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Abstract—In this work, we introduce AutoSing, a novel frame-
work designed to generate diverse and high-quality singing voices
from provided lyrics and musical accompaniment. AutoSing
extends an existing semantic token-based text-to-speech approach
by incorporating musical accompaniment as an additional condi-
tioning input. This enables AutoSing to synchronize its vocal out-
put with the rhythm and melodic nuances of the accompaniment
while adhering to the provided lyrics. Our contributions include a
novel training scheme for autoregressive audio models applied to
singing voice synthesis, as well as ablation studies to identify the
best way to condition generation on musical accompaniment. We
measure AutoSing’s performance with subjective listening tests,
demonstrating its capability to generate coherent and creative
singing voices. Furthermore, we open-source our codebase to
foster further research in the field of singing voice synthesis.

Index Terms—Singing Voice Synthesis, Music Generation,
Autoregressive Audio Generation

I. INTRODUCTION

Advances in generative audio generation have significantly
improved the ability to synthesize natural-sounding speech,
vocals, and music. These developments have enabled var-
ious companies to launch products that can generate full-
length music tracks containing high-quality vocals from text
descriptions and lyrics [1; 2; 3; 4]. Although the field of
singing voice synthesis (SVS) has improved greatly in recent
years [5; 6; 7; 8], the proposed methods often still fall short
of the diversity and sophistication exhibited by current black
box commercial products.

In this work, we introduce AutoSing, a novel framework
for synthesizing diverse and high-quality singing voices from
provided lyrics and instrumentals. AutoSing extends Whis-
perSpeech, an existing autoregressive text-to-speech library,
with conditioning on an accompanying instrumental track.
Since the neural audio codec used to represent speech in
WhisperSpeech underperforms on singing voices, we evaluate
codecs trained on music and find that the Multi-Scale Neural
Audio Codec (SNAC) [9] performs especially well considering
its low bandwidth of 1.9kbps. Additionally, we experimented
with training strategies that allow us to efficiently utilize
SNAC’s hierarchical representation. As a result, we propose a
novel multiscale autoregressive training approach.

Our contributions can be summarized as follows:
• We propose a novel training scheme for autoregressive

audio models and apply it to SVS. We identify scenarios
where our approach improves training efficiency. In all

cases, the proposed training scheme results in substan-
tially reduced memory requirements.

• We narrow the gap between public research on SVS and
commercial capabilities. Moreover, we open-source our
codebase and release a number of tools to enable further
research in the domain of SVS.

Audio samples can be found online.1

II. RELATED WORK

There have been various approaches to generate natural-
sounding singing voices. DiffSinger [5], NaturalSpeech2 [6],
MakeSinger [8] and RMSSinger [7] are diffusion-based
singing voice and speech synthesis tools, which allow users
to generate singing voices conditioned on music notes rather
than an instrumental track.

Jukebox [10] was an early music generation model capable
of conditioning on lyrics, but required multiple hours for
generation [10]. More recently, music generation models have
been proposed that are capable of generating diverse and high-
quality songs, but do not support lyrics conditioning [11; 12].
Singsong [13] conditions music generation on vocal stems, ad-
dressing a complementary problem to ours. Currently, several
commercial black box products offer music generation with
vocal capabilities [1; 2; 3; 4].

Discrete Audio Representations. Modeling audio as dis-
crete codes using a Vector Quantized Variational Autoencoder
(VQVAE) [14], followed by training a generative model on
these codes, was introduced by [10]. Subsequently, several
‘neural audio codecs’ [15; 16] were introduced. More recently,
the Multi-Scale Neural Audio Codec (SNAC) [9] was pro-
posed to more effectively capture and represent the varying
timescales present in audio signals. Rather than encoding audio
as a regular grid of codes, SNAC’s quantization scheme results
in a hierarchical codebook structure (cf. Fig. 2).

Semantic Tokens and Two Stage Text-to-Speech. Our vo-
cal generation approach builds on established autoregressive,
semantic token-based text-to-speech methods [17]. Semantic
tokens serve as a discrete audio representation, analogous to
the tokens of neural audio codecs. Unlike neural audio codecs,
their primary goal is not to compress audio, but to encode
higher-level semantic content. A number of methods have been
proposed for obtaining such a ‘semantic’ representation. For

1https://streichgeorg.github.io/autosing samples
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example, [18] employs iteratively refined k-means clustering
on the hidden states of a BERT-like transformer. Whisper-
Speech discretizes the encoder outputs of a Whisper [19]
model.

Building on the WhisperSpeech concept, [20] proposes a
two-stage modeling approach for audio continuation. Semantic
tokens are generated in the first stage, and are then used
in the second stage to condition the generation of acoustic
tokens. The acoustic tokens can then be decoded by a neural
audio codec. The authors found that this produced realistic
sounding speech, whereas direct unconditioned generation of
acoustic tokens resulted in nonsensical output. Subsequently,
[17] adapted the approach to text-to-speech generation by
conditioning the semantic token generation on text.

III. PROPOSED METHOD

A. Text and Music Conditioned Vocal Generation
Given the lyrics and an existing instrumental stem, our

model is designed to generate a vocal track that recites
the lyrics and matches the provided instrumental track. We
explored both generating combined vocal and instrumental
output, and only generating the vocal stem and combining
it with the instrumental track in a post-processing step. We
found that exclusively modeling the vocal track allowed us to
utilize a lower bandwidth codec. Additionally, generating the
vocals might be easier for the model to learn than having to
output the complete track. However, generating the vocal stem
independently may come at the cost of reduced fidelity due to
the source separation and remixing processes.

We build on the existing open-source text-to-speech li-
brary WhisperSpeech,2 which follows the two-stage text-to-
speech approach described in Section II. WhisperSpeech uses
encoder-decoder transformer models for the text-to-semantic
and semantic-to-audio stages. We use the multi-encoder ap-
proach from [21] to augment both stages with music condition-
ing. Specifically, we add a second cross-attention layer to each
decoder block and combine the two cross-attention signals
with a weighted average. Moreover, we enable conditioning
on vocal features by training a custom embedding model
(cf. Section III-D).

We evaluated existing low-bandwidth neural codecs on
vocal stems and found that at 1.9kbps, the 32kHz version of
SNAC [9] provided the best trade-off between bandwidth and
audio quality. Additionally, we also encode the accompaniment
music using SNAC. We refer to Fig. 1 for an overview of our
architecture.

B. Masking Music Conditioning
Since we are using source separation to extract vocals and

instrumentals from existing music, we need to mitigate the
effect of leftover vocal artifacts in the instrumental stem. To
address this, we propose masking the fine-grained codebooks
of the instrumental track before feeding it into the text-to-
semantic stage. We do not apply masking for the semantic-
to-audio stage, since we found that information leakage is

2https://github.com/collabora/WhisperSpeech

Source
Separation

Lyrics

Text to
Semantic

Semantic to
AudioInstrumental

Artist embedding

Vocals

Loss Output

Music Track

+
E

E
D

E

E
D

Fig. 1. Overview of our proposed text-to-vocal architecture. The pipeline
entails two stages (text-to-semantic, semantic-to-audio) which are both imple-
mented using a multi-encoder transformer architecture. The text-to-semantic
stage takes lyrics and the instrumental track as inputs via its encoders (E),
the semantic output of its decoder (D) is then fed to the semantic-to-audio
stage which also takes the instrumental track as an input. To train the text-
to-semantic stage, the ground truth semantic representation is extracted from
the vocal track. For the semantic-to-audio stage, ground truth vocals are used
as a target.

mainly a problem at the text-to-semantic stage, and full access
to the instrumental track is crucial for the semantic-to-audio
stage. The authors of [13] observed an analogous problem
when using source separated vocal stems as a conditioning
signal.

C. Multiscale Autoregressive Training

Current neural audio codecs encode audio using hundreds
of codes per second [16; 9]. Although this is a significant im-
provement compared to waveform and spectrogram representa-
tions, it still imposes large memory and compute requirements.
This is especially the case for singing or music in general,
given the increased need to model long-range dependencies
and the higher bandwidth requirements compared to speech
generation. Previous works used sparse attention [10] or multi-
stage architectures [20; 17] to handle long sequence lengths.

Recently, MusicGen [11] showed that good results can be
achieved with a single dense transformer that predicts codes in
parallel. Instead of predicting residual codes for a single frame
simultaneously, the authors find that delaying the prediction for
fine-grained codes mitigates the performance degradation that
would otherwise occur with semi-autoregressive modelling.

To further reduce sequence lengths during training, we pro-
pose a multiscale training approach for the acoustic modeling
from MusicGen [11] adapted to the SNAC audio codec. We
introduce ‘compressed’ and ‘unrolled’ codebook interleaving
patterns (cf. Fig. 2). During training, we randomly encode the
input samples with either the compressed or unrolled pattern,
we call this ‘multiscale’ training. When the model receives
a compressed sequence, it needs to predict multiple adjacent
codebooks in parallel, but has access to a long temporal
context. When the input sample is an unrolled sequence, the
model learns dependencies between fine-grained codes while
only having access to a shorter context. At the end of training,
we fine-tune the model on unrolled sequences for a few steps.
Apart from requiring per sample position information, no
changes to the underlying transformer architecture are required
for our approach.

https://github.com/collabora/WhisperSpeech
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Fig. 2. Top: Depiction of SNAC’s codebook structure, where fine-grained
codebooks have an increased frame-rate. The frame rate for coarse codebooks
is 10Hz. Bottom: ‘Compressed’ and ‘unrolled’ patterns before applying
codebook delays. We train the model on compressed and unrolled sequences
simultaneously, this allows for efficiently learning on a long context while
also allowing to learn dependencies between fine-grained codes.

D. Artist Embeddings

To make singing style controllable, we leverage a custom
artist embedding model, which we train using a classifica-
tion objective. Unlike popular speaker and audio embedding
models which are typically based on spectrogram inputs [22],
we achieve promising results by reusing the decoder imple-
mentation from the semantic-to-audio stage in addition to an
auxiliary autoregressive loss. The model is trained on vocal
stems, in order to minimize the inclusion of instrumental
features in the representation.

IV. EXPERIMENTS AND RESULTS

For our experiments, we use an internal dataset consisting
of 35k hours of music, which, after extracting sections that
contain singing, amounted to 20k hours of training data.
Furthermore, we added 10k hours of speech data from Libri-
Light [23] to our dataset. We use the Mel-Roformer model [24]
to separate music into vocal and instrumental stems.

WhisperSpeech uses Whisper to extract a semantic represen-
tation from audio (cf. Section II). Because the original Whisper
model-family and subsequently this semantic encoder have
subpar performance on singing, we fine-tuned Whisper on
vocal stems. This reduced word error rates from 42% to 23%
on our validation set. Using the fine-tuned Whisper model, we
then follow the methodology from WhisperSpeech to train a
custom semantic encoder which performs well on singing.

We follow WhisperSpeech and use the training and initial-
ization strategy proposed by [25] which allows for hyperpa-
rameter transfer across model sizes. For our experiments, we
report base learning rates, which are adapted to a specific
model configuration through [25]. For details, we refer to
our codebase. We use cosine learning rate schedules with a
warm-up phase and during inference, temperature sampling
with a temperature coefficient of 0.7 is used for both the text-
to-semantic and semantic-to-audio stages. We use 15-second
audio segments for ablations and train our large model on 30-
second segments.

To evaluate our method, we measure FAD scores [26] using
the VGGish model. Additionally, we conduct a user study with
25 participants, where 32 samples are presented to each partic-
ipant. They then rate the samples on a scale of 1 to 5 in three
categories: overall (OVL.), creativity (CRT.) and harmony
(HRM.). For the harmony category, participants were asked
to rate how well the vocal performance complemented the
musical accompaniment. In general, participants were asked
not to consider the quality of the musical accompaniment.

A. Performance of Multiscale Training

We derive an estimate for the reduction of floating-point
operations per training step yielded by our multiscale training
approach. We follow [27] and approximate computation to be
linear in the number of parameters and sequence length. We
keep the ratio between encoder and decoder depths constant
at 1/3 and use the same number of attention heads for both
the encoders and decoder. Let N be the number of parameters
of the decoder. For the number of operations per step C, it
follows that C ∼ N( 13LS + 1

3LM + LA), where LS , LM ,
LA are the sequence lengths of semantic conditioning, music
conditioning, and the acoustic token output, respectively. In
our case, with 15-second segments, we have LS = 375,
LM = 320 and LA = 320 for ‘compressed’ or ‘cropped
unrolled’, and LA = 1280 for full-length unrolled length
sequences. Hence, our approach results in a 2.74× reduction
in computation per step. This approximation does not take into
account the reduced attention costs of our approach.

We train two 900M parameter models for 11,500 and 4,300
steps, respectively. Additionally, we fine-tune the model for 45
steps on full-length unrolled sequences. For the given model
size and compute budget, our approach results in a lower
perplexity, FAD score and performs better in our subjective
listening study (cf. Table I).

Additionally, we investigate whether training on compressed
and unrolled patterns (cf. Fig. 2) is actually necessary, or if
similar results can be obtained by solely training on com-
pressed sequences. We train two 350M parameter models for
6k steps. For the first model we use our multiscale approach
as described in Section III-C. For the second model, we train
only on compressed sequences. After the initial training phase,
we fine-tune both models on full-length unrolled sequences.
In Table II, we give perplexity scores on ‘compressed’ and
‘unrolled’ sequences for the models, and the perplexity on full-
length unrolled sequences. When using multiscale training,
the resulting model performs well on full-length unrolled
sequences, notably it performs better than on either of the
patterns it was trained on. Whereas, when only training on
compressed sequences, the model does not generalize to full-
length unrolled sequences.

B. Effect of Masking Music Input

We evaluate the effect of masking fine-grained instrumental
tokens during the text-to-semantic stage (cf. Section III-B).
Specifically, the following four strategies: masking the two
most fine-grained codebooks (green and blue in Fig. 2),



TABLE I
PERFORMANCE OF MULTISCALE TRAINING COMPARED TO NORMAL

AUTOREGRESSIVE TRAINING. FOR THE GIVEN MODEL SIZE AND A FIXED
COMPUTE BUDGET, MULTISCALE TRAINING RESULTS IN BETTER

PERFORMANCE ACROSS ALL CONSIDERED METRICS.

Training PPL ↓ FAD ↓ OVL. ↑ CRT. ↑ HRM. ↑

Unrolled Only 81.7 3.59 2.9 3.2 2.5
Multiscale 76.4 2.72 3.1 3.5 2.8

TABLE II
PERPLEXITY SCORES ON COMPRESSED (PPL A), CROPPED (PPL B) AND

FULL-LENGTH SEQUENCES (PPL C) FOR MULTISCALE TRAINING AND
ONLY COMPRESSED SEQUENCE TRAINING. GENERALIZATION TO

FULL-LENGTH UNROLLED SEQUENCES ONLY OCCURS WHEN TRAINING ON
A MIX OF COMPRESSED AND UNROLLED SEQUENCES.

Training PPL A ↓ PPL B ↓ PPL C ↓

Compressed Only 123.97 - 167.33
Multiscale 128.90 132.70 113.75

TABLE III
PERFORMANCE FOR DIFFERENT MASKING STRATEGIES DURING MUSIC
CONDITIONING. MASKING THE TWO MOST FINE-GRAINED CODEBOOKS

RESULTS IN THE BEST PERFORMANCE ACROSS EVALUATED STRATEGIES.

Masking Strategy FAD ↓ OVL. ↑ CRT. ↑ HRM. ↑

Two Most Fine-grained 2.17 2.9 3.1 2.8
Most Fine-grained 2.13 2.8 2.9 2.6
No Music Conditioning 2.38 2.7 3.0 2.5
No Masking 2.18 2.7 2.9 2.6

masking only the most fine-grained codebooks (blue in Fig. 2),
completely removing music conditioning, and applying no
masking. We fine-tune a text-to-semantic model that was
trained without masking using each strategy for 7k steps. Our
findings in Table III indicate that masking the text-to-semantic
stage’s music input enhances performance.

C. Artist Embeddings

We train an artist embedding model using our internal
singing dataset. As a backbone, we use a 76M parameter
decoder-only transformer model and add a two-layer classi-
fication head on the last attention layer’s output. We use the
activations of the classification head’s hidden layer as 256
dimensional embeddings. The training objective is given by
L = 0.3 · Lclass + LAR where Lclass represents the cross-
entropy loss for the artist classification task, and LAR is
an autoregressive loss. For the classification loss, a label-
smoothing term with a strength of 0.1 is applied. We use a
base learning rate of 10−3. The effect of the artist embeddings
on generation can be heard on our sample page.1

D. AutoSing Large

We scale our method to a 1B parameter text-to-semantic and
a 2.3B parameter semantic-to-audio model, which we train on
the combined 30k hours of singing and speech data. We split
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Fig. 3. Performance comparison and confidence intervals between AutoSing
and commercial music generation models. We note that AutoSing displays
competitive performance and even outperforms other methods in terms of
creativity. SNAC refers to our baseline, where we re-encoded random samples
from our dataset using SNAC, allowing us to compare outputs without low-
bitrate artifacts biasing the results.

training across 32 A100 40GB GPUs for both the text-to-
semantic and semantic-to-audio stage.

When training the text-to-semantic stage, we let the model
predict semantic tokens without text conditioning for songs
where lyrics are not available. We train the text-to-semantic
stage with a batch size of 256 and a base learning rate of
1.5 · 10−3 for 46k steps split across 32 A100 GPUs.

We train the semantic-to-audio stage for 70k steps using our
multiscale approach, and then fine-tune it for 100 steps on full-
length unrolled sequences. We use a batch size of 512, a base
learning rate of 4 ·10−3, and a 3 to 1 ratio of compressed and
unrolled sequences. During fine-tuning, we use a base learning
rate of 10−4.

In our listening study, we compare AutoSing with two com-
mercial music models, Suno and Sonauto, along with ground
truth examples encoded using SNAC tokens. We present the
results in Fig. 3. The results for the SNAC baseline (cf. Fig. 3)
reveal a performance bottleneck due to the codec’s low bitrate.
Therefore, adding a diffusion-based upsampling step, as used
in other audio generation systems [28; 29], could be a future
step to improve performance.

V. CONCLUSION

In this work, we introduced AutoSing, an SVS system capa-
ble of producing diverse and high-quality vocals using a novel
multiscale training scheme for autoregressive audio models.
Our approach decouples sequence lengths from the codec’s
frame rate, improving training efficiency. Our ablation study
reveals that conditioning the text-to-semantic stage on source-
separated instrumental stems degrades performance, and we
propose a strategy to mitigate this. Although, presumably,
AutoSing was trained with considerably less data and com-
pute, it still demonstrates strong vocal generation capabilities,
comparable to leading commercial music generation models.

ACKNOWLEDGMENTS

We thank LAION and JUWELS for providing their compute
infrastructure. Furthermore, we thank Christoph Schuhmann,
Jenia Jitsev, and Marianna Nezhurina for their support.



REFERENCES

[1] Suno, “Suno.” https://suno.com/. Accessed: 2024-08-13.
[2] Udio, “Udio.” https://www.udio.com/. Accessed: 2024-

08-13.
[3] S. Forsgren and H. Martiros, “Riffusion - Stable diffusion

for real-time music generation,” 2022.
[4] Sonauto, “Sonauto,” 2024. Accessed: 2024-08-21.
[5] J. Liu, C. Li, Y. Ren, F. Chen, and Z. Zhao, “Diff-

singer: Singing voice synthesis via shallow diffusion
mechanism,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 36, pp. 11020–11028, 2022.

[6] K. Shen, Z. Ju, X. Tan, Y. Liu, Y. Leng, L. He, T. Qin,
S. Zhao, and J. Bian, “Naturalspeech 2: Latent diffusion
models are natural and zero-shot speech and singing
synthesizers,” arXiv preprint arXiv:2304.09116, 2023.

[7] J. He, J. Liu, Z. Ye, R. Huang, C. Cui, H. Liu, and
Z. Zhao, “Rmssinger: realistic-music-score based singing
voice synthesis,” arXiv preprint arXiv:2305.10686, 2023.

[8] S. Kim, M. Jeong, H. Lee, M. Kim, B. J. Choi,
and N. S. Kim, “Makesinger: A semi-supervised train-
ing method for data-efficient singing voice synthesis
via classifier-free diffusion guidance,” arXiv preprint
arXiv:2406.05965, 2024.
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