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Abstract

We study the NP-hard problem of approximating a Minimum Routing Cost Spanning
Tree in the message passing model with limited bandwidth (CONGEST model). In this
problem one tries to �nd a spanning tree of a graph G over n nodes that minimizes the
sum of distances between all pairs of nodes. In the considered model every node can
transmit a di�erent (but short) message to each of its neighbors in each synchronous
round. We provide a randomized (2 + ε)-approximation with runtime O(D + logn

ε ) for
unweighted graphs. Here, D is the diameter of G. This improves over both, the (expected)
approximation factor O(log n) and the runtime O(D log2 n) stated in [17].

Due to stating our results in a very general way, we also derive an (optimal) runtime
of O(D) when considering O(log n)-approximations as in [17]. In addition we derive a
deterministic 2-approximation.

1 Introduction

A major goal in network design is to minimize the cost of communication between any two
vertices in a network while maintaining only a substructure of the network. Despite the fact
that a tree is the sparsest substructure of a network it can be surprisingly close to the optimal
solution. Every network contains a tree whose total cost of communication between all pairs
of nodes is only a factor two worse than the communication cost when all edges in the graph
are allowed to be used!

The problem of �nding trees that provide a low routing cost is studied since the early days
of computing in the 1960s [22] and is known to be NP-hard [16] on weighted and unweighted
graphs1. These days networks of computers and electric devices are omnipresent and trees o�er
easy and fast implementations for applications. In addition, trees serve as the basis for control
structures as well as for information gathering/aggregation and information dissemination.
This explains why routing trees are computed and used by wide spread protocols such as the
IEEE 802.1D standard [4]. When bridging [23] is used in Local Area Networks (LAN) and
Personal Area Networks (PAN), a spanning tree is computed to de�ne the (overlay) network

∗This is a full and extended version of [12].
†Part of this work was done at ETH Zurich. At MIT the author was supported by the following grants:

AFOSR Contract Number FA9550-13-1-0042, NSF Award 0939370-CCF, NSF Award CCF-1217506, NSF
Award number CCF-AF-0937274.

1Even for seemingly simpler versions than those which we study the problem remains NP-hard [27].
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topology. Finding such a tree with low routing cost is crucial. As [4] demonstrates, current
implementations do not perform well under the aspect of optimizing the routing costs and
there is the need to �nd better and faster solutions. The nature of this problem and growth
of wired and wireless networks calls for fast and good distributed implementations.

In this paper we present new approaches for distributed approximation of a Minimum
Routing Cost Spanning Tree (MRCT) while extending previous work for approximation of
those. By doing so we improve both, the round complexity and the approximation factor of
the best known (randomized) result in a distributed setting for unweighted graphs. Our main

contribution is an algorithm that computes a
(

2− 2
n + min

{
logn
D , α(n,D)

})
-approximation

in time O
(
D + logn

α(n,D)

)
w.h.p.2. Previously, the best known distributed approximation for

MRCT [17] (on weighted graphs) achieved an (expected) approximation-ratio of O(log n)
using randomness. The bound on the runtime of the algorithm of [17] is O(n log2 n) in the
worst case � even when the network is fully connected (a clique). For unweighted graphs,
the authors of [17] specify this runtime to be O(D log2 n). The distributed algorithms we
present in this paper are for unweighted graphs as well3 and compared to the (expected)
approximation-ratio O(log n) of [17] we essentially obtain a (guaranteed) approximation-ratio
2 + ε in time O(D + logn

ε ) w.h.p.. This follows from choosing α(n,D) = ε for an arbitrary
small ε > 0. When choosing α(n,D) = log n, we obtain the same approximation ratio as
in [17] in time O(D). To be general, we leave the choice of α(n,D) to the reader depending
on the application.

Besides this randomized solution we present a deterministic algorithm running in linear
time O(n) achieving an approximation-ratio of 2.

2 Model and Basic De�nitions

Our network is represented by an undirected graph G = (V,E). Nodes V correspond to
processors, computers or routers. Two nodes are connected by an edge from set E if they can
communicate directly with each other. We denote the number of nodes of a graph by n, and
the number of its edges by m. Furthermore we assume that each node has a unique ID in the
range of {1, . . . , 2O(logn)}, i.e. each node can be represented by O (log n) bits. Nodes initially
have no knowledge of the graph G, other than their immediate neighborhood.

We consider a synchronous communication model, where every node can send B bits of
information over all its adjacent edges in one synchronous round of communication. We also
consider a modi�ed model, where time is partitioned into synchronized slots, but a message
might receive a delay when traversing an edge. This delay might not be uniform but �xed for
each edge. In principle it is allowed that in each round a node can send di�erent messages
of size B to each of its neighbors and likewise receive di�erent messages from each of its
neighbors. Typically we use B = O (log n) bits, which allows us to send a constant number of
node or edge IDs per message. Since communication cost usually dominates the cost of local
computation, local computation is considered to be negligible. For B = O (log n) this message
passing model is known as CONGEST model [19]. We are interested in the number of rounds

2A more precise statement can be found in Theorem 3.2. This Theorem also considers a generalized version
of MRCT.

3They extend to graphs with certain realistic weight-functions.
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that a distributed algorithm needs to solve some problem. This is the time complexity of the
algorithm.

To be more formal, we are interested in evaluating a function g : Gn → S, where Gn is the
set of all graphs over n vertices and S is e.g. {0, 1}, N or Gn, and de�ne distributed round
complexity as follows:

De�nition 2.1 (Distributed round complexity). Let A be the set of distributed deterministic
algorithms that evaluate a function g on the underlying graph G over n nodes (representing
the network). Denote by Rdc (A (G)) the distributed round complexity (indicated by dc) repre-
senting the number of rounds that an algorithm A ∈ A needs in order to compute g (G). We
de�ne Rdc (g) = minA∈AmaxG∈Gn R

dc (A (G)) to be the smallest amount of rounds/time slots
any algorithm needs in order to compute g.

We denote by Rdc−randε (g) the randomized round complexity of g when the algorithms
have access to randomness and compute the desired output with an error probability smaller
than ε. By w.h.p. (with high probability) we denote a success probability larger than 1−1/n.

The unweighted shortest path in G between two nodes u and v is a path with minimum
number of edges among all (u, v)-paths. Denote by dG (u, v) the unweighted distance between
two nodes u and v in G which is the length of an unweighted shortest (u, v)-path in G. We also
say u and v are dG(u, v) hops apart. By ωG : E → N we denote a graph's weight function and
by ωG(e) the weight of an edge inG. By ωG(u, v) := min{P |P is (u,v)-path in G}

∑
edges e in P ωG(e)

we de�ne the weighted distance between two nodes u and v, that is the weight of a shortest
weighted path in a graph G connecting u and v4.

The time-bounds of our algorithms as well as those of previous algorithms depend on the
diameter of a graph. We also use the eccentricity of a node.

De�nition 2.2 (Eccentricity, diameter). The weighted eccentricity eccωG (u) in G of a node u
is the largest weighted distance to any other node in the G, i.e. eccωG (u) := maxv∈V ωG (u, v).
The weighted diameter Dω (G) := maxu∈V eccωG(u) := maxu,v∈V ωG (u, v) of a graph G is the
maximum weighted distance between any two nodes of the graph. The unweighted diameter
(or hop diameter) Dh (G) := maxu,v∈V min{P |P is (u,v)-path} |P | of a graph G is the maximum
number of hops between any two nodes of the graph. Here |P | indicates the number of edges
on path P .

We often write Dω and Dh instead of Dω(G) and Dh(G) when we refer to the diameter of
a graph G in context. Observe that Dh = Dω for unweighted graphs.

Finally, we de�ne the problems that we study.

De�nition 2.3 (S-Minimum Routing Cost Tree (S-MRCT)). Let S be a subset of the vertices
V in G. The S-routing cost of a subgraph H is de�ned as RCS (H) :=

∑
u,v∈S ωH (u, v) and

denotes the routing cost of H with respect to S. An S-MRCT is a subgraph T of G that is a
tree, contains all nodes S and has minimum S-routing cost RCS (T ) among all spanning trees
of T .

4Note that in the context of MRCT, ω often corresponds to the cost of an edge. In the literature the
routing cost between any node u and v in a given spanning tree T of G is usually denoted by cT (u, v), while
in generalized versions of MRCT, the weight of an edge can be di�erent from the cost. In this paper we use
ωT (u, v) = cT (u, v).
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This is a generalization of the MRCT problem [26]. According to this de�nition V -MRCT
(i.e. S = V ) and MRCT of [26] are equivalent. Therefore all results are valid for the classical
MRCT problem when choosing S := V .

In this paper we consider approximation algorithms for these problems. Given an opti-
mization problem P , denote by OPT the cost of the optimal solution for P and by SOLA
the cost of the solution of an algorithm A for P . We say A is ρ-approximative for P if
OPT ≤ SOLA ≤ ρ ·OPT for any input.

Fact 2.4. The eccentricity of any node is a good approximation of the diameter. For any node
u ∈ V we know that eccωG (u) ≤ Dω (G) ≤ 2 · eccωG (u).

3 Our Results

In Section 8 we prove the following two theorems.

Theorem 3.1. In the CONGEST model, the deterministic algorithm proposed in Section 8
needs time O (|S|+Dω) to compute a (2− 2/|S|)-approximation for S-MRCT when using
either uniform weights for all edges or a weight function ω(e) that re�ects the delay/edge
traversal time of edge e.

Theorem 3.2. Let α(n,Dω) be some function in n and Dω. The randomized algorithm pro-

posed in Section 8 computes w.h.p. a
(

2− 2
|S| + min

{
logn
Dω

, α(n,Dω)
})

-approximation for S-

MRCT in the CONGEST model in time O
(
Dω + logn

α(n,Dω)

)
when using either uniform weights

for all edges or a weight function ω(e) that re�ects the delay/edge traversal time of edge e.

We emphasize that the analysis of [24] yields a 2-approximation when compared to the
routing cost in the original graph5 and that we modify this analysis.

4 Related Work

Minimum Routing Cost Trees are also known as uniform Minimum Communication Cost
Spanning Trees [20, 21] and shortest Total Path Length Spanning Trees [25]. Furthermore
the MRCT problem is a special case of the Optimal Network Problem, �rst studied in the
1960s by [22] and later by [8]. In [24] Wong presented heuristics and approximations to the
Optimal Network Problem with a restriction that makes the problem similar to the MRCT
problem and obtained a 2-approximation. In [16] it is shown that this restricted version, which
Wong studied on unweighted graphs, is NP-hard as well. It seems that earlier the authors
of [15] formulated a similar problem under the name �Optimum communication spanning
tree" where in addition to costs on edges, we are given a requirement-value ru,v for each pair
of vertices that needs to be taken into account when computing the routing cost. In this
setting one wants to �nd a tree T such that

∑
u,v∈V ru,vdT (u, v) is minimized. In [26] it is

5Note that most other approximation algorithms are with respect to the routing cost of a minimal routing
cost tree of the graph. In Section 9 we provide an example that shows that sometimes even no subgraph with
o(n2) edges exists that yields better approximations to the routing cost in the original graph than the trees
presented here. From this we conclude that algorithms that compare their result only to the routing cost of
the minimum routing cost tree do not always yield better results than those presented here.
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argued that for metric graphs, the results by [2, 3, 6] yield a O(log n log logn)-approximation
to this problem. Using a result presented in [10], this can be improved to be an O(log n)-
approximation. In [17] it is shown how to implement this result in a distributed setting. They
state their result depending on the shortest path diameter Dsp(G) := maxu,v∈V {|P | |P is a
shortest weighted (u, v)-path} of a graph. This diameter represents the maximum number of
hops of any shortest weighted path between any two nodes of the graph. The authors of [17]
obtain a randomized approximation of the MRCT with expected approximation-ratio O(log n)
in time O

(
Dsp · log2 (n)

)
. Observe that this might be only a O(n log2 n)-approximation even

in a graph with Dh = 1 and Dsp = n−1, such as a clique where all edges have weight n except
n− 1 edges of weight 1 forming a line as a subgraph.6 In our distributed setting we know that
it is hard to approximate an MRCT due to Theorem 4.1.

Theorem 4.1 (Version of Theorem 5.1. of [7]). For any polynomial function α (n), numbers
p, B ≥ 1, and n ∈ {22p+1pB, 32p+1pB, . . .}, there exists a constant ε > 0 such that in the
CONGEST model any distributed α(n)-approximation algorithm for the MRCT problem whose

error probability is smaller than ε requires Ω

((
n
pB

) 1
2
− 1

2(2p+1)

)
time on some Θ (n)-vertex

graph of diameter 2p+ 2.

For certain realistic weight-functions our randomized algorithm breaks this Ω(
√
n + D)-

time lower bound. This is no contradiction, as the construction of [7] heavily relies on being
able to choose highly di�erent weights, which might not always appear in practice: in current
LAN/PAN networks, weights (delays) usually di�er only by a small factor. In case the weights
are indeed the delay-times, the runtime of our algorithm just depends on the maximal delay
that occurs between any two nodes in the network. Observe that also the runtime of the
algorithm of [17] stated for arbitrary weight functions does not contradict this approximation
lower bound. The algorithm's runtime depends on the shortest path diameter Dsp, which is
Θ(
√
n + D) in the worst case graphs provided in [7]. Finally we want to point out that for

weighted graphs it might be possible to combine the recent result of [18] with the techniques
developed in this paper. This might improve over the approximation factor of [17] for weighted
graphs while getting a better runtime in some cases.

Related work in the non-distributed setting includes [26], where a PTAS to �nd the MRCT
of a weighted undirected graph is presented. It is shown how to compute a (1 + 2/(k + 1))-
approximation for any k ≥ 1 in time O

(
n2k
)
.

Already for k ≥ 2, the PTAS of [26] yields a time bound of O(n4) and we cannot expect to
obtain a distributed algorithm running in time o(n2) since we can only hope for a distributed
speedup by at most n+m. Setting k = 1 yields a 2-approximation in (sequential) time O(n2)
and we could hope at most to obtain a distributed runtime of O(n2/(n+m)) from this. While
one could try to transform this algorithm into our distributed setting, our algorithm based
on [24] is simpler and yields the same approximation ratio of 2. In addition we derive a fast
randomized version from this.

Further related work on parallel approximations for MRCT in RNC circuits was published
in [5]. Here, RNC abbreviates the complexity class Randomized Nick's Class, which consists
of all decision problems decidable by uniform Boolean circuits with a polynomial number of
gates of at most two inputs and depth O(log n). Wu considered in [27] the version of MRCT,

6According to [26] it is NP-hard to �nd an MRCT in a clique.



6

where one is only interested in minimizing the routing cost from two source vertices to all
nodes in the network and is hence denoted by 2-MRCT. He does this in a non-distributed
setting and proves NP-hardness. He also presents a polynomial time approximation scheme
(PTAS) for this version of the problem. Note that the 2-MRCT problem is di�erent from the
special case of the S-MRCT problem with |S| = 2, where only a tree that connects nodes in
S should be found. Recent speedups on exact solutions and heuristics for the MRCT problem
can be found in [4, 11].

There is also a large body of work on Low Stretch Spanning Trees [1, 9, 20]. The
stretch for an edge (u, v) in E using spanning tree T of G is de�ned to be stretchT (u, v) :=
ωT (u, v)/ωG(u, v) and the average stretch is avestr(G,T ) := 1

|E|
∑

(u,v)∈E stretchT (u, v). A
tree with maximum stretch α yields an α-approximation to the routing cost in G. However,
the maximal stretch can be high and thus in general does not yield better bounds on the
routing cost than the trees presented here. Still, algorithms that yield good bounds on the
average stretch are known � O(log2 n log logn) can be achieved and was lower bounded by
Ω(log n) in [9]. Average stretch and routing cost quality are unrelated.

5 Trees that 2-Approximate the Routing Cost

The main structure we need in this section are shortest path trees:

De�nition 5.1 (Shortest path tree). A shortest path tree (SP-tree) rooted in a node v, is a
tree that connects any node u to the root v by a shortest path in G. In unweighted graphs, this
is simply a breadth �rst-search tree.

Previously it was known due to Wong [24], Theorem 3, that there is an SP-tree, which
2-approximates the routing cost of an MRCT. We restate this result by using an insight stated
in Wong's analysis such that this tree not only 2-approximates the routing cost RCV (T ) of an
MRCT T of G (which is a V -MRCT) as Wong stated it, but even yields a 2-approximation of
the routing cost RCV (G) when using shortest paths in the network G itself. Thus, on average
the distances between two pairs in the tree are only a factor 2 worse than the distances in G.

The algorithm that corresponds to Wong's analysis computes and evaluates n SP-trees,
one for each node in V . We show, that for the S-MRCT problem it is su�cient to consider
only those shortest path trees rooted in nodes of S. At the same time, a slightly more careful
analysis yields a slightly improved approximation factor of 2 − 2/|S|, which is of interest for
small sets S. Before we start, we de�ne a useful measure for the analysis.

De�nition 5.2 (Single source routing cost). By SSRCS (v) :=
∑

u∈S ωG (v, u) we denote the
sum of the single source routing costs from node v to every other node in S by using edges in
G.

Note that for simplicity we de�ned an SP-tree to contain all nodes of V . However, one
could also consider the subtree where all leaves are nodes in S. The measures RCS and SSRCS
would not change, as any additional edges are never used by any shortest paths and thus do
not contribute to the S-routing cost of the tree. Such a tree can easily be obtained from the
tree we compute.

Theorem 5.3. Let |S| be at least 2. In weighted graphs, the SP-tree Tv rooted in a node v with
minimal single source routing cost SSRCS(v) = minu∈S SSRCS(u) over all SP-trees rooted in
nodes of S is a (2− 2/|S|)-approximation to the S-routing cost RCS(G) in G.
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Corollary 5.4. In weighted graphs, an SP-tree with minimum routing cost over all SP-trees
rooted in nodes of S is a (2− 2/|S|)-approximation to an S-MRCT.

The proof of this theorem uses and modi�es the ideas of the proof of Theorem 3 in [24].
The following proof is an adapted version of this proof.

Proof. Let v be the node for which the SP-tree Tv has minimal single source routing cost with
respect to S among all SP-trees, that is v := argminv∈V SSRCS (v).

The cost of connecting a node u 6= v to all other nodes in S using edges in Tv is upper
bounded by (|S| − 2) ·ωG (v, u)+SSRCS (v). This essentially describes the cost of connecting
u to each other node by a path via the root v and using edges in Tv. Therefore the total
routing cost RCS (Tv) for S using the network Tv can be bounded by

RCS (Tv) ≤ SSRCS (v) +
∑

v 6=u∈S
((|S| − 2) · ωG (v, u) + SSRCS (v)) .

As |S| ≥ 2, this can be further transformed and bounded to be

= |S| · SSRCS (v) + (|S| − 2)
∑
u∈S

ωG (v, u)

= |S| · SSRCS (v) + (|S| − 2) · SSRCS (v)

= (2− 2/|S|) · |S| · SSRCS (v)

≤ (2− 2/|S|) ·
∑
u∈S

SSRCS (u) .

Where the last bound follows, as SSRCS (v) is minimal among all SSRC(u) for u ∈ S. Since∑
u∈V SSRCS (u) is the same as RCS (G), we obtain that RCS (Tv) ≤ 2RCS (G).

6 Considering few Randomly Chosen SP-Trees is Almost as

Good

We show that when investigating a small subset of all SP-trees chosen uniformly at random,
with high probability one of these trees is a good approximation as well.

Lemma 6.1. Let β(n,D) be a positive function in n and D and de�ne γ :=
⌈
2−2/|S|
β(n,D)

⌉
+ 1.

Assume S ⊆ V is of size at least γ lnn. Let S′ in turn be a subset of S chosen uniformly at
random among all subsets of S of size γ lnn. Let v ∈ S′ be a node such that SSRCS(v) =
minu∈S′ SSRCS(u). Then RCS(Tv) ≤ (2− 2/|S|+ β(n,D))RCS(G).

Proof. For simplicity, without loss of generality we assume that |S| is a multiple of γ. Denote
by v1, . . . , v|S| the nodes in S such that SSRCS(v1) ≤ SSRCS(v2) ≤ · · · ≤ SSRCS(v|S|).
That is they are ordered corresponding to their single source routing costs. We say a node v
is good, if the corresponding SP-tree Tv is among the 1/γ-fraction of the SP-trees with lowest
single source routing cost7 . Therefore v is good if SSRCS(v) ≤ SSRCS(v|S|/γ) with respect
to the above order of the trees.

7Due to the choice of γ :=
⌈

2−2/|S|
β(n,D)

⌉
+ 1 a good tree is among the nβ(n,D) cheapest trees.
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First we prove that w.h.p. set S′ contains a good node. Second we prove, that the
corresponding SP-tree yields the desired approximation ratio.

1) Probability analysis: We know that Prv∈S [v is good] = 1/γ. Furthermore each node
v ∈ S is included in set S′ independent of the other nodes. Therefore we can conclude that the

probability that at least one of the nodes v in S′ is good is 1−
(

1− 1
γ

)|S′|
= 1−

(
1− 1

γ

)γ lnn
>

1− 1/n and thus high.
2) Approximation-ratio analysis: Let vi be a good node. As in the proof of Theorem 5.3

we know that RCS(Tvi) ≤ (2− 2/|S|) · |S| · SSRCS(vi)..As RCS(G) =
∑

u∈S SSRCS(u) and
vi is good, we can conclude that SSRCS(vi) ≤ 1

(1−1/γ)·|S| · RCS(G) as there are at most

(1 − 1/γ)|S| nodes vj with SSRCS(vj) ≥ SSRCS(vi). Equality is approached in the worst
case, where j := |S|/γ and SSRCS(vj) = 0 for each j < i and SSRCS(vi) = SSRCS(vj) for
all j ≥ i.

Combined with Bound (6) it follows that RCS(Tvi) ≤
2−2/|S|
1−1/γ ·RCS(G). Due to the choice

of γ we conclude the statement of the Lemma.

7 How to Compute the Routing Cost of many SP-trees in Par-

allel

In Theorem 5.3 (and Lemma 6.1) we demonstrated that an SP-tree Tv with minimum single
source routing cost yields a 2-approximation for RCS(G). The single source routing cost of
a tree can be computed by computing distances between the root of a tree and nodes in S.
However, instead of �nding an SP-tree with smallest single source routing cost the literature
usually considers �nding an SP-tree with smallest routing cost. This is done e.g. in [24]. The
reason for this is that the bound in the proof of Lemma 5.3 is not sharp when using the single
source routing cost. To see this, we recall that while obtaining the bound, one approximates
the distance between two nodes in the tree by adding up their distance to the root. Thus the
bound considers the single source routing cost of an SP-tree. Compared to this, the routing
cost takes the actual distance of the two nodes in an SP-tree into account. An explicit example
for a graph that contains a node u such that RCS(Tu) < RCS(Tv), where Tv has minimum
single source routing cost is given in Example 7.1. Like in [24] we focus on this more powerful
version of �nding a tree of small routing cost.

Example 7.1. Consider the graph G in Figure 1. The tree Tu has smallest single source
routing cost SSRCV (Tu) = 5. At the same time the tree Tv has single source routing cost
SSRCV (Tv) = 7, while its routing cost RCV (Tv) = 32 is lower than the routing cost RCV (Tu) =
36 of Tu. Note that the actual routing cost in G is RCV (G) = 27.

Lemma 7.2. Let S := {v1, . . . , v|S|} be a subset8 S ⊆ V of all nodes of a graph. Then we can
compute the values RCS(Tv1), . . . , RCS(Tv|S|) in time O(Dω + |S|) when using either uniform
weights for all edges or a weight function implied by the delay/edge traversal time.

The proof of this lemma can be found at the end of this section. First, we describe our
algorithm that is used to prove this lemma. In Part 1 of this algorithm we start by computing

8Note that S used here can be e.g. S as in Section 5 or the smaller set S′ as in Section 6.
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u v

u

v

G

Tu

Tv

Figure 1: Unweighted graph G with distinguished vertices u and v as well as SP-trees Tu and
Tv corresponding to Example 7.1.

SP-trees Tv for each v ∈ S. A pseudocode for this algorithm can be found as Algorithm 7.1.
Part 2 deals with computing the routing cost of a single tree and is described later in this
section.

We start by noting that for the weight functions we consider an SP-tree is just a Breath
First Search tree (BFS-tree). This part is essentially the same as in the S-SP algorithm of [14]
extended to edge-weights derived from the delays to send a message. We also store some
additional data that is used later in Algorithm 7.2 to compute routing costs but was not
needed for the S-SP computation in [14]. In Algorithm 7.2, for each node v ∈ S an SP-tree
Tv is constructed using what we call delayed breadth �rst search (DBFS). By DBFS we think
of a breadth �rst search, where traversing edge (u, u′) takes ωG(u, u′) time slots. In the end
each node u in the graph knows ωG (u, v). In addition each node u knows for each v ∈ S its
parent in the corresponding tree Tv. Furthermore node u knows at what time the DBFS, that
computed Tv, sent its message to u via u's parent. During Algorithm 7.2, these timestamps
are used to compute the routing cost of all these trees in time O (|S|+Dω).

Algorithm 7.1 Computing SSRCS(v) for each v ∈ S Part 1 (executed by node u)

1: L := ∅; ωu := {0, 0, . . . , 0}; Ldelay := ∅;
2: τ := {∞,∞, . . . ,∞} // **new**
3: if u ∈ S then

4: L := {u};
5: ωu (u) := 0;
6: τ (u) := 0; // **new**
7: end if

8: L1, . . . , Lδ(u) := L;
9: if u equals 1 then

10: compute D′ω := ecc(u); //** According to Fact 2.4, Dω is smaller than 2 ·D′ω.
11: broadcast D′ω;
12: else

13: wait until D′ω was received;
14: end if
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15: //** Compute S shortest path trees
16: for t = 1, . . . , |S|+ 2 ·D′ω do

17: for i = 1, . . . , δ (u) do

18: (li, ωi) :=


⊥ : if Li \ ∩Ldelay = ∅

arg min {v ∈ Li \ Ldelay|
τ [v] + ωG(u, v) ≥ t} : else

19: end for

20: within one time slot:
if l1 6= ⊥ then send (l1, ωu[l1] + ωG (u, u1)) to neighbor u1;
receive (r1, ω1) from u1;
if l2 6= ⊥ then send (l2, ωu[l2] + ωG (u, u2)) to neighbor u2;
receive (r2, ω2) from u2;
...
if lδ(u) 6= ⊥ then send

(
lδ(u), ωu[lδ(u)] + ωG

(
u, lδ(u)

))
to neighbor uδ(u);

receive
(
rδ(u), ωδ(u)

)
from uδ(u);

21: R := {ri|ri < li and i ∈ 1 . . . δ(u)} \ L

22: s :=

{
∞ if Ldelay = ∅
min(Ldelay) else

23: if s ≤ min(R) and s <∞ then

24: Ldelay := Ldelay \ {s};
25: end if

26: for i = 1, . . . , δ (u) do
27: if ri < li then
28: //** Tli 's message is delayed due to Tri .
29: if ri /∈ L then

30: τ [ri] := t; // **new**
31: ωu[ri] = ωi;
32: L := L ∪ {ri}, L1 := L1 ∪ {ri}, L2 := L2 ∪ {ri},

. . . Li−1 := Li−1 ∪ {ri}, Li+1 := Li+1 ∪ {ri}, . . . Lδ(u) := Lδ(u) ∪ {ri};
33: if min(R) < ri or s < ri then
34: Ldelay = Ldelay ∪ {ri}
35: end if

36: parent_in_Tri := neighbor i;
37: end if

38: else

39: Li := Li \ {li}; //** Tli 's message was successfully sent to neighbor i.
40: end if

41: end for

42: end for
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Remark 7.3. Compared to Algorithm S-SP presented in [14] we added Lines 2, 6 and 26 in
Algorithm 7.1 and extended the algorithm to certain delay functions as mentioned above (the
proof in [14] can be naturally extended to those.) By doing so, we can store in τ [v] the time when
a message of the computation of tree Tv was received the �rst time (via edge parent_in_Tv).
In the end, ωu[v] stores the distance ωG (v, u) to v and parent_in_Tv indicates the �rst edge
of a (u, v)-path witnessing this.

Despite its similarity to algorithm S-SP in [14], we describe Algorithm 7.1 in more detail
for completeness. For the simplicity of the writeup, we refer to u not only as a node, we use u
to refer to u's ID as well. Each node u stores δ (u) sets Li, one for each of the δ (u) neighbors
u1, . . . , uδ(u) of u, and the sets L and Ldelay to keep track of which messages were received,
transmitted or need to be delayed. At the beginning, if u ∈ S, all these sets contain just u,
else they are empty (Lines 1�7). Set Ldelay is always initialized to be empty. Furthermore u
maintains an array ωu that eventually stores at position v (indicated by ωu[v]) the distance
ωG (u, v) to node v. Initially ωu[v] is set to in�nity for all v and is updated as soon as the
distance is known (Line 27). In each node u, array τ stores at position v the time when a
message of the computation of tree Tv was received the �rst time in u. At any time, set L
contains all node IDs corresponding to the tree computations (where each node with a stored
ID is the root initiating the computation of such a tree) that already reached u until now.
The set Ldelay contains all root IDs that reached v until time t but are marked to be delayed
before forwarded. This ensures that we indeed compute BFS-trees.

Set Li contains all IDs of L except those that could be forwarded successfully to neighbor
ui in the past. We say an ID li is forwarded successfully to neighbor ui, if ui is not sending a
smaller ID ri to u at the same time.

To compute the trees in Algorithm 7.1, the unique node with ID 1 computes D′ω and thus
a 2-approximation to the distance-diameter Dω. This value is subsequently broadcast to the
network (Lines 8�12). Then the computation of the |S| trees starts and runs for |S| + 2D′ω
time steps. Lines 14�17 make sure that at any time the smallest ID, that is not marked to
be delayed and was not already forwarded successfully to neighbor ui is sent to ui together
with the length of the shortest (v, ui)-path that contains u. In Line 18 we de�ne the set R
of all IDs that are received successfully in this time slot for the �rst time. This set is then
used to decide whether to remove an ID s from Ldelay in Lines 20 and 21, since all IDs that
cause a delay to s are transmitted successfully by now. ID s is computed in Line 20. ID s is
the smallest element of Ldelay and is removed from Ldelay if no other ID smaller than s was
received successfully for the �rst time in this timeslot.

If a node ID ri was received successful for the �rst time (veri�ed in Lines 23 and 25), we
update τ [ri] and ωu[ri], add ri to the according lists (Lines 28�30) and remember who u's
parent is in Tri (Line 31). In case the ID v was received the �rst time from several neighbors,
the algorithm as we stated it chooses the edge with lowest index i. On the other hand if we
did not successfully receive a message from neighbor ui but sent successfully a message to
neighbor ui, the transmitted ID is removed from Li (Line 33).

Lemma 7.4. Algorithm 7.1 computes an SP-tree Tv for each v ∈ S in time O(|S|+Dω).

Proof. This is essentially Theorem 6.1. in [13] stated for Algorithm 7.1 instead of Algorithm S-
SP of [13]. Those parts of the two algorithms which contribute to the runtime and correctness
are equivalent.
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Now Part 2 of our algorithm calculates the routing cost of each tree Tv in parallel in time
O(Dω + |S|). A pseudocode of this algorithm is stated in Algorithm 7.2.

To compute the routing cost of a tree, we look at each edge e in each tree Tv and compute
the number of (v, w)-paths in Tv that contain the edge e, for v, w ∈ S. The sum of these
numbers for each edge in a tree is the tree's routing cost. Given a tree T , for each edge e in T ,
the edge partitions the tree into two trees (when e was removed). To be more precise, denote
by we, w

′
e the two vertices to which e is incident. Edge e partitions the vertices of T into two

subsets, which we call Z1
e and Z2

e de�ned by:

Z1
e (T ) := {w ∈ S|e is contained in the unique (we, w)-path in T}

Z2
e (T ) := {w ∈ S|e is contained in the unique (w′e, w)-path in T}

Example 7.5 visualizes this de�nition. We observe that edge e occurs in all |Z2
e (T ) | paths

from any node v ∈ Z1
e (T ) to any node w ∈ Z2

e (T ). Note that the total number of paths in
which e occurs is |Z1

e (T ) | · |Z2
e (T ) |. This fact is later used to compute RCS (T ).

Algorithm 7.2 Computing RCS(Tv) for each v ∈ S alternative Part 2 (executed by node u)

1: rcS := {∞, . . . ,∞}; //** is updated during the runtime of the algorithm.
2: if u ∈ S then

3: z := {1, . . . , 1}; //** is updated during the runtime of the algorithm.
4: else

5: z := {0, . . . , 0};
6: end if

7: for t = 1, . . . , |S|+ 2D′ω do

8: within one time slot:
For each v ∈ L such that t = |S|+ 2 ·D′ω − τ [v] send (v, rcS [v], z[v]) to
parent_in_Tv;
receive (v1, r1, z1) from neighbor u1; //** r1 equals rcS (Tv1 , u1),

//** z1 equals Z
1
(u,u1)

(Tv1)

receive (v2, r2, z2) from neighbor u2; //** r2 equals rcS (Tv2 , u2),
//** z2 equals Z

1
(u,u2)

(Tv2)

...
receive

(
vδ(u), rδ(u), zδ(u)

)
from uδ(u); //** rδ(u) equals rcS

(
Tvδ(u) , uδ(u)

)
,

//** zδ(u) equals Z
1
(u,uδ(u))

(
Tvδ(u)

)
9: for i = 1, . . . , δ (u) do
10: if vi 6= ⊥ then

11: rcS [vi] := rcS [vi] + ri + 2ωG (u, v) · zi · (|S| − zi);
12: z[v] := z[v] + zi;
13: end if

14: end for

15: end for

16: //** Now rcS [u] equals RCS (Tu) in case that u ∈ S. Else it is∞ and was never modi�ed.
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Example 7.5. In Figure 2 we consider a graph G and edge e = (ue, u
′
e) and assume v and

ue are elements of S. Then Z2
e (T ) = {ue, v} and Z1

e (T ) = S\Z2
e (T ). Edge e is part of all

|S| − 2 paths from v to a node u ∈ Z1
e (T ) and also on all |S| − 2 paths from ue to all nodes

u ∈ Z1
e (T ). Thus in total e occurs in |Z1

e (T ) | · |Z2
e (T ) | = (|S| − 2) · 2 paths.

v

ue

e

Z2
e

Z1
e

u′
e

Figure 2: Example of vertex sets Z1
e (T ) and Z2

e (T ) in a graph.

Lemma 7.6. For a tree T , the routing cost RCS(T ) can be restated as RCS(T ) = 2 ·∑
e∈T |Z1

e (T )| · |Z2
e (T )| · ωG(e).

Proof. We de�ne a function δ indicating whether an edge is part of the unique path between
two nodes in T .

δv,w(e) :=

{
1 : e is on the unique path from v to w in T,

0 : otherwise.

and restate

RCS(T ) =
∑
v,w∈S

ωT (v, w) =
∑
v,w∈S

∑
e∈Pv,w

ωG(e) =
∑
v,w∈S

∑
e∈T

δv,w(e) · ωG(e)

=
∑
e∈T

ωG(e) ·
∑
v,w∈S

δv,w(e)

 = 2 ·
∑
e∈T

ωG(e) · |Z1
e (T )| · |Z2

e (T )|

Where we use in the last transformation the fact that
∑

v,w∈S δv,w(e) is the total number

of (v, w)-paths which contain the edge e, which can be expressed as |Z1
e (T )| · |Z2

e (T )| as noted
in the text before Example 7.5.

To formulate the de�nition of RCS(T ) in this way helps us to argue that we can compute
RCS(T ) recursively in a bottom-up fashion for any T . To do so, we consider trees to be
oriented such that we use the notion of child/parent.

De�nition 7.7 (Subtree, partial routing cost). Given a tree T , for each node u in an oriented
tree T , we de�ne T |u to be the subtree of T rooted in u containing all descendants of u in T .
Denote by Vv the vertices in T |v. Given node u, denote by rcS (T, u) the part of the routing cost
RCS (T ) that is due to the edges in T |u. We de�ne rcS(T, u) in a recusive way. In case that
T |u consists of only one node, T |u contains no edges that could contribute to rcS (T, u) and we
set rcS (T, u) := 0. In case that T |u contains more than one node, we denote the children of

u in T by u1, . . . , uδ(u)−1 and de�ne rcS (T, u) :=
∑δ(u)−1

i=1 rcS (T, ui) + 2 ·
∑δ(u)−1

i=1 ωG (u, ui) ·
|Z1

(u,ui)
(T ) | · |Z2

(u,ui)
(T ) |.



14

Note that rcS(T, u) is a measure with respect to the routing cost in T and thus di�erent
from RCS(T |u). Besides RCS(T |u) being unde�ned when T |u does not contain all nodes in
S, RCS(T |u) would take only routing cost within T |u into account.

We now formally prove that rcS (T, u) essentially describes the contribution of edges in
subtree T |u to the total routing cost and conclude:

Lemma 7.8. Let T be a tree rooted in node r. Then RCS(T ) = rcS(T, r).

Proof. We know due to Lemma 7.6 that

rcS(T, u) = 2 ·
∑
e∈T |u

ωG (e) · |Z1
e (T ) | · |Z2

e (T ) |.

Observe that T |u consists of the subtrees T |u1 , . . . , T |uδ(u)−1
induced by u's children and the

edges (u, u1) , . . . ,
(
u, uδ(u)−1

)
. Thus we can split the above term to be

=

δ(u)−1∑
i=1

2 ·
∑
e∈T |ui

ωG (e) · |Z1
e (T ) | · |Z2

e (T ) |+ 2 ·
δ(u)−1∑
i=1

ωG (u, ui) · |Z1
(u,ui)

(T ) | · |Z2
(u,ui)

(T ) |

which in turn is

δ(u)−1∑
i=1

rcS (T, ui) + 2 ·
δ(u)−1∑
i=1

ωG (u, ui) · |Z1
(u,ui)

(T ) | · |Z2
(u,ui)

(T ) |

Using this insight we are able to compute RCS (Tv) for all v ∈ S in parallel recursively
in a bottom-up fashion. This is by computing rcS (Tv, u) for each u based on aggregating
rcS (Tv, uj) for each of u's children. For each v ∈ S these computations of RCS (Tv) run
in parallel. A schedule on how to do these bottom-up computations in time O (|S|+Dω) is
provided by using the inverted entries of τ .

In more detail each node u computes for each v ∈ S the costs rcS(Tv, u) (stored in rcS [v])
of its subtree of Tv as well as the number of nodes in Tv|u (stored in z[v] and sends this
information to its parent in Tv. When we computed Tv in Algorithm 7.1, we connected u via
edge parent_in_Tv to Tv at time τ [v]. To avoid congestion we send information from u to its
parent in Tv only at time t = |S|+ 2D′ω − τ [v] (Line 7). Note that this schedule di�ers from
the one that is implied by the computation of the trees in the sense that now only edges in the
tree are used, while more edges were scheduled while building the trees. The edges used now
in time slot t = |S|+ 2D′ω − τ [v] are a subset of those scheduled at time t = |S|+ 2D′ω − τ [v]
while constructing the trees, such that there is no congestion from this modi�cation.

At the same time as u sends, u receives messages from its neighbors. E.g. neighbor ui
might send rcS(Tv′ , ui) and Z

1
(u,ui)

(Tv′) for another node v
′. In Lines 8 − 11 node u updates

its memory depending on the received values. In the end the node with ID 1 computes
v := argminv∈V RCS (Tv) via aggregation using T1. Node 1 informs the network that tree Tv
is a 2-approximation to an S-MRCT.

Theorem 7.9. The algorithm presented in this section computes all |S| values RCS(Tv) for
each node v ∈ S in time O(|S|+Dω).
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Proof. Runtime: The construction of the |S| trees in Algorithm 7.1 takes at mostO (|S|+Dω)
rounds as stated in Lemma 7.4. To forward/compute the costs from the leaves to the roots
v ∈ S in Algorithm 7.2 takes |S|+2D′ω since we just use the schedule τ of this length computed
in Algorithm 7.1. Thus the total time used is O (|S|+Dω).

Correctness: We consider time slot |S|+ 2D′ω − τ [v]. If u is a leaf of Tv, it sends (v, 0, 1)
to its parent in Tv in case u ∈ S, else it sends (v, 0, 0), which is correct. In case u is not a
leaf, each child ui has sent rcS (Tv, ui) (stored in ri) as well as Z

1
(u,ui)

(Tv) (stored in zi) to

u at an earlier point in time. This is true as time-stamp τ [v] stored in ui is always larger
than time-stamp τ [v] stored in u, as ui is a child of u. Each time u received some of these
values from its children in Tv, it updated its memory according to Lemma 7.8 (Lines 8− 11 of
Algorithm 7.2), leading to sending the correct values rcS (Tv, u) and Z1

(parent_in_Tv ,u)
(Tv) to

its parent in Tv at time |S|+ 2D′ω − τ [v]. Thus in any case u sends the correct values.
We conclude that each node v ∈ S has computed rcS(Tv, v) = RCS(Tv) after Algorithm 7.2

has �nished.

8 Proofs of Main Results

We put the tools of the previous sections together and prove the Theorems of Section 1.

Proof. (of Theorem 3.1). First, Algorithms 7.1 and 7.2 are used to compute RCS(v) for each
v ∈ S. For each such node v, the value RCS(v) is stored in node v itself. A leader node (e.g.
with lowest ID, which can be found in time O(Dω)) computes u := argminv∈V RCS(v) via
aggregation using Tl, where l is the leader node. As stated in Theorem 5.3 the tree Tu is a
(2− 2/|S|)-approximation of a S-MRCT. The leader node informs the network that tree Tu
is a (2− 2/|S|)-approximation to an S-MRCT. The runtime follows from Lemma 7.2 and the
fact, that to determine u by aggregating the corresponding minimum and to broadcast u can
be done in time O(Dω).

Proof. (of Theorem 3.2). First we select a subset S′ ⊆ S of the size stated in Lemma 6.1.
Each node joins a set S′′ with probability c · s/n, where s is the (desired) size of S′ stated in
Lemma 6.1 and c a constant depending on a Cherno� bound used now. Using such a Cherno�
Bound, w.h.p. S′′ is of size c · s or some constant c ≥ 1. Now all IDs of nodes in S′′ are sent
to the leader who selects and broadcasts a subset S′ of the desired size among the IDs of S′′.

From now on the algorithm works exactly as in the proof of Theorem 3.1, except that the
algorithm is run on S′ instead of S (it computes and aggregates each RCS(v) for v ∈ S′ instead
of S). As stated in Lemma 6.1, a tree Tu is found that is a (2− 2/|S|+ β(n,D))-approximation
of an S-MRCT. The leader node informs the network that tree Tu is a (2− 2/|S|+ β(n,D))-

approximation to an S-MRCT. Choosing β(n,D) := min
{

logn
D , α(n,D)

}
yields the desired

approximation ratio of 2− 2/|S|+ min
{

logn
D , α(n,D)

}
, as stated in the Theorem.

Runtime analysis: As s =
(⌈

2−2/|S|
β(n,D)

⌉
+ 1
)
· lnn, selecting a set S′′ and deriving S′ can be

done w.h.p. in time

O(D + s) = O
(
D +

(⌈
2− 2/|S|
β(n,D)

⌉
+ 1

)
· lnn

)
= O

(
D +

log n

β(n,D)

)
,
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which is O
(
D + logn

α(n,D)

)
due to the choice of β. The same runtime follows from Lemma 7.2

for computing the single source routing costs for all v ∈ S′. Combined with the fact that the
aggregation and broadcast of u can be done in time O(D), the stated result is obtained.

9 Why 2-Approximations Can't be Improved Cheap

The following example demonstrates a setting where an SP-tree yields a 2-approximation to
the routing cost of the underlying graph G, while no subgraph H with o(n2) edges can yield
a (2 − ε)-approximation, which demonstrates the strength of the tree that is able to provide
a 2-approximation while it has only O(n) edges while .

Example 9.1. Let G be the clique with uniform edge-weights 1. For S := V we obtain that
the routing cost RCS(G) is n(n− 1). Any SP-tree T yields RCV (T ) = (n− 1) + 2(n− 1)(n−
2)+(n−1) = 2(n−1)2: the routing cost between the root r and all other nodes is (n−1). The
routing cost of each of the remaining n−1 nodes v ∈ V \r to the nodes u ∈ V \r, v via paths of
length 2 is 2(n−1)(n−2). The routing costs from nodes v ∈ V \r to r is n−1. Thus RCV (T )
is a factor 2− 2/|S| o� from RCS(G). As all paths between two nodes using edges of T are of
length at most two, the only way to reduce the routing cost by a factor of ε is to carefully add
more than ε(n− 1)2 edges to the tree. Thus the total cost of such an approximation structure
is a factor ε(n− 1) higher than the cost of a tree.
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