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Towards better graph generative models and glob-
ally accurate evaluation metrics

Graph generation is an interesting problem which is en-
countered when trying to generate novel molecules or pro-
teins with desired properties or variations of social graphs
that used to test hypotheses in social sciences. However,
graph generation is a challenging problem due to the non-
uniqueness of graphs and the complex non-local dependen-
cies between their edges. Adding to this complexity, it is
very challenging to compare different graph generation mod-
els. Typically, comparing graph distributions is performed
by computing and comparing some statistics that are invari-
ant to node permutations [10, 12, 14]. We believe that the
existing statistics are insufficient because they are all based
on local graph features and none of them are designed to
capture non-local graph properties such as the diameter of a graph, its coarse structure or
its general spectral properties.

In this project, we will investigate new measures that are effective for capturing global
graph properties. To do so, we take inspiration from the unpublished work [11, Chapter 3.2]
where general graph spectral features are defined. The student tasks will include 1. designing
experiments and datasets emphasizing the shortcomings of existing metrics, 2. developing
the theory of [11, Chapter 3.2] from the perspective of graph distribution comparison 3.
developing better graph generative models and 4. an experimental comparison to existing
models and metrics [3, 8, 15, 2, 16, 6, 13, 1, 7, 5, 9, 4].

To develop a better graph generation model, we will aim to create a denoising generative
model, which can better capture those global properties of the graph. We hope to achieve
this, by generating a graph in a latent space of a graph auto encoder, similarly to what is
done for high-definition image generation. The latent space would likely be represented as
a set of embeddings, those could potentially be made hierarchical. The developed models
would be evaluated on larger molecule, protein and potentially other graph generation (e.g.
object meshes) tasks, to confirm better performance on larger graphs compared to existing
models.

Requirements: Strong motivation, knowledge in deep learning, or a solid background in
machine learning. Experience with Python and PyTorch or TensorFlow is an advantage as
well as knowledge in graph theory, generative models and graph neural networks.

Interested? Please contact us for more details!

Contact

• Karolis Martinkus: martinkus@ethz.ch, ETZ G60.1

mailto:Karolis Martinkus <martinkus@ethz.ch>


• Nathanaël Perraudin: nperraud@ethz.ch, ETZ G60.1
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