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Abstract

In this work, we introduce AutoSing, a novel framework designed to generate
diverse and high-quality singing voices from provided lyrics and musical accom-
paniment. AutoSing extends an existing semantic token-based text-to-speech
approach by incorporating musical accompaniment as an additional conditioning
input. This enables AutoSing to synchronize its vocal output with the rhythm
and melodic nuances of the accompaniment while adhering to the provided lyrics.
Our contributions include a novel training scheme for autoregressive audio models
applied to singing voice synthesis, as well as ablation studies to identify the best
way to condition generation on musical accompaniment. We measure AutoSing’s
performance with subjective listening tests, demonstrating its capability to generate
coherent and creative singing voices. Furthermore, we open-source our codebase
to foster further research in the field of singing voice synthesis.

1 Introduction

Advances in generative audio generation have significantly improved the ability to synthesize natural-
sounding speech, vocals, and music. These developments have enabled various companies to
launch products that can generate full-length music tracks containing high-quality vocals from text
descriptions and lyrics (1; 2; 3; 4). Although the field of singing voice synthesis (SVS) has improved
greatly in recent years (5; 6; 7; 8), the proposed methods often still fall short of the diversity and
sophistication exhibited by current black box commercial products.

In this work, we introduce AutoSing, a novel framework for synthesizing diverse and high-quality
singing voices from provided lyrics and instrumentals. AutoSing extends WhisperSpeech (9), an
existing autoregressive text-to-speech library, with conditioning on an accompanying instrumental
track. Since the neural audio code used to represent speech in WhisperSpeech does not perform well
on singing voices, we evaluate codecs trained on music and find that the Multi-Scale Neural Audio
Codec (SNAC) (10) performs especially well considering its low bandwidth of 1.9kbps. In a further
step, we experimented with training strategies that allow us to efficiently utilize SNAC’s hierarchical
representation. As a result, we propose a novel multiscale autoregressive training approach.

Our contributions can be summarized as follows:

• We propose a novel training scheme for autoregressive audio models and apply it to SVS.
We identify scenarios where our approach improves training efficiency. In all cases, the
proposed training scheme results in substantially reduced memory requirements.
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• We narrow the gap between public research on SVS and commercial capabilities. Moreover,
we open-source our codebase1 and release a number of tools to enable further research in
the domain of SVS.

Audio samples can be found online.2

2 Related Work

There have been various approaches to generate natural-sounding singing voices. DiffSinger (5),
NaturalSpeech2 (6), MakeSinger (8) and RMSSinger (7) are diffusion-based singing voice and speech
synthesis tools, which allow users to generate singing voices conditioned on music notes rather than
an instrumental track.

Jukebox (11) was an early music generation model which allowed conditioning the generation on
lyrics, but required multi-hour generation times (11). More recently, music generation models have
been proposed that are capable of generating diverse and high-quality songs, but do not support
lyrics conditioning (12; 13). Singsong (14) conditions music generation on vocal stems, addressing a
complementary problem to ours. Several commercial black box products offer music generation with
vocal capabilities (1; 2; 3; 4).

Discrete Audio Representations. Modeling audio as discrete codes using a Vector Quantized
Variational Autoencoder (VQVAE) (15), followed by training a generative model on these codes,
was introduced by (11). Subsequently, several ‘neural audio codecs’ (16; 17) were introduced. More
recently, the Multi-Scale Neural Audio Codec (SNAC) (10) was proposed to more effectively capture
and represent the varying timescales present in audio signals. Rather than encoding audio as a regular
grid of codes, SNAC’s quantization scheme results in a hierarchical codebook structure (cf. Fig. 2).

Semantic Tokens and Two Stage Text-to-Speech. Our vocal generation approach builds on
established autoregressive, semantic token-based text-to-speech methods (18; 9). Semantic tokens
serve as a discrete audio representation, analogous to the tokens of neural audio codecs. Unlike
neural audio codecs, their primary goal is not to compress audio, but to encode higher-level semantic
content. A number of methods have been proposed for obtaining such a ‘semantic’ representation.
For example, (19) employs iteratively refined k-means clustering on the hidden states of a BERT-like
transformer. WhisperSpeech (9) discretizes the encoder outputs of a Whisper (20) model.

Building on this concept, the authors of (21) proposed a two-stage modeling approach for audio
continuation. In a first stage, semantic tokens are generated and are used to condition the generation
of acoustic tokens from a neural audio codec in a second stage. They found that this produced realistic
sounding speech, whereas direct unconditioned generation of acoustic tokens resulted in nonsensical
output. Subsequently, (18) adapted the approach to text-to-speech generation by conditioning the
semantic token generation on text.

3 Proposed Method

In the following, we present the architecture of AutoSing, a model for lyrics-conditioned vocal
generation given musical accompaniment. Our approach incorporates a low-bandwidth neural audio
codec to enable training and generation of 30-second music snippets.

3.1 Text and Music Conditioned Vocal Generation

Given the lyrics and an existing instrumental stem, our model is designed to generate a vocal track
that recites the lyrics and matches the provided instrumental track. We explored both generating
combined vocal and instrumental output, and only generating the vocal stem and combining it with
the instrumental track in a post-processing step. We found that exclusively modeling the vocal track
allowed us to utilize a lower bandwidth codec. Additionally, generating the vocals might be easier
for the model to learn than having to output the complete track. However, generating the vocal stem

1https://github.com/streichgeorg/autosing
2https://streichgeorg.github.io/autosing_samples
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Figure 1: Overview of our proposed text-to-vocal architecture. The pipeline entails two stages
(text-to-semantic, semantic-to-audio) which are both implemented using a multi-encoder transformer
architecture. The text-to-semantic stage takes lyrics and the instrumental track as inputs via its
encoders (E), the semantic output of its decoder (D) is then fed to the semantic-to-audio stage which
also takes the instrumental track as an input. Lyrics are tokenized using byte encoding, audio signals
using SNAC. To train the text-to-semantic stage, the ground truth semantic representation is extracted
from the vocal track. For the semantic-to-audio stage, ground truth vocals are used as a target.

independently may come at the cost of reduced fidelity due to the source separation and remixing
processes.

We build on the existing open-source text-to-speech library WhisperSpeech (9) which follows the
two-stage text-to-speech approach described in Section 2. WhisperSpeech uses encoder-decoder
transformer models for the text-to-semantic and semantic-to-audio stages. We use the multi-encoder
approach from (22) to augment both stages with music conditioning. Specifically, we add a second
cross-attention layer to each decoder block and combine the two cross-attention signals with a
weighted average.

Moreover, we enable conditioning on vocal features by training a custom embedding model (cf. Ap-
pendix B).

We evaluated existing low-bandwidth neural codecs on vocal stems and found that at 1.9kbps, the
32kHz version of SNAC (10) provided the best trade-off between bandwidth and audio quality.
Additionally, we also encode the accompaniment music using SNAC. We refer to Fig. 1 for an
overview of our architecture.

3.2 Multiscale Autoregressive Training

Current neural audio codecs encode audio using hundreds of codes per second (17; 10). Although
this is a significant improvement compared to waveform and spectrogram representations, it still
imposes large memory and compute requirements. This is especially the case for singing or music
in general, given the increased need to model long-range dependencies and the higher bandwidth
requirements compared to speech generation. Previous works used sparse attention (11) or multi-stage
architectures (21; 18) to handle long sequence lengths.

Recently, MusicGen (12) showed that good results can be achieved with a single dense transformer that
predicts codes in parallel. Instead of predicting residual codes for a single frame simultaneously, the
authors find that delaying the prediction for fine-grained codes mitigates the performance degradation
that would otherwise occur with semi-autoregressive modelling.

To further reduce sequence lengths during training, we propose a multiscale training approach for
the acoustic modeling from MusicGen (12) adapted to the SNAC audio codec. We introduce what
we call ‘compressed’ and ‘unrolled’ codebook interleaving patterns (cf. Fig. 2). We perform normal
autoregressive training, but, show the model samples encoded using either the compressed or unrolled
pattern. When shown a compressed sequence, the model needs to predict multiple adjacent codebooks
in parallel but has access to a long temporal context. On the other hand, when given an unrolled
sequence, the model learns dependencies between fine-grained codes while only having access to
a shorter context. At the end of training, we fine-tune the model on full-length unrolled sequences
for a few steps. Apart from requiring per sample position information, no changes to the underlying
transformer architecture are required for our approach.
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Figure 2: Top: Depiction of SNAC’s codebook struc-
ture, where fine-grained codebooks have an increased
frame-rate. The frame rate for coarse codebooks is
10Hz. Bottom: ‘Compressed’ and ‘unrolled’ patterns
before applying codebook delays. We train the model
on compressed and unrolled sequences simultaneously.
Compressed sequences allow for efficiently learning
on a long context, while unrolled sequences enable
the model to learn dependencies between fine-grained
codes.

For our experiments, we use an internal
dataset consisting of 35k hours of music,
which, after extracting sections that contain
singing, amounted to 20k hours of training
data. Furthermore, we added 10k hours of
speech data from LibriLight (23) to our
training set. We use the Mel-Band Ro-
former model from (24) to separate music
into vocal and instrumental stems. Whis-
perSpeech leverages Whisper to extract
a semantic representation from audio (cf.
Section 2). Because the original Whisper
model-family and subsequently this seman-
tic encoder have subpar performance on
singing, we fine-tuned Whisper on vocal
stems. This reduced word error rates from
42% to 23% on our validation set. Using
the fine-tuned Whisper model, we then fol-
low the methodology from WhisperSpeech
to train a custom semantic encoder which
performs well on singing.

We follow WhisperSpeech and use the
training and initialization strategy proposed by (25) which allows for hyperparameter transfer across
model sizes. For our experiments, we report base learning rates, which are adapted to a specific
model configuration through (25). For details, we refer to the source code. We use cosine learning
rate schedules with a warm-up phase and during inference, temperature sampling with a tempera-
ture coefficient of 0.7 is used for both the text-to-semantic and semantic-to-audio stages. We use
15-second audio segments for ablations and train our large model on 30-second segments.

To evaluate our method, we measure FAD scores (26) using the VGGish (27) model. Additionally,
we conduct a user study where we present samples to participants and have them rate the samples on
a scale of 1 to 5 in three categories: overall (OVL.), creativity (CRT.) and harmony (HRM.). For the
harmony category, participants were asked to rate how well the vocal performance complemented
the musical accompaniment. In general, participants were asked not to consider the quality of the
musical accompaniment. We further investigate the effect that masking on the input has in ??.

4.1 Performance of Multiscale Training

We derive an estimate for the reduction of floating-point operations per training step yielded by
our multiscale training approach. We follow (28) and approximate computation to be linear in the
number of parameters and sequence length. We keep the ratio between encoder and decoder depths
constant at 1/3 and use the same number of attention heads for both the encoders and decoder. Let
N be the number of parameters of the decoder. For the number of operations per step C, it follows
that C ∼ N( 13LS + 1

3LM + LA), where LS , LM , LA are the sequence lengths of semantic music
conditioning and the acoustic token output. In our case, with 15-second segments, we have LS = 375,
LM = 320 and LA = 320 for ‘compressed’ or ‘cropped unrolled’, and LA = 1280 for full-length
unrolled length sequences. Hence, our approach results in a 2.74× reduction in computation per step.
This approximation does not take into account the reduced attention costs of our approach.

We train two 900M parameter models for 11,500 and 4,300 steps, respectively, using both multiscale
and standard autoregressive training. Additionally, we fine-tune the model trained with the multiscale
approach for 45 steps on full-length unrolled sequences. For the given model size and compute
budget, our approach results in a lower perplexity, FAD score and performs better in our subjective
listening study (cf. Table 1).

Additionally, we investigate whether training on compressed and unrolled patterns is actually nec-
essary, or if similar results can be obtained by solely training on compressed sequences. We train
two 350M parameter models for 6k steps. For the first model we use our multiscale approach as
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Table 1: Performance of multiscale training com-
pared to normal autoregressive training. For the
given model size and a fixed compute budget,
multiscale training results in better performance
across all considered metrics.

Training PPL ↓ FAD ↓ OVL. ↑ CRT. ↑ HRM. ↑
Autoregressive 81.7 3.59 2.9 3.2 2.5
Multiscale 76.4 2.72 3.1 3.5 2.8

Table 2: Perplexity scores on compressed (PPL
A), cropped (PPL B) and full-length sequences
(PPL C) for multiscale and compressed sequence
only training.

Training PPL A ↓ PPL B ↓ PPL C ↓
Compressed Only 123.97 - 167.33
Multiscale 128.90 132.70 113.75

described in Section 3.2. For the second model, we train only on compressed sequences. After the
initial training phase, we fine-tune both models on full-length unrolled sequences. In Table 2, we
give perplexity scores on ‘compressed’ and ‘unrolled’ sequences for the models, and the perplexity
on full-length unrolled sequences. When using multiscale training, the resulting model performs
well on full-length unrolled sequences, notably it performs better than on either of the patterns it was
trained on. Whereas, when only training on compressed sequences, the model does not generalize to
full-length unrolled sequences.

4.2 AutoSing Large
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Figure 3: Performance comparison between AutoSing
and commercial music generation models. We note that
AutoSing displays competitive performance and even
outperforms other methods in terms of creativity. For
the SNAC baseline, we re-encoded random samples
from our dataset using SNAC.

We scale our method to a 1B parameter text-
to-semantic and a 2.3B parameter semantic-
to-audio model, which we train on the com-
bined 30k hours of singing and speech data.
We split training across 32 A100 40GB
GPUs for both the text-to-semantic and
semantic-to-audio stage. When training the
text-to-semantic stage, we let the model
predict semantic tokens without text con-
ditioning for songs where lyrics are not
available. We train the text-to-semantic
stage with a batch size of 256 and a base
learning rate of 1.5 · 10−3 for 46k steps
split across 32 A100 GPUs. We train the
semantic-to-audio stage for 70k steps using
our multiscale approach, and then fine-tune
it for 100 steps on full-length unrolled se-
quences. We use a batch size of 512, a base learning rate of 4 · 10−3, and a 3 to 1 ratio of compressed
and unrolled sequences. During fine-tuning, we use a base learning rate of 10−4.

In our listening study, we compare AutoSing with two commercial music models, Suno and Sonauto,
along with ground truth examples encoded using SNAC tokens. We present the results in Fig. 3.
The results for the SNAC baseline (cf. Fig. 3) reveal a performance bottleneck due to the codec’s
low bitrate. Therefore, adding a diffusion-based upsampling step, as used in other audio generation
systems (29; 9; 30), could be a future step to improve performance.

5 Conclusion

In this work, we introduced AutoSing, an SVS system capable of producing diverse and high-quality
vocals using a novel multiscale training scheme for autoregressive audio models. Our approach
decouples sequence lengths from the codec’s frame rate, improving training efficiency. Our ablation
study reveals that conditioning the text-to-semantic stage on source-separated instrumental stems
degrades performance, and we propose a strategy to mitigate this. Although, presumably, AutoSing
was trained with considerably less data and compute, it still demonstrates strong vocal generation
capabilities, comparable to leading commercial music generation models.
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Table 3: Performance for different masking strategies. Masking the two most fine-grained codebooks
results in the best performance across evaluated strategies.

Masking Strategy FAD ↓ OVL. ↑ CRT. ↑ HRM. ↑
Two Most Fine-grained 2.17 2.9 3.1 2.8
Most Fine-grained 2.13 2.8 2.9 2.6
No Music Conditioning 2.38 2.7 3.0 2.5
No Masking 2.18 2.7 2.9 2.6

A Masking Music Conditioning

Since we are using source separation to extract vocals and instrumentals from existing music, we
need to mitigate the effect of leftover vocal artifacts in the instrumental stem. To address this,
we propose masking the fine-grained codebooks of the instrumental track before feeding it into
the text-to-semantic stage. We do not apply masking for the semantic-to-audio stage, since we
found that information leakage is mainly a problem at the text-to-semantic stage, and full access to
the instrumental track is crucial for the semantic-to-audio stage. The authors of (14) observed an
analogous problem when using source separated vocal stems as a conditioning signal.

We evaluate the effect of masking fine-grained instrumental tokens during the text-to-semantic stage.
Specifically, the following four strategies S: masking the two most fine-grained codebooks (S1, green
and blue in Fig. 2), masking only the most fine-grained codebooks (S2, blue in Fig. 2), completely
removing music conditioning (S3), and applying no masking (S4). We fine-tune a text-to-semantic
model that was trained without masking using each strategy for 7k steps. Our findings in Table 3
indicate that masking the text-to-semantic stage’s music input enhances performance.

B Artist Embedding

To make singing style controllable, we leverage a custom artist embedding model, which we train
using a classification objective. Unlike popular speaker and audio embedding models which are
typically based on spectrogram inputs (31), we achieve promising results by reusing the decoder
implementation from the semantic-to-audio stage for this task. To enhance performance, we incorpo-
rated an auxiliary autoregressive loss. The model is trained on vocal stems, in order to minimize the
inclusion of instrumental features in the representation.

We train the artist embedding model using our internal singing dataset. As a backbone, we use
a 76M parameter decoder-only transformer model and add a two-layer classification head on the
last attention layer’s output. We use the activations of the classification head’s hidden layer as 256
dimensional embeddings. The training objective is given by L = 0.3 · Lclass + LAR where Lclass
represents the cross-entropy loss for the artist classification task, and LAR is an autoregressive loss.
For the classification loss, a label-smoothing term with a strength of 0.1 is applied. We use a base
learning rate of 10−3. The effect of the artist embeddings on generation can be heard on our sample
page.2
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