
Theoretical Computer Science 344 (2005) 47–68
www.elsevier.com/locate/tcs

Theoretical aspects of connectivity-based
multi-hop positioning�
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Abstract

We investigate the theoretical limits of positioning algorithms. In particular, we study scenarios
where the nodes do not receive anchors directly (multi-hop) and where no physical distance or an-
gle information whatsoever is available (connectivity-based). Since we envision large-scale sensor
networks as an application, we are interested in fast, distributed algorithms. As such, we show that
plain hop algorithms are not competitive. Instead, for one-dimensional unit disk graphs we present an
optimal algorithmHS. For two or more dimensions, we propose an algorithmGHOSTwhich improves
upon the basic hop algorithm in theory and in simulations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The availability of a global positioning system (GPS) has spawned a multi-billion dollar
market for positioning with an enormous variety of transportation, industry, and recre-
ation applications. Apparently “knowing your position’’ opens up a multiplicity of ex-
citing possibilities. An increasing research activity in the recent years documents that
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position-awareness is also a key pervasive computing technology—for instance for wire-
less ad-hoc or sensor networks. Especially in sensor networks positioning is indispensable:
Sensing the environment without attaching “coordinates’’ to the sensed data seems unusual.

Unfortunately, not every sensor network node can be equipped with a GPS receiver. A GPS
receiver is clumsy, heavy, and expensive—quite the opposite of a sensor node which ought
to be small, light, and cheap (“smart dust’’). Because of physical constraints a GPS receiver
will remain an order of magnitude more expensive (dimension-, weight-and money-wise)
than a sensor node. Moreover, GPS receivers do not function properly indoors.

Nonetheless, realistic sensor networks with positioning information are feasible. The
idea is to equip a small fraction of the nodes with a GPS receiver. We call nodes that know
their positionanchornodes. Clearly an anchor node does not necessarily need to learn its
position by means of a GPS receiver; other technologies are as welcome, one might even
consider keeping an anchor node immobile at all times and hard-code the anchors’ position
into its ROM at deployment.

Since only a small fraction of nodes are anchors, most sensor nodes remain small, light,
cheap, and—“dumb.’’ A dumb node must learn its (approximate) position with the help of
the anchor nodes, and the other nodes.

In this paper we study the problem where most dumb nodes do not receive the signal
of any anchor node directly. Instead a dumb node must learn its position through multi-
hop paths of other dumb nodes to anchor nodes. We allow the dumb sensor nodes to
be truly cost-effective: A node can neither learn distance from nor direction to a direct
neighbor, not even approximately. By means of beacon signals, nodes can solely derive
connectivity information. In other words, receiving a neighbor’s signal a node can merely
conclude that the neighbor is closer than the maximum transmission radius. We name this
model “connectivity-based multi-hop.’’ We believe that this most closely resembles realistic
situations where questions of cost and even accessibility dominate the design.

To our knowledge, all previous positioning algorithms for the connectivity-based model
build their estimations upon hops. A dumb node computes the number of hops to several
anchor nodes, and then uses the set of tuples (coordinate of anchor, hops to anchor) to
approximate its position. Some algorithms iterate this process to improve their position
approximations.

In this paper we show that algorithms based exclusively on the number of hops do not
approximate positions well. In fact, already for a simplified pet environment where all nodes
lie on a straight line (e.g. a highway), such algorithms will generate larger than necessary
errors. Surprisingly, a simple positioning algorithm we callHS(which stands for Hop-Skip)
that has the same asymptotic time complexity as the basic hop-based algorithm will guess
a positionoptimally in one dimension.

The analysis of the hop-based algorithm and theHSalgorithm—and the lessons learned—
enable us to devise a new algorithmGHoST for multiple dimensions which improves upon
the hop-based algorithms.

The paper is organized as follows. In Section2 we overview work directly related to
localization/positioning algorithms proposed in the literature. In Section 3 we present a
formal model for our analysis. In Sections 4, 5, and 6 we study three different position-
ing algorithms. We first look at a simple hop-based algorithmHOP that will serve as a
basis of comparison for the efficiency of the more complex algorithms. Most importantly,
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we prove in Section4.3 thatHOP is not optimal. We go on to outline an optimal algorithm
HS for one-dimensional unit disk graphs in Section 5. Our tour of positioning algorithms
ends in Section 6 withGHoST, a general two-dimensional algorithm which improves upon
HOP. In Section 7 we conclude the paper.

2. Related work

2.1. Motivation

The global positioning system (GPS) was proposed by the US Navy in the 1960’s; the
first working prototype was deployed in 1978 [10].1 GPS is the most successful example
of asingle-hoppositioning system. In a single-hop positioning system, a node receives the
signals of several anchor nodes directly. A GPS receiver computes its position by means of
the time [difference] of arrival (T[D]OA) technology, where distance-to-anchor information
is deduced through the time of a signal propagation. Other single-hop positioning systems
use the received signal strength indicator (RSSI), or the angle of arrival (AOA) method. For
an example of the RSSI method, see [2]; for an example of the AOA method, see [20].

In this paper we studymulti-hoppositioning systems, that is, systems where nodes typi-
cally do not receive the anchor nodes’ signals directly. We believe that multi-hop networks
are more realistic in future scenarios. Additionally, they allow for a lower deployment cost
since less powerful anchor nodes are required. Given the influence of single-hop positioning
systems, it is not surprising that the first multi-hop proposals tried to adapt the single-hop
technologies. T[D]OA, RSSI, and/or AOA information is collected and then the position of
each node is computed using triangulation [3,7,25].

Another important aspect of our model is that we are primarily interested inconnectivity-
basedscenarios. In other words, the information available to the nodes is whether or not
they are connected, without knowing their (approximate) distances. The reasons for study-
ing such a model are manifold. First of all, knowing even estimates of inter-node distances
requires precise and specialized hardware. The commonly used signal strength measure-
ments of the radio transceivers are unreliable and unstable in realistic scenarios. If we know
how well we can position nodes in the connectivity model, then we can study the cost-
benefit tradeoff between more accurate localization and cheaper deployment. Second, it
has recently been demonstrated that weak measurement instruments are not a guarantee for
improvement. Niculescu and Nath [21] showed that a connectivity-only algorithm outper-
forms measurement-based ones when the error of the devices is above a certain threshold.
Similar simulation results appear in [4]. A third reason for this model is that, in most cases,
it is easier to adapt algorithms which are based on connectivity only to incorporate distance
estimates than the other way around. In our case, we will discuss this in more detail in
Section 6.

Another reason to study localization, apart from knowing the coordinates for their own
sake, is a distinguished application on top of a positioning algorithm, namely geo-routing
(a.k.a. geometric, geographic, location, or position-based routing). A geo-routing algorithm

1 The first GPS receiver for civil use cost $150k in 1984 and required two people to carry it.
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needs all nodes to know their coordinates (by means of a GPS, or a local positioning
algorithm). The coordinates are then used to route messages towards their destinationsin
lieu of routing tables. Early proposals of geo-routing date back twenty years[27]. The first
efficient geo-routing algorithm was GFG/GPSR [6,11], and the currently best geo-routing
algorithm is GOAFR+ [14,15].

As noticed by several researchers independently [23,26] it is not essential to have anchor
nodes at all. Without anchor nodes available, all nodes get assigned “virtual coordinates’’
that reflect the graph topology well. Again, these coordinates will be used to run any geo-
routing algorithm. Although not mentioned explicitly in the remainder of the paper, our
results also (partially) apply to computing virtual coordinates.

2.2. Heuristics

A number of (almost) connectivity-based solutions have been suggested in the literature.
One of the simplest and earliest is DV-Hop [22] (as part of a system known as APS [19]). A
node determines how many hops away it is from an anchor node. The anchor nodes compute
their hops to other anchors as well and use a simple formula to determine the average hop
length (i.e. a hop length is estimated as 0.86 instead of 1). The anchors then broadcast this
information. Having such distance estimates from sufficiently many anchors a node locally
performs a least square method calculation to determine its position (as it is done in GPS).
In APS, additional possibilities for the first distance estimates are suggested which are not
connectivity-based. It is, therefore, possible to use the ideas and methods of anchor distance
estimation of this paper and combine them with triangulation methods such as in APS.

A method similar to APS has been suggested in [18]. It first determines the hop distance
(called gradient) to the anchors (called seeds) and—as a function of the average node
density—calculates the average actual hop distance to an anchor by the Kleinrock–Silvester
formula [12]. Observe that knowledge of the global average node density (measured as the
number of nodes per unit disk) is critical to this algorithm’s performance and needs to be
calculated and propagated separately.

Simulation results in [19,18] show that these algorithms (in their connectivity-based
variants) only perform well under high-density conditions: APS with DV-Hop needs more
than 20% of the nodes to be anchors to stabilize at an average error of about 30% of the
radio range and no data is available for less than 5% of anchors; the algorithm in [18] needs
a node density of more than 15 nodes per disk but already stabilizes at about 8% to 10% of
anchors.

A recent proposal by He et al. [9], dubbed “range-free,’’ determines whether a node lies
inside or outside of the triangles formed by all 3-tuples of anchors (called “APIT test’’). This
creates an area of possible locations for the node in which the center of gravity is chosen. In
order to perform the APIT test, however, information about therelativedistances of anchors
to the nodes is necessary (i.e. whether one anchor, in a certain general direction, is closer to a
node than another anchor). Thus it does not fit our criteria for connectivity-based algorithms
although it does have less requirements on the physical capabilities of nodes. Additionally,
anchor signals need to be received directly, thus [9] is a single-hop positioning system.

Another hop-based approach [24] contains the key concept ofrefinement. Among other
heuristics, the main idea is to iterate the position estimation process: Once the nodes have



R. O’Dell, R. Wattenhofer / Theoretical Computer Science 344 (2005) 47–68 51

an estimate of their positions along with a confidence interval, information is exchanged
again to recompute estimates. The drawback of such an iteration is that it is far more time
consuming and it is not clear how many iterations need to be performed until a desired
accuracy is achieved. A similar iterative approach is given by Rao et al. in[23], where
nodes position themselves as the average of their neighbors’ positions, modeling the idea of
nodes being connected by (equal) springs. However, their approach was developed primarily
for virtual coordinates and the positioning part is only effective in specific scenarios, namely
when the anchors are placed along the perimeter of the network.

While the above algorithms are distributed and aim at being efficient in large networks,
a number of centralized approaches have been proposed as well. One of the earliest is by
Doherty et al. [8], who formulates the positioning problem as a set of convex constraints to
be solved. Recently, Biswas and Ye [5] also formulate the problem as a set of constraints,
albeit with distance measurements, and show that it can be solved efficiently in a dense
network with semidefinite programming techniques. A similar idea can also be found in
the multi-dimensional scaling (MDS) approach by Shang et al. [26]. The key issue with
these algorithms is that a single node needs to know the entire graph topology and perform
a computationally expensive calculation.

The most significant difference of our approach to the above-related work is that we
try to ascertain theoretical bounds for connectivity-based algorithms independent of any
random distribution assumptions. We will briefly review the other recent advancements in
the theoretical understanding of the localization problem in the following section. We also
aim for fast and effective algorithms that achieve those lower bounds in any scenario by
comparing to an omniscient optimal algorithm as opposed to an optimal but centralized
solution. Additionally, as will become evident in Section 6, the algorithm presented can
easily incorporate exact (or good estimates of) distances.

2.3. Hard results

Heuristic approaches potentially perform poorly in arbitrary (worst-case) scenarios. Prov-
able theoretical results concerning the potential of virtual coordinates have only been given
very recently.2 In [16], the authors show that it is APX-hard to embed a unit disk graph
satisfying all the constraints. Independently, [13] show an even stronger result, namely that
it cannot even be embedded with quality better than

√
3/2 (where 1 is the optimum), imply-

ing that there cannot be a PTAS for the UDG embedding problem. If not only connectivity
information is given, but all edge distances, then [1] show that embedding such a unit disk
graph is still NP-hard. As mentioned before, [5] show that this is, however, possible when
the graph is dense, that is, there are�(|V |2) edges in the graph. Yet this implies a highly spe-
cialized scenario where all nodes know their exact edge lengths and the graph is very dense.
The authors of [17] give an algorithm for virtual coordinates with a guaranteed approxi-
mation ratio for any unit disk graph. The gap between the bound O(log2.5 n

√
log log n) in

[17] and
√

3/2 in [13] remains to be closed.

2 As opposed to positioning (with anchors), the virtual coordinates model (without anchors) is “cleaner’’
(less parameterized), and therefore more accessible for hard approximation results.
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Note that the above all hold in the anchor-free (i.e., virtual coordinates) setting, yet
the lower bounds certainly apply to positioning in the worst case. More importantly, the
proposed schemes with provable guarantees are centralized and computationally expensive
(at that one node), so the question that remains and is addressed in this paper is how much
can be achieved with a distributed algorithm. In other words, what is the tradeoff between
the amount of information collected about a graph and the accuracy of the localization.

3. Model

In our paper we model a given physical sensor/ad-hoc network as a graph. Agraph
G = (V ,E) is a set of nodesV (representing the nodes of the network) and a set of edges
E, connecting the nodes; there is an edge between two nodesu andv if and only if the nodes
u andv are within mutual transmission range.

We study Euclidean graphs, that is, graphs where each node has a coordinate ind-
dimensional space. More formally, ad-dimensionalembeddingof G is a coordinate function
coord : V → Rd on the nodes. Throughout the paper we make the standard assumption
that the transmission range of each node is 1 (by scaling the coordinate system). A graph
G is a unit disk graph(UDG) if it has an embedding such that the Euclidean distance
distE(coord(v), coord(u))�1 ⇔ {v, u} ∈ E. In the paper, we consider the coordinate
embedding as given (but invisible to a positioning algorithm).

Apart from the Euclidean distance distE(·) between two points inRd , there is a distance in
graphs independent of any embedding. Ahopbetweenu, v ∈ V is an edgee = {u, v} ∈ E

in a graphG = (V ,E). A pathof lengthk is a sequenceP = v0v1 . . . vk wherevi �= vj
for i �= j and{vi, vi+1} ∈ E for 0� i < k. Thegraph distancedistG(u, v) between two
nodesu, v ∈ V is the length of a shortest path betweenu andv in G.

The distinction between graph and Euclidean distance is crucial in the sense that the
physical network and any algorithm operating on it see only the graph distances from
which they try to ascertain the actual Euclidean distances between nodes. The problem we
study can thus be formalized as follows.

Problem 1. Given a graphG with an unknown embeddingcoord as a UDG, the prob-
lem of absolute positioningis for the nodesV to compute an embeddingpossuch that
distE(coord(v),pos(v)) is minimized∀v ∈ V . A subset of nodesAnchors⊂ V are called
anchor nodes. A nodeA ∈ Anchorsknows its position, that ispos(A) = coord(A). The
error of an algorithm for a nodev isErrorALG(v) = distE(coord(v),pos(v)).Themaximum
error is then

MaxErrALG(v) = max
coord

ErrorALG(v)

ranging over all possible embeddings ofG.

We are studying distributed algorithms according to the following (standard) model.
When a nodev transmits a message (pseudo code “transmitmsg’’), all the neighbors ofv
(denoted byN(v) = {u | {u, v} ∈ E}) will eventually receive the message.
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In a synchronous setting, communication is modeled as proceeding in rounds: In one
round, all messages from the previous round are received, processed, and new messages
transmitted. Since the real world does not always obey the rules of synchrony, we also
study theasynchronousmodel, where the delay of a message is finite, but potentially un-
bounded. All the algorithms presented in the paper also behave correctly in an asynchronous
setting.

Besides the error of a positioning algorithm, defined in Problem1, we study the standard
distributed computing costs, that is, message and time complexity. The message complexity
counts the number of messages transmitted by the nodes over an edge. In the synchronous
model, the time complexity counts the units of time that passed from the start of the algo-
rithm until the nodes have computed their position. In the asynchronous model, the time
complexity is defined likewise, with the assumption that all messages incur at most a delay
of one time unit.

4. The HOP algorithm

4.1. General outline of algorithms

The positioning algorithms we consider in this paper consist of two parts: the gathering
of connectivity information and a local calculation that computes the position based on
that. Roughly speaking, the graph information collected atv outlines an interval of possible
positions forv and our algorithms take the center of that interval forpos(v) in the sense that
it minimizesMaxErr(v). The main difference then lies in the information gathering phase.
In this section, we will examine first a simple algorithm.

In our algorithm analysis, we will frequently make use of the set of nodes which are a
given graph distance away from an anchor node.

Definition 2. The set of graph distance-h nodesDh(A) for a nodeA ∈ V is

Dh(A) = {v ∈ V | distG(A, v) = h}.

Typically,A will be an anchor node and, when it is clear from context, we will simply write
Dh.

4.2. The HOP algorithm

TheHOPalgorithm is described below. To start the algorithm, an anchor nodeA transmits
the message(pos(A),1) .
1: hops := ∞;
2: upon receipt of(pos(A),h)
3: if (h < hops) then
4: hops := h
5: transmit(pos(A),h+1)
6: end if
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Lemma 3. TheHOPalgorithm finds the graph distance h from an anchor node A to a node
v in time h.

Proof. We will use induction on the graph distanceh. Say that the longest time it takes
for any single message to travel from one node to another, including processing time, is
1 time unit. All nodes inD1 will eventually receive the transmission fromA, thereby cor-
rectly settinghops to 1. This will be at time�1 from the point whereA sends the first
message. For the induction step, assume that all nodes inDh−1 have received their dis-
tance at time�h− 1. Then, by the definition of distG(), v ∈ Dh has at least one neighbor
u ∈ Dh−1 (and none inDh−2). Since allw ∈ Dh−1 transmit exactly(pos(A),h) ,
v will receive this message at least once (fromu) and sethops to h. The transmission
from u to v will take at most 1 time step so thatv determines its distance withinh
time units. �

Lemma 4. In the asynchronous model, theHOPalgorithm has message complexity2n− 1
for an edge e, where n is the number of nodes in the graph. In the synchronous model,
message complexity is2.

Proof. For message complexity, we look at the maximum number of messages exchanged
across a link as it is represented by an edge in the graph. If there aren nodes in the graph,
then the maximumhops that a nodev can receive initially in an asynchronous model isn.
Consider the edgee leading intov and coming out of a nodeu with initial hop countn− 1.
Observe thatv transmitting(pos(A),n+1) , while being rejected by all nodes, will add
another message toe. Thereafter,v will accept and transmit only lower-count messages
from and tou, in the worst case (where all non-anchors are inD1) down until its own hop
counter is at 2. Thenv has received and transmitted 2(n − 1) messages overe. Whenv
finally hears fromA, then it sends one final message tou with hop counter 2 for a total of
2n− 1 transmissions overe.

In the synchronous case,v first hears from nodesu ∈ Dh−1 ∩N(v). Thus one message is
transmitted over an edgee = {u, v} afterh− 1 communication rounds. In the next round,
v transmits a hop count ofh+ 1 overe, bringinge’s transmission count up to 2. That same
message withh+ 1 is also received by nodesw ∈ Dh (and vice verse whenw sends tov)
so that two messages are exchanged over an edgee′ = {v,w}. �

The interval for a nodev at graph distanceh from anchorA is then bounded byh/2 <

distE(A, v)�h in one dimension and the position is reconstructed from the mid-point of
the intersection of all such intervals. We will postpone the discussion of higher-dimensional
“mid-points’’ to Section6.

4.3. Competitive analysis of HOP

We want to compare theHOPalgorithm to an optimal one. Let us first define optimality.

Definition 5. An optimal algorithmOPTis one which knows the entire combinatorial struc-
ture of the graphG = (V ,E)and then chooses the position in order to minimize the maximal
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Fig. 1. Instance of aUDG G where theHOP algorithm is significantly outperformed by an optimal algorithm.

possible error. Thecompetitive ratioof a positioning algorithmALG is c if

MaxErrALG(v)�c · MaxErrOPT(v)+ k

for all v ∈ V and some constantk. We say thatALG is c-competitive.

Lemma 6. TheHOPalgorithm is not competitive.

Proof. LetdAB = d be the Euclidean distance between anchorsA andB. We will construct
an example whereHOP’s error is aboutd/6 for a nodev and an optimal algorithm can
determinev’s position within one unit.

Consider a unit disk graphG as in Fig.1. Leth be the graph distance of a nodev to both
A andB. SupposeG hasn = 3h − 1 nodes. There areh nodes that form the only shortest
path fromA to v (excludingv), we call themx0 = A, x1, . . . , xh−1; there areh nodes from
B to v, y0 = B, y1, . . . , yh−1; and there areh− 1 nodesz1, . . . , zh−2, zh−1 = v for which
N(zi) = {xi, xi+1} (for i = 1, . . . , h − 2), N(v) = {xh−1, yh−1}, andzi ∈ Di+1(A).
Settingcoord(A) = 0, the actual coordinates are

coord(xi) = i, coord(yi) = d − (1
2 + �)i,

coord(zi) = i(1 + �), coord(v) = (h− 1)(1 + �),

for some arbitrarily small� with 1/(h− 1) > � > 0. This givesd = (h−1)(1+�)+h(1
2 +�)

= 3
2h+ ((h− 1)� − 1).
TheHOP(and also DV-Hop) algorithms will receive the information(0,h) aboutA and

(d,h) aboutB. By the symmetry of the hop information, any hop-based algorithm will put
pos(v) = d/2 = 3

4h+ 1
2((h−1)�−1). The error forv isErrorHOP(v) = h

4 + 1
2((h−1)�−1)

or almostd/6.
An optimal algorithm will be able to deduce from the connectivity information that

distE(zi, zi+1) > 1 and therefore distE(z1, zh−1) = distE(z1, v) > h − 2. SinceA /∈
N(z1), the optimal algorithm can conclude that distE(A, v) > h− 1. ThusErrorOPT(v) <

(h− 1)� � 1 and

ErrorHOP(v) >
h

4
+ 1

2
ErrorOPT(v)− 1

2
,

>
(h

4
+ 1

2

)
ErrorOPT(v)− 1

2
,

which is unbounded ash → ∞.
Note that although the counter example againstHOP is one-dimensional, the non-

competitiveness ofHOPholds for all dimensions. �
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5. The HS algorithm

In this section, we will examine strictly one-dimensional unit disk graphs. The reason
being that we are interested in tight lower bounds for the accuracy of positioning algo-
rithms inanysituation. Understanding these worst-case scenarios will help us devise better
algorithms for “normal’’ (i.e. average) scenarios.

5.1. Preliminaries

In order to improve the naive algorithm based on the above observations, we will introduce
the notion of askip.

Definition 7 (Skip). For a graphG = (V ,E), two nodesu,w ∈ V form askipif {u,w} /∈ E

and∃v such that{u, v}, {v,w} ∈ E.

Definition 8 (Skip Distance). A sequence of nodesSP = v0v1 . . . vk is a skip pathof
lengthk if
(i) {vi, vj } /∈ E for all i �= j and distG(v0, vi) < distG(v0, vi+1) and

(ii) ∃ui such thatP = v0u1v1 . . . ukvk is a path.
The length of the longest skip path betweenu, v ∈ V is theskip distancedistS(u, v)between
u andv.

To warm up to the idea of skip distance, we conclude this subsection with the following
lemma.

Lemma 9. Let h be the distance and s the skip distance tov from an anchor node A. Then,
in one dimension,

�h/2��s�h− 1. (1)

Proof. If there is exactly one path fromA to v, P = Ax1 . . . xh−1v, and assuming for
simplicity thath is even, thenSP = Ax2x4 . . . xh−2v is the longest skip path. Any additional
nodes can only lengthenSP. A maximal skip path can only start (pastA) at a nodeu2 ∈ D2
and then there is at most one nodeuj ∈ Dj in the skip path for a total ofh− 1 nodes from
u2 to uh = v. �

5.2. The algorithm

TheHS algorithm is depicted below. To start the algorithm, an anchor nodeA transmits
the message(pos(A),1) ◦(A,0) .
1: hops := ∞; skips := −1
2: upon receipt of(pos(A),h) ◦(u,s) from x do
3: if (h = hops+1) then
4: if (u = x) then
5: transmit(pos(A),h) ◦(u,s)
6: else if(u /∈ N(v) ands+1 � skips) then
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7: transmit(pos(A),h) ◦(v,s+1)
8: skips := s+1
9: end if
10: else if(h < hopsor (h = hopsand
11: ((u ∈ N(v) ands � skips) or (u /∈ N(v) ands+1 � skips)))) then
12: hops := h
13: if (u ∈ N(v)) then
14: transmit(pos(A),h+1) ◦(u,s)
15: skips := s
16: else
17: transmit(pos(A),h+1) ◦(v,s+1)
18: skips := s+1
19: end if
20: end if

Theorem 10. In one dimension, theHSalgorithm finds the graph and skip distances, h and
s, respectively, from an anchor node A to a nodev.

Proof. Observe that the basic structure of theHOPalgorithm is kept (Lines 1–2, 10–12, 5,
7, 14, 17) and merely augmented to include skip information.

To prove the correctness of the skip distance, we will use induction on the number of
hopsh as well. We claim that a nodev at distanceh and skip distanceswill eventually know
its correct hop and skip count. As in Lemma3 we know that allD1 nodes will eventually
hear the message fromA, setting their skip count to 0.

Going fromh− 1 → h, we assume that allDh−1 nodes will know their correct distance
and skip distance. By Lemma 3, we know that then theDh nodes will learn their distance
as well. Based on that, we claim that theDh nodes will obtain their correct skip distance.
There are two things we need to show: (i) thats will not be erroneously too large and (ii)
that it will be as large as it is supposed to be.

First, observe that we can ignore allskipsvaluesbeforethe time that a node receives the
correcthopsvalue since at that pointskips is set to the sent value (Lines 15 and 18). Since
we know that the nodes inDh−1 andDh eventually obtain their correct distances, we will
consider only the messages sent after that point.

The problem with (i) is that we need to show that a valid skip counter cannot travel
away fromA and then back towards it, illegally incrementing itself in the process. Line 10
preventsv from even considering messages from nodes with equal or higher hop count.
Line 3 allows messages from same-hop nodes. Observe that all nodes inDh are neighbors,
otherwise they would be farther or closer away fromA. We have to distinguish the two
possibilities in theif statement. Ifv forwards the message in Line 5, then any receivers
in Dh will ignore the message (sincev �= u) and only the legitimate receivers inDh+1
consider it. If, on the other hand,v has updated its counter (legally, sinceu is at distance
< h) (Lines 7, 8) and subsequently another nodew ∈ Dh has picked it up, then we are back
at Line 5 and all the next nodes inDh will drop it. Observe that this also guarantees the
termination of the algorithm, since eventually all lesser-hop nodes will have sent off their
messages and same-hop nodes will ignore irrelevant information after two passes.
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We turn to resolving issue (ii). Sayv’s skip distance is in facts. There are necessarily
two more nodes involved, namely,u /∈ N(v) at skip distances − 1 and a nodew between
them. In order forv to have skip distances, all suchu’s must at some point send outmsg1 =
(u,s-1) or msg2 = (x,s-1) (or both) (Lines 6, 10 guarantee that they pass on this
information even if theirskipscounter is already set correctly). By virtue ofv being at skip
distances, either there is amsg1 whichwwill pass on (Line 5 or 15) as it is (sinceu ∈ N(w))
andv updatesskips (Line 8 or 18); or there is amsg2 andx /∈ N(w), upon whichw sends
(w,s) in Line 7 or 17. Observe that ifw is also inDh, thenv will not set its counter in
Line 5 (to prevent higher skip distance neighbors from wrongly influencing it). In that case,
however, we encounter the last possibility:v must have some nodez ∈ Dh−1 as a neighbor
(sincev’s true skip distance is in facts), which will also have heardmsg2 (sincew ∈ Dh

node already did) and—ifz has not incremented the counter—passed it on tov, at which
point it will correctly be in Line 18 and update its counters (since nowx /∈ N(v) given
thatx /∈ N(w)). This corresponds to havingz as the intermediary node withx ∈ N(z) but
x /∈ N(v). �

The following theorem indicates that the time complexity for the improvedHS algorithm
has not increased significantly over the simpleHOPalgorithm.

Theorem 11. After timeO(h), a nodev at distance h has received a message with the cor-
rect hop and skip count in the one-dimensionalHS algorithm. In an asynchronous model,
for any edge e, the maximum number of messages exchanged on e isO(n + sp), where
n is the number of nodes and sp the number of shortest paths from A tov. In a syn-
chronous model, message complexity is inO(1) but with increased message size by a factor
of sp.

Proof. For the time complexity, we will again lean on our analysis of the simpleHOP

algorithm of Lemma4. Let the maximal time unit be 1. We claim that by time 2h, all nodes
inDh will have their correcthopsandskipsvalues. By time 1, theD1 nodes will learn their
hop as well as skip count from nodeA. Assume now that the nodes inDk for k < h have been
informed of all their correct values by timeT (h−1) = 2(h−1). Then by timeT (h−1)+1,
all v ∈ Dh will have received their hop and some skip value fromall u ∈ Dh−1 ∩ N(v).
Since allDh−1 nodes have already obtained their correct skip distance, it takes at most two
more time steps fromT (h−1) for v ∈ Dh to learn (all of) its skip distance(s): (a) a message
from someu ∈ Dh−1 to anotherw ∈ Dh−1 to v; (b) fromu ∈ Dh−1 tow ∈ Dh to v; or (c)
directly fromu ∈ Dh−1 to v. ThusT (h) = T (h− 1)+ 2 = 2h. �

For the message complexity, we have to first count the number of messages until
v obtains its hop count, which is, as for the hop algorithm, in O(n). Additionally, v’s
neighbors have to forward potentially information about all shortest paths to determine
which one has the highest skip distance atv. In the synchronous case, a node can
first bundle all the messages with the smallest hop count and send it off as
one packet.

The interval forv is now bounded bys < distE(A, v)�h and the position is again
computed as the mid-point of the intersection of all such intervals.
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5.3. Competitive analysis of HS

We want to show that an optimal algorithm cannot perform substantially better than an
algorithm which only knows the graph and skip distancesh ands, respectively. Specifically,
we will prove that our positioning algorithm is optimal (1-competitive) up to a small additive
constant. As a stepping stone for the main proof we first study the case of one anchor node.

Lemma 12. Take a one-dimensional unit disk graph. Assume there is only one anchor node
and all nodes know they are to its right. For the position of a nodev as determined by the
HS algorithm, we have

MaxErr(posHS(v))�MaxErr(posOPT(v))+ �

for all v and any� > 0.

In order to prove Lemma12, we will need the following two lemmas.

Lemma 13. If a nodev is distance h from an anchor node A at0, then it is possible to
construct a one-dimensional UDG based onG = (V ,E) such that pos(v) = h−� for some
arbitrarily small � > 0.

Proof. Let the origin of our one-dimensional coordinate axis be atA (i.e. pos(A) = 0),
increasing to the right. Consider stretching the graphG to its maximum possible position
atv. We will use induction on the number of hopsh from the anchor nodeA atpos(A) = 0
to v. LetDh = {vh0, . . . , vhnh}. Let the ordering be such that, in their actual positions, we
have (settingv = pos(v) for readability)vhnh � · · · �vh1 �vh0, (i.e.,vh0 is the rightmost node
in Dh). Observe that all nodes inDh are neighbors, otherwise they would have a different
distance toA. Furthermore, we can identify (the positions of)vhi with vhj if N(vhi ) =
N(vhj ) since they are indistinguishable from the combinatorial point of view. Renamed and

relabeled, we havevhnh < · · · < vh1 < vh0.
For h = 1 place then1 (different) nodes at positionspos(v1

i ) = 1 − i · � for some
sufficiently small 1� � > 0 (i.e.,�i,1 = i · �). Then�i+1,1 − �i,1 = �. (Note that this is not
the same� as in the lemma.)

Assume now that we have placed all nodes withinh − 1 hops such thatpos(vh−1
i ) =

(h − 1) − �i,h−1, and, with the labeling from above,�i,h−1 < �i+1,h−1 for all appropriate
i. Then, For each of thevhi we consider the maximal (leftmost)j for which vh−1

j ∈ N(vhi )

andvh−1
j+1 /∈ N(vhi ). Now put

pos(vhi ) = pos(vh−1
j )+ 1 = h− �j,h−1 (2)

and set�i,h = �j,h−1. It remains to be shown that all the neighbors of nodev = vhi in G are
within distance 1 (and only those). Note that|vhi − vhl | = |�i,h − �l,h| < 1 by choosing the
initial �’s sufficiently small. For nodesvh−1

l in Dh−1, we have

�l := pos(v)− pos(vh−1
l ) = 1 − (�j,h−1 − �l,h−1)
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and, for readability, set�i := �i,h−1. Then�j − �l�0 for l�j , thus�l�1 for vh−1
l ∈ N(v),

by construction. Similarly,�j − �l < 0 whenl > j , thus�l > 1 for vh−1
l /∈ N(v). �

Lemma 14. If a nodev has skip distance s from an anchor node A at0, then it is possible
to construct a one-dimensional UDG based onG = (V ,E) such that pos(v) = s + � for
some arbitrarily small� > 0.

Proof. We will again proceed by induction, this time on the number of skipss. The notation
is adapted from the proof of Lemma13, i.e.vh0 > vh1 > · · · > vhnh represent the different
nodes ath hops. Recall that allvhi are neighbors for the sameh. Analogously, letws

0 >

ws
1 > · · · > ws

ns
represent the different nodes atsskips. Observe that their hop counts differ

by at most one, and they are all neighbors as well. (Otherwise there would be a skip from
ws
ns

tows
0.)

Apart from A, all v1
i = w0

i and we can place them atpos(w0
i ) = (n0 − i + 1)� and

�i+1,0 − �i,0 = �. Again, for a sufficiently small 0< � � 1, all nodes are within Euclidean
distance 1.

By induction hypothesis, we have thatpos(ws−1
i ) = (s − 1) + �i,s−1, where�i,s−1 −

�i+1,s−1�� > 0. By definition, everyws
i has a minimal (rightmost)j for whichws−1

j /∈
N(ws

i ). Thus we set

pos(ws
i ) = pos(ws−1

j )+ 1 + � = s + (�j,s−1 + �) (3)

for some 0< � < � and we will argue that we can satisfy all the neighboring requirements
for w = ws

i . Note that, again, all nodes with the same skip distance are within one unit:
|pos(ws

i ) − pos(ws
l )| = |�i,s − �l,s | < 1 (choosing the initial� sufficiently small). For the

remaining nodes we have

�l = pos(w)− pos(ws−1
l ),

= 1 + (�j,s−1 − �l,s−1)+ �,

and set�i := �i,s−1. Since now�j − �l�0 for l�j , it follows that�l�1 + � > 1 for
ws−1
l /∈ N(w). Similarly, �j − �l� − � for l < j and� < �, thus�l�1 + � − � < 1 when

ws−1
l ∈ N(w). �

We are now ready for the proof of Lemma12.

Proof (of Lemma 12). Given the knowledge of the entire graph structureG = (V ,E), we
can construct two instances of a UDG(G) wherev’s true position ish− �1 at the maximum
ands + �2 at the minimum (�i > 0). Therefore, the optimal algorithm cannot distinguish
between these extremes and is thus forced to returnpos(v) ≈ (h− s)/2 which is the position
returned byHS who knows onlyh ands. �

Altogether, we end with the main result of this section.

Theorem 15. HS is optimal in one dimension up to an additive constant.
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Proof. We have shown in Lemma12 that AlgorithmHS is optimal (up to an additive
constant) whenever there is one anchor on a specified side of the nodes. It remains to be
shown that this is the essential ingredient of the optimality ofHSand thatOPTcannot acquire
(too much) more information in a more general scenario.

First, we argue that we can only lose a constant of at most 1 whenever there are anchors
on both sides ofv. In Lemma 12, we had considered the case of an anchorA to the left of
v. If we place another anchorB to v’s right, then we need to observe what happens when
the two subgraphs “come together.’’ Let the actual order of nodes from left to right be
A, u1, . . . , ul, v, wr, . . . , w1, B, then the previous lemmas are applicable to the subgraphs
of VA = {A, u1, . . . , ul, v} andVB = {v,wr, . . . , w1, B} independently (since they have
no nodes in common except forv). The only problem that may occur is with nodesui and
wj which are within one hop ofv. In this case, it could be that some of theui ’s are connected
(or not connected) to the closer of thewj , so that there needs to be a minor adjustment inv’s
position as well. Since this independence of the subgraphs is only violated at those nodes
which are within one unit of the opposite subgraph, there will be an adjustment of at most
one unit. Since this happens locally inv’s neighborhood, one could improveHS so as to
eliminate this potential adjustment.

Next, we claim that multiple anchors to one side can again only shrink the interval by
another additive constant of at most 1. To prove this, we will consider anchorspos(A1) >

· · · > pos(Al) to the left of v, where again the coordinates increase to the right. Let
hi = distG(Ai, v) andsi = distS(Ai, v). Set

Li = Ai + si, Ri = Ai + hi,

then the left and right boundaries ofv’s interval are

L = max
i
Li, R = min

i
Ri,

respectively. Note that we cannot haveLi > Rj (i.e., the left boundary ofAi is to the right
of the right boundary ofAj ) for any i, j since otherwise the intervals of anchorsAi andAj
would not intersect, which is impossible.

We claim thatL1 andR1 are already good approximations ofL andR (up to one unit).
For the right boundary, consider the distancesdi = distE(Ai, A1) andgi = distG(Ai, A1).
Thenhi�gi + h1 − 1 where the−1 is due to the fact that all shortest paths fromAi to
v might not go throughA1 and would therefore be one hop less than if we take a detour
throughA1. Altogether, usingAi = A1 − di , we get

Ri � Ai + gi + h1 − 1

= (A1 + h1)+ gi − di︸ ︷︷ ︸
�0

−1

� R1 − 1,

for all i > 1. The last inequality stems from the fact that the number of hops between two
nodes is always an upper bound on their Euclidean distance.
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Fig. 2. Minimum Euclidean distance between two nodes given their hop distanceh. The circles have radius 1, the
dots are the nodes. On the left is the one-dimensional case where distE(·, ·) > h/2 (not all circles are shown). On
the right, in two or more dimensions, only distE(·, ·) > 1 can be assumed.

The case for the left boundary is similar. Here, letti = distS(Ai, A1). Then

Li � Ai + ti + s1 + 1

= (A1 + s1)+ ti − di︸ ︷︷ ︸
�0

+1

� L1 + 1,

for all i > 1. Again, the skip distance is a lower bound on the actual distance and there
might be a longer path circumventingA1. Altogether, the interval bounds on each side can
be decreased by at most 1 on each side, thereby increasing the maximum error ofHS by
at most 1.

Note that the same argument can be applied to anchors only to the right of a nodev.
What remains is to consider the general case whenv located between several anchors to

both sides. Altogether, we can consider the interval given by the rightmost anchorA1 to the
left of v and the leftmost anchorB1 to the right ofv, losing at most a constant of 1 unit.
From the first claim, we know that if we have an anchor on both sides ofv, then merging the
two subgraphs results in the loss of at most another unit. We can conclude that the interval
of HS compared to that of an optimal algorithm is bigger by at most 2 in the general case,
proving Theorem15. �

6. The GHoST algorithm

We now move on to higher dimensions. From Section 4.3 we know that we have to
do more than the simpleHOP algorithm in order to approach optimal position estimates.
Moreover,HS does not apply directly, because in two or more dimensions, the minimum
Euclidean distance for two nodesuandv separated byhhops is noth/2 anymore but merely
1, even for maximal skip distance. See for example Fig. 2. The bad news is that if there is
no further information, thenv has no way of determining whether it is slightly more than 1
or as much ash units away fromu. The good news is that neither can an optimal algorithm
so that the competitive ratio is not compromised in this case.

Another issue is the construction of the “mid-point’’ of the interval intersections in two or
more dimensions. Since we are studying the worst case, we want to find the point such that
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Fig. 3. Construction of the “mid point’’ of a two-dimensional area. The outer circles of radiushi (in green)
represent the reach of each anchor (beinghi hops away). Their intersection is shaded in the center. The smallest
circle enclosing the entire intersection area is depicted in the center (in blue). The center is the computed position.

themaximum error is minimized. Going back to one dimension, one can consider the mid-
point of a line segment as the center of the circle with the segment as its diameter. Similarly,
in two dimensions, we can (locally) find the circle of minimal radius which encloses all
points in the intersection, as in Fig.3. The center of that circle is then the point with least
maximum distance to any other point in the area. Ind dimensions, we find the smallest
enclosing(d − 1)-dimensional sphere.

The construction above and in the figure is actually not complete, since we still need
to “cut out’’ a circle of radius 1 around the anchors which are more than one hop away.
However, this has no influence on the argument above, since this still results in some interval
of which we find the smallest enclosing ball.

6.1. Lessons learned from one dimension

The crucial insight of the one-dimensional optimalHS algorithm was that there exist
certain local structures in the unit disk graph (e.g. a skip) from which we can impose an
upper or lower bound on the actual length of a hop. We will now survey some of these local
structures. They can be classified intostretchersand trimmers. Stretchers and trimmers
enforce a minimal and maximal length, respectively, on hops. For example, the skip was a
stretcher in one dimension; enough to produce an optimal algorithm. In two dimensions,
we have identified several trimmers which one as follow:
• T0—a trimmer that considers hop paths of length 2. LetPv = uvw andPx = uxw be

shortest paths fromu tow. If {v, x} /∈ E, distE(u,w)�
√

3. See Fig.4.
• Tk—a generalization ofT0: There are two shortest pathsPv = uv0 . . . vkw andPx =
ux0 . . . xkw connectingu andv with {v0, x0}, {vk, xk} /∈ E. For the remaining nodes, it
is irrelevant whether{vi, xi} is an edge for 0< i < k, but {vi, xj } /∈ E for i �= j . Then
distE(u, v)�k + √

3 as opposed tok + 2.
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Fig. 4. A trimmer for the path fromu tow (and fromx to v). The dashed lines indicate that there isnoconnection.
With a simple geometric argument one can impose a maximum length on the distance ofu tow.

• MTk1,k2—a trimmer resulting from the merging of two paths from two different an-
chors. As an exemplary case, consider two paths from anchorsA1 andA2 that merge
after just one hop at nodem (MT1,1). Ignoring for the moment a constant adjustment
(in the order of one unit), if the graph distance from theAi to a nodev is h, then
distE(Ai, v)�

√
1 + (h− 1)2 = √

h2 − 2(h− 1) < h. The constant adjustment ac-
counts for the possibility ofmbeing in the opposite direction ofv with respect to theAi .
An analogous case can be made if the paths merge atm after k1 hops fromA1 andk2
hops fromA2.

6.2. The algorithm

Based on the arguments of Section6.1, we can formulate a general hop stretcher-trimmer
algorithm (GHoST). The idea is that nodes examine their local neighborhoods—the details
depend on which structures are considered—to extract the necessary information about
existing trimmers and stretchers. When a nodev receives a message with a shortest hop
path from an anchorA, then it can incorporate its trimmer (stretcher) information and
compute a path with maximum (minimum) actual length that is shorter (longer) than that
of the received path. In some cases, other local structures might require more information
such as including paths other than the shortest. In practice, one will have to make a trade-off
between the efficacy of a configuration and the expense of its computation.

The affects ofGHoSTto time and message complexity are similar to those ofHS. Let node
v beh hops from anchorA. Once the nodes inDh−1 obtained their correct paths of length
h − 1, they send it on to nodes inDh. In one time unit,v receives all those transmissions
from neighboring nodesu in Dh−1 and the tuples(u, Pu) will constitute (the necessary
information about) all shortest paths tov. For message complexity, in the worst case a node
has to receive all the information about shortest paths separately over the same link.

Observe thatGHoST is actually more of aframeworkfor positioning algorithms. The
concrete algorithm is determined by which stretchers and trimmers are used. If structures
are used which have provable bounds on the path lengths, such asTk orMTk1,k2, then the
algorithm inherits these bounds and the maximum error is equal to or less than without
them. On the other hand, if we use heuristic structures, then the resulting algorithm cannot
provide worst-case guarantees anymore.
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Fig. 5. The visualization of theGHoSTalgorithm. The intersection of circles in the center is the area of all possible
positions as calculated by the algorithm. The center of the circle (marked by the arrow) is chosen as the computed
position which minimizes the maximum error.

Another side effect of such a framework is that good distance bounds—obtained from
physical measurements—can easily be integrated intoGHoST: Instead of (or in addition to)
computing the local structures resulting in the lower and upper boundshl andhu for a hop
in the graph, the distance estimate can give us these values directly.

Altogether, with the remarks of this section, we can conclude the following.

Theorem 16. In two dimensions, theGHoST algorithm with trimmersTk has less or equal
MaxErr(v) asHOP(for all nodesv) and has the same time complexityO(h) asHOP(where
h is the graph distance from an anchor node to the node in question).
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Fig. 6. The graph on the left shows the improvement ofGHoSTover hops in the depicted anchor and node density
ranges. The graph on the right shows the absolute errors ofGHoST(in units of the radio range).

6.3. Simulation

The trimmers of Section6.1 apply to any unit disk graph and therefore cannot increase
the maximum error in relation toHOP. When no trimmers are present, thenGHoST reduces
to HOP. We want to investigate under what conditions the effect of local structures improve
GHoST’s accuracy.

In our simulations, we have implemented the simpleHOP algorithm as described in
Section 4.2 and theGHoST algorithm with the trimmerT0 only. A screen-shot of the visual
part of the application can be seen in Fig. 5. Our testing environment consists of an area of
20 by 20 units. We test random graphs for node densities (measured in the number of nodes
per unit disk) ranging from 12 to 30 and anchor densities from 0.5 up to 10 percent of the
nodes (creating up to almost 4000 hosts). For each combination we collect 300 position
estimates along with the error for bothHOPandGHoST.

Since we are interested in the influence ofT0 on HOP, we calculate theaverage rela-
tive errorsof GHoST to HOP in Fig. 6). The absolute errors ofGHoST can also be seen in
Fig. 6 (right). The relative error is taken for each estimate separately instead of over the
total average errors in order to gain a better understanding of how effective the trimmers are
in individual situations. We see thatGHoST improves the position estimate even in very low
density (node and anchor) as well as in very high-density situations. The most significant
improvements can be seen for modest anchor densities (around 2.5%) and fairly high-node
densities (around 27).

7. Conclusions

Our goal is to understand the fundamentals of positioning, without relying on heuristics.
For a simplified one-dimensional model, we manage to present an algorithm which solves



R. O’Dell, R. Wattenhofer / Theoretical Computer Science 344 (2005) 47–68 67

positioning optimally. In contrast, we show that the computationally equivalent hop-based
algorithm does not render competitive results.

In the second part of the paper, we showed how to apply the underlying ideas from the
optimal one-dimensional algorithm to improve hop-based algorithms. Our main focus was
on fast distributed algorithms with worst-case guarantees. The simulations then show that
such a worst-case approach also yields promising improvements in average scenarios as
well. In addition,GHoST can be substituted into more sophisticated algorithms where now
only a hop-based approach is used.
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