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Motivation: Clock Synchronization

The time 
is 199!

The time 
is 203!

The time 
is 298!

The time 
is 98!

???

Clock synchronization is a classic, important problem!
Many results have been published about different subtopics 
(skew minimization, communication cost, fault-tolerance…).

More and more distributed applications are appearing!
Distributed systems become even more popular (Internet, 
wireless networks…).
These applications often require synchronized clocks!
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Motivation: Gradient Property

We focus on the minimization of the clock skew!
We would like the clock skew to be small between any two 

nodes, even if they are not directly connected!

This is called the 
global property!

More importantly, we want the skew between two nodes to be 
small, if the length of the shortest paths between those nodes is 
short!

This is called the 
gradient property!

Thomas Locher, ETH Zurich @ DISC 2006 4

Motivation: Obliviousness

How can the local clock value be computed?
Store message arrival times and their time stamps!
Use old messages to estimate the current clock value of    
the neighboring nodes and/or the message delays…

Really?
How?

Oblivious model: Each node can store only one clock value for    
each neighboring node!

How much and what has to be stored? 
What if nodes do not have much memory?

Advantage: 
Oblivious algorithms 

can easily be 
transformed into 
self-stabilizing

algorithms!

The time is 
199! 0!

My neighbor‘s 
clock says
199! 19980!
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Motivation: Goal

We study the effect of obliviousness on clock 
synchronization!

The goal is to get insights into the difficulty of 
gradient clock synchronization!

What level of synchronization can be 
achieved without storing a larger history?

Find good gradient clock synchronization 
algorithms in this restricted model!

Such an algorithm might facilitate the 
development of a general gradient clock 
synchronization algorithms guaranteeing 
even better bounds on the skew!
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Model

The graph used in all examples is the linear list!
Messages have variable delays in the range [0,1].
Distance d(i,j) is defined as the length of the shortest 

path between node i and j.
Each node i has a hardware clock Hi(·).

1

2

n

In the list: 
d(i,j) = |j-i|+1

The time of node i at time t is Hi(t) = ∫0
t hi(τ) dτ!

Each node i further has a logical clock Li(·)!

The hardware clock rate of node i at time t is hi(t) ∈ [L,U], 
where 0 < L < U and U ≥ 1.

Hi(t)

Li(t)

Goal: Minimize the 
skew between the 

logical clocks!
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Model

Li(·) increases at the rate of Hi(·)!
A message received with a fresh clock value from a 

neighboring node Update Li(·) according to the 
algorithm in use!

If Li(·) changed Inform all neighboring nodes about 
the new clock value!

1

2

n

Li(·) cannot run 
backwards!

An algorithm A: L x ψ→ L specifies how node i adapts 
its logical clock at time t, given its current value Li(t) and 
the stored message history ψ!

An execution is E = (M,R), where M(t,i,j) ∈ [0,1]
specifies how long it takes for a message from node i
sent at time t to arrive at node j, and hi(t) = R(t,i)!

Oblivious! The most 
accurate clock value 
from each neighbor!
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Results

A well-known result is that the skew between two nodes at 
distance d is at least Ω(d)!

Proof Sketch: The following scenarios cannot be distinguished! 

L1(t) = x!
Delivery time 0

Delivery time d

1 2

L2(t) = x! L1(t) = x+d!
Delivery time d

Delivery time 0

1 2

L2(t) = x!

There is a clock synchronization algorithm with a worst-case skew 
of Θ(d) between any two nodes at distance d!

The only result on gradient clock synchronization [Fan, Lynch 
@ PODC 2004] is that nodes at distance 1 cannot be 
synchronized better than Ω(log D / log log D) where D denotes 
the diameter of G!
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Results [Fan, Lynch @ PODC 2004]

Proof Sketch for the Ω(log D / log log D) lower bound:
The skew between all neighbors among k nodes can be increased by 
O(1) in O(k) time, but the skew can only be decreased by O(f(1)) in O(1)
time!

Recursive skew induction: Induce a skew of c1 in O(n) time. Let the 
algorithm run again for n/O(f(1)) time Skew decreases by c2 < c1! 
Increase the skew between O(n/f(1)) nodes during this time again by c1! 
Repeat this for logO(f(1)) n steps!

Since D = n-1 and f(1) ∈ Ω(logO(f(1)) n), the result follows!

f(1) = Worst-case skew 
allowed between neighbors!

No algorithm 
with f(1) = o(D) 

published!

sk
ew

time

n/O(f(1)) n/O(f(1))2 n/O(f(1))3 ...
...

Skew 
decrease! Skew 

increase!
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Results

We show that for several intuitive algorithms the 
worst-case skew between two neighboring nodes is 
Θ(D)!

We present an algorithm with a worst-case skew of 
O(d + √D) between any two nodes at distance d in any 
graph!

Not easy to find a good gradient 
clock synchronization algorithm!

First algorithm with a worst-case bound 
of o(D) between nodes at distance 1!

Our results:
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Synchronization Algorithms: Amax

A simple algorithm: Always set the clock to the maximum clock
value received from any neighbor (if > own clock value)!

Intuition: Nodes have to keep up with the fastest node anyway! 
Synchronize to its clock as closely as possible!

This is a poor gradient clock synchronization algorithm!!!

A skew of 1 between all  n ( = D-1) neighbors cannot be avoided 
Fast propagation of the largest clock value incurs a large skew 

between two neighboring nodes!

Time: D + x Time: D + x Time: D + x

...
clock value: 

D+x
Old clock 

value: D+x -1
Old clock 
value: x+1

Old clock 
value: x

New time 
is D+x!

Skew D!

New time 
is D+x!
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Synchronization Algorithms: (Amax)‘

The problem of Amax is that the clock is always increased to the 
maximum value!

Idea: Allow a slack between the maximum clock value and the 
own value!
The algorithm (Amax)’ sets the clock value to

Li(t) := max(Li(t), maxj ∈ Ni
Li(t) - γ)

The constant slack!

The worst-case clock skew between 
two neighboring nodes is still Θ(D)

independent of the choice of γ!!!
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Synchronization Algorithms: Aavg

Only considering the largest clock value is a bad idea!
Idea: Take the clocks of all neighboring nodes into account and

choose the average clock value!

Surprisingly, this algorithm Aavg is even worse!!!

Assume that the message delay is always 1.
Assume that the clock rate of node n is always 1 and the clock 

rates of all other nodes are arbitrary values less than 1.

Time: x + (n-1)2 Time: x + (n-2)2 Time: x+4

...
clock value: 
x + (n-1)2

clock value: 
x + (n-2)2

clock value: 
x+1

clock value: 
x

Time: x+1
12n-1n

“After a while”, the skew between node n and n-1 is 2n-3 ∈ Θ(n)!
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Synchronization Algorithms: Aavg

Bad global property: The skew between node n and 1 is
(n-1)2 ∈ Θ(n2) ∈ Θ(D2)!

Amax guarantees a bound of 
Θ(D) between any two nodes!

Time: x + (n-1)2 Time: x + (n-2)2 Time: x+4

...
clock value: 
x + (n-1)2

clock value: 
x + (n-2)2

clock value: 
x+1

clock value: 
x

Time: x+1
12n-1n

Note: Nodes have at most 2 neighbors in this graph
The maximum clock value must have a larger weight

than ½!
This also holds for other graphs: In a k-ary

tree, if the k children have a weight larger or 
equal to ½, the worst-case skew is also Θ(D2)
between the root and the leaf nodes!   
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Synchronization Algorithms: Abound

Minimizing the skew to the fastest neighbor or all neighbors does 
not work…

Idea: Minimize the skew to the slowest node! Give the slowest 
node time to „catch up!“

Algorithm Abound does not increase its logical clock due to a 
message if any neighboring node’s clock is B behind!

All nodes wait for each other!

Problem with approach: Chain of dependency!

Time: x Time: x - B

...
clock value: 

x
clock value: 

x - B
clock value: 

x – 2B

Time: x - 2B
n-2n-1n Node n-1 has to wait for 

node n-2, node n-2 has 
to wait for node n-3...

Chain of length Θ(n) = Θ(D) results in Θ(D) waiting time
Θ(D) skew!
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Synchronization Algorithms: Idea!

Waiting for slower nodes is not such a bad 
idea…
Do it smarter: Set B = O(√D) Skew is 
allowed to be O(√D)! But the waiting time 
is at most O(D/B) = O(√D) as well!
Set the constants right and slow nodes 
can always catch up!

Node with 
fast clock!

Node with 
slow clock!

Progress: 
O(√D)!

Progress: 
O(√D)!

Real time

O(√D)

O(√D)

Length of 
chain = O(√D)!

O(√D) time
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Synchronization Algorithms: Aroot

Algorithm Aroot works as follows:

max := Maximum clock value of all neighboring nodes 

min := Minimum clock value of all neighboring nodes 

if(max > own clock and min + U√D+1 > own clock 

own clock := min(max, min + U√D+1)

inform all neighboring nodes about new clock value!

end if

When a message is received, execute the following steps:

Reminder: U is the 
maximum hardware 

clock rate!
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Synchronization Algorithms: Aroot

Properties of Aroot

Global Property:
The logical clock skew between any two nodes is at most 
UD + 1.

Θ(D) is asymptotically optimal!!! 
This fact is required to prove the 

gradient property of Aroot!

O(√D) is the best known 
bound so far!

Gradient Property:

The logical clock skew between any two neighboring 
nodes is at most 2U√D+1.
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Conclusion

General results:

Dilemma: Focusing on the 
maximum clock value
does not work. However, 
this value must have a
large weight!

Considering all clocks to 
be equally important does 
not work!

Algorithmic result:

Algorithm with a worst-case skew of O(d+√D)!
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O(√D)

Outlook

General Oblivious

O(log D / log log D)

Upp
er

 b
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Low
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Thank you for your attention!

Questions and Comments?


