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Abstract8

We consider financial networks, where banks are connected by contracts such as debts or credit9

default swaps. We study the clearing problem in these systems: we want to know which banks end10

up in a default, and what portion of their liabilities can these defaulting banks fulfill. We analyze11

these networks in a sequential model where banks announce their default one at a time, and the12

system evolves in a step-by-step manner.13

We first consider the reversible model of these systems, where banks may return from a default. We14

show that the stabilization time in this model can heavily depend on the ordering of announcements.15

However, we also show that there are systems where for any choice of ordering, the process lasts16

for an exponential number of steps before an eventual stabilization. We also show that finding the17

ordering with the smallest (or largest) number of banks ending up in default is an NP-hard problem.18

Furthermore, we prove that defaulting early can be an advantageous strategy for banks in some19

cases, and in general, finding the best time for a default announcement is NP-hard. Finally, we20

discuss how changing some properties of this setting affects the stabilization time of the process,21

and then use these techniques to devise a monotone model of the systems, which ensures that every22

network stabilizes eventually.23
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1 Introduction30

The world’s financial system is a highly complex network where banks and other financial31

institutions are interconnected by various kinds of contracts. These connections create a32

strong interdependence between the banks: if one of them goes bankrupt, then this also33

affects others, causing a cascading effect through the network. Such ripple effects also had34

an important role in the financial crisis of 2008, and hence there is an increasing interest in35

the network-based properties of these systems.36

One fundamental question in these networks is the so-called clearing problem: given37

a network of banks and contracts, we need to decide which of the banks can fulfill their38

payment obligations, and which of the banks cannot, and thus have to report a default. This39

question is of high interest both for financial authorities and for the banks involved.40

With two simple kinds of contracts, one can already build a financial network model41

that captures a wide range of phenomena in real-life financial systems. Previous work has42

mostly focused on the equilibrium states in these models, i.e. the fixed final states where43

the recovery rates of banks are consistent with their current assets and liabilities. However,44

in practice, most events in a financial system happen gradually, one after another: a single45
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57:2 Sequential Defaulting in Financial Networks

bank announces a default, which might prompt another bank to reevaluate its situation, and46

also need to call being in default. This sequential development is an inherent part of the way47

financial networks behave, and as such, it is crucial to understand.48

In particular, there is a range of natural questions that only arise if we study how49

the system develops in a step-by-step fashion. Can we reach every equilibrium state in a50

sequential manner? How does the ordering of default announcements influence the final51

outcome? Is there an optimal strategy of timing the announcements, either from a financial52

authority’s or a single bank’s perspective? How long can the sequential process last, and in53

particular, is it guaranteed to always stabilize eventually?54

In this paper we analyze the development of financial systems in a sequential model,55

where banks update their situation one after another. We first study the reversible model,56

which is a natural sequential setting in such networks. We analyze this model from three57

main perspectives:58

Stabilization time: We show that a system can easily keep running infinitely in this59

model. Moreover, the time of stabilization heavily depends on the ordering of default60

announcements. We also present a more complex system that does stabilize eventually,61

but only after exponentially many steps.62

Globally best solution: We show that finding the ordering which results in the smallest63

(or largest) number of defaulting banks in the final state is NP-hard.64

Defaulting strategies: We study the best defaulting strategy of a single bank, and show65

that surprisingly, a bank may achieve the best outcome by announcing its default as early66

as possible. We also prove that in general, finding the best time to report a default is67

NP-hard.68

Moreover, since the possibly infinite runtime is the most unrealistic aspect of this model,69

we analyze the reasons behind this phenomenon, and we discuss how it can be avoided in70

our sequential model.71

Monotone sequential model: We show that with two minor changes to the setting (a more72

sophisticated update rule and a slightly different handling of defaulting banks), we can73

develop a monotone model variant where the recovery rate of banks can only decrease,74

and the system is always guaranteed to stabilize after quadratically many steps. We also75

compare this setting to the reversible model in terms of defaulting strategies.76

2 Related Work77

The network-based analysis of financial systems has been rapidly gaining attention in the last78

decade. Most studies are based on the early financial network model of Eisenberg and Noe79

[11], which only assumes simple debt contracts between the banks. The propagation of shocks80

has been analyzed in many variants of this base model over the last decade [9, 5, 4, 1, 13, 15];81

in particular, the model has been extended by default costs [20], cross-ownership relations82

[24, 12] or game-theoretic aspects [6].83

However, the common ground in these model variants is that they can only describe long84

positions between the banks: a better outcome for one bank always means a better (or the85

same) outcome for other banks. This already allows us to capture how the default of a single86

bank can cause a ripple effect in the system, but it also ensures that there is always an87

equilibrium which is simultaneously best for all banks [11, 20]. As such, long positions cannot88

represent e.g. the opposing interests of banks in real-world financial systems. In particular,89
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banks in practice often have short positions on each other when a worse situation for one90

bank is more favorable to another bank, mostly due to various kinds of financial derivatives.91

The recent work of Schuldenzucker et. al. [22] presents a more refined model where the92

network also contains credit default swaps (CDSs) besides regular debt contracts. CDSs are93

financial derivatives that essentially allow banks to bet on the default of another bank in the94

system; they have played a dominant role in the financial crisis of 2008 [14], and have been95

thoroughly studied in the financial literature [10, 16]. While CDSs are still a rather simple96

kind of derivative, they already allow us to model short positions in the network; as such,97

their introduction to the system leads to remarkably richer behavior. In our paper, we also98

assume these two kinds of contracts in the network.99

The work of [22, 23] discusses various properties of this new model: they show that100

systems may have multiple solutions (equilibrium states) in this model, and finding a solution101

is PPAD-complete. They also show that with default costs, these systems might not have a102

solution at all, and deciding whether a solution exists becomes NP-hard. The work of [19]103

studies a range of objective functions for selecting the best solution in this model, showing104

that the best equilibrium is not efficiently approximable to a nc factor for any c < 1
4 . The105

work of [18] analyzes the model from a game-theoretical perspective, discussing how the106

removal or modification of contracts can lead to more favorable equilibria for the acting107

banks, and showing that such operations can lead to game-theoretical dilemmas.108

However, all these results only analyze the model in terms of equilibrium states. This109

is indeed important when the market is hit by a large shock, and a central authority has110

to analyze the whole system, identify its equilibria, and possibly select one of them to111

artificially implement. However, apart from these rare occasions, the network mostly evolves112

sequentially, with banks announcing defaults in a step-by-step manner. For an understanding113

of real-world networks, it is also essential to study this gradually developing behavior of the114

process besides the equilibrial outcomes.115

Sequential models of financial networks have already been studied in several papers;116

however, most of them consider some variant of the debt-only model with long positions117

[7, 2]. The paper of [22] notes that sequential clearing in their model would be dependent118

on the order of defaults, but does not investigate this direction any further. At the other119

end of the scale, the work of [3] introduces a very general sequential model (where payment120

obligations can be a function of all banks and all previous time steps), with a specific focus121

on expressing concrete real-world examples in this setting. As such, to our knowledge, there122

is no survey that considers a simple network model with both long and short positions, and123

analyzes the step-by-step development of financial systems in this model.124

Finally, we point out that the clearing problem indeed has a high relevance in practice,125

e.g. when financial authorities conduct stress tests to analyze the sensitivity of real-world126

networks. One concrete example for a study of this problem is the European Central Bank’s127

stress test framework [8].128

3 Model Definition129

3.1 Banks and contracts130

Our financial system model consists of a set of banks (or nodes) B. We denote individual131

banks by u, v or w, and the number of banks by n = |B|. Banks are connected by two kinds132

of contracts that both describe a specific payment obligation from a debtor bank u to a133

creditor bank v. The amount of payment obligation is called the weight of the contract.134

The simpler kind of connection is a simple debt contract, which obliges the debtor u to135

ITCS 2021
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pay a specific amount δ to the creditor v. This liability is unconditional, i.e. u owes this136

amount to v in any case.137

Besides debts, banks can also enter into conditional debt contracts where the payment138

obligation depends on some external event in the system. One of the most frequent forms139

of such a conditional debt is a credit default swap (CDS), which obliges u to pay a specific140

amount to v in case a specific third bank w (the reference entity) is in default. More141

specifically, if w can only fulfill a rw portion of its payment obligations (known as the142

recovery rate of w), then a CDS of weight δ implies a payment obligation of δ · (1− rw) from143

u to v. For simplicity, we assume that all conditional debt contracts are CDSs.144

In practice, CDS contracts can, for example, be used by a bank as an insurance policy145

against the default of its debtors. If v suspects that its debtor w might not be able to fulfill146

its payment obligation, then v can enter into a CDS contract (as creditor) in reference to147

w; if w goes into default and is indeed unable to pay, then v receives some payment on this148

CDS instead. However, banks may also enter into CDSs for other reasons, e.g. speculative149

bets about future developments in the market. As a sanity assumption, we assume that no150

bank can enter into a contract with itself or in reference to itself.151

Besides the contracts between banks, a financial system is described by the amount of152

funds (in financial terms: external assets) owned by each bank, denoted by ev for a specific153

bank v. The external assets and the incoming payments describe the total amount of assets154

available to v, while the outgoing contracts describe the total amount of payment obligations155

of v. If v is not able to fulfill all these obligations from its assets, then we say that v is in156

default. If v is in default, then the fraction of liabilities that v is able to pay is the recovery157

rate of v, denoted by rv. Note that rv ∈ [0, 1], and v is in default if rv < 1. We represent the158

recovery rates of all banks in a recovery rate vector r ∈ [0, 1]B .159

For an example, consider the financial system in Figure 1a with 3 banks. The banks have160

external assets of eu = 2, ev = 1 and ew = 0. Bank u has a debt of weight 2 towards both v161

and w, and there is a CDS of weight 2 from w to v, with u as the reference entity. In this162

network, u has a total payment obligation of 4, but only has assets of 2, so u is in default,163

with a recovery rate of ru = 2
4 = 1

2 . Bank u must use its funds of 2 to pay 1 unit of money164

to both w and v, proportionally to its obligations. Since ru = 1
2 , the CDS from w to v will165

induce a payment obligation of 2 · (1 − ru) = 1. The payment of 1 coming from u allows166

w to fulfill this obligation to v, thus narrowly avoiding default (hence rw = 1). Finally, v167

receives 1 unit from both u and w, has funds of 1 itself, and no payment obligations, so it168

has a positive equity of 3, and rv = 1.169

For convenience, we will use a simplified version of this notation in our figures: we only170

show the weight δ of a contract when δ 6= 1, and we only show the external assets of v171

explicitly if ev 6= 0. We also write ev = ∞ to conveniently indicate that v can pay its172

liabilities in any case.173

We also note that many of our constructions in the paper contain banks that have the174

exact same amount of assets and liabilities, like w in this example. This is a somewhat175

artificial ‘edge case’ that still ensures rw = 1. However, this is only for the sake of simplicity;176

we could avoid these edge cases by providing more assets to the banks in question.177

Finally, we point out that contracts in a real-world financial system are often results of178

an earlier transaction between the banks, i.e. the creditor v previously offering a loan to179

the debtor u. We assume that such earlier payments are implicitly represented in eu, and180

as such, the external assets and the contracts are together sufficient to describe the current181

state of the system.182
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Figure 1 Two example systems on 3 banks. External assets are shown in rectangles besides the
banks. Simple debts are denoted by blue arrows from debtor to creditor, while CDSs are denoted by
light brown arrows from debtor to creditor, with the payment obligation shown beside the arrow.

3.2 Assets, liabilities and equilibria183

We now formally define the liabilities and assets of banks in our systems. Note that due to184

the conditional debts, the payment obligations in a network are always a function of the185

recovery rate vector r.186

Assuming a specific vector r, the liability lu,v of a bank u towards a bank v is defined as187

the sum of payment obligation from u to v on all contracts, i.e.188

lu,v(r) = δu,v +
∑
w∈V

δw
u,v · (1− rw),189

where δu,v is the weight of the simple debt contract from u to v (if this contract exists, and190

0 otherwise), and δw
u,v is the weight of the CDS from u to v in reference to w (if it exists,191

and 0 otherwise). The total liability of u is simply the sum of liabilities to all other banks:192

lu(r) =
∑

v∈V lu,v(r).193

However, the actual payment pu,v from u to v can be less than lu,v if u is in default. If u is194

in default, then it has to spend all of its assets to make payments to creditors. Most financial195

system models assume that in this case, u has to follow the principle of proportionality, i.e.196

it has to make payments proportionally to the corresponding liabilities. This means that if u197

can pay an ru portion of its total liabilities, and it has a liability of lu,v towards v, then the198

payment from u to v is pu,v(r) = ru · lu,v(r).199

On the other hand, we can define the assets of a bank v as the sum of v’s external assets200

and its incoming payments in the network; that is,201

av(r) = ev +
∑
u∈V

pu,v(r).202

If v is in default, then all these assets are used for v’s payment obligations; otherwise, av − lv203

of these assets remain at v. Note that while both av(r) and lv(r) are formally a function of r,204

we often simplify this notation to av and lv when the recovery rate is clear from the context.205

Recall that the recovery rate of v indicates the portion of payment obligations that v is206

able to fulfill. As such, a valid choice of rv requires rv = 1 if we have av ≥ lv, and rv = av

lv
if207

av < lv. For simplicity, let us introduce a separate function R to denote this dependence on208

av and lv; that is, we define the function R : [0,∞)× [0,∞) → [0, 1] as209

R(a, l) =
{

1, if a ≥ l
a
l , otherwise.

210

We say that a vector r ∈ [0, 1]B is an equilibrium (or a clearing vector) of the system211

if for each bank v ∈ B, we have rv = R( av(r), lv(r) ); that is, if the recovery rate vector212

ITCS 2021



57:6 Sequential Defaulting in Financial Networks

is consistent with the assets and liabilities it generates in the network. Previous work has213

mostly focused on the analysis of different equilibrium states. Recall that while it is mostly214

straightforward to find the equilibrium states in our example constructions, the problem is215

PPAD-hard in general [23].216

We have already seen a simple example equilibrium in Figure 1a; for another example217

that is slightly more challenging to compute, let us consider Figure 1b. Here bank u is again218

always able to pay its liabilities, so ru = 1 in any case. Furthermore, neither rv = 1 nor219

rw = 1 can provide an equilibrium in this network, so both v and w must be in default in220

any solution. Thus any equilibrium must have221

rv = av

lv
= 1 + 1− rw

3 and rw = aw

lw
= 3 · rv

2 .222

This implies that the only equilibrium is rv = 4
9 , rw = 2

3 .223

3.3 Sequential models of defaulting224

We have defined the equilibria of the system as the states r that would fulfill the payment225

criteria if every bank were to simultaneously update its recovery rate to r. However, in226

practice, the announcement of defaults usually happens in a sequential manner, due to227

different sources of delay in the system: even if it is clear from av and lv that a bank v is228

only able to fulfill a specific rv portion of its liabilities, this might not be immediately known229

to the creditors of v (due to incomplete information), or the legal framework may first allow230

v to try to obtain further funds before officially having to announce its default. As such, the231

officially announced recovery rate rv might not always equal R(av, lv), and v has to explicitly232

announce the changes in rv in order to make other banks aware of this situation.233

Hence in our sequential model, each step of the process will consist of a single bank234

announcing an update to its recovery rate. That is, given the assets av and liabilities lv235

currently available to v, if the official recovery rate rv does not equal R(av, lv), then bank v236

can (and eventually has to) announce a new official recovery rate of rv := R(av, lv). Since237

this affects both the payments received by the debtors of v and the payment obligations on238

CDSs in reference to v, it can have various effects on the system, providing new assets and239

liabilities to some banks; as a result, these banks may also end up with a higher or lower240

asset/liability balance than their currently announced recovery rate, and thus they will also241

have to execute a new update at some point.242

More formally, we consider discrete time steps t = 0, 1, 2, ... . Each step consists of a243

single bank v announcing an update to rv. That is, if v has assets av
(t−1) and liabilities244

lv
(t−1), but a recovery rate of rv

(t−1) 6= R
(
av

(t−1), lv
(t−1)) at time t− 1, then we say that v is245

updatable at time t− 1. In each time step t, we select a bank v that is updatable at time246

t− 1, and define the state of the system at time t by (i) setting rv
(t) = R

(
av

(t−1), lv
(t−1)) for247

the bank v that executes the update, (ii) setting ru
(t) = ru

(t−1) for every other bank u 6= v,248

and (iii) calculating au
(t) and lu(t) for all u ∈ B based on this new vector r(t).249

We assume that initially, each bank v has rv
(0) = 1, and we compute av

(0) and lv
(0)

250

accordingly. We say that the sequential process stabilizes in round t if there is no updatable251

bank in round t.252

4 Basic Properties253

We begin by discussing some fundamental properties of this sequential setting.254
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4.1 Reversibility and infinite cycling255

One important property of the sequential model is that even if a bank v goes into default,256

it can easily return from this default later. That is, future updates in the system might257

increase the payment obligation on an incoming CDS of v, thus increasing av and possibly258

raising av

lv
above 1 again. This is in line with real-world financial systems, where returning259

from a default is also often possible if a bank acquires new assets. Due to this property, we260

also refer to this setting as the reversible model.261

Note that in practice, defaulting banks are often given a limited amount of time to obtain262

new assets and thus reverse a default; however, our sequential setting does not define an263

explicit timing of defaults (only their order), so such rules are not straightforward to include264

in our model. Nonetheless, we point out that many of our example constructions also work if265

we assume that defaults are only reversible for a specific (constant) number of rounds.266

Another important property is that in a cyclic network topology, our model can easily267

result in an infinite loop of updates. Consider the example in Figure 2, where the default of v268

indirectly provides new assets to v. Since rv = 1 initially, u must first update to ru = 0, and269

as a result, v must update to rv = 0. However, this leads to new liabilities in the network,270

providing assets to both u and (indirectly) to v, so u (and then v) must update its rate back271

to ru = rv = 1. This returns the system to its initial state, where u (and v) will continue by272

updating their recovery rates to 0 again.273

If we keep repeating these few steps, then u and v alternate between ru = rv = 0 and274

ru = rv = 1 endlessly. Note that the system does have an equilibrium in ru = rv = 1
2 ;275

however, instead of converging to this state, the banks keep on periodically repeating the276

same few steps. The possibility of such behavior in a sequential setting has already been277

noted in [22] or [3] before. While this looping behavior is certainly undesired, it follows278

straightforwardly from the reversibility of defaults and the existence of cycles in the network279

topology. As such, these situation could also occur in real-world systems, requiring a financial280

authority to intervene and set the system artificially to its equilibrium.281

4.2 Dependence on the order of updates282

Another key property of the sequential model is that the final outcome becomes dependent283

on the ordering of updates, i.e. whether some banks announce their default earlier or later.284

We show a simple example of this dependence on the branching gadget of Figure 3, which285

has already been used as a building block in the works of [23] and [19]. In this system,286

neither of the two banks u and v have any assets initially, so they are unable to fulfill their287

obligations. However, if u is the first one to report default (updating to a new recovery rate288

of av
(0)/ lv

(0) = 0), then this provides 1 unit of new assets to v, which means that v does not289

default anymore; the system stabilizes with ru = 0, rv = 1. Similarly, if v is the first one to290

execute an update, then this provides new assets to u, and the system stabilizes with ru = 1,291

rv = 0. Thus both banks are strongly motivated to delay their default announcement as long292

as possible, as this might allow them to avoid defaulting entirely.293

We can also note that there are further equilibrium states where both u and v are in294

default, e.g. when ru = 1
2 and rv = 1

2 ; due to its symmetry, one might even argue that295

this is the ‘fair’ equilibrium to implement. However, this equilibrium is not reachable in296

any way through sequential updates; the only possible endstates of the sequential model are297

(ru, rv) = (0, 1) and (ru, rv) = (1, 0) as described above.298

This shows that even in terms of the final outcome, the sequential model can significantly299

differ from the static analysis of the system. This is not due to the presence of fractional300

ITCS 2021
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1−rv
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Figure 2 Example sys-
tem for an infinite loop in
the reversible model.
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rv

1−ru
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∞

Figure 3 Example system
where the outcome depends on
the order of announcements.

1−rv

1−
rv

1−rw

u

v

w

∞

Figure 4 Example of an
equilibrium that is not reach-
able in the sequential model.

recovery rates: we can also easily have equilibria with integer (i.e., 0 or 1) recovery rates that301

is not reachable in a sequential setting. In Figure 4, bank u is the only node who can execute302

an update, which immediately leads to the unique final state ru = 0, rv = rw = 1. However,303

ru = 1 with rv = rw = 0 also forms an equilibrium in this system, so this phenomenon is304

indeed a result of the sequential nature of our model.305

5 Results306

We now move on to a deeper analysis of the model. We mainly focus on the length and307

outcome of the sequential process, and how the ordering of updates affects these properties.308

Since our proofs will require more complex constructions, we switch to a simpler notation309

in our figures: instead of directly showing the liability δ · (1− rw) on a CDS, we only label310

the CDS by the weight δ and the reference entity w, or simply by w when δ = 1. Nonetheless,311

recall that each such CDS still denotes a liability of δ · (1− rw).312

5.1 Stabilization time313

One fundamental question is the number of rounds it takes until the sequential process314

stabilizes, i.e. until no node can execute an update anymore. We first analyze this aspect in315

detail.316

We have already seen in Figure 2 that even in simple examples, it can easily happen that317

the system does not stabilize at all.318

I Corollary 1. There is a system which never stabilizes.319

Furthermore, with the appropriate ordering of default announcements, we can also obtain320

any finite value as a stabilization time.321

I Lemma 2. For any integer k, there exists a system and an ordering such that the system322

stabilizes after exactly k steps.323

Proof. Consider the system on Figure 5. Similarly to Figure 2, this system allows us to324

produce an arbitrarily long sequence by switching only u and v repeatedly. However, when325

w announces a default, then both u and v gain enough assets to fulfill their obligations, so326

the system stabilizes after at most 2 more updates.327

This allows us reach any magnitude of stabilization time, apart from a constant offset.328

We can then simply add O(1) more independent defaulting nodes to reach the desired value329

k. J330
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This already shows that stabilization time can heavily depend on the order of updates. A331

more extreme case of this is when the choice of the first update already decides between two332

very different outcomes for the system.333

I Lemma 3. There is a system where depending on the first update, the system either334

stabilizes in 1 step, or does not ever stabilize.335

Proof. Figure 6 is obtained by combining the base ideas of Figures 2 and 3. In this network,336

either bank w1 or w2 must execute the first update.337

If w2 is the first to announce rw2 = 0, then w1 receives a payment of 1, and the system338

immediately stabilizes; no other bank will make an update.339

However, if we update rw1 = 0 first, then w2 survives, but on the other hand, u receives340

no assets at all. In this case, nodes u and v are in the same situation as in Figure 2, and341

thus the upper part of the system will never stabilize. J342

Finally, infinite loops are not the only examples of long stabilization: it is also possible343

that the system does stabilize eventually, but for any ordering of updates, this only happens344

after exponentially many steps.345

I Theorem 4. There is a system where for any possible ordering, the system eventually346

stabilizes, but only after 2Ω(n) steps.347

Proof sketch. This proof requires a significantly more complex construction than our previous348

statements. We only outline the main idea of the construction here, and we discuss the349

details in Appendix A.350

The first step of the proof is to build a stable bit gadget, which represents a mutable351

binary variable. The gadget offers a simple interface to set the bit to 0 or 1 through external352

conditions, and otherwise maintains its current value until the next such operation is executed.353

Besides this, we create gadgets that describe logical states of an abstract process, similarly354

to a finite automaton. We also encode conditional transitions between these state gadgets,355

i.e. ensure that the system can only enter a given logical state if some banks currently have356

a specific recovery rate. This allows us to describe a logical process where the next state of357

the system is always determined by the current state and the current value of some stable358

bit gadgets.359

Using these tools, we can essentially design a binary counter on k = Ω(n) bits, with k360

stable bits representing the bits of the counter. This counter will proceed to count from 0 to361

2k − 1, and only stabilize after the counting has finished, resulting in a sequence of at least362

2k steps.363

The most challenging task is to ensure that in every step of the process, there is only one364

possible update we can execute next: the appropriate next step of the counting procedure.365

To achieve this, we not only need to ensure that some banks become updatable at specific366

times, but we also have to force the banks to indeed execute these updates, by encoding367

them as requirements in the transition conditions of our logical states. This results in a368

heavily restricted construction where there is essentially only one valid ordering of updates:369

the one that corresponds to the step-by-step incrementation of the binary counter. J370

Note that another possible approach for measuring the stabilization time of our systems371

is to consider the number of defaulting steps, i.e. to only count the steps when a bank v372

updates from rv = 1 to rv < 1. One can check that our results on stabilization time also373

hold for this alternative metric.374
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Figure 5 Example sys-
tem for Lemma 2. Recall
that a CDS labeled with
v still describes a pay-
ment obligation of 1−rv.
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Figure 6 Example system
for Lemma 3, where stabil-
ization time depends on the
choice of the first update.
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Figure 7 Example system for
Lemma 6, i.e. where the number
of defaults depends on the choice of
the first update.

Finally, as a theoretical curiosity, we point out that our binary variable and state machine375

gadgets in the proof of Theorem 4 demonstrate that we can essentially use financial networks376

as a model of computation. We discuss the expressive power of this model in Appendix C.377

I Theorem 5. We can use financial networks to simulate any Turing-machine with a finite378

tape.379

5.2 Outcome with the fewest defaults380

In case of a larger shock, a financial authority could also be interested in the final state of381

the system, and in particular, the number of banks that end up in default. This can again382

heavily depend on the order of updates; in fact, even a single decision in the ordering can be383

critical from this perspective.384

I Lemma 6. Depending on the first update, the number of defaults can be either O(1) or385

n−O(1).386

Proof. Consider the system on Figure 7. If u is the first to report a default with ru = 0,387

then v receives 1 unit of payment, and thus no other node defaults. On the other hand, if v388

reports a default first, then u survives, but all the nodes in the lower chain have no incoming389

assets, and thus they all have to report a default eventually. So based on the first update,390

the number of defaults is either 1 or n− 3. J391

Hence if the authority has some influence over the ordering of updates, e.g. by allowing392

more flexibility to some banks than to others, then it could dramatically reduce the number393

of banks that end up in default. Unfortunately, even if we have complete control over the394

ordering, it is still hard to find the best possible ordering (in terms of the number of defaults395

in the final outcome).396

I Theorem 7. It is NP-hard to find the number of defaulting nodes in the best possible397

ordering.398

Proof. We reduce the question to the MAXSAT problem: given a boolean formula in399

conjunctive normal form, the goal of MAXSAT is to find the assignment of variables that400

satisfies the highest possible number of clauses [17].401
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Figure 8 Clause gadget for the MAX-
SAT reduction in Theorem 7.
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Figure 9 Clause gadget for the MAX-
SAT reduction in Theorem 8.

Assume we have a MAXSAT problem on k variables x1, ..., xk, and m clauses. Note402

that in our financial systems, the branching gadget of Figure 3 is a natural candidate for403

representing a boolean variable, since in any sequence, exactly one of u and v will eventually404

default. We point out that this gadget has already been used for similar purposes before in405

[23] and [19].406

Hence for each variable xi, we create a separate branching gadget in our system, and407

consider node u to represent the literal xi, and node v to represent the literal ¬xi. That is,408

we will consider xi = true if u defaults, while we consider xi = false if v defaults.409

Furthermore, for each clause of the input formula, we create the clause gadget shown in410

Figure 8, with the CDSs labeled by the banks representing the literals in the clause. For411

example, the gadget in the figure is obtained for the clause (x1 ∨ x3 ∨ ¬x4). If any of the412

banks x1, x3 or ¬x4 default, then v receives enough assets to pay its debt, whereas otherwise,413

v must eventually default.414

If we aim to avoid as many defaults as possible, then the reasonable ordering strategy415

is to first evaluate all the variable gadgets, and the clause gadgets only afterwards. In this416

case, each bank v of a clause gadget survives if and only if there is a true literal in the417

corresponding clause. This way the number of defaulting nodes in the final state is always418

exactly k in the variable gadgets, and at most m− opt in the clause gadgets, where opt419

denotes the maximal number of satisfiable clauses in our MAXSAT problem. Thus the420

minimal number of defaulting nodes in the system is altogether k +m− opt. Finding this421

value also allows us to determine opt, which completes our reduction. J422

To analyze the effects of a shock, one might also be interested in the worst possible423

ordering; a similar reduction shows that this is also hard to find.424

I Theorem 8. It is NP-hard to find the number of defaulting nodes in the worst possible425

ordering.426

Proof. We can apply the same reduction from MAXSAT as before; we only need to slightly427

change the clause gadgets. Consider the clause gadget of Figure 9 for the example clause428

(x1 ∨ x3 ∨ ¬x4). To maximize the number of defaulting banks in this system, we can first429

evaluate the variables gadgets, which then allows us to produce an extra default for each430

clause that has a true literal. Thus the maximum number of defaulting nodes is k + opt,431

which completes our reduction. J432

5.3 Individual defaulting strategies433

It is also natural to consider the effect of the ordering from the perspective of a single bank434

v. More specifically, is v motivated to immediately report its own default? Can it achieve a435

better outcome for itself by carefully timing its updates?436

Intuitively, one would expect that banks are motivated to report their default as late as437

possible, in hope of obtaining further assets in the meantime. This is indeed true in many438
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cases. For example, in the branching gadget of Figure 3, u and v clearly have a short position439

in each other, and if either of them can wait long enough such that the other bank reports a440

default first, then it obtains new assets from the incoming CDS and thus manages to avoid a441

default entirely.442

However, due to the complex interconnections in a network, it is in fact also possible that443

v achieves a better outcome if it reports a default earlier; it is even possible that this is the444

only strategy which allows v to avoid a default in the endstate of the system. We consider445

this one of our most surprising results.446

I Theorem 9. There exists a system where a bank v1 can only avoid a default in the final447

state of the system if v1 is the first bank to report a default.448

Proof. Consider the system in Figure 10, where only v1 or v2 can report a default initially,449

since no other node has any liabilities.450

Assume that v1 is the first to report a default, updating to rv1 = 0. This influences the451

network in two ways: v2 obtains assets of 1, and u2 now has a new liability of 1 as a result.452

Thus the next update can only be executed by u2, resulting in ru2 = 0. On the one hand,453

this provides assets to u1; on the other hand, it creates liabilities for w2. As a result, the454

next update can only be executed by w2.455

When w2 announces rw2 = 0, this results in more liabilities for the defaulting u2, and456

more assets for v1. These assets make v1 the only updatable next node, bringing v1 back457

from its default with rv1 = 1.458

When v1 announces rv1 = 1, then u2 loses some of its liabilities, and v2 loses its assets.459

This does not affect u2, which remains at ru2 = 0 due to the default of w2; however, v2 now460

also has to report a default. The system finally stabilizes after v2 updates to rv2 = 0: the461

assets/liabilities of v1 and u1 are affected, but neither of them has to make an update. Thus462

the final solution has rv1 = 1 and rv2 = 0.463

On the other hand, if v2 is the first to report default, then due to the symmetry of the464

system, the final outcome will have rv1 = 0 and rv2 = 1. Note that in both cases, after the465

first update is executed, the remaining steps are already determined, and no alternative466

ordering is possible. Hence the only way for v1 to avoid a default in the final outcome is to467

be the first one to report a default. J468

We can also show that in general, it is NP-hard to find the best default-reporting strategy469

for a bank. This even holds if the behavior of the rest of the network is ‘predictable’, i.e.470

if there is essentially only one ordering that the system can follow. This implies that any471

interpretation of this problem, e.g. optimizing a bank’s best-case payoff or worst-case payoff,472

is also hard.473

I Theorem 10. It is NP-hard to find the time of defaulting that provides the highest payoff474

to a specific bank in the final outcome.475

Proof sketch. The main idea of the proof is to combine the binary counter construction of476

Theorem 4 with the MAXSAT reduction. That is, given a binary counter on k = Θ(n) bits,477

we add a new node v to the system such that478

(a) v can choose to default anytime,479

(b) the default of v terminates the counting process, stabilizing the counter in its current480

state,481

(c) v then comes back from its default, and its assets in the final state are proportional to the482

amount of clauses satisfied in a SAT formula, where the value of the variables is derived483

from the finalized state of the bits in the counter.484
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Figure 11 Infinite conver-
gence to an equilibrium state.

This means that the counter essentially enumerates all the possible value assignments of485

the variables, and the best defaulting strategy is obtained if counting is terminated at the486

assignment that satisfies the highest number of clauses. However, finding this assignment is487

NP-hard.488

The details of the construction are discussed in Appendix B. J489

6 Achieving Stabilization490

While the reversible sequential model is realistic from many perspectives, the infinite looping491

property is clearly not reasonable in real-world systems. As such, it is natural to ask if there492

is a way to modify the model to avoid this situation, and instead ensure that every financial493

system stabilizes eventually.494

In this section, we investigate the causes of this infinite behavior in the sequential model.495

We first show that we require more sophisticated update rules to avoid a specific kind of496

infinite behavior, namely when the system converges to an equilibrium. We then discuss497

liability freezing, a different (but in some sense also realistic) approach of handling defaulting498

banks in the network. Finally, we show that if we combine these two modifications, we can499

obtain a monotone sequential model where our systems always stabilize after polynomially500

many steps.501

6.1 More sophisticated update rules502

Convergence to an equilibrium. Since the addition of conditional debt contracts drastically503

increases the complexity of the model, it is a natural first assumption that such an infinite504

pattern can only arise if the system contains a CDS. However, this is not the case: we can505

also obtain a (slightly different kind of) infinite sequence in systems with only regular debts.506

Consider the example system in Figure 11. Since bank u has lu = 2 and au = 1 initially, it507

can begin by updating its recovery rate to ru = 1
2 . As a result, v and w must also announce508

recovery rates of rv = rw = 1
2 . With au = 1

2 , bank u now has to update to ru = 1
4 , which then509

gives rv = rw = 1
4 . Each such round prompts another round of updates, slowly converging to510

ru = rv = rw = 0. While this is indeed the only equilibrium of the system, the process takes511

infinitely many steps to reach this state.512

Explicit computation of equilibria. Such a convergence process can easily occur in any513

network with cycles; as real-world financial systems are also known to contain cycles [21],514
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we can easily encounter such a situation in practice. In this case, it seems that a financial515

authority (or the banks involved) have no other option than to explicitly compute this516

equilibrium, and set their recovery rates to the appropriate values.517

Fortunately, it is known that in case of fixed liabilities in the network (i.e. only simple518

debts), this is computationally feasible: there always exists a single maximal solution that is519

simultaneously best for all banks, and this solution can be found in polynomial time [20],520

essentially by repeatedly solving a system of linear equations. Thus an authority could indeed521

find this solution, and banks could directly update to these recovery rates in order to skip522

the convergence steps.523

This allows us to introduce the notion of smart updates: after each updating step, we can524

consider the current liabilities in the network fixed, and we assume that the equilibrium of525

the system is computed under these liabilities (essentially reducing the convergence process526

to a single step). This equilibrium defines a tentative recovery rate for each bank v, denoted527

by rv. In smart updates, we assume that whenever v executes an update, it always updates528

to rv := rv.529

In the example of Figure 11, this means that the tentative recovery rates ru = rv = rw = 0530

are already computed initially, and thus any bank executing an update will immediately set531

its recovery rate to 0. This way the process already stabilizes after each bank has executed532

one update. In general, we achieve stabilization in this setting when rv = rv for each bank v533

in the network.534

While the explicit computation of equilibria may seem artificial, in practice, defaulting535

banks are often subject to more thorough supervision by the authorities. As such, it is not536

so unrealistic that the situation of a defaulting bank v is first analyzed by an authority, and537

this analysis determines the official recovery rate of v.538

Also, recall that while equilibria are easy to find in debt-only networks, the introduction539

of CDSs changes this picture entirely. With CDSs, there can easily be multiple equilibria540

that are Pareto-optimal, and finding any of them is already a PPAD-hard problem [23].541

Thus this explicit computation of rv is only possible for a single step of the process, when542

we consider the current payment obligation on each CDS fixed. As defaults rarely happen543

simultaneously in practice, it can indeed be realistic to assume that we can analyze the544

current (fixed) liabilities in the network after each new update.545

Finally, note that smart updating is not yet enough to avoid an infinite convergence. In546

the system shown in Figure 12, v can initially fulfill its obligations, while u must update to547

ru = 1
2 . This creates new liabilities of 2 for v, leading to the tentative recovery rates rv = 2

3548

and thus ru = 1
3 after this first step. If u updates again (to ru = 1

3 ), then the liability on the549

CDS again increases, and thus the next computed equilibrium has an even lower ru.550

Each step of this process provides new tentative recovery rates, obtained as rv = 2
5−4·ru

551

and ru = rv

2 = 1
5−4·ru

. This results in an infinite convergence to the equilibrium rv = 1
2 ,552

ru = 1
4 . Note that we can observe this behavior regardless of whether v ever updates its553

recovery rate to the new rv value; the assets of u are calculated independently of the recovery554

rate reported by v.555

Optimistic updates. Another natural variant of smart updates is the optimistic update rule.556

To avoid the convergence phenomenon of Figure 11, this setting also assumes that the system557

is analyzed by an authority after each update. However, defaulting and non-defaulting nodes558

are now handled in a different manner in this analysis. More specifically, if a bank v is not559

in default (it has rv = 1 currently), then it is given the benefit of a doubt: we assume that it560

can fulfill its obligations, regardless of how many assets it currently has. On the other hand,561
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Figure 12 Example of infinite convergence in a network, even in case of smart updates. Recall
that the label 4u on the CDS describes a payment obligation of 4 · (1− ru).

banks in default are handled the same way as in case of smart updates.562

This distinction can indeed be realistic: if v is non-defaulting, then av might not even be563

known to other banks, so the creditors of v have no better option than to assume that they564

will receive all payments from v. On the other hand, the assets of defaulting banks are under565

more thorough scrutiny in most legal frameworks.566

Formally, optimistic update means that after each step of the process, we use a modified567

version of the liability network to compute the equilibrium. Whenever there is a contract of568

current weight δ from u to v with ru = 1, then we remove this contract from the network, and569

instead (i) we add a new debt of weight δ from u to an artificial sink node s, ensuring that u570

still has this liability, and (ii) we increase the value of ev by δ, ensuring that v always has571

these assets. In contrast, if ru < 1, we do not execute any changes on the outgoing contracts.572

This modified network ensures that until a bank reports a default, its lack of assets does not573

affect its creditors. We then use the same algorithm of [20] to find the equilibrium in this574

modified system, and set the next tentative recovery rates accordingly.575

Revisiting the system in Figure 12, we see that bank u can again first update to ru = 1
2 ,576

which results in rv = 2
3 . However, with optimistic updates, u cannot make an update again:577

until v adjusts its recovery rate to this new value, the tentative recovery rate of u remains 1
2 ,578

since we still expect to get the entire payment from the non-defaulting v. Note, however,579

that optimistic updating still does not prevent an infinite convergence in this system if, for580

example, u and v keep on updating alternatingly.581

6.2 Liability freezing582

We have seen that neither smart nor optimistic updating prevents an infinite sequential583

process in itself. For this, we also need to change another aspect of our model, namely how584

the contracts of v are handled once v goes into default.585

Debts are rather simple from this perspective: they describe a previously established586

payment obligation in the network, so there is no incentive to change them if v defaults.587

CDSs, however, pose a more complicated question, since they describe payment obligations588

that are dynamically changing. So far, we assumed that even after v defaults, the payment589

obligations on its CDSs keep changing as the reference entities are updated. Another possible590

approach is to assume liability freezing: whenever v goes into default, the liabilities on any591

incoming or outgoing CDS are fixed at the current value for the rest of the process. That is,592

a CDS with weight δ and reference entity w at time t is essentially converted into a simple593

debt contract with weight δ · (1− rw
(t)), and this weight does not change in the future, even594

if rw is updated.595

This can be realistic when there is a larger time difference between subsequent defaults:596

by the time the next default happens, the previous bank has already completed the first597

phase of the insolvency process, and its incoming/outgoing payments have been established598
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and fixed. Indirectly, such a framework suggests that if v defaults, then it is expected to599

immediately ‘cash in’ its incoming debts and fulfill its payment obligations, and not wait for600

a more favorable situation.601

The main advantage of this approach is that if we combine liability freezing with optimistic602

updates, it provides a monotone sequential model where recovery rates can only decrease603

throughout the process. Intuitively, when a bank w makes an update, then CDSs in reference604

to w could only provide more assets to a bank v if we still have rv = 1, as otherwise the605

liability on the CDS is already fixed. However, if rv = 1, then the optimistic approach606

assumes anyway that v can pay its liabilities, and thus the update has no effect on other607

banks in the system.608

This monotonic property ensures that any system stabilizes eventually in this model; on609

the other hand, it also means that once a bank v announces a default in this model, it has610

no possibility to reverse this default in the future, and its recovery rate can only get smaller611

with further updates.612

By revisiting Figure 2, we can observe that both liability freezing and optimistic updates613

are crucial ingredients to achieve this monotonicity. Without liability freezing, the system614

loops infinitely if u and v make updates in an alternating fashion, both with smart and with615

optimistic updates. On the other hand, if we combine liability freezing with smart updates,616

then v can still alternate between rv = 0 and rv = 1 indefinitely; if u never makes an update,617

then the liability on the CDS will never be fixed at a specific value.618

6.3 Stabilization in the monotone model619

We now discuss the main properties of the monotone model. We first show that the model620

indeed ensures an eventual stabilization for any ordering. The key observation for this is621

that the recovery rate of banks can never increase in this model.622

I Theorem 11. The recovery rate of a bank can only decrease in the monotone model.623

Proof. The main idea is to show that for any bank v, rv can only increase if we still have624

rv = 1 currently. This shows that we can never have rv > rv, and thus no update can625

increase rv.626

Assume that node w updates rw in a specific step, and assume for contradiction that this627

is the first step that increases rv for some bank v with rv < 1. This means that the current628

update is still a decrease of rw, since we must have rw < rw. The update of rw can have two629

kinds of effects on the system: it can change the liabilities on CDSs that are in reference to630

w, and it can result in a lower amount of assets for the creditors of w. We analyze these two631

effects separately.632

Since the monotone model has liability freezing, the liability on a CDS from u to v (in633

reference to w) can only change if we currently still have ru = rv = 1. Thus while this634

extra payment may increase rv, we will still have rv ≤ rv afterwards. Since the model uses635

optimistic updates and ru = rv = 1, both u and v only have debts towards the artificial sink636

s in the input graph of the equilibrium algorithm (which computes the tentative recovery637

rates), so the changes to ru and rv do not affect the tentative recovery rate of any other638

node.639

As for the creditors of w, we consider two cases. If this is not a defaulting step (we640

already had rw < 1 before the update), then updating rw does not change the liabilities in641

the input graph of the equilibrium algorithm (apart from the case of some non-defaulting642

nodes, as discussed above), so the tentative recovery rates will remain unchanged.643
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On the other hand, if this is a defaulting step, then the outgoing debts of w will now be644

redirected from s to the actual creditors of w. However, this operation can only result in645

less assets for a bank. More specifically, one can observe that any configuration of payments646

in this new graph is also a valid configuration of payments in the original graph before the647

redirection step. Hence if the rv value of any bank v increases with this step, then this648

contradicts the fact that the previous rv was obtained from a maximal equilibrium of the649

system. J650

I Theorem 12. The monotone model allows at most n defaulting and O(n2) updating steps.651

Proof. Since recovery rates are always decreasing, every bank can default at most once, thus652

the number of defaulting steps is at most n.653

For the O(n2) upper bound, we show that there are at most n updating steps between654

any two consecutive defaulting steps. This is rather straightforward: recall from the proof of655

Theorem 11 that if bank w executes a non-defaulting update, then this can only change the656

value of rv for banks v that are not in default. Thus for any bank v in default, rv can not657

change between two defaulting steps of the process. This means that any bank can execute658

at most 1 updating step between two consecutive defaulting steps, limiting the number of659

steps in this period to n. J660

We point out that this upper bound is asymptotically tight: we can easily construct661

a system and an ordering that indeed takes Ω(n2) steps in the monotone model. The662

construction does not even require CDSs in the network; it only contains simple debt663

contracts.664

I Lemma 13. There is a system with an ordering that lasts for Ω(n) defaulting and Ω(n2)665

updating steps.666

Proof. Let m be a parameter with m = Θ(n), and consider Figure 13. All the banks w1,667

..., wm will eventually report a default in this system, so the number of defaulting steps is668

indeed m = Ω(n).669

Let w1, ..., wm report a default in this order throughout the process. After wi has670

reported a default, bank v can always decrease its recovery rate to a new value of rv = m−i
m .671

Finally, after each such update of v, assume that all the nodes u1, ..., um make an update672

step, also announcing a new recovery rate of m−i
m ; they can indeed all do this due to the673

update executed by v. This ordering has Ω(m2) = Ω(n2) updating steps altogether. J674

6.4 Defaulting strategies675

Finally, we discuss how the monotone model compares to the reversible model in terms of676

defaulting strategies.677

When finding the globally best ordering, the two models turn out to be very similar. In678

fact, our proofs from Section 5.2 can also be carried over to the monotone model without679

any changes.680

I Corollary 14. Lemma 6 and Theorems 7 and 8 also hold in the monotone model.681

In terms of individual defaulting strategies, the branching gadget again provides a simple682

example where late defaulting is beneficial: by delaying their updates, banks u and v can683

again entirely avoid a default.684
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Figure 13 Example system
for Θ(n2) stabilization time in
the monotone model.
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Figure 14 Example system where early defaulting is the
best strategy in the monotone model.

However, early defaulting is a more difficult question in this setting. In particular, we685

cannot hope for a result that is analogous to Theorem 9, since once a bank reports a default,686

there is no way to reverse this in the future. Nonetheless, early defaulting can still be a687

beneficial strategy in the monotone model: there are cases when a bank cannot avoid an688

eventual default in any way, but early defaulting can still allow the bank to have a higher689

recovery rate in the final state.690

I Theorem 15. There exists a system where a bank v only obtains its highest possible691

recovery rate in the final state of the system if v is the first bank to report a default.692

Proof. Consider the system in Figure 14, where either v1 or v2 can execute the first update.693

We analyze the defaulting strategies of bank v1 in this system.694

Assume that v1 is the first to execute a step, announcing rv1 = 3
4 . This gives new assets695

to v2 (resulting in rv2 = 1), and new liabilities to u2 (resulting in ru2 = 0). The next update696

can only be executed by u2, setting ru2 = 0; at this point, the system stabilizes.697

On the other hand, assume that v2 first announces rv2 = 0. This provides rv1 = 1 and698

ru1 = 0, so as a next step, u1 will announce a default. However, this results in new liabilities699

for w, so as a next step, w has to update to rw = 1
3 . With this, v1 only has 2 assets altogether,700

so v1 must announce rv1 = 1
2 . Hence v1 achieves a lower recovery rate in the final state if it701

is not the first bank to announce a default.702

Note that with some further modifications, we can also make the example symmetric to703

ensure that both v1 and v2 are motivated to be the first one to default. J704

Finally, one might also wonder if the monotone model allows an analogous result to705

Theorem 10, i.e. a hardness result on finding the best defaulting strategy of a single bank.706

However, note that the simple formulation of Theorem 10 was possible due to the fact that707

the proof construction only allowed one possible ordering in the rest of the system.708

If we were to introduce a similar setting in the monotone model, then the banks could709

always find the best outcome in polynomial time, since the sequence can only last for O(n2)710

steps. As such, in the monotone model, we can only expect similar hardness results for more711

complex formulations of this problem, such as finding the best defaulting time with respect712

to, e.g., the best-case or worst-case ordering of the remaining banks in the system.713
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Appendices773

A Binary counter construction774

In this section, we describe the binary counter construction that proves Theorem 4.775

A.1 Stable bit gadget776

One of the basic building blocks of this construction is the so-called stable bit gadget, shown777

in Figure 15; we have already applied the base idea of this gadget in the proof of Theorem 9.778

The gadget consists of two nodes v1 and v2, which have an outgoing CDS in reference to779

each other. Note that if some external condition sets rv1 to 0, then this results in rv2 = 0,780

even if we had rv2 = 1 before. Similarly, if we change to rv1 = 1, then this results in rv2 = 1,781

even if we had rv2 = 0 before.782

The key property of this gadget is that it allows us to ensure that banks v1 and v2 remain783

in a specific state. Assume that we initially have v1 and v2 in the state rv1 = rv2 = 1, and784

some event (i.e. the default of an external node) creates another liability for v1. This leads785

to rv1 = 0, and hence rv2 = 0. However, after this point, even if the extra liabilities for v1786

are removed, the banks v1 and v2 do not return to their initial recovery rate, but remain in787

this new state of rv1 = rv2 = 0 instead.788

Hence if we add conditional assets and liabilities to both nodes of the gadget, then789

activating these contracts will allow us to flip the state of the bit to 0 or 1 as required, and790

then the gadget will store this state until the next such activation. More specifically, consider791

the extended version of the gadget in Figure 16. The default state of the external nodes z1,792

z2 is rz1 = 1 and rz2 = 1; in this case, v1 and v2 are in the same situation as in Figure 15, so793

they retain their current recovery rates. However, if we set rz1 = 0 and rz2 = 1, then this794

allows us to set the gadget to rv1 = rv2 = 1, regardless of its previous state. Similarly, if we795

have rz1 = 1 and rz2 = 0, then this allows us to set rv1 = rv2 = 0, regardless of the previous796

state. Our construction ensures that after each such operation, the external nodes z1, z2 are797

returned to their default state rz1 = rz2 = 1.798

Thus the gadget essentially acts as a memory cell for storing a single bit, which is799

modifiable through the recovery rates of external banks. Our main construction will use such800

gadgets to store the current bits of the binary counter, and apply these external operations801

to increment the counter to the next value.802

v2

v1

v1

v2

Figure 15 Stable bit gadget.

z1

z1

v2

z2

v1

z2

v1

v2

∞

Figure 16 Resettable version of the stable bit gadget
(the sink node is split into two for a cleaner topology).
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Figure 17 State gadget, obtained as the combination of a condition gadget (left) and a variant
of the stable bit gadget (right).

A.2 States and conditions803

In order to ensure that the bits are changed in the correct order for the incrementation, we804

create another set of gadgets that capture the current state of the counting process, and805

allows us to control the transitions between these states.806

First, note that CDSs essentially allow us to describe specific conditions, and ensure that807

an event only happens if these conditions are fulfilled. Assume that we have some nodes808

z1, ..., zc and z′1, ..., z′d, which are all ‘binary nodes’ in the sense that the system guarantees809

that they always have a recovery rate of either 0 or 1. Let us first analyze the left-hand810

component of the system in Figure 17 separately; we will refer to this building block as811

the condition gadget. In this gadget, node u has incoming CDSs in reference to banks812

z1, ..., zc, and outgoing CDSs in reference to banks z′1, ..., z′d, and an outgoing debt of weight813

c. Furthermore, we have another node w with a liability of 1, and an incoming CDS in814

reference to u which has a weight of c+ 1.815

The key property of this gadget is that it only allows rw = 0 if rz1 = ... = rzc = 0 and816

rz′
1

= ... = rz′
d

= 1. That is, if all these conditions are fulfilled, then u has c assets and c817

liabilities, thus ru = 1 and rw = 0. However, if any of the nodes zi have rzi = 1, then u818

has at most c− 1 assets and ru ≤ c−1
c . This ensures that w receives a payment of at least819

1
c · (c + 1) ≥ 1, thus avoiding default with rw = 1. Similarly, if any of the nodes z′i have820

rz′
i

= 0, then u has at least c+ 1 liabilities and ru ≤ c
c+1 . This again means that w gets a821

payment of at least 1
c+1 · (c+ 1) = 1, thus ensuring rw = 1 again.822

Hence this gadget allows us to select a set of binary banks, and ensure that w only goes823

into default if each of these banks have the desired recovery rate. This allows us to control824

the transitions between a set of states, only permitting entry into a state if a set of conditions825

are fulfilled.826

We can combine this condition gadget with a stable bit gadget to obtain our state gadget827

as shown in Figure 17. The state gadget ensures that a specific set of conditions are fulfilled828

before allowing w to default. This then sets the stable bit to 0, representing the fact that829

the execution is currently in this state; we can then use bank v2 as a reference entity in830

the CDSs of other condition gadgets to make some events dependent on the condition that831

we are currently in this state. Once we exit the state, we can use the technique shown in832

Figure 16 to ensure that the state bit is set back to 1 again. Also, note that since the bit is833

stable, once we enter the state, the bit remains set to 0 until it is artificially reset with this834

technique, even if the entry condition of the state becomes false in the meantime (and thus835

w updates back to rw = 1).836

Hence the state gadgets will allow us to represent the execution of the counting process837

through a set of states and transitions between these states, with the next state always838

depending on our current state and possibly the value of some other stable bits in the839
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system (the bits of the counter, in our current case). By defining the appropriate conditions840

(including a specific previous state) for each state, we can ensure that the only valid ordering841

of the system is an execution that follows these prescribed transitions between the states.842

A.3 Resetting the states843

In order to guarantee that the system is only in one state at any point in time, we also have844

to ensure that the resetting operations are indeed executed after exiting a state (i.e. that845

rv1 and rv2 is indeed updated to 1). Due to this, encoding the transition from a state s1846

to another state s2 becomes a nontrivial task. The natural approach would be to enforce847

the resetting of s1 by including these updates in the entry condition of s2. However, recall848

that the entry condition of s2 also requires that s1 is active (as a preceding state), so this849

makes the entry condition of s2 contradictory, hence impossible to fulfill. On the other hand,850

after entering state s2, there is no straightforward way to verify the resetting of s1 anymore;851

furthermore, the system already has two active states at once in this case.852

In order to solve this problem, we take each state s of our original system design, and853

replace it by three consecutive state gadgets entrys, resets and exits, known as the entry854

phase, resetting phase and exit phase of s. State entrys will have the same entry conditions855

as the original state s did, and any other state that was previously following state s will now856

follow after state exits. The entry condition for states resets and exits will be that we are857

currently in states entrys and resets, respectively. Thus instead of passing through state858

s, the execution will pass through all 3 phases of s in this predefined order in our modified859

system.860

The key idea is that the three classes of states will reset each other in a round-robin861

fashion throughout the execution. State resets will provide new assets to the nodes v1 and862

v2 of state entrys, thus resetting their recovery rate to 1. Then state exits will have it as863

an entry condition that the value of the banks w, v1 and v2 of state entrys are all set to 1.864

This ensures that exits is indeed only reached when all recovery rates in entrys are set865

back to their initial value. This way we can make sure that when the execution leaves exits866

and enters the state entrys′ of the following state s′, then the state s is not considered867

active anymore.868

In order to ensure that resets and exits are also reset to inactive, we execute the same869

steps in any two succeeding states for both of them. That is, we ensure that exits will870

provide new assets to reset the stable bit of resets (in the same fashion that resets does871

this for entrys), and we ensure that in any original state s′ succeeding s, the state entrys′872

has in its entry condition that banks w, v1 and v2 of state resets are all set to 1 (in the873

same fashion that exits does this for entrys). Similarly, in order to ensure that exits is874

reset to inactive, we take every original state s′ succeeding s, and in entrys′ we provide new875

assets to reset the stable bit of exits, while we require in the entry condition of resets′876

that banks w, v1 and v2 of exits are set to 1.877

Hence by representing each logical state by three consecutive state gadgets, we can878

ensure that any ordering of updates is indeed forced to reset each state to inactive when879

leaving the state and entering the following one. Note that this method results in a higher880

number of entry conditions for each of our state gadgets, but this has no effect on the overall881

construction. Furthermore, we point out that the reason to have at least three such classes is882

to avoid the situation when a state gadget investigates its own banks in its entry condition,883

which could lead to undesired behavior.884
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A.4 Technical details of managing states885

While this already describes the general technique of using state gadgets, there are still886

several details to discuss for completeness.887

One such example is the handling of bank w in the state gadget: note that this bank is888

slightly differently from v1 and v2 in the sense that it does not receive extra assets to be889

reset, but its resetting is still checked as a condition in exits. This is because when state890

resets is reached, then the exit state exitŝ of the previous state ŝ has already been reset891

to inactive, which means that the entry conditions of entrys are not fulfilled anymore. This892

allows us to update ru to a new value of ru ≤ c
c+1 , which then allows us to set rw = 1, and893

indeed enter exits. Hence by not explicitly resetting w but still checking in exits that w is894

reset, we can ensure that bank u of state s is also reset to its initial state of ru ≤ 1, and thus895

the s state can only be reactivated if the entry conditions are fulfilled again at some point.896

Furthermore, note that while our construction mostly requires us to implement logical897

‘and’ relations in the entry conditions of state gadgets, we occasionally also have to implement898

a logical ‘or’. One such case is the central state of our binary counter which will have multiple899

different preceding states, i.e. there are multiple states that finish by enabling this state as900

the next one; to activate this state, we only require one of the preceding states to be active,901

and not all of them. In this specific case, it is rather simple to insert this ‘or’ condition into902

our state gadget: we simply add an incoming CDS in reference to each of these preceding903

states, but we still select the weight of the input CDS of w based on the original c value, i.e.904

as if there was only one preceding state. This way u receives a payment of 1 if we are in any of905

these preceding states (and the remaining conditions are fulfilled), and since we can not have906

two active states at the same time, these extra CDSs will always only result in a payment of907

0 or 1 for u altogether. In a more general setting (e.g. if we want to encode different further908

conditions for different predecessor states), we can create a separate transition state for each909

such condition, and then use the same method to set these transition states as predecessors.910

Finally, our analysis has so far assumed that inactive states gadgets have recovery rates911

of ru < 1 and rw = 1, and we discussed how we can maintain this invariant throughout the912

process. However, we also have to ensure this when initializing the construction; since we913

initially begin with ru = 1, the node w of any state gadget could already report a default in914

the initial time step, even though the entry conditions of the state are not satisfied.915

For this initialization step (i.e. achieving ru < 1 in each state gadget), we introduce916

a special node y0 whose default indicates that the system has already been initialized, i.e.917

that ru < 1 in each state gadget. Then we slightly modify the state gadgets such that the918

outgoing debt from node w is replaced by a CDS in reference to y0; this way no w can update919

before all the banks u are initialized, but after we set ry0 = 0, the recovery rate of y0 will920

never change, and thus the outgoing contract of each node w will behave as a single debt for921

the rest of the process.922

To ensure this behavior, it suffices to add a starter node y1 with an outgoing CDS in923

reference to each u, and carefully choose ey1 such that y1 only goes into default if each bank924

u has executed an update. Then we can include y0 in a stable bit gadget with another node925

y′0, with y′0 also having an outgoing CDS in reference to y1. This system can only begin with926

all the state gadget nodes u executing an update. The slight default of u then also sends927

y′0, and then y0 into default; since y0 has no way to reverse this, it will remain in default928

indefinitely. We can then use the default of y0 as the trigger condition for the first real state929

of our counting process.930
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... ...

init idle

enable1

enablek

done1

donek

Figure 18 Illustration of the main states of our binary counter system.

A.5 Overall construction931

Given the tools to represent states, bits and conditions, the construction of the binary932

counter becomes straightforward. Let us introduce a parameter k such that k = Θ(n).933

We create k distinct stable bit gadgets that represent the k bits of a counter, which will934

count from 0 to 2k − 1. We also add a set of state gadgets which control the counting935

process. More specifically, we add an idle state to capture the state between two consecutive936

incrementations. Furthermore, for each bit of the counter (i.e. each i ∈ {1, ..., k}), we add937

two states that describe the incrementation of the ith bit, and we call them enablei and938

donei. The states of our process are illustrated in Figure 18.939

For enablei, the entering condition is that the process is currently in the idle state, and940

that this is indeed a valid next incrementation of the counter, i.e. that the bits at positions941

1, ..., i− 1 are all set to 1, and the bit at position i is set to 0. When entering enablei, we942

ensure that this state sets the bits at positions 1, ..., i− 1 to 0, and it sets the bit at position943

i to 1. The entering condition of the donei state is that all of these updates are indeed944

executed, and thus the counter is indeed correctly incremented. From the donei state, we945

lead the execution back to the idle state without any condition.946

Thus the financial system indeed has essentially only one possible ordering, aside from947

the fact that we are free to choose the order of updating the bits of the counter in each948

incrementation. In this single ordering, the system works as a binary counter: in the idle949

state, the only valid next step is to always execute the next incrementation on the counter.950

Since the construction consists of only O(k) different gadgets, each having only O(1) nodes,951

this indeed allows for a choice of k = Θ(n), and thus the counting process indeed lasts for952

at least 2Ω(n) steps (note that this also holds if we only count defaulting steps, i.e. when a953

bank v updates from rv = 1 to rv < 1). Once all the bits are set to 1, there is no next state954

that the process can enter from the idle state, so the system indeed stabilizes eventually.955

As a technical detail, note that we must also ensure that the process begins in the idle956

state. This can be ensured by adding a further state init and a further stable bit gadget with957

this state. The state init can be entered if this stable bit is set to 1 (and the initialization958

node y0 has already defaulted), so it will be the only state that the process can enter in the959

beginning. We allow the process to also enter the idle state from init. However, within the960

init state, this stable bit is set to 0, and the system does not provide a way for this stable961

bit to ever be reset to 1; hence the init state cannot ever be entered again, and thus it plays962

no role after this point.963

Furthermore, note that for the simplest implementation, we can consider the counter bits964

to be 1 when the nodes of the stable bit are in default, and 0 when they are not in default:965
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this ensures that the initial state of the system (when every bank has a recovery rate of 1)966

is indeed a valid initialization of our construction. Otherwise (if we want the 0 bits to be967

represented by defaulting bit gadgets), we can use further initial states to ensure that each968

stable bit is initialized to the desired value before the process first enters the idle state.969

Recall that, as discussed before, each state in our description will in fact be split to three970

consecutive states to ensure that resetting is always executed. However, this only increases971

the number of state gadgets in our system by a constant factor, and thus it has no effect on972

our analysis.973

B Best defaulting strategy for a single bank974

In this section we prove the claim of Theorem 10, i.e. that finding the best defaulting strategy975

(the best time to report a default) for a single bank is an NP-hard problem. We combine the976

binary counter construction of Appendix A with the MAXSAT reduction technique to show977

that any efficient algorithm that finds the best time to report a default would also provide978

an efficient solution to MAXSAT.979

B.1 Overall idea980

The main idea of our construction is to create a binary counter system where each counter981

bit represents one of the variables of our input MAXSAT formula. The counting process982

then corresponds to enumerating all the 2k possible value assignments to the variables.983

We then add a further node v to this system that wants to find the best time to report its984

own default. This bank v will only have an opportunity to report a default in the idle state985

of the counter, i.e. exactly once for each of the 2k possible assignments. When v reports a986

default, this will immediately stop the counting process, thus fixing the value of the k stable987

bits to their current value forever. Then for each clause of the formula, we add a clause988

variable that defaults exactly if at least one of the bits corresponding to the literals in the989

clause are set to true (but only after the counting has stopped). Finally, we ensure that for990

each such clause node, bank v receives a unit of payment through an incoming CDS.991

This results in a construction where, by choosing a time to report its default, v can992

essentially select a value assignment to the variables, and the final amount of assets received993

by v will be determined by the number of satisfied clauses under this assignment. Thus994

selecting the best defaulting time for v is equivalent to selecting the best assignment for995

MAXSAT, which completes the reductions.996

Note that the behavior of the binary counter system is completely predictable, since it997

only has essentially one valid ordering of updates, but it is still NP-hard to find the optimal998

defaulting time for v. This implies similar hardness results in more general systems that999

have very different orderings: it is still NP-hard to find the best defaulting time if we, for1000

example, assume that the remaining part of the systems follows the ordering that is the1001

most/least beneficial for v.1002

Furthermore, we note that in order to simplify our clause gadgets, we can easily extend1003

the binary counter construction by a negated version of each of the k stable bits, which1004

are similarly set and checked in the enablei and donei states. This step essentially1005

provides another counter that is counting backwards from 2k − 1 to 0 simultaneously to our1006

original counter, without having any effect on the magnitude of the number of nodes. More1007

importantly, in our case, it provides a convenient access to the negation of each of variable;1008

with this, we can directly check the value of any literal in the clauses of the formula.1009
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B.2 Technical details1010

Consider the bank v for which we want to find the best defaulting strategy. In order to1011

ensure that v can only report a default when the counter is in the idle state, we simply add1012

an outgoing CDS of weight 1 to v (and select ev = 0). Then similarly to the design of a state1013

gadget, we connect v to a stable bit gadget on banks w1 and w2 such that the default of v1014

will lead to the default of both w1 and w2 (i.e. ew1 = ew2 = 0, and w1 has outgoing CDSs in1015

reference to v and w2, while w2 has an outgoing CDS in reference to w1). Then w1 and w21016

can never return from this default; this will ensure that even after v receives extra assets in1017

the future, the counting still does not continue.1018

More specifically, the outgoing CDS of v is in reference to bank v2 of the entryidle1019

state; since this bank defaults every time when the idle state is visited, v indeed has the1020

opportunity to report a default at each of the 2k counting phases. Then in the exitidle state,1021

we add it as a condition that both rv = 1 and rw2 = 1; this ensures that after v defaults, the1022

counter can never enter the exitidle state again, so the counting indeed stops at the current1023

value.1024

Furthermore, for each literal of the formula (i.e. each variable and its negation), we create1025

a node that defaults in this final state if the literal is set to true. That is, given a literal `i1026

(a variable or its negated version), we add a bank `i representing this literal. This bank `i1027

has an outgoing CDS in reference to w2, and an incoming CDS in reference to the stable1028

bit gadget in the counter that represents the negated version of `i. This implies that (i) the1029

bank `i can only go into default once v has reported a default and the counter was stopped,1030

and (ii) in this case, it goes into default exactly if the literal `i is set to true in the chosen1031

assignment.1032

Then for each clause ci of the formula, we simply add a bank representing ci, and draw1033

an outgoing CDS from ci for all the banks `i that correspond to a literal included in the1034

clause. As such, ci is in default exactly if at least one of the literals in the clause is true.1035

Finally, for each such clause node ci, we add an incoming CDS to v in reference to this1036

bank ci. With this, the incoming assets of v equal the number of satisfied clauses under the1037

chosen assignment. Furthermore, we add another incoming CDS in reference to w2 in order1038

to compensate for the outgoing CDS that allows v to default. With this, the total payoff of1039

v in the final state (the difference of its assets and liabilities) is indeed equal to the number1040

of satisfied clauses in the formula. Hence the best outcome for v is indeed the assignment1041

where the maximal possible number of clauses are satisfied, which is NP-hard to find.1042

Hence whenever v reports a default, the connected stable bit is set to 0, and the counting1043

stops permanently. After this point, the literal gadgets corresponding to true literals will1044

have to report a default eventually, followed by the appropriate clause gadgets. Hence the1045

system will indeed eventually stabilize in the state where v receives all the payments for1046

the clause gadgets, so its assets in the final state are indeed defined by the quality of the1047

MAXSAT assignment. This completes our reduction.1048

C Financial networks as a model of computation1049

We now make a detour to briefly discuss how financial systems can behave as a model of1050

computation. While this is not very relevant for the analysis of real-world financial networks,1051

it is still an interesting aspect of our reversible model from a theoretical perspective.1052

First of all, note that we have only considered financial networks with finitely many banks;1053

as such, in our base model of these systems, we cannot hope to model a general Turing1054

machine (TM) with an infinitely long tape. Therefore, we only discuss how our networks can1055
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model a Turing machine which only has a finitely long tape (also known as a linear bounded1056

automaton). We point out that generalizing our constructions to the infinite case would not1057

be as straightforward as to simply allow infinitely many banks and contracts in the network.1058

For example, in our binary counter or in the TM simulation design below, this generalization1059

would lead to infinitely many state gadgets, and the initialization of these gadgets would1060

already require infinitely many updates in the beginning, thus not allowing the main part of1061

the process to begin after a finite amount of steps.1062

Recall that the main tools for simulating a TM have already been introduced in the1063

binary counter construction: state machines were explicitly discussed and used in the counter,1064

and the stable bit gadgets are a natural candidate to simulate the tape cells of a TM over a1065

binary alphabet. Note that for a very simple and crude encoding of the TM, the stable bit1066

gadgets are not even needed: since a TM with a finite tape can only have finitely many valid1067

configurations (in terms of current state, tape content and tape pointer position), we can1068

encode the transitions between these configurations as a finite automaton, and build this1069

state machine using our state gadgets.1070

However, a much more elegant way of modeling a Turing machine with our systems is to1071

indeed use stable bits as tape cells, and encode an addressing mechanism on the tape. That1072

is, besides our financial subsystem representing the state machine part of the TM, we also1073

create a binary counter which stores the position of the TM pointer of the tape; when the1074

pointer is moved to the left or the right in a transition from one state to another, we simply1075

increment or decrement the value of this counter.1076

Then in an auxiliary state following the transition, we can use the value of the counter1077

and the content of the tape to copy the content of the currently chosen tape cell to a specific1078

stable bit gadget. That is, for each cell c of the tape, we have two specific states readc,0 and1079

readc,1 that are only entered as a next step if the counter value currently points to c; state1080

readc,0 is activated if stable bit gadget of c is currently set to 0, while readc,1 is activated1081

if c is set to 1. We use this extra state to copy the content of the cell to a specific stable1082

bit gadget, and then we only make our next transition in the state machine based on the1083

current logical state and the value of this single stable bit (as in case of a Turing machine).1084

We can use a similar technique for overwriting the value in the current cell: we add two1085

auxiliary writing states writec,0 and writec,1 for each cell c, and based on the value of the1086

counter and the bit we want to write, only one of these states gets activated. This state then1087

copies the desired bit value to the corresponding stable bit gadget of the tape.1088

Note that this more sophisticated simulation method still requires a separate state for1089

each cell of the tape. However, for a state machine of s states and an available tape of length1090

m, this approach can be implemented with O(s) banks in the state machine, O(logm) banks1091

in the counter, and O(m) banks for the stable bit gadgets and auxiliary states of the tape1092

cells; in contrast to this, the crude approach has a O(s ·m) factor in the total number of1093

banks. Even more importantly, this simulations method allows us keep the banks modeling1094

the state machine and the banks modeling the tape separately, thus providing a much cleaner1095

representation of the Turing machine in our systems.1096

D A note on further possible sequential models1097

In the paper, we have studied two different sequential models of our financial networks: the1098

reversible model (which allows banks to return from a default if they acquire new assets)1099

and the monotone model (which guarantees an eventual stabilization for any ordering in any1100

network). Since both the reversibility of defaults and an eventual stabilization of the network1101
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are realistic properties in real-world financial systems, it is a natural idea to try to obtain an1102

even more accurate sequential model by appropriately combining these two settings. For1103

example, the financial framework could ensure that the liability freezing rule is applied on a1104

bank if, for example, it already has to report a default for the third time. Alternatively, a1105

financial authority could actively monitor the network to look for infinite cycling patterns,1106

and enforce liability freezing in specifically chosen situations. We leave it to future work to1107

explore a more complex (and possibly more realistic) line of models in this direction.1108

Note that our discussion of sequential models is not exhaustive; there are various further1109

changes we can execute to model the sequential process slightly differently. While these1110

alternative models may come with some convenient properties, the changes often also1111

introduce new undesired side effects into the model.1112

For a simple example of such an alternative model, assume that the financial industry is1113

aware of the heavily dynamic behavior of payment obligations on CDSs in these networks,1114

and thus the authorities decide to measure the assets of a bank by estimating an expected1115

incoming payment on CDSs. That is, we select a global constant µ ∈ [0, 1], and given a CDS1116

of weight δ from u to v (in reference to w), we define the incoming assets of bank v on this1117

CDS as µ · δ · ru, regardless of the (dynamically changing an possibly inaccurate) current1118

value of rw.1119

One clear disadvantage of this slightly simpler model is that defaults can easily remain1120

undetected in the system. E.g. in the branching gadget of Figure 3, a choice of µ = 1 will1121

mean that neither of the two banks ever report a default, since they can both fulfill their1122

obligations in a possible best-case situation. On the other hand, the survival of both u and v1123

can never be an equilibrium, since neither of them receives any assets, and thus it remains1124

undetected that either u or v should be in default in any ‘reasonable’ outcome. Similarly, a1125

choice of µ = 0 will force both u and v to report a default with ru = rv = 0, even though1126

this is not a realistic outcome in the network. While the choice of µ ∈ (0, 1) seems like a1127

reasonable compromise, it can actually lead to both of these problems (both undetected and1128

false defaults) in practice, and as such, it does not allow an accurate analysis of the network.1129
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