
Oblivious Gradient Clock
Synchronization

Thomas Locher, ETH Zurich
Roger Wattenhofer, ETH Zurich

20th IEEE Int. Conference on Distributed Computing (DISC)
Stockholm, Sweden, September 2006

Distributed
Computing

Group Thomas Locher, ETH Zurich @ DISC 2006 2

Motivation: Clock Synchronization

The time
is 199!

The time
is 203!

The time
is 298!

The time
is 98!

???

Clock synchronization is a classic, important problem!
Many results have been published about different subtopics
(skew minimization, communication cost, fault-tolerance…).

More and more distributed applications are appearing!
Distributed systems become even more popular (Internet,
wireless networks…).
These applications often require synchronized clocks!

Thomas Locher, ETH Zurich @ DISC 2006 3

Motivation: Gradient Property

We focus on the minimization of the clock skew!
We would like the clock skew to be small between any two

nodes, even if they are not directly connected!

This is called the
global property!

More importantly, we want the skew between two nodes to be
small, if the length of the shortest paths between those nodes is
short!

This is called the
gradient property!

Thomas Locher, ETH Zurich @ DISC 2006 4

Motivation: Obliviousness

How can the local clock value be computed?
Store message arrival times and their time stamps!
Use old messages to estimate the current clock value of
the neighboring nodes and/or the message delays…

Really?
How?

Oblivious model: Each node can store only one clock value for
each neighboring node!

How much and what has to be stored?
What if nodes do not have much memory?

Advantage:
Oblivious algorithms

can easily be
transformed into
self-stabilizing

algorithms!

The time is
199! 0!

My neighbor‘s
clock says
199! 19980!

Thomas Locher, ETH Zurich @ DISC 2006 5

Motivation: Goal

We study the effect of obliviousness on clock
synchronization!

The goal is to get insights into the difficulty of
gradient clock synchronization!

What level of synchronization can be
achieved without storing a larger history?

Find good gradient clock synchronization
algorithms in this restricted model!

Such an algorithm might facilitate the
development of a general gradient clock
synchronization algorithms guaranteeing
even better bounds on the skew!

Thomas Locher, ETH Zurich @ DISC 2006 6

Outline

I. Motivation

II. Model / Results

III. Synchronization Algorithms

IV. Conclusion / Outlook

Thomas Locher, ETH Zurich @ DISC 2006 7

Model

The graph used in all examples is the linear list!
Messages have variable delays in the range [0,1].
Distance d(i,j) is defined as the length of the shortest

path between node i and j.
Each node i has a hardware clock Hi(·).

1

2

n

In the list:
d(i,j) = |j-i|+1

The time of node i at time t is Hi(t) = ∫0
t hi(τ) dτ!

Each node i further has a logical clock Li(·)!

The hardware clock rate of node i at time t is hi(t) ∈ [L,U],
where 0 < L < U and U ≥ 1.

Hi(t)

Li(t)

Goal: Minimize the
skew between the

logical clocks!

Thomas Locher, ETH Zurich @ DISC 2006 8

Model

Li(·) increases at the rate of Hi(·)!
A message received with a fresh clock value from a

neighboring node Update Li(·) according to the
algorithm in use!

If Li(·) changed Inform all neighboring nodes about
the new clock value!

1

2

n

Li(·) cannot run
backwards!

An algorithm A: L x ψ→ L specifies how node i adapts
its logical clock at time t, given its current value Li(t) and
the stored message history ψ!

An execution is E = (M,R), where M(t,i,j) ∈ [0,1]
specifies how long it takes for a message from node i
sent at time t to arrive at node j, and hi(t) = R(t,i)!

Oblivious! The most
accurate clock value
from each neighbor!

Thomas Locher, ETH Zurich @ DISC 2006 9

Results

A well-known result is that the skew between two nodes at
distance d is at least Ω(d)!

Proof Sketch: The following scenarios cannot be distinguished!

L1(t) = x!
Delivery time 0

Delivery time d

1 2

L2(t) = x! L1(t) = x+d!
Delivery time d

Delivery time 0

1 2

L2(t) = x!

There is a clock synchronization algorithm with a worst-case skew
of Θ(d) between any two nodes at distance d!

The only result on gradient clock synchronization [Fan, Lynch
@ PODC 2004] is that nodes at distance 1 cannot be
synchronized better than Ω(log D / log log D) where D denotes
the diameter of G!

Thomas Locher, ETH Zurich @ DISC 2006 10

Results [Fan, Lynch @ PODC 2004]

Proof Sketch for the Ω(log D / log log D) lower bound:
The skew between all neighbors among k nodes can be increased by
O(1) in O(k) time, but the skew can only be decreased by O(f(1)) in O(1)
time!

Recursive skew induction: Induce a skew of c1 in O(n) time. Let the
algorithm run again for n/O(f(1)) time Skew decreases by c2 < c1!
Increase the skew between O(n/f(1)) nodes during this time again by c1!
Repeat this for logO(f(1)) n steps!

Since D = n-1 and f(1) ∈ Ω(logO(f(1)) n), the result follows!

f(1) = Worst-case skew
allowed between neighbors!

No algorithm
with f(1) = o(D)

published!

sk
ew

time

n/O(f(1)) n/O(f(1))2 n/O(f(1))3 ...
...

Skew
decrease! Skew

increase!

Thomas Locher, ETH Zurich @ DISC 2006 11

Results

We show that for several intuitive algorithms the
worst-case skew between two neighboring nodes is
Θ(D)!

We present an algorithm with a worst-case skew of
O(d + √D) between any two nodes at distance d in any
graph!

Not easy to find a good gradient
clock synchronization algorithm!

First algorithm with a worst-case bound
of o(D) between nodes at distance 1!

Our results:

Thomas Locher, ETH Zurich @ DISC 2006 12

Outline

I. Motivation

II. Model / Results

III. Synchronization Algorithms

IV. Conclusion / Outlook

Thomas Locher, ETH Zurich @ DISC 2006 13

Synchronization Algorithms: Amax

A simple algorithm: Always set the clock to the maximum clock
value received from any neighbor (if > own clock value)!

Intuition: Nodes have to keep up with the fastest node anyway!
Synchronize to its clock as closely as possible!

This is a poor gradient clock synchronization algorithm!!!

A skew of 1 between all n (= D-1) neighbors cannot be avoided
Fast propagation of the largest clock value incurs a large skew

between two neighboring nodes!

Time: D + x Time: D + x Time: D + x

...
clock value:

D+x
Old clock

value: D+x -1
Old clock
value: x+1

Old clock
value: x

New time
is D+x!

Skew D!

New time
is D+x!

Thomas Locher, ETH Zurich @ DISC 2006 14

Synchronization Algorithms: (Amax)‘

The problem of Amax is that the clock is always increased to the
maximum value!

Idea: Allow a slack between the maximum clock value and the
own value!
The algorithm (Amax)’ sets the clock value to

Li(t) := max(Li(t), maxj ∈ Ni
Li(t) - γ)

The constant slack!

The worst-case clock skew between
two neighboring nodes is still Θ(D)

independent of the choice of γ!!!

Thomas Locher, ETH Zurich @ DISC 2006 15

Synchronization Algorithms: Aavg

Only considering the largest clock value is a bad idea!
Idea: Take the clocks of all neighboring nodes into account and

choose the average clock value!

Surprisingly, this algorithm Aavg is even worse!!!

Assume that the message delay is always 1.
Assume that the clock rate of node n is always 1 and the clock

rates of all other nodes are arbitrary values less than 1.

Time: x + (n-1)2 Time: x + (n-2)2 Time: x+4

...
clock value:
x + (n-1)2

clock value:
x + (n-2)2

clock value:
x+1

clock value:
x

Time: x+1
12n-1n

“After a while”, the skew between node n and n-1 is 2n-3 ∈ Θ(n)!

Thomas Locher, ETH Zurich @ DISC 2006 16

Synchronization Algorithms: Aavg

Bad global property: The skew between node n and 1 is
(n-1)2 ∈ Θ(n2) ∈ Θ(D2)!

Amax guarantees a bound of
Θ(D) between any two nodes!

Time: x + (n-1)2 Time: x + (n-2)2 Time: x+4

...
clock value:
x + (n-1)2

clock value:
x + (n-2)2

clock value:
x+1

clock value:
x

Time: x+1
12n-1n

Note: Nodes have at most 2 neighbors in this graph
The maximum clock value must have a larger weight

than ½!
This also holds for other graphs: In a k-ary

tree, if the k children have a weight larger or
equal to ½, the worst-case skew is also Θ(D2)
between the root and the leaf nodes!

Thomas Locher, ETH Zurich @ DISC 2006 17

Synchronization Algorithms: Abound

Minimizing the skew to the fastest neighbor or all neighbors does
not work…

Idea: Minimize the skew to the slowest node! Give the slowest
node time to „catch up!“

Algorithm Abound does not increase its logical clock due to a
message if any neighboring node’s clock is B behind!

All nodes wait for each other!

Problem with approach: Chain of dependency!

Time: x Time: x - B

...
clock value:

x
clock value:

x - B
clock value:

x – 2B

Time: x - 2B
n-2n-1n Node n-1 has to wait for

node n-2, node n-2 has
to wait for node n-3...

Chain of length Θ(n) = Θ(D) results in Θ(D) waiting time
Θ(D) skew!

Thomas Locher, ETH Zurich @ DISC 2006 18

Synchronization Algorithms: Idea!

Waiting for slower nodes is not such a bad
idea…
Do it smarter: Set B = O(√D) Skew is
allowed to be O(√D)! But the waiting time
is at most O(D/B) = O(√D) as well!
Set the constants right and slow nodes
can always catch up!

Node with
fast clock!

Node with
slow clock!

Progress:
O(√D)!

Progress:
O(√D)!

Real time

O(√D)

O(√D)

Length of
chain = O(√D)!

O(√D) time

Thomas Locher, ETH Zurich @ DISC 2006 19

Synchronization Algorithms: Aroot

Algorithm Aroot works as follows:

max := Maximum clock value of all neighboring nodes

min := Minimum clock value of all neighboring nodes

if(max > own clock and min + U√D+1 > own clock

own clock := min(max, min + U√D+1)

inform all neighboring nodes about new clock value!

end if

When a message is received, execute the following steps:

Reminder: U is the
maximum hardware

clock rate!

Thomas Locher, ETH Zurich @ DISC 2006 20

Synchronization Algorithms: Aroot

Properties of Aroot

Global Property:
The logical clock skew between any two nodes is at most
UD + 1.

Θ(D) is asymptotically optimal!!!
This fact is required to prove the

gradient property of Aroot!

O(√D) is the best known
bound so far!

Gradient Property:

The logical clock skew between any two neighboring
nodes is at most 2U√D+1.

Thomas Locher, ETH Zurich @ DISC 2006 21

Outline

I. Motivation

II. Model / Results

III. Synchronization Algorithms

IV. Conclusion / Outlook

Thomas Locher, ETH Zurich @ DISC 2006 22

Conclusion

General results:

Dilemma: Focusing on the
maximum clock value
does not work. However,
this value must have a
large weight!

Considering all clocks to
be equally important does
not work!

Algorithmic result:

Algorithm with a worst-case skew of O(d+√D)!

Thomas Locher, ETH Zurich @ DISC 2006 23

O(√D)

Outlook

General Oblivious

O(log D / log log D)

Upp
er

 b
ou

nd

Low
er

 b
ou

nd

Thomas Locher
Distributed Computing Group
ETH Zurich, Switzerland
lochert@tik.ee.ethz.ch

http://dcg.ethz.ch/members/thomasl.html

Thank you for your attention!

Questions and Comments?

