-priority packet into an ongoing transmission with
a sufficient power differential for the capture effect to occur (about 4–5 dB
on TelosB) results in the inserted packet being decoded correctly in only
about 5% of cases. However, with proper improvements, we can bring this
value up to 70%.

In particular, we apply two techniques to improve the success rates in
both scenarios: 1) improving transmission synchronization and 2) repairing
misinterpreted symbols where possible.

1) By improving transmission synchronization we increase the chance
of the symbols of the strong/injected and the weak/base packet to overlay
closely enough, such that the symbols have a high chance of being decoded
properly. In the chasm scenario this results in a complete packet transmis-
sion in 25% of cases. For packet-in-packet this improves the correct decoding
rate to about 40%.

Figure 4.1: Chasm scenario: connection from the red node to bottom half of the
graph via A) stable edges around the right side versus B) unstable crossing edges
(dashed and in gray).

Figure 4.2: Alternative chasm scenario: the network is partitioned by a wall
without any stable edges crossing it.

2) Among the remaining bad cases we observe many to experience a
deterministic mapping of values on the injected symbols. By reversing this
mapping we are able to repair some of the bad cases, raising the total correct
decoding rate to 30% in the chasm scenario and to 70% in the packet-in-
packet scenario.

We implement proofs of concept of these techniques based on Contiki
for both scenarios on TelosB and test them on the FlockLab testbed.

4.2 Related Work

The inherent multi-hop topology of wireless sensor networks as well as the
unique properties of the wireless medium have enabled the inception of
several new communication primitives. In particular, most recently, ways
to induce constructive interference through concurrent forwarding of a single
transmission have been explored [18,19]. Constructive interference can boost
signal quality and allows rapid network flooding without the overhead of a
carefully planned flooding schedule. Another example is the deliberate use
of the capture effect, which was previously thought of as a nuisance. Yet it
is now counted on more and more to resolve collisions without experiencing
destructive interference, which most classical models would predict [76] (see
also Chapter 2).

Much like the previous two chapters, our work in this chapter also mainly
falls into this field of medium access primitives. However, one of our scenar-
ios also deals with the topic of unreliable links. To avoid repeating ourselves
too much, we will omit some of the related work here and refer the gentle
reader to Sections 2.2 and 3.2.

The popular Glossy protocol [19] provides a technique by which sim-
ple single antenna sensor nodes could send with unprecedented synchrony,
leading to a fast single source flooding algorithm avoiding collisions through
constructive interference and the capture effect. This technique is based on
tying the departure time of each packet to the end of the incoming transmis-
sion of the previous packet, effectively reducing the timespan during which
clock skew can erode synchrony. For the scenarios examined in this chapter,
a Glossy-like mechanism is not applicable, as 1) the presence of a common
reference packet for all senders is not guaranteed and in fact impossible in
the case of the chasm and 2) these scenarios aim to have the two senders
start sending at different times rather than simultaneously.

Unreliable links have been studied from various different angles. Zuniga
et al. [81] proposed an analytical model predicting the behavior of links
in the transitional region between stable and nonexistent communication.
On the other hand, adapting behavior to deal with intermittently missing

Preamble

4

SFD

1

Length

1

Payload

Length - 2

Checksum

2

Figure 4.3: IEEE 802.15.4 PHY layer packet format plus checksum footer (tech-
nically part of the MAC layer). The values on top designate the length of the
respective segment in bytes. The preamble consists of only zero symbols and the
SFD (Start of Frame Delimiter) is a pair of constant symbols. The checksum is a
simple 16-bit CRC value of the payload.

links has been proposed: Su et al. [74] developed a set of routing algorithms
dealing efficiently with intermittent link outages, while Seth et al. [72] came
up with a system to facilitate communication in rural areas piggybacking
on vehicles.

Santhapuri et al. [69] proposed a hardware feature allowing a transceiver
to disengage from the reception of an ongoing transmission and lock onto
a newly started stronger one. To do so they proposed the hardware keep
scanning for synchronization headers even during transmission reception,
similar to the way we detect injected packets. However, the approaches we
present in this chapter do not rely on such hardware support, but instead
make do with the capabilities of run-of-the-mill transceivers. Further, in
most cases of the packet-in-packet scenario we are able to recover after the
injected packet and correctly receive the remaining tail end of the original
packet.

To the best of our knowledge, cleanly injecting and decoding packets in
packets as we study in this chapter had not been attempted yet.

4.3 Concepts

4.3.1 Preliminaries
In the following we will discuss the basics of wireless receiver operation
relevant to our undertaking. The details of the parts of a transmission vary
slightly between wireless standards, but the presented primitives are only
loosely tied to the IEEE 802.15.4 standard [32] we used. See Figure 4.3 for
an overview of the IEEE 802.15.4 packet format.

When a packet is transmitted, it is usually prepended a preamble and
a synchronization word (sometimes called start of frame delimiter, SFD).
Together, the preamble and the synchronization word form the synchro-
nization header. The preamble is a predefined pattern of symbols used to
let listening receivers synchronize to the correct phase of symbols and chips.

In IEEE 802.15.4 it consists of ‘0’ symbols only. The synchronization word
is a constant string of symbols to mark the start of the packet, which signals
receivers to start recording the following symbols. If a receiver does not hear
the synchronization word of a transmission, it will not decode the signal and
perceive it as noise.

At the head of a packet there usually is a length field specifying the num-
ber of bytes in the payload, and thus also the duration of the transmission.
Receivers use this field to know how many symbols to decode. A common
feature of receivers is to “lock on” to a transmission once they received its
header including the length: they commit to decoding that packet in its
entirety no matter how bad the signal quality may get. This is intended to
allow the application to still make use of the non-broken parts of a packet
even if part of the packet reception was disrupted.

Finally, a packet usually contains a checksum over its length and payload
to allow telling whether the whole packet was received correctly. However,
if there are any errors, the checksum does not help in determining their
location.

The capture effect occurs when multiple signals arrive at a receiver con-
currently and the strongest signal is stronger than the noise plus the other
signals by some threshold. In this case, the receiver will decode the strongest
signal without error, completely ignoring the other signals. When a receiver
is already receiving a packet, it does not scan for further synchronization
headers. Thus, an overlapping packet may not be recognized as a packet,
even if it is strong enough to induce the capture effect. Instead, a stronger
but later packet essentially writes its data over the payload of the weaker
packet as it is being received. This means that the overwritten data of the
weaker packet is lost, but it also means that the stronger packet is not lost.
In many cases, the receiver can find the stronger packet’s data (and headers)
either directly in the weaker packet’s payload (if the two packets’ symbol
phases were well synchronized) or after descrambling the received symbols
(see Section 4.6).

4.3.2 The Chasm
Consider the situation described in Figures 4.1 and 4.2: traditionally, to
send a packet to the other side of the chasm, one would use the multi-hop
route using the stable edges. This route, however, causes a high latency
for the packets and incurs a noticeable overhead in medium usage. Worse,
sometimes this route may not even exist, and without being able to send
across the chasm the network graph would be disconnected.

In the chasm scenario, we isolate this situation and explore what is
possible using the weak links only, hence avoiding the detour. We assume

1b1f21ffdedededededededededededededededededede

1b1f229fd3dedededededeeed2dedddededededede8ede
1b1f21ffdeded4dededededededededededededededede
1b1f21ffde2ede1ed77eddd92ed2ded0deded7dede6e94

Figure 4.4: An example of a single short packet after being received by 3 different
receivers, exhibiting seemingly independent decoding errors. The first line shows
the packet as it was sent.

the weak links to have a near zero chance of transmitting a complete packet
correctly, while still being capable of correctly decoding some symbols now
and then. If after a cross-chasm transmission the nodes on the receiving
side exchange what symbols they got, they may be able to piece together
the complete packet and verify its correctness using the checksum field.

For this setup to be viable, errors in the transmission should not occur
at or near the sender. Instead, they should occur in the decoding stage
at each receiver, independently of the other receivers. We found this as-
sumption to be correct in our setup by comparing the received symbols of
multiple receivers for the same packet. An illustrative example can be seen
in Figure 4.4.

As mentioned above, the receivers will in fact only record incoming data
if a correct synchronization header is received. We cannot make the as-
sumption that this will always be the case for our receivers in the chasm
scenario, since the symbols of the synchronization header are just as likely
to not be received correctly as any of the data symbols. In other words, we
will not get any information about the packet from the portion of receivers
which failed to recognize the synchronization header.

To solve this problem we propose having another node on the receiv-
ing side of the chasm send out a synchronization header as well as a large
packet length field, but not transmit any packet payload, just before the
cross-chasm packet arrives (see Figure 4.5). This header should be easily
recognizable by all the receivers due to their proximity and cause them to
start recording symbols.

Note that this does require knowledge of when the next cross-chasm
packet will arrive. This may be determined from a pre-determined schedule
or be agreed upon in a previous cross-chasm packet. It also implies main-
taining a synchronization error low enough to ensure the cross-chasm packet
is sent during the fake packet. In IEEE 802.15.4 the duration of a maximum
length payload is about 4.1 ms. This dictates a maximum absolute synchro-
nization error of around 2 ms for short cross-chasm packets. The longer the
cross-chasm packets are, the more stringent the synchronization needs to be,

Figure 4.5: By having the green node send out a synchronization header first we
can ensure that all the nodes with a chance of receiving parts of the cross-chasm
packet are indeed listening and recording symbols.

up to a symbol level synchronization at maximum length. An alternative
would be to try and detect packets by monitoring the energy levels on the
channel. However, this approach is prone to false positives from noise and
non-chasm transmissions. Due to the large overhead incurred, we propose
to employ this primitive only when the detour alternatives are prohibitively
long or nonexistent.

In our implementation we pre-assign all nodes their respective roles
(cross-chasm sender, wakeup sender and receivers) and establish a proof
of concept for the ideas above. We consider short cross-chasm packets only
and no other traffic within the network. Integrating the transmission prim-
itive into a more general and adaptive protocol is left to future work.

4.3.3 Packet-In-Packet
For this scenario imagine a network of nodes being used both for low-priority
bulk data transmission and short, irregularly occurring high-priority mes-
sages. This is similar to the scenario considered in Chapter 2, but assumes
the lower-priority packets to generally have large payloads. Further, in this
chapter we do not require the adherence to time slots. Given such a similar
scenario, traditional wisdom proposes the same approaches: One could use a

schedule guaranteeing time slots for high-priority traffic, but this comes with
a large overhead to the low-priority traffic even during times without high-
priority traffic. To avoid the overhead of scheduling one could instead use
an opportunistic channel access scheme: trying to send as soon as the chan-
nel appears free (using clear channel assessment, CCA). This approach has
trouble guaranteeing traffic prioritization in busy networks as low-priority
traffic may starve out high-priority traffic. Additionally, the hidden and
exposed terminal problems become problematic [33]. To improve traffic pri-
oritization, one could impose time slotting on the network. By then delaying
low-priority messages by a constant time high-priority messages are allowed
to access the channel first. This, however, still does not solve the hidden
and exposed terminal problems.

Beyond the obvious downsides, the traditional approaches also have in
common that they require high-priority messages to wait at least until
all currently ongoing conflicting low-priority messages have finished. The
packet-in-packet primitive we propose makes use of the capture effect with
the aim to allow high-priority messages to be sent regardless of any on-
going low-priority messages, i.e., immediately upon traffic emergence. If a
low-priority message is already being received when a high-priority message
arrives, it will overwrite and be decoded as part of the low-priority message’s
payload. We say, the high-priority message is injected into the low-priority
message. Again, we present a proof of concept implementation of this basic
primitive. Integrating it into a proper protocol or a MAC layer is left to
future work.

For this scheme to work we need to be able to reliably induce the capture
effect, i.e., we need high-priority traffic to always be at least 4–5 dB stronger
than any low-priority traffic at the intended receivers. This can be accom-
plished one of two ways: 1) placing the receiver significantly closer to the
high-priority sender than to the low-priority sender, or 2) using transmis-
sion power control, which requires the used links to be capable of operating
at different transmit power settings. If this condition is fulfilled, no addi-
tional overhead is imposed on low-priority traffic beyond the data lost as a
direct result from high-priority data taking its place. Otherwise, the addi-
tional hops necessitated by the unavailability of certain links too weak or
too strong to induce the capture effect may offset this primitive’s usefulness.

In addition, this scheme relies on low-priority packets to be at least 2–
3 times longer than high-priority packets to be able to operate efficiently.
This is because a tail portion of an injected high-priority message will be
lost if its transmission does not finish before the end of the low-priority
base packet it was injected into. This is a result of the aforementioned
behavior of receivers to record exactly as many symbols as specified in the
packet header of the packet whose synchronization header was recognized.

The shorter the high-priority messages are in relation to the length of the
low-priority packets, the less frequently such a loss occurs.

Detecting the potential presence of an injected packet is trivial using a
checksum covering the whole payload as is commonly attached as a packet
footer: if the checksum check fails, there may be an injected packet. To
find the injected packet, one may simply search the payload for the symbol
sequence of the synchronization header. Similarly, the length of the injected
packet can be determined, and thus the exact portion of the payload that
was overwritten is known. To verify the suspected injected packet, its own
regular footer checksum can be used. Extracting further injected packets
from the same base packet is possible following the same procedure. Note
that we cannot distinguish the injection of a packet from the unlikely coin-
cidence of a regular payload containing a synchronization header and valid
packet length together with a matching packet checksum.

Depending on the link quality one may assume the remaining non-
overwritten symbols of the packet to be correct in spite of the lack of a
correct checksum. However, to ascertain the correctness in the case of an
injected packet, additional checksums across parts of the payload or for-
ward error correcting codes could be used. Naturally, the data that was
overwritten will need to be transmitted again at a later time.

4.4 Experiment Setup

4.4.1 Hardware
We again employed the TelosB sensor node as testing hardware, deployed
on the FlockLab testbed. The channels (frequencies) we used experienced
low to medium outside interference from the office environment. We ob-
served instances of the motivating scenarios described in earlier sections
in this testbed while using each node’s maximum possible transmit power.
Unfortunately, the wireless environment conditions proved very prone to
fluctuations caused by changing conditions such as the closing or opening of
doors or changes in temperature or humidity. To obtain reproducible results,
we had to rely on the transmission power control options of the CC2420.
The available output powers on the CC2420 range from −30 dBm to 0 dBm
with a significantly larger degree of granularity in the higher power options
(see Figure 2.4).

On the physical layer, each byte is represented by two symbols: first,
one representing the least-significant 4 bits of the byte, followed by a sym-
bol representing the most-significant 4 bits. The IEEE 802.15.4 standard
assigns a pseudorandom chip sequence of 32 chips to each of the 16 possible
symbol values. Each chip directly corresponds to an interval of a certain

waveform on the carrier medium. Figure 3.1 shows an example encoding
of the zero symbol, 16 µs in length. When receiving a symbol, the receiver
will determine the received symbol to be the one whose pseudorandom chip
sequence correlates the most with the received signal. We would expect the
pseudorandom chip sequence design to cause a desynchronized waveform
(as would be caused by a poorly synchronized injected packet) to be de-
coded to an “arbitrary” (pseudorandom) wrong symbol; however, as shown
in Section 4.6, this is not always the case.

4.4.2 The Chasm
We choose a sending node and a set of receiving nodes to represent the two
sides of the chasm, such that there are stable links with roughly equal quali-
ties between the sender and each receiver when the sender uses its maximum
transmit power. Additionally, these links should falter at approximately the
same transmit power value. We then designate a node amongst the receiv-
ing nodes to be responsible for sending the wakeup synchronization header.
It should have a good link to all the other receiving nodes at its maximum
transmit power. In our experiments, this node will not participate in receiv-
ing the packets from the sender. However, it might occasionally be able to, if
it happens to receive the synchronization header from the sender correctly.
For the results presented in this chapter we used 4 receiving nodes plus
the wakeup header sending node, but in practice any number of receivers
is imaginable. Even a single receiver may profit from the wakeup header,
although it is unlikely to receive the whole packet correctly.

The test procedure consists of several rounds in which, first, the sender
broadcasts a packet at maximum transmit power for synchronization pur-
poses. This will allow the node responsible for later broadcasting the wakeup
synchronization header to update its clock and to know approximately when
the weak packets will arrive. In practice, this shortcut for announcing weak
packet arrival times is not available or there would be no reason to use this
scheme in the first place. Instead, to achieve initial synchronization, one
would need to either use a route around the chasm or rely on getting a sin-
gle packet through by normal transmission, which may happen with a small
percentage chance (see Figure 4.13).

The main part of a round then consists of several packets of length 29
(58 symbols without headers) being sent by the sender at a weaker power
P < Pmax. 256 µs before every second of these packets, the wakeup node
will send a synchronization header and a packet header specifying the max-
imum packet length (127) at maximum transmit power. If a receiving node
receives a synchronization and packet header, it will store the entire received
raw symbol string, no matter which of the two possible headers it received.

Wakeup Header

Weak Packet

Symbol String

L
e
n

Dummy
Payload

Pre
amb

S
F
D

L
e
n

Payload Chk
sum

f7214365--0000b7b16000ffff00112233445566778899aabbccddeeffffffffffff3a22--...

Header

Figure 4.6: The symbol string the receiver would ideally receive in the chasm
scenario, each letter corresponding to one symbol representing 4 bits. The symbols
are given in order, i.e., each byte’s least-significant 4 bits come first. ‘-’ denotes a
symbol slot where no node was sending anything; the values of these slots will be
determined by the noise in the environment.

The symbol string is then evaluated manually, ignoring the CC2420’s auto-
mated checksum test. By alternating between sending weak packets with
and without the wakeup synchronization header, we can directly measure
the advantage gained through our method, independent of fluctuations in
the environment.

To send a synchronization and packet header only, the wakeup node
starts transmitting a packet of maximum length. However, it then delib-
erately does not supply the CC2420 with enough data bytes to continue
transmitting beyond the first 3 bytes. This causes a buffer underflow to oc-
cur, automatically causing the CC2420 to stop transmitting. The receivers
of this packet will, however, not notice the ceasing of the transmission and
continue recording symbols to the best of their ability as discussed in Sec-
tion 4.3.1. The chosen advance time of 256 µs corresponds to 16 symbols.
This allows the wakeup sender to finish sending its synchronization and
packet headers (8 symbols) and the 3 bytes of dummy data (6 symbols)
before the weak packet from the sender arrives. Figure 4.6 illustrates the
symbol strings sent and what is received in the ideal case.

Each round ends with every receiver reporting to the sender how many
packets it received when no wakeup synchronization header was sent. These
packets are sent at maximum transmit power to be able to cross the virtual
chasm. Using this feedback the sender can adapt its choice of P to be
able to concentrate on the interesting transmit power values: values such
that no single receiver is likely to receive the packet completely all by itself.
In practice, the range of interesting values settles after only a few dozen
rounds, i.e., the remaining rounds all repeatedly scan a window of the same
few values for P .

We noticed that over 95% of the packets that were received without

3

16

28

27 24

23

32
31

10

Figure 4.7: A subset of the wireless sensor node testbed we used for our practi-
cal tests with three particular node triplets used for packet-in-packet experiments
highlighted. The second, stronger senders are indicated by thicker arrows.

a wakeup header were received completely without error. Effectively, if a
link happened to be stable enough to receive the complete synchronization
header, it also was stable enough to receive the packet completely without
error 95% of the time. To reduce the filtering at the synchronization header,
we decided to use a shorter preamble of only 2 instead of 4 bytes, shortening
the synchronization header to 3 instead of 5 bytes. In the interesting trans-
mit power range, this dramatically increased the number of packets received
without a wakeup header, but lowered the ratio of packets received without
any error to 0–25%.

4.4.3 Packet-In-Packet
We choose triplets of 2 sending nodes (B and I) and 1 receiving node (R),
where node B will send the base packet and node I will send the injection
packet. These triplets are selected such that at node R node I’s signal
is at least 5 dB stronger than node B’s, to facilitate the capture effect.
Further, we also ensure that node B’s link still has a high packet reception
ratio (> 98%) in normal operation without packet injections. Finally, both
senders should be able to hear the receiver for synchronization purposes. If
necessary we use the transmission power control options of the CC2420 to
achieve this constellation. See Figure 4.7 for a few example triplets.

Base Packet

Injected Packet

Symbol String

L
e
n

Payload

Preamble
S
F
D

L
e
n

Payload Chk
sum

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff

Header

Header

Figure 4.8: The symbol string the receiver would ideally receive in the packet-
in-packet scenario. The individual packet fields of both the outer base packet and
inner injected packet are shown. Note that the preamble, SFD and checksum of
the outer packet are missing as they are already removed by the transceiver by the
time software can read the symbol string.

The test procedure again consists of several rounds which start with
a packet broadcasted for synchronization purposes. Then, node B begins
transmitting a packet of length 40 bytes at a designated time after the
synchronization packet. Node I aims to begin transmission 320 µs after
the base packet. This delay corresponds to 20 symbols or 10 bytes, ideally
placing the second signal at the fourth payload byte of the base packet.

Both packets contain a short header of 4 bytes which we use to store
packet metadata such as sender, receiver and packet type. After, the in-
serted packet’s payload contains 16 bytes repeating each of the 16 possible
symbols twice, which will be useful for demonstrating symbol mapping, see
Section 4.6. The base packet’s payload is filled with the symbol of value 15
(or ‘f’). This choice of packet contents was made for presentation purposes
in this chapter. In practice, any data can be used, as our tests show the
packet contents not to influence the success in decoding the injected packet.
Figure 4.8 shows the symbol string the receiver would receive in the ideal
case, and details the locations and sizes of the packets’ fields.

Without closer synchronization we would expect to correctly decode the
injected packet’s symbols in on average at most 1 of 16 cases. In the other
cases, we would expect the chip string to be misaligned with the symbol
boundary so much that the waveform is interpreted to be a different one of
the 16 pseudorandom chip sequences.

4.4.4 Baseline Results
Using the packet-in-packet scenario as example, we present the results one
would obtain without applying either of the two improvements discussed in
the next two sections.

In practice, the success rate is only 4.8%, slightly less than the predicted

727100ffff22222222d103132299992233445566770011aabbccddeeff889960600ff3ffcfcf
727100ffff11111111c07202118888112233445566770099aabbccddeeff885757ffffffffff
727100fffff77777777a6506077eeee7700112233445566ff8899aabbccddee3535fffffffff
727100fffff6666666595475766dddd6677001122334455eeff8899aabbccdd2424fffffffff
727100fffff77777777a6506077eeee7700112233445566ff8899aabbccddee3535fffffffff
727100fffff5555555b423f6557c0ce56617d0911223346d829c58799aab70f1313fffffffff
727100fffffd4d4444d03703ed4b7874d091f4b33447733f58199c3bbecff7b3b35fffffffff
727100fffff66668816209e5b664444162d314e001149002f35775b6329064e02bffffffffff
727100ffff11111111c07202118888112233445566770099aabbccddeeff885757ffffffffff
727100fffffd4d4414d03703ed4b2b74d09112b338452f3596179657bec3ab93b35fffffffff
727100ffff44444444ff2535444bbbb4556667700112333cddeeeff8899abb0202ffffffffff
727100ffff33333333e2142433aaaa3344556677000122bbccddeeff8899aa71711fffffffff
727100fffffeeeeeeee1f9cacee7552eecc88e9aa88f9dd6644006127334455acacfffffffff
727100ffffdddddddd0fb9fedd8b88ddefff8d99a8bbffff8794a5ddecff889b9bffffffffff
727100ffff22252522b7637f22f33332a644556657667bb12e6664e01604f366d6ffffffffff
727100fffff66868666219e5b66b7b86550a1d800f1ee30eed5b7cb8279617eb209fffffffff
727100fffff6666666695475766dddd6677001122334455eeff8899aabbccdd2424fffffffff

0 10 20 30 40 50 60 700%

50%

100%

Symbol Position

Su
cc

es
s

R
at

e

base injected

Figure 4.9: Loose Synchronization, No Symbol Remapping. Sample and correct-
ness rate on a per symbol basis.

1
16 = 6.25%. For intuition, examine Figure 4.9, which shows a representative
sample of 17 received symbol strings. Every letter corresponds to a symbol
in symbol transmission order, i.e., for every byte the 4 least-significant bits
come first. Unexpected symbol values are marked in blue. Since not a
single preamble was detected, all non-‘f’ symbols are classified as errors in
the body of the underlying packet.

It is easy to see the lack of tight synchronization in the variation of the
first and last affected symbol of the underlying packet. However, a certain
regularity in the erroneous symbols can be observed. In some cases, we can
exploit this to salvage some of these scrambled lines, see Section 4.6.

At the bottom of Figure 4.9, the distribution of correctly received sym-
bols can be found. The red line for the injected packet is almost completely
constant at around 5% for the duration of the injection. This means, when
an injected packet’s preamble was correctly decoded, the remainder of the
packet was nearly always also completely without error. The uneven distri-
bution of the base packet’s successes is caused by the varying densities of
‘f’ symbols caused by the injection. This is due to certain of the injected
packet’s symbols appearing to be more likely to be mapped to an ‘f’ than
others. Finally, note the “tail” of the base packet sometimes experiencing
symbol errors even after the transmission injection has ceased.

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100fffff4e444442a756c44eeee44e5667ebc0b1cf3cc6deef634839a7e60f0ffffffffff
727100ffff5555555b413f6557e0ee5031dd0911223f66d8795581996abbefd31fffffffffff
727100ffff33333333e2142433aaaa3344556677000122bbccddeeff8899aa7171ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff4e4e44442a75fc442eee44e56677d00112f3cc6deefff8899abbb0222ff5ff9cfc
727100fff55555555584366555cccc5666770011223344deeeff8899aabbcc1313ff66fffff6
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff5555555b476f6557ccc55661770011223344deeeff8899aabbcc1313ffffffffff
727100ffff6666666595475766dddd6677001122334455eeff8899aabbccdd2424ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646c595c555cc
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff11111111c07202118888112233445566770099aabbccddeeff885757ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffffc6c6c66cee6bebc66f666cb12263445566e7e43f4aee6cdde0667878ffffffffff

0 10 20 30 40 50 60 700%

50%

100%

Symbol Position

Su
cc

es
s

R
at

e

base injected

Figure 4.10: Tight Synchronization, No Symbol Remapping. Sample and cor-
rectness rate on a per symbol basis.

4.5 Transmission Synchronization

We apply the techniques presented in Sections 3.5 and 3.6 again to mini-
mize both clock synchronization error and transmission timing in both our
scenarios. We observe a clock error within about ±0.2 µs in 70% of cases
and within ±0.5 µs in 95% of cases when synchronizing at least once every
couple of seconds. As before, we can reduce the transmission timing error
caused by our code paths to the minimum possible of at most 1 DCO cycle,
and we expect the time between issuing the start of transmission and the
transmission starting to be constant.

Applying this rigorous transmission synchronization, the results in the
packet-in-packet scenario improve to 38.4% of cases allowing correct decod-
ing of the injected packet. Figure 4.10 shows another representative sample
of received symbol strings. Blue indicates errors in the base packet (as be-
fore), green indicates the recognized and correctly decoded injected packet,
and red indicates errors part of the injected packet (although there are no
such errors in this sample).

Again, the injected packet barely experiences any internal symbol er-
rors, and its symbol decoding success rate remains constant, this time at

1 2 3 4 5 6 7 8 9
0%

1%

2%

#Bad Symbols

O
cc

ur
re

nc
es

Loose Synchronization
Tight Synchronization

Figure 4.11: Distribution of the number of misinterpreted symbols after the
injected packet. Not pictured: in 91% of cases none of the symbols are broken.

around 40%. The base packets’ apparent peaks in decoding successes during
the injection period is in fact misleading, as the injected packet’s correctly
decoded ‘f’ symbols are interpreted as also matching the base packet and
occur at static offsets.

Note that the tail of the base packet is still experiencing decoding er-
rors. Figure 4.11 shows the distribution of the number of symbol errors
in the tail. While both with loose and tight synchronization the tail is
decoded completely correctly in about 91% of cases, loose synchronization
appears to more often only incur a single symbol error. There is also a ten-
dency visible for all of the remaining 8–9 tail symbols to be corrupted. This
may be explained by the demodulation of correct but slightly misaligned
symbols sometimes throwing the synchronization of the demodulator off
permanently.

4.6 Mapping Symbols

4.6.1 Mapping Symbols
In the last sample (Figure 4.10), a large degree of determinism in the symbol
decoding error can be observed in many of the broken packets. In fact, there
appears to be a one-to-one mapping between actual and misinterpreted sym-
bol values in most cases, albeit there appear to exist 7 different mappings.

Based on the symbols which were received at the location of the preamble
of the inner packet we can identify which mapping took place. If we denote
by a the value of the preamble symbols and by s the correct symbol value,
the 7 one-to-one mappings m(s, a) for 1 ≤ a ≤ 7 are:

m(s, a) = s− (s mod 8) + ((s+ a) mod 8)

We can exploit the bijectivity of these mappings to reverse them to
reconstruct the original symbols in the majority of cases.

There are no simple one-to-one symbol mappings for the remaining cases
of 8 ≤ a ≤ 15. This is easy to see when examining the pairs of symbols in
the payload of the injected packet not being recognizable as pairs anymore.
However, it is likely that some information can still reliably be decoded, as
certain pairs of subsequent symbols should also follow an exploitable deter-
ministic mapping, judging by the interplay of the predefined chip sequences
when time-shifted.

To detect injected packets after such a symbol mapping within the base
packet, we not only search for the synchronization word (preamble + SFD)
as before, but also for the synchronization word with each of the 7 mappings
applied. If one is found, the respective mapping is then used to decode the
length, payload and checksum of the injected packet.

4.7 Results

4.7.1 The Chasm
The wakeup synchronization header sent at maximum power by a close
neighbor unsurprisingly increases the number of cases in which any symbols
were recorded to essentially 100% (see Figure 4.12).

Figure 4.13 shows how often every symbol in the packet was received
correctly at least once. For lower transmit power settings – emulating the
case of weak links – in the range from 7 to 10, corresponding to transmit
powers from -15 dBm to -10 dBm [75], our scheme raises the chance of
receiving a complete copy of the packet from 5% to 30%. Without the
symbol remapping only 25% are achieved.

As the transmit power increases, regular transmissions without wakeup
reach > 99% reliability. This is because frequently one of the receivers
receives a perfect copy of the packet by itself, while our approach still suffers
from the penalties induced by using a mismatching synchronization header.
Hence, we do not recommend using our approach for any and all links, but
rather only for chasm-like scenarios in which only weak links are available.

Figure 4.14 shows the number of correct symbols received on average
within the transmit power setting range of 6 to 10 at each of the individual

NoWakeup WithWakeup
0%

20%

40%

60%

80%

100%

A
ny

th
in

g
R

ec
ei

ve
d

Node 6
Node 32
Node 31
Node 1

Figure 4.12: Percentage of received packets with and without the wakeup syn-
chronization header at all 4 receivers of a test run.

3 4 5 6 7 8 9 10 11 120%

20%

40%

60%

80%

100%

Transmit Power Setting

O
cc

ur
re

nc
es

No Wakeup
Wakeup, No Mapping
Wakeup, With Mapping

Figure 4.13: Percentage of cases in which at least 1 complete copy of the sent
weak packet could be reassembled. Up to transmit power 10, our approach of
adding a wakeup synchronization header significantly improves the chances.

NW WW/NM WW/WM
0

20

40

#
Sy

m
bo

ls
R

ec
ei

ve
d

C
or

re
ct

ly Node 6
Node 32
Node 31
Node 1

Figure 4.14: Average number of correct symbols received (out of 58) with
and without the wakeup synchronization header at all 4 receivers of a test run.
NW/WW = No/With Wakeup, NM/WM = No/With Symbol Mapping.

receivers. While the node with the best link (node 6) only gained about
65% of additional correct symbols, overall the number of correct symbols
received more than doubled. As which symbols are correctly received for a
receiver is independent of the other receivers (see Section 4.3.1), it stands
to reason such an increase directly improves the chances of being able to
assemble a complete correct copy of the packet.

The test run used for these plots contained 3800 samples, 3000 of which
were taken within the transmit power setting range of 6 to 10.

4.7.2 Packet-In-Packet
In the packet-in-packet scenario, applying both techniques increases the
success rate for decoding the injected packet completely without error to
64.3%. Tolerating up to 3 symbol errors, a success rate of 70% is reached.
Figure 4.15 shows the same sample as in Figure 4.10, but with symbol
remapping applied. It is easy to see that some of the erroneous lines from
before have been corrected. However, in some instances a few symbols were
corrupted (marked in red). Peculiarly, judging from the success rate graph
at the bottom, some locations in the packet are particularly prone to symbol
errors not following the mapping.

Figure 4.16 shows the distribution of the number of symbol errors in
the decoded injected packet given that its synchronization word was in-
tact and recognizable. While the number of errors appears to be higher

727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100fffff4e444442a756c44eeee44e5667ebc0b1cf3cc6deef634839a7e60f0ffffffffff
727100ffff5555555b413f6557e0ee5031dd0911223f66d8795581996abbefd31fffffffffff
727100ffff00000000b7617100ffff00112233445556778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff4e4e44442a75fc442eee44e56677d00112f3cc6deefff8899abbb0222ff5ff9cfc
727100fff500000000b7611000ffff01112233445566778999aabbccddeeff4646ff66fffff6
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff5555555b476f6557ccc55661770011223344deeeff8899aabbcc1313ffffffffff
727100ffff6666666595475766dddd6677001122334455eeff8899aabbccdd2424ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646c595c555cc
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffff00000000b7617100ffff00112233445566778899aabbccddeeff4646ffffffffff
727100ffffc6c6c66cee6bebc66f666cb12263445566e7e43f4aee6cdde0667878ffffffffff

0 10 20 30 40 50 60 700%

50%

100%

Symbol Position

Su
cc

es
s

R
at

e

Figure 4.15: Tight Synchronization, With Symbol Remapping. Sample and
correctness rate on a per symbol basis.

0 1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

#Bad Symbols

O
cc

ur
re

nc
es

Loose, No Mapping
Tight, No Mapping
Loose, With Mapping
Tight, With Mapping

Figure 4.16: Distribution of the number of bad symbols within the injected
packet once the injected packet’s preamble has been read correctly.

LS/NM LS/WM TS/NM TS/WM
0%

20%

40%

60%

80%
O

cc
ur

re
nc

es

Syncword found
At most 3 symbol errors
At most 0 symbol errors

Figure 4.17: Success rates for decoding the injected packets using the different
techniques. LS/TS = Loose/Tight Synchronization, NM/WM = No/With Symbol
Mapping.

when applying symbol mapping, this is merely due to the fact that in these
cases additional synchronization words could be salvaged. These additional
instances appear to be particularly prone to symbol errors, although the ex-
tent is low enough to still preserve most of the packet data. Further, tighter
synchronization appears to reduce the occurrences of these errors.

The total amount of recovered packets can be seen in Figure 4.17, sub-
divided by the combination of applied techniques. Enforcing a limit on the
number of symbol errors hurts the performance of the cases employing sym-
bol remapping, as is to be expected. However, allowing up to 3 symbol
errors almost completely closes the gap to the number of cases in which
the synchronization word of the injected packet was at all detected. Re-
calling our injected packet being 46 symbols in length (when excluding the
synchronization word), an error of 3 symbols appears rather acceptable.

The test run used for these plots used the node triplet R = 23, I =
24, B = 27 and contained 1900 samples for loose and tight synchronization
each.

4.8 Summary and Future Work

We explored the possibilities unfolding when mixing and matching synchro-
nization headers and packet payloads as is made possible by inducing the

capture effect. Correctly interpreting the resulting sometimes jumbled sym-
bol string is not trivial and certainly not as efficient as with a matching
synchronization header. However, we showed that some scenarios may nev-
ertheless profit: A) bridging a chasm which is only crossed by weak links
and may otherwise only be crossed taking a long detour – or not at all, if the
network graph is not connected otherwise, and B) propelling high-priority
packets across a network without any waiting or any control message over-
head, barely disturbing low-priority traffic. The resulting gains we observed
in our experiments are best summarized by Figures 4.13, 4.14 and 4.17.

Integrating such new transmission primitives into existing systems and
MAC layers will no doubt carry an additional overhead we did not have to
deal with in our proof of concept implementations. Exploring the tradeoffs
of such integrations promises to be an interesting topic for future work.

Although we conducted all our experiments using the IEEE 802.15.4
standard, we believe these primitives to, in principle, be feasible in most
wireless standards which use temporally separated symbols for modulation.
We also expect this style of communication to be able to benefit many other
scenarios beyond the two presented in this chapter.

The results of our solution to the chasm scenario undoubtedly leave room
for improvements. One aspect worth further research is the use of multiple
senders, ideally synchronized well enough to cause constructive interference
in some subset of the receivers. Another promising direction is the use of
forward error correcting codes to improve complete reception ratios at the
cost of bandwidth. Such a scheme may also benefit the packet-in-packet
primitive.

We see the main application of the packet-in-packet primitive in enabling
high-priority messages to be sent and received at almost any time, in spite of
ongoing lower-priority transmissions. This significantly reduces the latency
these high-priority messages would otherwise incur, possibly accumulating
further at every hop. Another imaginable application are data aggregation
algorithms, using planned data insertions from many different nearby nodes
to quickly form a single packet containing the aggregated data. To reduce
the overhead of individual packets in this controlled scenario, one could
shorten the synchronization word and omit or shorten the checksum footer.

In the remaining failure cases, often some of the preamble symbols are
recognizable, but there is no reversible one-to-one symbol mapping. It may
be interesting to explore the interplay of the chip sequences defined by IEEE
802.15.4 under varying degrees of desynchronization in future work. We
believe that computing the original string of symbols no matter the time
shift is generally not possible. However, by smartly choosing the symbol
combinations used to carry the data of the injected packet, always retrieving
all the data correctly may be possible. In the best case, this may even allow

dropping the stringent synchronization requirement at the cost of perhaps
doubling the injected packet’s length.

5
Tempering Wireless Schedules

5.1 Introduction

Power control is the feature of some wireless transmitters to allow soft-
ware to choose one of a selection of supported transmission powers for every
transmission made. Even though this feature has become widespread, most
wireless algorithms ignore its availability as it is often considered to in-
troduce unnecessary complexity. We presented one example of a protocol
benefiting from power control in Chapter 2. In this chapter, we will consider
the problem of scheduling and examine how scheduling algorithms can be
benefit from power control. As a baseline we use the RAND algorithm [63].
While simple in its greedy approach, RAND generally delivers good results.
We chose RAND for both of those reasons, yet are able to improve upon
many of the characteristics of the schedules it produces significantly.

More generally, we find ourselves in the scenario of harnessing a single
frequency channel using the IEEE 802.15.4 standard, i.e., we focus on time
and space division only. For medium access control (MAC) in this scenario,
there are two general philosophies: opportunistic sending with backoffs and
scheduling. With opportunistic sending, senders attempt to send as soon as
a packet is ready to be sent. If the channel is busy, the attempt is repeated
after a backoff period, until the transmission succeeds. Opportunistic send-

79

ing incurs little to no overhead if traffic is low, but as traffic increases, it
becomes increasingly inefficient and transmission delays become more and
more unpredictable.

Scheduling on the other hand divides time into slots and assigns trans-
missions to slots such that all transmissions in each slot can be carried out
simultaneously. Hence, collisions can be completely avoided and transmis-
sion latency becomes deterministic. This comes at the cost of flexibility as
every update to a schedule may incur significant computation and dissemi-
nation overhead. Such updates are often necessitated by fluctuating traffic
levels and changing environment conditions. Mechanisms to reclaim some
of the flexibility have been proposed, such as slot stealing [42] and switch-
ing between opportunistic sending and schedules on-the-fly [65]. For ease of
analysis, in this chapter we will assume the traffic pattern to be static and
known in advance. Without loss of generality we can assume each traffic
flow to have the same desired bandwidth and to flow from one node to an
immediate neighbor. The quality of a schedule may then be defined by the
number of slots required to service all traffic flows once: the shorter the
schedule, the more often the schedule can be repeated in any given time
frame, which directly correlates with the network’s overall throughput.

By employing a model for the probability of a set of transmissions suc-
ceeding simultaneously, it is possible to efficiently predict viable slots offline
without the need to try them first. This allows the creation of schedules
optimized to make use of the medium to the fullest possible extent in each
slot. The Signal-to-Interference-plus-Noise-Ratio (SINR) model is one of
the most established models for this purpose, e.g., [26]. It posits that, if
the ratio between a signal’s power and the sum of the remaining signals’
powers plus the noise floor clears a certain threshold at a receiver, then that
signal may be correctly decoded at that receiver. There are different ways to
obtain the variables required by this model, the gain matrix of the network
and the noise vector: measuring the noise floor comes almost for free, but
measuring link gains accurately usually requires actually sending packets.
For the most accurate measurements, these packets should be sent without
interfering traffic, which implies sacrificing regular transmissions slots. Less
accurate but more subtle methods of measurement making use of knowl-
edge about regular traffic failing or succeeding may be preferable in some
circumstances.

The strength of each arriving signal – as well as the interference it causes
– depends on two variables: (1) the gain of the link, and (2) its original
transmission strength. Hence, there are in fact two fundamental questions
that any scheduling mechanism needs to answer: who sends when, and who
sends how strongly. In practice, the second question is often trivialized:
having every sender use its maximum transmission power optimizes the

TA TB TC RC RB RA

Figure 5.1: The “sandwich”: an abstract geometric example of a scenario in
which the use of individual transmission powers for each link reduces schedule
length considerably. At equal transmission powers, all 3 links need to be scheduled
in separate slots, while sensible power control allows scheduling all 3 links in the
same slot.

signal quality at the receiver. This also reduces the task of computing a
schedule to the combinatorics of finding a preferably small amount of slots
able to serve all desired links.

However, power control is now widespread in hardware. Theory work in
this area has long proven this option to provide significant benefits: in some
situations significantly shorter schedules servicing the same traffic can be
found [58]. Figure 5.1 shows a simple geometric example, in which power
control allows shortening the schedule by a factor of 3. While such an
example goes counter to intuition, log-distance path loss allows for such
configurations when powers and distances are chosen carefully.

Unfortunately, realizing the algorithms and techniques proposed by the-
ory is typically unrealistic. For example, in practice, the possible transmis-
sion power values each sender may choose from are usually bounded to a
certain range and are not arbitrarily fine-grained. Yet, these concerns are
not addressed by the theory community.

As a result, the real world usually ends up using simple heuristics to
compute schedules while ignoring the opportunities offered by power control.
For example, Z-MAC [65], as well as the RAND algorithm it is partially
based on, only consider the maximum transmission power. We feel that,
when choosing to take on the burden of the overhead associated with a
scheduling approach, to not also incorporate power control is a waste.

In this chapter, we propose a practical algorithm to compute tempered
(hardened) schedules harnessing power control: by using tempered (lowered)
transmission powers, we can reduce the unneeded interference caused by
transmissions. On average, this allows us to pack more links into a single
slot than possible at maximum transmission power. Our results show that
we are consistently able to schedule the same set of links in 20–25% fewer
slots than possible without power control. That is equivalent to a 25–33%
increase in overall throughput of the network.

Further, we can make use of our reduced interference levels to pack
links into the schedule a second time at no additional cost. By scoring
second schedulings of links a fraction of their first schedulings, we are able
to quantify the additional value provided by a schedule without impacting
its length. Schedules not employing power control also benefit from this
ruling. However, our schedules profit more so, achieving a comparatively
higher total score per slot value.

Additionally, we address the problem of the environment, i.e., the gain
matrix, changing over time. This is a common problem in practice: doors
may open or close, the temperature and humidity may change, people tend
to move around. A schedule computed for one version of the gain matrix
may turn obsolete within minutes as some links cannot be served anymore.
By increasing the power of a link that was predicted to work but failed, we
are in many cases able to salvage slots without having to move links to other
slots or recomputing the schedule.

All our schedules are verified on a testbed of wireless sensor nodes de-
ployed in an office building offering a typical noise background and dynamic
environment. Experiments confirm that the improved schedules are just as
reliable as traditional full power schedules. Both kinds of schedules suffer
from up to 5% of the links failing to successfully transmit, depending on
the chosen minimum SINR threshold for the admissibility of links. This
is mainly due to these links being mispredicted on basis of a changed gain
matrix.

5.2 Related Work

To avoid transmission collisions while also maximizing the possible through-
put of a wireless network, numerous techniques and protocols have been pro-
posed. The most important approaches can be grouped into time division
(TDMA), frequency division (FDMA), space division (SDMA) and code di-
vision (CDMA). In this chapter, we focus on harnessing a single frequency
channel and restrict ourselves to the IEEE 802.15.4 standard [32], i.e., we
focus on time and space division. However, our solutions may be general-
ized to deal with multiple available frequency channels, and we believe the
results to apply to a majority of today’s wireless standards.

Various collision prediction models have been proposed and used in the
past. The simplest models abstract the network into a communication graph
in which every pair of nodes is connected by an edge if and only if they are
able to communicate directly. A collision occurs if more than 2 neighbors
are sending simultaneously. This model is used, for example, by scheduling
algorithms such as RAND [63] and its derivatives. This model works best

in homogeneous networks, i.e., networks in which all edge gains are very
similar.

In practice, so called physical models, such as the SINR model, have been
proven to be very accurate [2,25,26,56]. These models typically require es-
timations of the signal strength fall-offs between two nodes, called gains. If
the network geometry is known, these gains may be computed directly as-
suming, for instance, a log-distance path loss. This approach suffers greatly
from irregularities in the environment as well as multi-path effects. Alter-
natively, each of the entries of the gain matrix may be determined through
measurements. This carries with it a certain overhead – at the minimum,
in several short slots, each prospective sender needs to send alone once. In
this chapter, we valued the accuracy gained by the latter method more than
the avoided overhead, as we were interested in estimating the maximum
potential improvements possible through power control. However, based on
the experiences we had with our experiments, we are able to suggest several
ways to reduce the impact of this overhead in practice (see Section 5.8).

A framework for computing schedules avoiding collisions was proposed by
Ramanathan [63]. In the same work, the RAND algorithm was introduced.
Its basic idea is to iterate over the links to be scheduled in a random order
and add them to the first slot able to accommodate them. If no slot is
suitable, an additional slot is appended to the schedule. In spite of the
algorithm’s greedy nature, by taking the best outcome of multiple runs
yields a consistently decent performance. One major advantage of RAND
is its efficiency, which it gains by dropping all pretenses of attempting to
guarantee an optimal solution or an approximation thereof. We will discuss
this greedy bin packing algorithm in more detail in Section 5.5, Algorithm 2.

Rhee et al. [66] later provided a distributed version called DRAND with
comparable performance to RAND. DRAND works by negotiating slot usage
locally in each node’s 2-hop neighborhood. This makes it especially well
suited for larger networks as no global coordination is required. The popular
Z-MAC protocol [65] uses DRAND as scheduling algorithm during phases
of high load in the network.

Both RAND and DRAND assume transmission powers to be constant.
In certain denser networks, choosing a different global transmission power
(less than the maximum power) may already drastically improve these algo-
rithms’ performance. However, actually adding a transmission power vari-
able for every link to these algorithms is a problematic proposition as “2-hop
neighborhood” then turns into a rather fuzzy concept. ElBatt et al. [14] pro-
posed enhancing schedules with power control similar to our work. However,
they did not perform any practical evaluation of their heuristics.

In the last decade, power control has also received a lot of attention from
the algorithmic networking community, starting with the work of [56].

The first algorithmic result to schedule an arbitrary link set was by
Moscibroda et al. [58]. This result was soon superseded by the first approx-
imation results [4, 24]. These early approaches involved (directly or indi-
rectly) partitioning links into length groups, which results in performance
guarantees that are at least logarithmic in ∆, the so-called link diversity, i.e.,
the ratio between the longest and the shortest link [5, 10, 24, 27]. However,
link scheduling cannot be solved optimally, as NP-hardness was established
in [24]. This is the reason why our algorithm is also heuristic in nature, and
does not try to solve the problem “optimally”. A breakthrough paper on
the theory side was by Kesselheim [35], who discovered the first scheduling
algorithm that uses power control with logarithmic approximation guaran-
tees.

On the positive side, theoreticians established that – in theory – power
control is in fact powerful. There are instances with n links that can be
scheduled in a single slot with power control, while, without power control,
all n links need to be scheduled sequentially [58]. This result can even
be generalized to the case when we compare arbitrary power control to
so-called oblivious power, where the power of a link only depends on the
length of the link [17]. However, the networks which yield these bounds
are extremely cooked up, they can only be witnessed in a “theory zoo” but
certainly not in the wild. Sometimes the lengths of links must grow doubly
exponentially [27, 28] in order to prove the theorem.

There has been some work that showed that power control can be effec-
tive in practice. For example, Lin et al. [47] proposed a feedback mechanism
to balance out the quality fluctuations of individual links. In contrast to our
work, these earlier papers again do not consider realistic networks. In an
early effort, Moscibroda et al. [57] showed that power control can increase
the throughput in a wireless sensor network with link diversity ∆ = 3 by a
factor of 3. In fact, they proved the “sandwich” situation shown in Figure 5.1
to be feasible in practice.

5.3 Link Model

The link model is concerned with providing accurate and up-to-date link
state information, such as a link’s current gain and the noise floor at a
receiver. It forms the basis for estimating link set success probabilities in
the prediction model. While the physical locations of the nodes are readily
available to us, we do not attempt to infer link gains from such data, as
such approaches are fraught with inaccuracies, especially in complex indoor
environments. Instead, we perform measurements using the same devices
we will later use to verify the viability of schedule slots. Such a method is

3 7 11 15 19 23 27 31

−20

−10

0

Transmission Power SettingR
ed

uc
tio

n
in

R
ec

ei
ve

d
Si

gn
al

St
re

ng
th

[d
B

]

data sheet values

Figure 5.2: Relative received signal strengths plotted against the different trans-
mission powers for a few different links.

not only convenient to integrate into the regular operation of just about any
existing wireless network, it also yields measurement values which should in
most cases match the performance in regular operation later on.

First, we attempted measuring only the achieved received signal strengths
at the highest possible transmission power settings for every link. As a re-
duction of the transmission power by some factor x should also reduce the
received power by the same factor x, we hoped to be able to infer the received
signal strengths for other transmission power settings from this one mea-
surement per link. Unfortunately, in many cases, the different transmission
power values specified in the data sheet differed from what was measured
in practice. Figure 5.2 shows the reduction in measured received transmis-
sion power compared against the case of maximum transmission power (on
the vertical axis) plotted against the used transmission power settings (on
the horizontal axis). The dashed line indicates the values as given by the
CC2420’s data sheet [75]. Each of the other lines represents the average
values measured for a different single link repeatedly sampled over the span
of 1 hour. The shown links were chosen to showcase some of the different
kinds of discrepancies we encountered.

Figure 5.2 makes it clear that measuring the link gains only at the maxi-
mum transmission power and extrapolating the gains for other transmission

powers is certain to incur up to 1–3 dB of error on average, i.e., up to a
factor of 2 in absolute signal strength. As these curves are somewhat char-
acteristic for individual links, often changing only marginally if sampled on
successive days, one option is to measure them once and then only update
the gain of the maximum transmission power frequently. As can be seen
from the varied shapes of the curves, adding just one or two additional mea-
surements is not sufficient to accurately determine a link’s curve. Hence, in
the interest of accuracy, we chose the most detailed option: measuring all
points of the curves every power test. However, as that requires 15-times as
many measurements as the extrapolating option, we expect that one would
try to find a more reasonable tradeoff in practice.

This essentially adds a third dimension to our gain matrix, which is thus
now parameterized by sender, receiver and transmission power. This link
model turned out to work well at night, i.e., when the environment was
almost static as the office building was empty. In contrast, during office
hours, even a few fluctuating links caused a large portion of the generated
schedule slots to be too unreliable for use. This is due to the fact that
underestimating a link often ruins all slots it appears in: not only is the
link afforded unneededly little interference at its receiver, but the other
receivers also expect the link to cause far less interference than it actually
does. Figure 5.3 shows the received signal strength over the course of 1 hour
during office hours for a few select links. Signal strength jumps on the order
of 5 dB in either direction between 2 or 3 consecutive measurements (2–4
minutes in our setup) are not uncommon.

To deal with these fluctuating links we decided to have the link model
not only keep the most recently measured gain matrix, but also keep several
older versions in memory. We now offer 2 values for each link to the predic-
tion model: a signal gain and an interference gain. The signal gain of a link
is the lowest of the gain values for that link amongst the kept gain matrices;
analogously, the interference gain is the highest value. This pessimistically
drops the peaks in Figure 5.3 for the signal value, and fills the dips for the
interference values, effectively smoothing out the fluctuations. As retention
time for old gain matrices we found 15 minutes to be reasonable in our case.
This value should be chosen according to the power test frequency such that
recent peaks and dips are likely to be found and remembered.

In addition to link gains, the link model also collects noise floor mea-
surements for every node. These values serve two purposes: to deduct the
noise component from measured received signal strengths, and for use in
predictions in the SINR formula as additional interference source. In our
testbed the noise is negligibly small (< −95 dBm) for most nodes, but not
for all. Further, not subtracting the noise component from signal strengths
can accumulate to a large error in predictions for slots with a large number

0 5 10 15 20 25
−90

−80

−70

−60

−50

Power Test No.

R
ec

ei
ve

d
Si

gn
al

St
re

ng
th

[d
B

m
]

Figure 5.3: Received signal strength of 7 different links plotted over time dur-
ing office hours. The links were chosen to showcase both stable and fluctuating
behaviors.

of concurrent senders.
There are a few cases in which we further sanitize our data. For one,

received signal powers may sometimes not increase monotonically with in-
creasing transmission powers. This may occur either due to measurements
fluctuations or in some rare cases due to strange link characteristics (see
Figure 5.2). As our scheduling algorithms make the simplifying assumption
that increasing transmission power also increases received power, we smooth
out these bumps. Another data anomaly that may pose a problem are gaps
of “neither signal nor interference on this link” in the data caused by power
test packets occasionally getting lost through external interference. Such
anomalies are easily detected and can be repaired by inserting one of the
lower recently measured values for that link and transmission power.

The CC2420 does not in fact directly offer a signal strength measure-
ment, but rather a received signal strength indicator (RSSI), which is re-
quired to be accurate to ±6 dB by the IEEE 802.15.4 standard. Fortunately,
it is far more accurate than what is prescribed: applying a simple constant
offset as proposed by the CC2420 manual one can already obtain a value
off by at most 3 dB. However, the RSSI values are in fact subject to a not
completely injective piecewise linear function describing the relationship be-
tween RSSI and true received signal strength. The manual provides a plot of
this function as a vector graphic. We wrote a script that extracts the exact

data points from this graphic, and manually smoothed out the non-injective
parts of the function to be able to create a reverse mapping. Chen et al. [7]
explored this mapping in far greater detail, but our simple approach seemed
to work well enough in practice.

The set of transmission power settings we use in all experiments in fact
exceeds the set described in the manual: the manual lists 8 possible set-
tings (3 through 31 in steps of 4). We use 7 additional setting values, each
between two of the listed values, for a total of 15 power setting values (3
through 31 in steps of 2). Considering more power settings naturally im-
proves the flexibility of algorithms employing power control. We tested the
remaining possible power settings (the even values) but found them to al-
most always result in power outputs identical to adjacent power settings.
These undocumented power settings were also examined by Maheshwari et
al. [51]. However, we were unable to reproduce any successful transmissions
using power settings below 3.

5.4 Prediction Model

A (schedule) slot can be defined as set of tuples of transmitting node, re-
ceiving node and transmission power. In our scenario we expect every node
to appear at most once in a slot, either as sender or as receiver, but this
assumption may be weakened: When considering broadcast transmissions,
multiple tuples may have the same sender. Further, full-duplex radios allow
a node to appear in a tuple as receiver even if it also appears in tuples as
sender.

Given a slot, the goal of the prediction model is to make as accurate of a
prediction of the outcome as possible – without trying the slot in practice.
In particular, we are interested in whether each of the links in the slot is
likely to work, i.e., have a success probability p > pthreshold. We call such
slots feasible.

For our purposes we chose the SINR model, fed with measurements of
every link’s received signal power at every transmission power (the link
model).

The slot is given by link set L = {l1, . . . , lk} = {(t1, r1, p1), . . . , (tk, rk, pk)},
the lowest and highest (see Section 5.3) recent received signal powers for a
link la are denoted by s(la) and i(la) respectively, and the noise floor at node
r by n(r), then our SINR model states that a link la ∈ L is able to transmit
successfully if and only if the following equation holds at the receiver:

−4 −2 0 2 4 6 8 10 12 140%

20%

40%

60%

80%

100%

SINR [dB]

Su
cc

es
s

R
at

io

Figure 5.4: Scatterplot of link success ratios split into SINR buckets of 0.25 dB
each. Colors indicate which of the 3 experiments the value came from.

SINR(la) = s(la)∑
lb∈L
lb 6=la

i(lb) + n(la)
> β

Here β is the so called SINR threshold, which needs to be cleared by the
signal-to-interference-plus-noise-ratio (SINR). Unfortunately, in reality link
success is not as black and white as the formula suggests: between a “high
enough” and a “too low” SINR there exists a transition region in which the
packet reception ratio gradually tapers off.

To decide on a fitting β we conducted an experiment, in which we com-
puted a schedule at the start and then tested that schedule’s slots repeatedly
for about an hour, ignoring changes in the environment. We then divided
the results for all tested links into buckets based on the SINR we computed
for the link beforehand. Figure 5.4 plots the ratio of successful links for
each bucket, each bucket 0.25 dB in size. The results from 3 experiments,
each with a different schedule, are shown, in a different color each. The
experiment in blue used different parameters for the schedule computation,
which should not be of interest for this discussion.

While in the blue test run the success ratio rather quickly increases from
around 0% to 80% for SINR values from 0 dB to 2 dB, the other test runs

experience a significantly wider transitional region. The red test run even
consistently reaches a packet reception ratio of almost 10% at SINR values
below 0 dB, i.e., when the quotient is below 1 as the interference and noise
was measured to be stronger than the signal.

We explored computing a piecewise linear function mapping SINR to
success probability. However, as this mapping appeared to vary depending
on external parameters (such as the slots used and perhaps the environ-
ment), especially in the interesting area of 2 dB < SINR < 10 dB, any
mapping function procured from such experiments was doomed to be too
inaccurate to be used for a subsequent experiment. Our main takeaway
from these experiments is that the SINR model and/or our measurements
are too inaccurate as to be able to guarantee a successful reception at low
values of β.

For computing schedules, we decided that we were interested only in
slots, in which all links had a success probability of at least 80%. Based on
our findings above we forewent a SINR-to-probability mapping function and
settled for using hand-picked constant values for β. As we are ultimately
interested in computing schedules that are viable in practice, we tuned the
model parameters to make the model decide pessimistically, i.e., focus on
avoiding false positives (links predicted to work not working) at the cost of
an increased amount of false negatives (links predicted to not work working).
For exploiting links with a success ratio in the transition region we refer to
other works specializing on this topic such as the work by Maheshwari et
al. [51].

Reasonable but pessimistic values for β lie in the range of 6–12 dB:
for a link to successfully invoke the capture effect to be heard over the
interference from the other senders in the slot requires exceeding the their
combined power by 2–8 dB, depending on various factors such as the number
of interfering signals [51, 78] (see also Section 3.7.2). In addition, we have
seen that the link qualities can easily spontaneously fluctuate by 2 dB in
the most static phase of our environment, up to 5–6 dB in an active phase.

5.5 Tempering RAND

The input of a scheduling algorithm is a set L of links representing the
traffic to be served. Without loss of generality we can assume all traffic
demands to be between two neighboring nodes and of unit size: to solve
these more general cases, we can split every traffic demand into multiple
traffic demands of unit size (L now becomes a multiset) and split traffic be-
tween non-neighboring nodes into multiple single-hop traffic demands using
a suitable routing algorithm. For our experiments we chose L to include all

Algorithm 2: RAND
Data : Function Feasible(S)
Input : Links L
Output: Schedule (set of slots (sets of links))
C← {}
while L 6= {} do

l← random element from L
L← L \ {l}
foreach S ∈ C do

S’← S ∪ {l}
if Feasible(S’) then

C← C \ S ∪ S’
break

if l could not be added to an existing slot then
C← C ∪ {{l}}

return C

feasible links, i.e., all links that are able to successfully transmit alone at
maximum transmission power.

A valid output of a scheduling algorithm is a set C of sets of links called
slots. The union of all slots must be L, and all slots must be feasible, i.e.,
all links within the slot must be able to transmit successfully concurrently.
In the case of a scheduling algorithm not using power control, it is implicit
that all links are to be used at full transmission power. When using power
control, the algorithm additionally needs to return the powers to be used
for the individual links within each slot.

The classic RAND algorithm was a special case in the general scheduling
framework proposed by Ramanathan et al. [63]. Pseudocode for RAND is
given by Algorithm 2: the input links are greedily added to existing slots in
a random order. If no existing slot is able to accommodate the next link,
a new slot is added. The algorithm’s convincing features are its simplicity
and efficiency in practice, defying the combinatorial nightmare that NP-
hard scheduling [24] poses. RAND’s consistency can be slightly enhanced by
running it multiple times and choosing the best output among the instances.

As our algorithm builds upon the basic structure of RAND, it can reap
the same benefits: links are considered in a random order and greedily
assigned a slot. All links assigned to a slot also carry a transmission power
setting. Initially, when the first link is added to a slot, its power setting is set
to the minimum for which the link is feasible. When another link is added
to a slot, the existing links of the slot may need to raise their power settings

Algorithm 3: PowerRAND
Input : Links L
Output: Schedule with transmission powers (set of slots (tuples of

sets of links and power mapping))
C← {}
while L 6= {} do

l← random element from L
L← L \ {l}
foreach (S, p) ∈ C do

S’← S ∪ {l}
p’← FindPowers(S’)
if p’ 6= ∅ then

C← C \ (S, p) ∪ (S’, p’)
break

if l could not be added to an existing slot then
C← C ∪ {({l},FindPowers({l}))}

return C

Algorithm 4: FindPowers
Data : Available transmission power settings P
Data : Function Predict(L, p) returning working links
Input : Links L
Output: Map: link → transmission power; or ∅
foreach l ∈ L do

p[l]← min P
repeat

change← False
prediction← Predict(L, p)
foreach l ∈ L do

if l /∈ prediction then
if p[l] = max P then

return ∅
else

p[l]← min {x ∈ P | x > p[l]}
change← True

until change = False
return p

to account for the interference caused by the new link. If a link’s power
settings cannot be raised far enough to enable the new link, the new link
cannot join the slot as it would otherwise become infeasible. We abstracted
the process of attempting to find an agreeable set of power settings for a
potential updated slot into a subroutine called FindPowers. The complete
pseudocode listings are given by Algorithms 3 and 4.

After computing a schedule with our algorithm, it may be beneficial
to optimize the individual slots: as each slot’s power settings are as low as
possible to allow for as much room as possible for potential further links, the
SINR values of the individual links are likely not as high as they could be.
Now that we know that no further links will be added to the slot, we may
gain an overall “better” slot by raising the power settings. We define a set of
power settings for a slot to be better than a different set of power settings, if
the minimum SINR value it induces amongst the links of the slot is higher.
In a stable environment, such increases in SINR values are not worth much
(at least with the modulation prescribed by our chosen wireless standard),
but as we are dealing with an environment in which links may suddenly and
abruptly change, delivering more interference or a weaker signal, using any
available additional buffer is prudent.

Exhaustively searching for the optimal power settings for a slot is not
tenable in practice, especially for slots containing 5 or more links. Instead,
we start at a random position in the space of reasonable power settings,
i.e., we set every power to a value between the minimum suggested by the
scheduling algorithm and the maximum possible, and then follow the gradi-
ent of the quality to its local maximum, where the quality of a set of power
settings is defined as the resulting minimum SINR value among the links.
We repeat this process for 50 different random starting values and use the
local minimum with the best quality we found. Comparing the achieved
quality to that of the exhaustive search for a several random samples, we
find our gradient method to get sufficiently close to the optimum in most
cases.

Without specifically giving scheduling algorithms an incentive to ensure
all slots are utilizing the available medium well, the schedules they produce
may contain slots containing only one or two links – not because these links
make scheduling additional concurrent links impossible, but because all links
that could be added are already being served in other slots. Such schedules
are wasteful in practice.

Hence, to perform our experiments with realistic schedules, we decided
to allow the scheduling algorithms to schedule any link a second time at
a reduced reward. More concretely, we implemented the following scoring
function for a schedule C that is supposed to cover L:

Score(C,L) =

0 if ∃l ∈ L : |{S ∈ C | l ∈ S}| = 0∑
l∈L

LinkScore(C,l)

|C| otherwise

LinkScore(C, l) =

1 + ε if |{S ∈ C | l ∈ S}| ≥ 2
1 if |{S ∈ C | l ∈ S}| = 1
0 otherwise

In practice, we chose ε = 1/4, i.e., 4 secondary schedulings are equiv-
alent to 1 primary scheduling. This scoring approach can be seen as a
generalization of the previous quality measure (the schedule’s length) using
an arbitrary LinkScore function: when setting ε = 0, the resulting schedule
score would induce the same quality ordering on schedules as their length
(or rather: shortness).

We extended both RAND and PowerRAND to create schedules targeting
the new scoring function. The extension applies to both algorithms the
same: Once the set of remaining links (L) is depleted, we replenish it once
and continue the algorithm. Hence, at the end, every link is contained in the
schedule twice. We then return a schedule consisting of the oldest k slots
for the k that maximizes the schedule score for those slots (this requires the
slot set C to preserve an ordering, which is not reflected by the pseudocode
given above). If additional link score is awarded for a third scheduling of a
link, one would need to replenish L a second time, and so on. We found the
difference between rewarding only the second scheduling and additionally
rewarding a third scheduling to be negligible in practice. However, the
above algorithm and scoring achieve the desired effect of smoothing out
the produced schedule such that all its slots appear to utilize the medium
reasonably efficiently. Note that, even though we allow for our algorithms
to add slots in this process, the choice of the scoring function makes the
circumstances required for a slot addition virtually impossible.

Power control does not only afford us more efficient schedules, it also al-
lows us to react swiftly to a slot ceasing to work, for example, due to changes
in the environment. More specifically, if one link within a slot fails to trans-
mit repeatedly, one may edit the schedule on-the-fly and increase that link’s
transmission power for that slot by a notch. This technique particularly
benefits from larger minimum SINR values (larger β) as the additional in-
terference caused by the attempt to repair one link is unlikely to disturb the
other links. As we are dealing with a particularly active environment in our
scenario, we found this technique to be helpful in offsetting the fluctuations
and thus prolonging the applicability of a schedule.

Figure 5.5: The floor plan and node layout of the wireless sensor node testbed we
conducted our experiments on. We tested a smaller and a larger set of nodes. The
smaller one only includes the nodes in red, the larger one also includes the nodes in
blue. The node with the thick border was used as starting node for synchronization
waves for both node sets.

Another attempt we made to fight the fluctuating link qualities was to
add slots of a certain minimum size which worked well to a whitelist, to be
automatically grandfathered in into schedules generated in the future. Sim-
ilarly, we added slots that turned out to not work as expected to a blacklist,
forbidding that combination of links to be used by a future schedule. Neither
of these methods were particularly successful: whitelisting, while it may find
and preserve particularly good link combinations by chance, is not immune
against changes of links within the whitelisted slots, and blacklisting is a
hopeless proposition in face of the myriad of possible combinations of links.

5.6 Experiment Setup

All our experiments were conducted on FlockLab with TelosB motes. As the
testbed consists of installations on the walls of an office building, the activity
of the people using this office building, such as office doors being opened
or closed and people moving about, creates a dynamic environment. Such
a real world scenario allows us to experience and address problems usually
not present in lab setups. Figure 5.5 shows the floor plan and node layout
of the testbed. All nodes were located on the same floor of the building.

To ensure that possible collisions in a schedule slot are not avoided due
to a lack of synchronization, we periodically synchronize all nodes to a previ-

ously chosen central node of the network, which is at most 3 hops from every
other node (see Figure 5.5). As synchronization period we found 11 seconds
to be an adequate value for our experiments. This keeps our synchronization
error below ±2 µs at all times.

Further, we take special precautions that no node misses its scheduled
transmission time: 30 ms before the transmission time is reached we start
a series of busy waits on the separate parts of the target timestamp (see
Section 3.6). We find that over 99.9% of our transmissions are started within
±50 µs of the correct local time. For reference, the packets we transmit are
about 2 ms in length. Hence, even if added up these two error sources
and included the propagation delay of up to ±0.34 µs (accounting for up
to 100 meters difference in path lengths), any two packets sent within in
the same slot are guaranteed to temporally overlap at the receiver for at
least 2000µs−52.34 µs or over 97% of the packet. We deem this sufficient
for obtaining meaningful results about the feasibility of schedule slots.

To coordinate the experiment, we make use of a feature offered by Flock-
Lab which allows us to remotely receive and send serial input to nodes via
a TCP connection each. We have a coordinator script running on a regular
x86-64 desktop machine, connecting to each of the nodes to issue only very
loosely synchronized commands. Such a central coordinator is an uncom-
mon feature in real world wireless networks. However, it vastly simplifies
result gathering, timely schedule computation and command dissemination.
These tasks are not the focus of our work – we are more interested in a
proof of concept and measurement of the physical feasibility of schedules
employing power control. Our current setup essentially has the centralized
control flair of popular software defined networks.

Our experiments contain 3 kinds of phases of operation:

• Synchronization phases to align node clocks to be able to enforce
packet collisions as described above.

• Power test phases to obtain measurements for the values of the gain
matrix.

• Set test phases to try out simultaneous use of a certain set of (sender,
receiver, transmission power) triplets, i.e., test a schedule slot.

Each of these phases is subdivided into a number of time slots, each
lasting 1/8 of a second (not to be confused with schedule slots). Synchro-
nization phases start by the central node of the network being woken by
the coordinator. This node’s clock will serve as the global reference clock
amongst the nodes. Woken nodes will broadcast their time at maximum
transmission power at the start of each slot with a probability of 1/3, or

with a probability of 1 if have not transmitted since being woken. Nodes
implicitly gain a parent node – the node whose broadcast woke them. In
this phase, they will continue accepting timestamps from their parent node,
should it transmit again. To minimize the error incurred each hop, we apply
the techniques detailed in Section 3.5. Each synchronization phase lasts for
10 time slots, i.e., 1.25 seconds.

In a power test phase, one node after the other will transmit once at
each available transmission power level. The packets being sent contain
both the sender’s ID and the transmission power that was used. Whenever
a node successfully receives a packet during this phase, it will note sender
and transmission power as well as the received signal strength indicator
(RSSI) and pass them on to the coordinator via serial output. I.e., once a
power test phase is complete, the coordinator will have collected sufficient
data to create a fresh complete snapshot of the gain matrix. Also in this
phase, noise floor levels are measured several times by all nodes. To avoid
outliers due to other transmissions in the environment, all but the lowest of
the measured noise floor values are discarded. To construct the gain matrix,
the coordinator first converts the RSSI values into more accurate received
signal strength values (see Section 5.3) and then subtracts the measured
noise floor values for the respective receivers. We run power test phases
once every 2 minutes.

In a set test phase, the coordinator chooses a slot of a computed schedule
and puts it to the test in practice: all transmitting nodes of the slot are
informed of their duty as well as their transmission power for this schedule
slot. Due to the loose synchronization between coordinator and nodes, the
coordinator picks a time slot which lies 2 slots (0.25 seconds) in the future
to ensure all transmitting nodes can prepare and agree on the same time
slot. All non-transmitting nodes record which sender’s packet they receive
– if any at all – and report this to the coordinator via serial output. Set
test phases are executed whenever no other phase is pending.

Experiments start out with 4 synchronization phases followed by 4 power
test phases. The multiple synchronization phases serve to initialize the linear
regression for clock drift compensation. The multiple power test phases aim
to detect heavily fluctuating links early, see Section 5.3. Afterwards, the
coordinator computes a schedule according to one of the algorithms listed
in Section 5.5 and then tests this schedule. Each schedule is tested by
performing set test phases for each the slots of the schedule in a round-
robin fashion, repeated 4 times. If a link in a schedule slot is found to
unexpectedly fail multiple times early, it may be upgraded in strength and
its slots repetition count may be reset, see Section 5.5. Once a schedule has
been evaluated, a new one is computed, based on the data from the newest
power test phases.

RAND Smaller Network
PowerRAND Larger Network

20 25 30 35 40 45 50 55 60 65 700%

20%

40%

60%

80%

100%

Schedule Length

C
D

F

Figure 5.6: The distribution of schedule lengths.

Overall, our experiments were consciously not designed to measure the
maximum achievable throughput in practice directly. Instead, we concen-
trated on ensuring (1) that we have the most up-to-date environment infor-
mation available to be able to compute high-quality schedules, and (2) that
we evoked as many packet collisions as possible during schedule evaluation
through tight node synchronization. We believe that the results from this set
of parameters to be the most meaningful in determining the improvements
schedules with power control can achieve.

5.7 Results

We ran RAND and PowerRAND each 200 times on the same link and predic-
tion models (snapshots taken from a real test run) to obtain 200 comparable
schedules. When interpreting the plots of the distributions of the various
properties of these schedules, keep in mind that in practice one would typi-
cally run the algorithm at least 5–10 times to obtain a consistently decent
result. We present the results for 2 different sets of nodes: a small set of only
11 nodes (59 viable links) and a larger set of 24 nodes (188 viable links). All
computed schedules were to include all viable links. In all cases, we used
β = 9 dB as cutoff parameter for the prediction model. Figure 5.5 show the

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.20%

20%

40%

60%

80%

100%

Schedule Score

C
D

F

Figure 5.7: The distribution of schedules scores.

locations of the node sets within the office building.
Figure 5.6 shows the distribution of the schedule lengths (number of slots

in each schedule), the classic measure of schedule quality. For the smaller
node set, we observe PowerRAND achieving a reduction in schedule length
by around 20%. For the larger node set, the reduction reaches just over 25%.
In none of the 200 schedules generated for any of the traces the new scoring
incentive for links scheduled a second time resulted in longer schedules. The
distributions also appear to be rather stable, i.e., taking the best result of
a small number of algorithm iterations is likely to produce a schedule from
the “lower” 20–30% of the plot.

Figure 5.7 shows the distribution of the schedule score achieved as de-
fined in the previous section. Intuitively, the scores represent the number
of links which were served by a slot on average, with links being scheduled
a second time only counting 1/4 as much as a link being scheduled for the
first time. For both node sets, the relationship between the two algorithms’
values reflect that of the schedule lengths: the increase by 25% corresponds
to the schedule length reduction by 20%, and similarly for the larger node
set. Save for the additional 1/4 scores, these values are exactly proportional
to the reciprocal of the schedule length. Because even with the addition of
the score from links being scheduled a second time, the total scores do not
deviate from this relationship much, which implies that allowing links to be
scheduled a second time appears to have a rather small overall impact.

However, the scoring mechanism still succeeds in incentivizing the algo-

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 40%

20%

40%

60%

80%

100%

Average Links per Slot

C
D

F

Figure 5.8: The distribution of the average links per slot for RAND without (thin
traces) and with (thick traces) the new scoring.

2 2.5 3 3.5 4 4.5 50%

20%

40%

60%

80%

100%

Average Links per Slot

C
D

F

Figure 5.9: The distribution of the average links per slot for PowerRAND without
(thin traces) and with (thick traces) the new scoring.

10 12 14 16 18 20 22 240%

20%

40%

60%

80%

100%

Predicted Slot SINR

C
D

F

Figure 5.10: The distribution of the SINR values. The thinner traces show the
values before slot optimization, the thicker traces the values after.

rithms to fill their slots up: Figures 5.8 and 5.9 show the distributions of
the average over the number of links in a slot. For comparison, the thinner
traces in this plot each show a separate set of 200 schedules (colors and
dashes as before) that were computed without the new scoring incentive
(but still use the same link and prediction models). Both algorithms appear
to achieve a similar increase in links per slot, with the PowerRAND doing
slightly better on the smaller node set. The larger node set profits more from
this (35% versus 20–25% for the smaller set), which was to be expected due
to the larger flexibility stemming from an overall larger number of links and
nodes.

Figure 5.10 demonstrates the improvement in SINR values that is achieved
through the optimization of individual slots after completion of the sched-
ule computation. This optimization does not apply to regular RAND as it
assumes the use of power control. The thinner traces in this plot correspond
to the values before the optimization, the thicker traces conversely to after
the optimization. No link is scheduled with a SINR value lower than 9 dB
as this was precisely the cutoff we configured for the prediction model. For
20–40% of links the optimization appears to have little to no impact. These
links are mostly part of already tightly packed slots without room for power
adjustments. For the remaining links the improvement is on the order of
1–2 dB on average. While not a lot, in turbulent environments, every little
additional stability translates into fewer mispredictions and longer lasting

Node Set Time of Day Power Control β Link Failures

Small Night Yes+Readj. 6 dB 9.0%
Small Night Yes+Readj. 9 dB 7.3%
Small Night Yes+Readj. 12 dB 0.4%

Table 5.1: Failure rate of links in live experiments using generated schedules
with different values for β (the minimum SINR value parameter in the prediction
model). For all schedules PowerRAND with on-the-fly slot readjustments was used.
All data stems from experiments on the smaller node set.

schedules.
Also visible in Figure 5.10 is how well the each of the scheduling meth-

ods is able to utilize the given medium: as was preordained, the approach
without power control tends to “waste” a lot of the medium by using an un-
neededly high transmission power, reflected in unneededly high SINR values
here. Further, all scheduling methods appear to achieve lower SINR values
in the larger network. This can be explained by the increased opportunities
for heavier parallelism.

To verify that our algorithm can be used in a live scenario, we conducted
the experiments described in Section 5.6. Each test run lasted for 1 hour,
during which multiple schedules were generated from the collected link state
data and then tested. Table 5.1 shows the different amounts of link failures
encountered for a set of experiments ran with different values for the SINR
cutoff β. All experiments used PowerRAND and applied on-the-fly slot
readjustments when a link failure was first encountered, and were run on
the small node set at night (low environment activity). We consider a link
failed if it failed to transmit in more than 1 of the 4 trials we hold for each
slot. Even with such a small number of trials, we deem it reasonable to
consider links failing 2 out of 4 times to certainly be unable to meet our
stated goal of only scheduling links with a minimum reliability of 80%. The
results show that the choice of β significantly impacts the system’s overall
performance. In our case, even β =9 dB suffered from a very high failure
rate.

To further analyze the cause of these seemingly bad schedules we aggre-
gated the links that failed by the SINR values that our models predicted
for the links at the time of the schedule’s evaluation. Figure 5.11 shows the
distribution of these links for the same experiments as used for Table 5.1:
the 6 dB experiment in orange, 9 dB in blue and 12 dB in green. Note
that the plots show a few scheduled links below the respective experiment’s
threshold due to rare cases in which the link model reports different values

0 2 4 6 8 10 12 14 160%

20%

40%

60%

80%

100%

Predicted Slot SINR

C
D

F

6 dB
9 dB
12 dB

Figure 5.11: Distribution of the predicted SINR values of the links that failed in
the experiments listed in Table 5.1.

at the time of schedule generation and at the time of schedule evaluation
(which lie a few seconds apart). Save for these exceptions, most of the link
failures occur in the range of 9–11 dB. For the case of β = 9 dB this is not
very surprising, as we’d expect the weakest links in a schedule to fail the
most frequently. However, we are unsure why most links failed around 9 dB
in the case of β = 6 dB. In the 12 dB experiment only 3 links failed, all
well above the 9 dB mark. In conclusion, we find that even at night, when
the environment should fluctuate only very little, links with predicted SINR
values of 9 dB, in some rare cases even as high as 16 dB, may fail.

In another set of experiments we compared the link failures incurred by
RAND to those by PowerRAND. Additionally, we distinguish PowerRAND
with and without the technique of on-the-fly slot readjustments (see Sec-
tion 5.5). This technique does not apply to RAND as it requires power
control. Again, all experiments were run at night and on the smaller node
set. The results are shown in Table 5.2.

Interestingly, at night, RAND suffers fewer failures than vanilla Power-
RAND. This is likely due to the inherent overprovisioning of transmission
power in RAND, and, conversely, due to PowerRAND cutting more corners.
Once we allow PowerRAND to adapt transmission powers within a slot to
react to failing links, in the experiments ran at night, PowerRAND’s link
failure rate falls to only 0.2% (0.4% in the test run with identical parameters
shown in Table 5.1). During daytime, both RAND and PowerRAND suf-

Node Set Time of Day Power Control β Link Failures

Small Night No 12 dB 1.2%
Small Night Yes 12 dB 4.5%
Small Night Yes+Readj. 12 dB 0.2%
Large Night No 12 dB 0.5%
Large Night Yes+Readj. 12 dB 0.2%
Large Day No 12 dB 2.8%
Large Day Yes+Readj. 12 dB 3.1%

Table 5.2: Failure rate of links in live experiments using generated schedules
under different conditions: ‘Power Control: No’ refers to RAND, ‘Power Control:
Yes’ refers to PowerRAND.

fer a noticeable amount of failed links, PowerRAND more so than RAND.
These are the result of the computed schedules not being able to account
for link quality changes induced by the daytime environment between the
last power test before schedule generation and the testing of the schedule.
In cases where multiple links are affected even the generous β of 12 dB can-
not prevent the prediction for the slot to turn out wrong. For all practical
purposes we find the failure rates we obtained to be acceptable.

A problem related to the scheduling problem is the so-called one-shot
problem: given a set of links L, we want to find the largest possible subset
L′ ⊂ L such that all links in L′ can be scheduled concurrently. In other
words, we are looking for the largest feasible slot. Due to the greedy “stuff-
ing” nature of RAND-like algorithms, these algorithms tend to also find good
or at least decent solutions for the one-shot problem. Figure 5.12 shows the
maximum slot size in each of the schedules in each of our 200 schedule sets.
While RAND finds slots of size 4 in 90% of cases in the smaller node set,
PowerRAND finds slots of size 5 in 30% of cases. Note that 5 is the theoret-
ical maximum for this node set as it contains only 11 nodes – and every link
in a slot requires a unique sender and a unique receiver. In less than 10% of
cases the algorithms produce an exceptionally large slot for the larger node
set: RAND finds a slot containing 8 links, while PowerRAND reaches 10
links.

5.8 Summary and Future Work

In this chapter, we demonstrated that the often overlooked feature of power
control can be a valuable tool even for existing wireless algorithms. Using

2 3 4 5 6 7 8 9 100%

20%

40%

60%

80%

100%

Maximum Links per Slot

C
D

F

Figure 5.12: The distribution of the largest slot in the schedule.

the example of the simple yet powerful RAND scheduling algorithm, we
show that by augmenting the algorithm to fine-tune transmission powers,
we can improve the produced schedules as measured by various metrics. Our
main result is the reduction in the length of the produced schedules by 20–
25% as shown in Figure 5.6. Additionally, we propose other improvements
possible with power control, such as optimization of SINR values within a
slot and the on-the-fly adjustment to smaller changes in the environment.
We verified that the shorter schedules our proposed PowerRAND algorithm
produces are also feasible in practice.

One goal for future work is the integration of PowerRAND into a fully-
fledged MAC layer implementation. The main issue to be addressed here is
the overhead we incurred in our setup in the name of measurement accu-
racy. We perform power test phases every 2 minutes, which reserve slots for
each node to transmit a packet alone, such that all other nodes are able to
record the results without interference. While in practice lowering the test
frequency to only once every 10 minutes, or testing only before computing
a new schedule, is likely to suffice, such test phases still impose a significant
overhead to regular operations.

The most ambitious solution we are envisioning is to adapt the link model
not based on dedicated power tests, but purely on feedback from regular
network operation: e.g., which links in which slots failed and succeeded,
what accumulated power levels every node measures during every slot – even
if the node does not participate in any transmissions in that slot. Further,

changes to one link often also affect many others – perhaps all other links
sharing a certain node or passing through the same hallway. Examples for
such behavior are easy to find. One instance can be seen between power tests
#11 and #12 in Figure 5.3. Harnessing the implicitly available information
about such changes may be the key to avoiding regular sweeping power tests.

The other issue to address is the centralized nature of our setup. For a
MAC layer to be practical, all its components should be distributed amongst
the nodes of the network itself. As described earlier, it is not possible for
PowerRAND to follow the same route from RAND to DRAND to achieve
distributedness, mainly due to DRAND’s simplified model of the network.
However, we are confident that PowerRAND can be transferred to dis-
tributed operation by making some reasonable tradeoffs.

It may also be worthwhile to explore different avenues for dealing with
unreliable links and slots. In this chapter, we focused on delivering a proof
of concept for the possible benefits of power control, which is made clearer
by avoiding, for instance, links that only successfully transmit in half of all
attempts on average. If we are able to determine the rough probabilities
for a successful transmission of a link, we may be able to simply schedule
it multiple times to reach a desired average throughput. Alternatively, we
could catch up on failed links every couple of executions of the schedule.
Even more ambitiously, the schedule could constantly be adapted as links
and traffic demands change. We already implemented a basic version of this
with our slot readjustment technique responding to links underperforming.

6
Conclusion

In spite of the rapid spread of wireless technology, the space of both feasible
wireless transmission primitives as well as algorithms making use of those
primitives has yet to be fully explored. In this work, we made a contribution
to this space by filling in a few of the many blanks. We investigated multiple
applications that suffer when treated under traditional wired network based
abstractions, and designed and evaluated solutions tailored to the wireless
medium.

We showed that the combination of transmission power control and the
capture effect may allow for traffic prioritization completely without over-
head. Critical to the success of this method are the homogeneity of the
network, or, more specifically, how small the biggest difference in “length”
between any two links at a single node is, and the flexibility of the wireless
nodes in terms of transmission power values available. Using TelosB motes
on the FlockLab testbed we found the network to generally support at least
2 priority layers at every node. Our distributed fire alarm implementation
indeed proved apt at quickly reporting high-priority alarms while causing
little to no overhead to the low-priority protocol.

We showed the feasibility of synchronizing run-of-the-mill wireless sensor
nodes’ clocks well enough to achieve constructive interference. Unlike pre-
vious work, our solution does not require each sender to receive a common

107

reference packet. Instead, it focuses on minimizing the error sources of clock
synchronization and transmission timing.

Breaking with the abstraction that every packet is sent and received as a
single packet, we considered possible applications for mixed sender schemes
and explored the practical difficulties that needed to be overcome. Using
signals of different strengths or by prematurely turning off a transmitter,
receivers can be fooled into decoding a packet with mismatching synchro-
nization headers and payloads. If we don’t get lucky and the symbol string
phases are not approximately the same, we are sometimes still able to puzzle
the payload back together by exploiting certain relationships between the
symbols’ chip sequences.

Finally, we examined how power control can be applied to the RAND
scheduling algorithm. We developed a power control aware version called
PowerRAND, which attempts to use each link at the minimum possible op-
erating power to minimize interference, and then in a second step optimizes
the link powers within each slot. PowerRAND achieves schedules 20–25%
shorter than RAND, and our proof of concept implementation showed that
they are generally just as reliable in practice. Additionally, we investigated
how power control allows schedules to react to changes in the environment.

While our protocol layering solution is already directly applicable to
practice, the other results mostly remained as proofs of concept. Integrating
these techniques into general purpose frameworks is left to future work. For
many of these approaches, it would also be interesting to apply them to more
powerful hardware: they are all limited in one way or another either by the
available clock precision or by the granularity of the set of programmable
transmission powers. Perhaps future hardware may also cater better to
these needs.

Ultimately, the grand goal of our work is to inspire other applications
to make more use of the wireless medium’s unique properties. As virtually
all sensor network MAC layers ignore power control, we envision that any
MAC layer protocol X may be enriched to become PowerX, improving the
protocol’s characteristics such as medium utilization and throughput. Our
treatment of RAND did not rely on any properties specific to RAND, yet
PowerRAND certainly improved significantly over RAND. We do not see
any reason why such an effect should not be repeatable across more wireless
algorithms.

Bibliography

[1] Ash, D.L.: A comparison between OOK/ASK and FSK modulation
techniques for radio links. Technical report, Technical report, RF Mono-
lithics Inc (1992)

[2] Brar, G.S., Blough, D.M., Santi, P.: Computationally efficient schedul-
ing with the physical interference model for throughput improvement
in wireless mesh networks. In: Proceedings of the 12th Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom).
(2006) 2–13

[3] Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: ultra-low
power data gathering in sensor networks. In: Proceedings of the 6th

International Conference on Information Processing in Sensor Networks
(IPSN). (2007) 450–459

[4] Chafekar, D., Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srini-
vasan, A.: Cross-layer latency minimization in wireless networks with
SINR constraints. In: Proceedings of the 8th ACM Interational Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHoc). (2007)
110–119

[5] Chafekar, D., Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srini-
vasan, A.: Approximation algorithms for computing capacity of wire-
less networks with SINR constraints. In: 27th IEEE International Con-
ference on Computer Communications (INFOCOM). (2008) 1166–1174

[6] Chang, H., Misra, V., Rubenstein, D.: A general model and analysis of
physical layer capture in 802.11 networks. In: 25th IEEE International
Conference on Computer Communications (INFOCOM). (2006)

109

[7] Chen, Y., Terzis, A.: On the mechanisms and effects of calibrating
RSSI measurements for 802.15.4 radios. In: Wireless Sensor Networks,
7th European Conference (EWSN). Volume 5970 of Lecture Notes in
Computer Science. (2010) 256–271

[8] Cidon, A., Nagaraj, K., Katti, S., Viswanath, P.: Flashback: decoupled
lightweight wireless control. In: ACM SIGCOMM Computer Commu-
nication Review. Volume 42. (2012) 223–234

[9] Davis, D.H., Gronemeyer, S.: Performance of slotted ALOHA ran-
dom access with delay capture and randomized time of arrival. IEEE
Transactions on Communications 28(5) (1980) 703–710

[10] Dinitz, M.: Distributed algorithms for approximating wireless network
capacity. In: 29th IEEE International Conference on Computer Com-
munications (INFOCOM). (2010) 1397–1405

[11] Doddavenkatappa, M., Chan, M.C.: P 3: a practical packet pipeline
using synchronous transmissions for wireless sensor networks. In: Pro-
ceedings of the 13th International Symposium on Information Process-
ing in Sensor Networks (IPSN). (2014) 203–214

[12] Dunkels, A., Grönvall, B., Voigt, T.: Contiki - A lightweight and
flexible operating system for tiny networked sensors. In: 29th Annual
IEEE Conference on Local Computer Networks (LCN). (2004) 455–462

[13] Dutta, P., Musaloiu-Elefteri, R., Stoica, I., Terzis, A.: Wireless ACK
collisions not considered harmful. In: 7th ACM Workshop on Hot Top-
ics in Networks (HotNets). (2008) 19–24

[14] ElBatt, T.A., Ephremides, A.: Joint scheduling and power control for
wireless ad hoc networks. IEEE Transactions on Wireless Communica-
tions 3(1) (2004) 74–85

[15] Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchro-
nization using reference broadcasts. In: 5th Symposium on Operating
System Design and Implementation (OSDI). (2002)

[16] Elson, J., Römer, K.: Wireless sensor networks: a new regime for
time synchronization. Computer Communication Review 33(1) (2003)
149–154

[17] Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious inter-
ference scheduling. In: Proceedings of the 28th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC). (2009) 220–229

[18] Ferrari, F., Zimmerling, M., Mottola, L., Thiele, L.: Low-power wire-
less bus. In: Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems (SenSys). (2012) 1–14

[19] Ferrari, F., Zimmerling, M., Thiele, L., Saukh, O.: Efficient network
flooding and time synchronization with Glossy. In: Proceedings of
the 10th International Conference on Information Processing in Sensor
Networks (IPSN). (2011) 73–84

[20] Flury, R., Wattenhofer, R.: Slotted programming for sensor networks.
In: Proceedings of the 9th International Conference on Information
Processing in Sensor Networks (IPSN). (2010) 24–34

[21] Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for
sensor networks. In: Proceedings of the 1st International Conference
on Embedded Networked Sensor Systems (SenSys). (2003) 138–149

[22] Ghosh, A., Ratasuk, R., Xiao, W., Classon, B.K., Nangia, V., Love,
R., Schwent, D., Wilson, D.: Uplink control channel design for 3GPP
LTE. In: Proceedings of the IEEE 18th International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). (2007)
1–5

[23] Gotzhein, R., Kuhn, T.: Black burst synchronization (BBS) - A proto-
col for deterministic tick and time synchronization in wireless networks.
Computer Networks 55(13) (2011) 3015–3031

[24] Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geo-
metric SINR. In: Proceedings of the 8th ACM Interational Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc). (2007) 100–
109

[25] Grönkvist, J., Hansson, A.: Comparison between graph-based and
interference-based STDMA scheduling. In: Proceedings of the 2nd ACM
Interational Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc). (2001) 255–258

[26] Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE
Transactions on Information Theory 46(2) (2000) 388–404

[27] Halldórsson, M.M.: Wireless scheduling with power control. ACM
Transactions on Algorithms 9(1) (2012) 7:1–7:20

[28] Halldórsson, M.M., Tonoyan, T.: The price of local power control in
wireless scheduling. In: 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science (FSTTCS).
Volume 45. (2015) 529–542

[29] Hänel, T., Krampe, F., Gericke, C., Aschenbruck, N.: On the po-
tential of data-based time synchronization in wireless sensor networks
for condition monitoring. In: International Conference on Distributed
Computing in Sensor Systems (DCOSS). (2016) 216–224

[30] Hasler, A., Gruber, S., Beutel, J.: Kinematics of steep bedrock per-
mafrost. Journal of Geophysical Research: Earth Surface 117(F1)
(2012)

[31] Huang, P., Desai, M., Qiu, X., Krishnamachari, B.: On the multihop
performance of synchronization mechanisms in high propagation delay
networks. IEEE Transactions on Computers 58(5) (2009) 577–590

[32] Institute of Electrical and Electronics Engineers: IEEE Standard
802.15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks

[33] Jayasuriya, A., Perreau, S., Dadej, A., Gordon, S.: Hidden vs exposed
terminal problem in ad hoc networks. PhD thesis, ATNAC (2004)

[34] Johansson, N., Körner, U., Johansson, P.: Performance evaluation of
scheduling algorithms for Bluetooth. In: Broadband Communications:
Convergence of Network Technologies, IFIP TC6 WG6.2 Fifth Interna-
tional Conference on Broadband Communications (BC). Volume 159.
(1999) 139–150

[35] Kesselheim, T.: A constant-factor approximation for wireless capacity
maximization with power control in the SINR model. In: Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA). (2011) 1549–1559

[36] Kochut, A., Vasan, A., Shankar, A.U., Agrawala, A.K.: Sniffing out
the correct physical layer capture model in 802.11b. In: 12th IEEE
International Conference on Network Protocols (ICNP). (2004) 252–
261

[37] Kusy, B., Dutta, P., Levis, P., Maróti, M., Lédeczi, Á., Culler, D.E.:
Elapsed time on arrival: a simple and versatile primitive for canonical
time synchronisation services. International Journal of Ad Hoc and
Ubiquitous Computing (IJAHUC) 1(4) (2006) 239–251

[38] Landsiedel, O., Ferrari, F., Zimmerling, M.: Chaos: versatile and
efficient all-to-all data sharing and in-network processing at scale. In:
Proceedings of the 11th ACM Conference on Embedded Network Sensor
Systems (SenSys). (2013) 1:1–1:14

[39] Lee, J., Kim, W., Lee, S., Jo, D., Ryu, J., Kwon, T., Choi, Y.: An
experimental study on the capture effect in 802.11a networks. In: Pro-
ceedings of the Second ACM Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization (WINTECH). (2007)
19–26

[40] Leentvaar, K., Flint, J.H.: The capture effect in FM receivers. IEEE
Transactions on Communications 24(5) (1976) 531–539

[41] Lenzen, C., Sommer, P., Wattenhofer, R.: PulseSync: An efficient and
scalable clock synchronization protocol. IEEE/ACM Transactions on
Networking (TON) 23(3) (2015) 717–727

[42] Li, B., Nie, L., Wu, C., Gonzalez, H., Lu, C.: Incorporating emer-
gency alarms in reliable wireless process control. In: Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems
(ICCPS). (2015) 218–227

[43] Li, H., Feng, X., Shi, S., Zheng, F., Xie, X.: A high-accuracy clock
synchronization method in distributed real-time system. In: Computer
Engineering and Technology, 18th CCF Conference, NCCET 2014. Vol-
ume 491 of Communications in Computer and Information Science.
(2015) 148–157

[44] Li, X., Zeng, Q.A.: Performance analysis of the IEEE 802.11 MAC
protocol over a WLAN with capture effect. Information and Media
Technologies (1) (2006) 679–685

[45] Liang, C.M., Chen, K., Priyantha, N.B., Liu, J., Zhao, F.: RushNet:
practical traffic prioritization for saturated wireless sensor networks.
In: Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems (SenSys). (2014) 105–118

[46] Lim, R., Ferrari, F., Zimmerling, M., Walser, C., Sommer, P., Beu-
tel, J.: FlockLab: a testbed for distributed, synchronized tracing and
profiling of wireless embedded systems. In: Proceedings of the 12th In-
ternational Conference on Information Processing in Sensor Networks
(IPSN). (2013) 153–166

[47] Lin, S., Zhang, J., Zhou, G., Gu, L., Stankovic, J.A., He, T.: ATPC:
adaptive transmission power control for wireless sensor networks. In:
Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys). (2006) 223–236

[48] Litjens, R., Roijers, F., Van den Berg, J., Boucherie, R.J., Fleuren, M.:
Performance analysis of wireless LANs: an integrated packet/flow level
approach. Teletraffic Science and Engineering 5 (2003) 931–940

[49] Lu, J., Whitehouse, K.: Flash flooding: Exploiting the capture effect
for rapid flooding in wireless sensor networks. In: INFOCOM 2009. 28th

IEEE International Conference on Computer Communications. (2009)
2491–2499

[50] Lynch, J.P., Loh, K.J.: A summary review of wireless sensors and
sensor networks for structural health monitoring. Shock and Vibration
Digest 38(2) (2006) 91–130

[51] Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interfer-
ence modeling and scheduling in low-power wireless networks. In: Pro-
ceedings of the 6th International Conference on Embedded Networked
Sensor Systems (SenSys). (2008) 141–154

[52] Manweiler, J., Santhapuri, N., Sen, S., Choudhury, R.R., Nelakuditi,
S., Munagala, K.: Order matters: Transmission reordering in wireless
networks. IEEE/ACM Transactions on Networking 20(2) (2012) 353–
366

[53] Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: The flooding time syn-
chronization protocol. In: Proceedings of the 2nd International Confer-
ence on Embedded Networked Sensor Systems (SenSys). (2004) 39–49

[54] Maróti, M., Kusy, B., Simon, G., Lédeczi, Á.: Robust multi-hop time
synchronization in sensor networks. In: Proceedings of the Interna-
tional Conference on Wireless Networks (ICWN). (2004) 454–460

[55] Mills, D.L.: Internet time synchronization: the network time protocol.
IEEE Transactions on Communications 39(10) (1991) 1482–1493

[56] Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in
wireless networks. In: 25th IEEE International Conference on Com-
puter Communications (INFOCOM). (2006)

[57] Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol design beyond
graph-based models. In: 5th ACM Workshop on Hot Topics in Networks
(HotNets). (2006) 25–30

[58] Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets
SINR: the scheduling complexity of arbitrary topologies. In: Proceed-
ings of the 7th ACM Interational Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc). (2006) 310–321

[59] Newzoo: Newzoo’s global mobile market report, April 2017. Technical
report, Newzoo (2017)

[60] Nyandoro, A., Libman, L., Hassan, M.: Service differentiation using the
capture effect in 802.11 wireless LANs. IEEE Transactions on Wireless
Communications 6(8) (2007) 2961–2971

[61] Patras, P., Qi, H., Malone, D.: Mitigating collisions through power-
hopping to improve 802.11 performance. Pervasive and Mobile Com-
puting 11 (2014) 41–55

[62] Polastre, J., Szewczyk, R., Culler, D.E.: Telos: enabling ultra-low
power wireless research. In: Proceedings of the Fourth International
Symposium on Information Processing in Sensor Networks (IPSN).
(2005) 364–369

[63] Ramanathan, S.: A unified framework and algorithm for channel as-
signment in wireless networks. Wireless Networks 5(2) (1999) 81–94

[64] Ray, S., Carruthers, J.B., Starobinski, D.: RTS/CTS-induced conges-
tion in ad hoc wireless LANs. In: 2003 IEEE Wireless Communications
and Networking (WCNC). Volume 3. (2003) 1516–1521

[65] Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-MAC: a
hybrid MAC for wireless sensor networks. IEEE/ACM Transactions on
Networking (TON) 16(3) (2008) 511–524

[66] Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: distributed randomized
TDMA scheduling for wireless ad-hoc networks. In: Proceedings of the
7th ACM Interational Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc). (2006) 190–201

[67] Römer, K.: Time synchronization in ad hoc networks. In: Proceedings
of the 2nd ACM Interational Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc). (2001) 173–182

[68] Sallai, J., Kusy, B., Lédeczi, Á., Dutta, P.: On the scalability of rout-
ing integrated time synchronization. In: Wireless Sensor Networks,
Third European Workshop (EWSN). Volume 3868 of Lecture Notes in
Computer Science. (2006) 115–131

[69] Santhapuri, N.K., Manweiler, J., Sen, S., Choudhury, R.R., Nelakuditi,
S., Munagala, K.: Message in message (MIM): A case for shuffling
transmissions in wireless networks. In: 7th ACM Workshop on Hot
Topics in Networks (HotNets). (2008) 25–30

[70] Schmid, T., Dutta, P., Srivastava, M.B.: High-resolution, low-power
time synchronization an oxymoron no more. In: Proceedings of the 9th

International Conference on Information Processing in Sensor Networks
(IPSN). (2010) 151–161

[71] Selavo, L., Wood, A.D., Cao, Q., Sookoor, T.I., Liu, H., Srinivasan, A.,
Wu, Y., Kang, W., Stankovic, J.A., Young, D., Porter, J.: LUSTER:
wireless sensor network for environmental research. In: Proceedings
of the 5th International Conference on Embedded Networked Sensor
Systems (SenSys). (2007) 103–116

[72] Seth, A., Kroeker, D., Zaharia, M.A., Guo, S., Keshav, S.: Low-cost
communication for rural internet kiosks using mechanical backhaul. In:
Proceedings of the 12th Annual International Conference on Mobile
Computing and Networking (MOBICOM). (2006) 334–345

[73] Son, D., Krishnamachari, B., Heidemann, J.S.: Experimental study of
concurrent transmission in wireless sensor networks. In: Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems (SenSys). (2006) 237–250

[74] Su, L., Liu, C., Song, H., Cao, G.: Routing in intermittently connected
sensor networks. In: Proceedings of the 16th annual IEEE International
Conference on Network Protocols (ICNP). (2008) 278–287

[75] Texas Instruments: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver. CC2420 Data Sheet.

[76] Whitehouse, K., Woo, A., Jiang, F., Polastre, J., Culler, D.E.: Ex-
ploiting the capture effect for collision detection and recovery. In: Pro-
ceedings of the 2nd IEEE Workshop on Embedded Networked Sensors
(EmNets). (2005) 45–52

[77] Xu, K., Gerla, M., Bae, S.: How effective is the IEEE 802.11 RT-
S/CTS handshake in ad hoc networks. In: Proceedings of the Global
Telecommunications Conference (GLOBECOM). (2002) 72–76

[78] Yuan, D., Hollick, M.: Let’s talk together: Understanding concur-
rent transmission in wireless sensor networks. In: 38th Annual IEEE
Conference on Local Computer Networks (LCN). (2013) 219–227

[79] Yuan, D., Riecker, M., Hollick, M.: Making ‘Glossy’ networks sparkle:
Exploiting concurrent transmissions for energy efficient, reliable, ultra-
low latency communication in wireless control networks. In: Wireless
Sensor Networks, 11th European Conference (EWSN). Volume 8354 of
Lecture Notes in Computer Science. (2014) 133–149

[80] Zimmerling, M., Ferrari, F., Mottola, L., Thiele, L.: On modeling
low-power wireless protocols based on synchronous packet transmis-
sions. In: IEEE 21st International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems (MAS-
COTS). (2013) 546–555

[81] Zuniga, M., Krishnamachari, B.: Analyzing the transitional region in
low power wireless links. In: Proceedings of the First Annual IEEE
Communications Society Conference on Sensor and Ad Hoc Communi-
cations and Networks (SECON). (2004) 517–526

Publications

During my PhD studies at ETH Zurich, I co-authored the following publi-
cations. The authors are listed in alphabetical order.

• On Local Fixing. Michael König and Roger Wattenhofer. 17th Inter-
national Conference On Principles Of Distributed Systems (OPODIS),
December 2013.

• Sharing a Medium Between Concurrent Protocols Without Overhead
Using the Capture Effect. Michael König and Roger Wattenhofer.
13th International Conference on Embedded Wireless Systems and Net-
works (EWSN), February 2016.

• Maintaining Constructive Interference Using Well-Synchronized Sen-
sor Nodes. Michael König and Roger Wattenhofer. 12th Annual In-
ternational Conference on Distributed Computing in Sensor Systems
(DCOSS), May 2016.

• A Concept for an Introduction to Parallelization in Java: Multithread-
ing with Programmable Robots in Minecraft. Klaus-Tycho Förster,
Michael König and Roger Wattenhofer. 17th Annual Conference on
Information Technology Education (SIGITE), September 2016.

• Effectively Capturing Attention Using the Capture Effect. Michael
König and Roger Wattenhofer. 14th ACM Conference on Embedded
Networked Sensor Systems (SenSys), November 2016.

• Multi-Agent Pathfinding with n Agents on Graphs with n Vertices:
Combinatorial Classification and Tight Algorithmic Bounds. Klaus-
Tycho Förster, Linus Groner, Torsten Hoefler, Michael König, Sascha

Schmid and Roger Wattenhofer. 10th International Conference on
Algorithms and Complexity (CIAC), May 2017.

• Tempering Wireless Schedules. Michael König and Roger Watten-
hofer. To appear.

	Introduction
	Protocol Layering
	Introduction
	Related Work
	The Capture Effect
	Layering Protocols
	Example Application
	Test Results
	Summary and Future Work

	Maintaining Constructive Interference
	Introduction
	Related Work
	Experiment Setup
	Timing Requirements
	Clock Synchronization
	Transmission Synchronization
	Constructive Interference
	Summary and Future Work

	Capturing Attention Using the Capture Effect
	Introduction
	Related Work
	Concepts
	Experiment Setup
	Transmission Synchronization
	Mapping Symbols
	Results
	Summary and Future Work

	Tempering Wireless Schedules
	Introduction
	Related Work
	Link Model
	Prediction Model
	Tempering RAND
	Experiment Setup
	Results
	Summary and Future Work

	Conclusion

