Oblivious Gradient Clock
Synchronization

Thomas Locher, ETH Zurich
Roger Wattenhofer, ETH Zurich

Distributed
Computing o ,
Grou 20th IEEE Int. Conference on Distributed Computing (DISC)
p Stockholm, Sweden, September 2006

Motivation: Clock Synchronization

o

» Clock synchronization is a classic, important problem!

% Many results have been published about different subtopics
(skew minimization, communication cost, fault-tolerance...).

» More and more distributed applications are appearing!

+ Distributed systems become even more popular (Internet,
wireless networks...).

+“ These applications often require synchronized clocks!

: The time

24 \

\»\3 W

is 203!

<\
98!
& \‘w

\k‘. Thomas Locher, ETH Zurich @ DISC 2006 2

Motivation: Gradient Property

o

> We focus on the minimization of the clock skew!

» We would like the clock skew to be small between any two
nodes, even if they are not directly connected!

" This is called the
global property!

» More importantly, we want the skew between two nodes to be

small, if the length of the shortest paths between those nodes is
short! =

This is called the
gradient property!

Thomas Locher, ETH Zurich @ DISC 2006

Motivation: Obliviousness

o

» How can the local clock value be computed?
+ Store message arrival times and their time stamps!

< Usé0ld messages to estimate the current clock value of
the neighbering nodes and/or the message delays...

5 o
Really?
How much and what has to be stored? e
What if nodes do not have much memory? DuvE

» Oblivious model: Each node can store only one clock value for
each neighboring node!

Advantage:
Oblivious algorithms
can easily be
transformed into
self-stabilizing
algorithms!

My neighbor‘s
clock says
=99+ 19980!

Thomas Locher, ETH Zurich @ DISC 2006

Motivation: Goal

O 0

> We study the effect of obliviousness on clock
m synchronization!
' ' > The goal is to get insights into the difficulty of
gradient clock synchronization!
“ What level of synchronization can be
achieved without storing a larger history?

» Find good gradient clock synchronization
algorithms in this restricted model!

% Such an algorithm might facilitate the
development of a general gradient clock
synchronization algorithms guaranteeing
even better bounds on the skew!

Outline

o

l. Motivation
lI. Model / Results
lll. Synchronization Algorithms

V. Conclusion / Outlook

=

40\

Thomas Locher, ETH Zurich @ DISC 2006 5 ‘\\. _/ Thomas Locher, ETH Zurich @ DISC 2006 6
Model Model
[og 0 o) 0
» The graph used in all examples is the linear list! 77 » L;() increases at the rate of H,(-)! 77
» Messages have variable delays in the range [0,1]. n\ » A message received with a fresh clock value from a n\

» Distance d(i,j) is defined as the length of the shortest
path between node i and j. oo

» Each node i has a hardware clock H(-).

»The hardware clock rate of node i at time tis h;(t) € [£,U],

where 0 < £L<Uand U>1.

»The time of node i at time tis H,(t) = /,! hy(t) dt! 2
!

» Each node i further has a logical clock L;(-)!

In the list:
d(ij) = lj-il+1

>

Goal: Minimize the
skew between the
logical clocks! >

>~ b

\ Thomas Locher, ETH Zurich @ DISC 2006 7

neighboring node > Update L;(-) according to the
algorithm in use!

> If Li(-) changed -2 Inform all neighboring nodes about

-
the new clock value! <=
Li(*) cannot run
backwards!

» An algorithm d: L x y — L specifies how node i adapts
its logical clock at time t, given its current value L(t) and

the stored message history y! Oblivious! The most
accurate clock value

from each neighbor!

» An execution is € = (M, R), where M(t,i,j) € [0,1]
specifies how long it takes for a message from node i

@sent at time t to arrive at node j, and hi(t) = R(t,i)!
\J

_/ Thomas Locher, ETH Zurich @ DISC 2006

2@
!

1@

Results

O 0

A well-known result is that the skew between two nodes at
distance d is at least Q(d)!

Proof Sketch: The following scenarios cannot be distinguished!
Delivery time d Delivery time O
, =3 , .
1 ~ 7‘2 S— 1 = “2

IE Delivery time O .! lﬂ Delivery time d .!

There is a clock synchronization algorithm with a worst-case skew
of ®(d) between any two nodes at distance d!

The only result on gradient clock synchronization [Fan, Lynch
@ PODC 2004] is that nodes at distance 1 cannot be
synchronized better than Q(log D / log log D) where D denotes

Results [Fan, Lynch @ PODC 2004]

o

Proof Sketch for the Q(log D / log log D) lower bound:

The skew between all neighbors among k nodes can be increased by
O(1) in O(k) time, but the skew can only be decreased by O(f(1)) in O(1)

time! =<
f(1) = Worst-case skew
allowed between neighbors!

Recursive skew induction: Induce a skew of ¢, in O(n) time. Let the
algorithm run again for n/O(f(1)) time - Skew decreases by ¢, < c,!
Increase the skew between O(n/f(1)) nodes during this time again by c,!
Repeat this for logy), n steps!

= Since D = n-1 and (1) € Q(loggy N), the result follows!

z No algorithm
e with f(1) = o(D)
published!

2 } 1 +—1t time y
the diameter of G! @ " —
Vi ‘\ A 7 l\ n/O(f(1)) n/O(f(1))2 n/O®f(1))? ... \\/
\\. / Thomas Locher, ETH Zurich @ DISC 2006 9 \\. / Thomas Locher, ETH Zurich @ DISC 2006 10
Results Outline
(e} 0 (e} 0
Our results:

» We show that for several intuitive algorithms the
worst-case skew between two neighboring nodes is
e(D)!

=

Not easy to find a good gradient
clock synchronization algorithm!

» We present an algorithm with a worst-case skew of
O(d + VD) between any two nodes at distance d in any

graph! —

———>

First algorithm with a worst-case bound
of o(D) between nodes at distance 1!

o)

\ Thomas Locher, ETH Zurich @ DISC 2006

l. Motivation
lI. Model / Results
lll. Synchronization Algorithms

V. Conclusion / Outlook

=

o)

\ Thomas Locher, ETH Zurich @ DISC 2006

Synchronization Algorithms: d@max

O o

A simple algorithm: Always set the clock to the maximum clock
value received from any neighbor (if > own clock value)!

Intuition: Nodes have to keep up with the fastest node anyway!
Synchronize to its clock as closely as possible!

This is a poor gradient clock synchronization algorithm!!!

A skew of 1 between all n (= D-1) neighbors cannot be avoided
- Fast propagation of the largest clock value incurs a large skew
between two neighboring nodes!

New time

g i New time
is D+x! is D+x!
2 Time:D+x 4 Tlme D+x Time: D +x ~ 22
== =6 @
clock value: Old clock Old clock Old clock

&9
D+x value: D+x -1 value: x+1 value: x @
1 b £ 7{\
Skew D! R\\r’j 1]
13

Thomas Locher, ETH Zurich @ DISC 2006

Synchronization Algorithms: (@M)*

(o o
The problem of @™~ is that the clock is always increased to the
maximum value!

- ldea: Allow a slack between the maximum clock value and the

own value!
The algorithm (am=x)’ sets the clock value to

Li(t) := max(Li(t), max; . ». Li(t) - 7)

=

<>
The constant slack!

The worst-case clock skew between
two neighboring nodes is still ©(D)

independent of the choice of y!!!

>
B

Thomas Locher, ETH Zurich @ DISC 2006 14

G

Synchronization Algorithms: @29

O o

L
A\

Only considering the largest clock value is a bad idea!

-> ldea: Take the clocks of all neighboring nodes into account and
choose the average clock value!

Surprisingly, this algorithm e is even worse!!!

» Assume that the message delay is always 1.

» Assume that the clock rate of node n is always 1 and the clock
rates of all other nodes are arbitrary values less than 1.

“After a while”, the skew between node n and n-1 is 2n-3 € ®(n)!

Time: x + (n 1)2 Tlme X + (n-2)? Tlme x+4 d Tlme x+1 g
Q=G == Q G
@ il =] @ @

clock value clock value: clock value: clock value
X+ (n-1)? X + (n-2)2 x+1

Thomas Locher, ETH Zurich @ DISC 2006

Synchronization Algorithms: @29

O o

Bad global property: The skew between node n and 1 is

(n-1)2 € ®(n?) € ©(D?)!_
== = @max guarantees a bound of
©(D) between any two nodes!

Note: Nodes have at most 2 neighbors in this graph

- The maximum clock value must have a larger weight \@/
than 72! n
- This also holds for other graphs: In a k-ary \@/ eee

tree, if the k children have a weight larger or
equal to %%, the worst-case skew is also ©(D?)
between the root and the leaf nodes!

Time: x + (n 1)2 Tlme X + (n-2)? Tlme x+4 z Tlme x+1 <
Q= G== Q O
@ =] L

clock value clock value: clock value: clock value ~p

-1)2 -2)? 1 \
X+ (n-1) X+ (n-2) X+

Thomas Locher, ETH Zurich @ DISC 2006 16

@/ @/ o-.\@

I

Synchronization Algorithms: (bound

O o

%

y

Minimizing the skew to the fastest neighbor or all neighbors does
not work...

- Idea: Minimize the skew to the slowest node! Give the slowest

node time to ,catch up!*=———
All nodes wait for each other!

Algorithm cbound does not increase its logical clock due to a
message if any neighboring node’s clock is 8 behind!

Problem with approach: Chain of dependency!

\‘W \‘w ‘ Time: x - 2&;".

clock value clock value: clock value:
x-B X—28B

Chain of length ®(n) =
- O(D) skew!

Node n-1 has to wait for
node n-2, node n-2 has
to wait for node n-3...

®(D) results in ®(D) waiting time

Thomas Locher, ETH Zurich @ DISC 2006

Synchronization Algorithms: Idea!

(o)
Waiting for slower nodes is not such a bad

[eupnxe!! "‘)
idea...
Do it smarter: Set 8 = O(VD) > Skew is %,%

allowed to be O(\D)! But the waiting time

l\

is at most O(D/%) = O(\D) as welll l‘

Set the constants right and slow nodes ﬂ
can always catch up! l"

O(D) time
—
=6
fast clock! \@‘/ \@ o
Progress
o(D
Node with (){ » oGP
slow clock! o e j@v

0(D) {
Length of

chain = O(\D)!

* | FOUND THE SOAP!!

Thomas Locher, ETH Zurich @ DISC 2006

Real time

A

Progress

=

A

U

Synchronization Algorithms: d°t

O o

Algorithm aret works as follows:
When a message is received, execute the following steps:

max ;= Maximum clock value of all neighboring nodes

min := Minimum clock value of all neighboring nodes

if(max > own clock and min + ‘u\JOD+1éown clock >

Reminder: U is the
maximum hardware
clock rate!

own clock := min(max, min + UND+1)
inform all neighboring nodes about new clock value!
end if

>
B

Thomas Locher, ETH Zurich @ DISC 2006 19

Synchronization Algorithms: d°t

o

Properties of (ot

+ Global Property:

The logical clock skew between any two nodes is at most

UD +1. =
>

©(D) is asymptotically optimal!!!
This fact is required to prove the
gradient property of @°!l

% Gradient Property:

The logical clock skew between any two neighboring
nodes is at most 2UVD+1.

O(\D) is the best known
bound so far!

Thomas Locher, ETH Zurich @ DISC 2006

A

Outline

o

l. Motivation
lI. Model / Results
lll. Synchronization Algorithms

V. Conclusion / Outlook

=

Conclusion

o

» General results:

« Dilemma: Focusing on the
maximum clock value
does not work. However,
this value must have a
large weight!

(4

% Considering all clocks to
be equally important does
not work!

» Algorithmic result:

< Algorithm with a worst-case skew of O(d+\D)!

7 7

Thomas Locher, ETH Zurich @ DISC 2006 23

Thomas Locher
Distributed Computing Group
ETH Zurich, Switzerland
lochert@tik.ee.ethz.ch
http://dcg.ethz.ch/members/thomasl.html

D D
k]]‘ Thomas Locher, ETH Zurich @ DISC 2006 21 k]]‘ Thomas Locher, ETH Zurich @ DISC 2006 22
Outlook Questions and Comments?
o} o o o
General Oblivious
O(\D) Thank you for your attention!

