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Abstract

The main problem studied in this thesis is that of scheduling communica-
tion requests in a wireless network. Given a set of wireless links, comprised
by sender and receiver nodes, distributed in an arbitrary manner in space,
we want to know how much time it takes until all the links are scheduled suc-
cessfully. This problem is a fundamental part of the more general problem
of determining the throughput capacity of a given wireless network.

One of the most important issues when studying wireless network prob-
lems is the choice of the interference model. Traditionally, the algorithmic
community has focused on graph-based models. These models typically de-
fine a set of interference-edges, containing pairs of nodes within a certain
distance to each other, thus modeling interference as a binary and local prop-
erty. The notion of an interference-edge is a useful abstraction and allows for
elegant algorithm design and analysis. It is, however, an oversimplification
of the continuous and cumulative nature of the radio signal.

In contrast to the algorithmic community, researchers in information and
communication theory have worked with fading channel models, such as the
signal-to-interference-plus-noise-ratio (SINR) model, also referred to as the
physical interference model. This model represents the physical reality more
precisely, since the success of a signal reception depends on all concurrently
scheduled transmissions. The analysis of algorithms in this model, however,
is more challenging. Because of this increased complexity, the theoretical
results in this model have been very limited. Most of the work has either
consisted of heuristics and simulation-based evaluations of specific protocols,
or has focused on theoretical capacity bounds of special-case networks, such
as networks with grid topologies or random node distributions.

In this work we would like to gain a deeper understanding of the funda-
mental communication limits of wireless networks. This thesis covers several
aspects of the problem of scheduling wireless requests. We start with the
analysis of the problem’s complexity and prove that it is NP-hard in the
geometric physical interference model. In this model, it is assumed that
nodes live in the Euclidean space, and path-loss is determined by the dis-
tances between nodes. Since this problem does not admit optimum solutions
in polynomial time, unless P = NP, we concentrate on efficient approxi-
mation algorithms. In particular, we propose the first scheduling algorithm
that computes a feasible solution in the SINR model in polynomial time
with worst-case approximation guarantees for arbitrary network topologies.
Besides studying the basic scheduling problem, we also address related prob-
lems, such as weighted versions of the scheduling problem, distributed algo-
rithms, and scheduling in combination with analog network coding.





Zusammenfassung

Diese Dissertation beschäftigt sich hauptsächlich mit dem Scheduling von
Kommunikationsanfragen in drahtlosen Netzwerken. Es wird dabei angenom-
men, dass eine Menge von drahtlosen Verbindungen, definiert durch beliebig
im Raum verteilte Sender- und Empfängerknoten, gegeben ist. Wir wollen
nun wissen, wieviel Zeit benötigt wird, bis alle Empfängerknoten alle an
sie addressierten Nachrichten empfangen und erfolgreich dekodieren können.
Dieses Problem stellt einen fundamentalen Bestandteil eines generelleren Pro-
blems dar, in welchem es darum geht, den maximal erreichbaren Datendurch-
satz in einem gegebenen drahtlosen Netzwerk zu bestimmen.

Einer der wichtigsten Aspekte bei der Behandlung von Problemen im
Bereich drahtloser Netzwerke ist die Wahl des Interferenzmodells. In Algo-
rithmikerkreisen hat man sich dabei traditionellerweise auf graphbasierte Mo-
delle konzentriert. Solche Modelle definieren typischerweise eine Menge von
Interferenzkanten, die durch Paare von Knoten welche sich innerhalb einer
gewissen Distanz zueinander befinden, gegeben sind. Als Folge dieser Defini-
tion wird Interferenz als eine binäre und lokale Eigenschaft modelliert. Diese
Auffassung von Interferenz als Kanten ist eine nützliche Abstraktion welche
sowohl den eleganten Entwurf wie auch die elegante Analyse von Algorith-
men ermöglicht. Sie stellt allerdings auch eine zu starke Vereinfachung der
kontinuierlichen und kumulativen Natur elektromagnetischer Signale dar.

Im Gegensatz dazu arbeiten Informations- und Kommunikationstheoreti-
ker oft mit Fading-Channel-Modellen. Zu diesen Modellen gehört unter an-
derem das Signal-to-Interference-plus-Noise-Ratio (SINR) Modell, welches
auch als physikalisches Interferenzmodell bezeichnet wird. Dieses Modell re-
präsentiert die physikalische Realität genauer, da der erfolgreiche Empfang
eines Signals von allen zeitgleich übermittelten Signalen abhängt. Die Ana-
lyse von Algorithmen ist in diesem Modell allerdings anspruchsvoller. Auf-
grund dieser erhöhten Komplexität sind die bisherigen theoretischen Resul-
tate in diesem Modell sehr limitiert. Der Grossteil der bestehenden Arbeiten
beschäftigt sich entweder mit Heuristiken und der simulationsbasierten Eva-
luation von spezifischen Protokollen, oder konzentriert sich auf theoretische
Kapazitätsschranken für Spezialfälle von Netzwerken, wie zum Beispiel Netz-
werke basierend auf Gittern oder zufälligen Knotenverteilungen.

Mit dieser Arbeit möchten wir das Verständnis für die fundamentalen Li-
miten betreffend Kommunikation in drahtlosen Die Dissertation behandelt
verschiedene Aspekte rund ums Scheduling von Nachrichten in drahtlosen
Netzwerken. Wir beginnen mit der Analyse der Komplexität und zeigen ins-
besondere, dass das Problem im geometrischen SINR Modell NP-schwierig
ist. In diesem Modell wird angenommen, dass die Knoten in einem Eukli-
dischen Raum leben, und dass die paarweise Interferenz einzig durch die



Distanz zwischen den Knoten bestimmt ist. Da es, angenommen P 6= NP,
nicht möglich ist, optimiale Lösungen für dieses Problem in polynomieller
Zeit zu finden, konzentrieren wir uns auf effiziente Approximationsalgorith-
men. Insbesondere schlagen wir den ersten Scheduling Algorithmus für das
SINR Modell vor, welcher in polynomieller Zeit eine korrekte Lösung mit
Worst-Case Approximationsgarantieren für beliebige Netzwerktopologien be-
rechnet. Ausser dem grundlegenden Scheduling Problem behandeln wir auch
verwandte Probleme, wie zum Beispiel gewichtete Varianten des Scheluding
Problems, verteilte Algorithmen, und Scheduling in Kombination mit analo-
ger Netzwerk-Codierung.
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Chapter 1

Introduction

Wireless telecommunication networks have been increasingly penetrating
people’s everyday lives all around the world. The idea of using radio for
communication purposes dates as far back as wireless telegraphy, in the early
1800s, when it was discovered that radio waves could be used to send tele-
graph messages. Ever since radio technology has been steadily evolving into
more efficient and scalable communication systems. One of the key advances
towards efficient channel utilization was due to packet radio, first imple-
mented by the Aloha network, in the 1970s. Another breakthrough was the
idea to use the fact that the power of a transmitted signal decays with dis-
tance to enable spatial reuse of the frequency spectrum, giving rise to cellular
systems. It was not until the 1990s, however, that digital cellular systems
transformed wireless networks into the fastest growing segment of commu-
nications industry. There are estimates that there are currently over four
billion cell phone subscribers worldwide1. In addition to cellular networks,
wireless local area networks (WLANs) have been supplementing and replac-
ing wired networks and providing wireless access to the Internet in many
residences, offices, airports, universities, and even entire city districts.

The ultimate goal of wireless communication systems is probably to pro-
vide universal support for information exchange between people and between
devices and people. However, the characteristics of the wireless channel make
it tricky to achieve such an ambitious objective. On the one hand, the radio
spectrum is a scarce resource, which has to be allocated to various systems
and applications. Therefore, efficiently exploring its full capacity is essen-
tial. On the other hand, the propagation of the radio signal through the
wireless medium is subject to several fluctuations caused by obstacles and
movement, which make the wireless channel highly unstable and unreliable.
Moreover, wireless transmissions interfere intensely with each other unless

1Source: United Nations International Telecommunications Union (ITU)
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2 CHAPTER 1. INTRODUCTION

they are separated in space, frequency, or time.

There are numerous technical challenges that have to be overcome before
all the envisioned applications become available with acceptable quality of
service. Bandwidth-intensive and delay-sensitive applications, such as video
teleconferencing, large file transfers, or global multimedia access, are still too
constrained by the limitations of current wireless systems. Highly distributed
applications, such as distributed control systems with remote devices like sen-
sors are even farther away from becoming a reality. Besides the difficulties
originated by the unreliable wireless medium, these applications also demand
for flexibility and robustness that only ad hoc networks without central in-
frastructure can offer. In order for ad hoc networks, such as wireless sensor
networks, to leave the research laboratories and become part of everyday ap-
plications, we need better distributed protocols, smarter energy-constrained
devices, and a better understanding of the algorithmic complexity of wireless
networks.

This thesis studies the fundamental problem of determining the commu-
nication limits of a given wireless network. We will try to determine to which
extent it is possible to answer questions like “What is the throughput capac-
ity of a given network?”, and “How can this capacity be achieved?”. More
precisely, given a set of communication requests between nodes, arbitrarily
distributed in a metric space, how efficiently can these requests be sched-
uled? This question can be formulated in several ways. One might want
to know the maximum number of requests that can be scheduled simultane-
ously. Alternatively, one might ask about the minimum number of time slots
needed to schedule all requests. The main challenge is to achieve efficient spa-
tial reuse, considering wireless interference among concurrently transmitting
nodes. We hope that looking into these questions will help understanding
wireless networks, giving insights into interference, spatial reuse, and media
access control protocols.

The answers to the questions stated above depend, among other factors,
on the topology of the network. One could be interested in networks where
nodes are randomly distributed, or are positioned on a regular grid, for ex-
ample. The problem of determining the capacity of such networks has been
extensively studied, starting with the pioneering work of Gupta and Ku-
mar [45]. Another special case are worst-case networks, i.e., topologies with
particularly low capacity. The algorithmic challenges of worst-case networks
have also received some attention [84]. These studies suggest that there is
a significant gap between the capacities of randomly deployed and worst-
case networks. When power control is allowed, this gap is polylogarithmic in
the number of nodes. Remarkably, when power control is not allowed, this
gap becomes exponential, i.e., whereas the capacity of a random network is
Θ(1/ logn), it becomes as bad as Θ(1/n) in worst-case topologies. This sug-
gests that, in fact, very little is understood about the capacity of networks



3

that fall in the middle of these two extremes.

In this thesis we generalize this research and ask what the capacity of
any network (i.e., a network with arbitrary topology) is. Whether it is a
topology formed by nodes distributed uniformly at random in the plane, or
a topology that follows some other probability distribution, whether it is
highly clustered, or a worst-case topology, we want to be able to compute
the network’s throughput capacity.

Actually, in this thesis we focus on one specific part of the problem of
determining the throughput capacity of a wireless network. We study the
problem of scheduling one-hop communication requests without power con-
trol. This problem plays a fundamental role in determining the capacity of
the network, however it does not consider neither the routing nor the power
control problems, which are also part of the more general problem of deter-
mining the throughput capacity of a given wireless network.

An important issue when studying scheduling algorithms for wireless net-
works is how to model interference. The most commonly used interference
models can be roughly classified into graph-based models and fading chan-
nel models. Graph-based models, such as the protocol model or the UDG
(Unit Disk Graph) model, usually define a set of interference-edges, connect-
ing pairs of nodes, depending on whether they fulfill some criterion, such
as, for example, the distance to each other. Interference is therefore a bi-
nary and, often, a local measure. Such models serve as a useful abstraction
of wireless networks. They facilitate the process of designing protocols and
proving their efficiency, but are subject to several limitations. Although the
interference of a single far-away transmitter can be relatively small, the accu-
mulated interference of several such nodes can be sufficiently high to corrupt
a transmission. Therefore protocols based on localized interference models
that simply ignore interference beyond a certain range are not guaranteed to
work in a real scenario.

Fading channel models, such as the physical interference model, offer a
more realistic representation of wireless communication. A signal is received
successfully if the SINR—the ratio of the received signal strength to the sum
of the interference caused by all other nodes sending simultaneously, plus
noise—is above a hardware-defined threshold. This definition of a successful
transmission, as opposed to the graph-based definition, accounts also for
interference generated by transmitters located far away. Observe that, since
the SINR depends on which transmissions are being scheduled concurrently
in each time slot, it is not possible to build an interference graph a priori.
The notion of an interference edge is not a binary relation anymore, and
thus a conflict graph cannot be constructed without knowing the solution
beforehand. This makes the analysis of algorithms more challenging than in
graph-based models.

The research community has tried to approach wireless network prob-
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lems from different perspectives. Some people have focussed on building
protocols for real networks and validated their heuristic solutions by running
experiments on small real network instances or through simulations of larger
networks. Unfortunately, these results can hardly be extended to arbitrary
network topologies, given that they are usually, from the start, designed
for a restricted pool of network parameters. Other people have looked at
wireless network problems from the information-theoretic perspective, and
have derived capacity bounds for networks that obey some random node
distribution. These solutions again do not provide enough insight into the
understanding of arbitrary wireless networks, since hardly any real network
instance fits a particular random distribution. Yet another line of research
has modeled wireless systems by means of graphs, and used graph-theoretic
techniques to derive elegant algorithms with worst-case analysis and guar-
antees. Unfortunately, once again, these results are not good enough for us,
because graph-based interference models are an extreme oversimplification
of the physical properties of the wireless signal.

In this thesis we intend to gain deeper understanding of the communi-
cation limits of an arbitrary wireless network. We set ourselves the goal to
bridge the gap between heuristics and special-case analysis and theoretical
analysis of arbitrary instances in a realistic network model.

In the following section we describe the basic structure of this thesis.

1.1 Thesis Overview

This thesis is organized in nine main chapters. The distribution of the con-
tent among these chapters is described in detail in the remainder of this
Introduction Chapter.

In Chapter 2 we discuss the most relevant related work to this thesis.
We cover a wide range of topics, among them: complexity and hardness
results; graph-based scheduling algorithms; scheduling and power control in
the physical interference model; capacity of randomly deployed networks;
distributed scheduling algorithms; and network coding. We conclude this
chapter with a discussion of some of the most recent developments and still
on-going work in the area.

In Chapter 3 we introduce some preliminary concepts used throughout
this thesis, such as definitions from the computational complexity theory
and metric spaces. In this same chapter we describe the physical interference
model, or SINR model, which is the main model used in this thesis to rep-
resent a wireless network. We conclude this chapter with definitions of three
scheduling problems that will play a major role in the posterior chapters.

In Chapter 4 we analyze the complexity of the link scheduling prob-
lem in the SINR model. We make a distinction between “geometric SINR”
(SINRG) and “abstract SINR” (SINRA), and begin the chapter with a dis-
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cussion about these models. The geometric version of the model is more re-
stricted than the abstract version, since it explicitly uses the fact that nodes
are distributed in the Euclidean plane. We present the first NP-hardness
proofs in such a model. In particular, we prove two problems to be NP-
hard: Multi-Slot Scheduling and Weighted One-Shot Scheduling (see Sec-
tions 3.5 and 3.6 for precise definitions). The first problem consists in find-
ing a minimum-length schedule for a given set of links. The second problem
receives a weighted set of links as input and consists in finding a maximum-
weight subset of links to be scheduled simultaneously in one shot. Before
presenting the main results, we illustrate the difference in proof techniques
between the SINRA and SINRG models by showing that it is NP-hard to
approximate the Multi-Slot Scheduling Problem to within a factor of n1−ε,
for any constant ε > 0, in the non-geometric SINRA model.

In Chapter 5 we propose the first algorithms for the scheduling problem
in the SINR model, which have an approximation guarantee in arbitrary
topologies. The aproximation ratio of the algorithms proposed in this chapter
is O(g(L)), where g(L) is the so called diversity of the network. The diversity
depends on the topology of the network and captures the variation in the
lengths of the links to be scheduled. The main drawback of this algorithm is
that the diversity of a network can be as large as n, the number of links in
the network.

In Chapter 6 we improve this result by proposing another algorithm,
which to the extent of our knowledge, is the first scheduling algorithm with
approximation guarantee independent of the topology of the network. The
algorithm has a constant approximation guarantee for the problem of max-
imizing the number of links scheduled in one time-slot. Furthermore, we
obtain a O(logn) approximation for the problem of minimizing the number
of time slots needed to schedule a given set of requests. Simulation results
indicate that our algorithm does not only have an exponentially better ap-
proximation ratio in theory, but also achieves superior performance in various
practical network scenarios. Furthermore, we prove that the analysis of the
algorithm is extendable to higher-dimensional Euclidean spaces, and to more
realistic bounded-distortion spaces, induced by possibly non-isotropic signal
distortions.

In Chapter 7 we analyze the complexity of local broadcasting in the phys-
ical interference model. We present two distributed randomized algorithms:
one that assumes that each node knows how many nodes there are in its
geographical proximity, and another, which makes no assumptions about the
topology of the network. We show that, if the transmission probability of
each node meets certain characteristics, the analysis can be decoupled from
the global nature of the physical interference model, and each node performs
a successful local broadcast in time proportional to the number of neighbors
in its physical proximity. We also provide worst-case optimality guaran-
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tees for both algorithms and demonstrate their behavior in average scenarios
through simulations.

In Chapter 8 we analyze the complexity of scheduling wireless links in
the physical interference model with analog network coding capability. We
study two models with different definitions of network coding. In one model,
we assume that a receiver is able to decode several signals simultaneously,
provided that these signals differ in strength significantly. In the second
model, we assume that in a two-way relay channel, routers are able to forward
the interfering signal of a pair of nodes that wish to exchange a message, and
nodes are able to decode the “collided” message by subtracting their own
contribution from the interfered signal. For each model, we construct an
instance of the scheduling problem in the geometric SINR model, in which
nodes are distributed in the Euclidean plane. We present NP-hardness proofs
for both scenarios and propose a scheduling algorithm that explores analog
network coding opportunities to achieve superior throughput capacity.

Finally, in Chapter 9, we present some conclusions of this thesis and
discuss possible future directions.



Chapter 2

Related Work

In this chapter we summarize some of the related work in the area and
position the results of this thesis in the respective contexts. In Section 2.1
we describe existing results on the complexity of scheduling problems. In
Section 2.2 we discuss what has been done in terms of scheduling algorithms
in graph-based models. In Section 2.3 we present an overview of the results
involving scheduling and power control in SINR-based models. In Section 2.4
we discuss information-theoretic bounds on the capacity of random networks.
In Section 2.5 we cover some results in the area of distributed scheduling
algorithms, and in Section 2.6 we discuss related work in the area of network
coding. We conclude this chapter with Section 2.7, where we cite some of
the most recent developments and still on-going work in the area.

2.1 Scheduling and Complexity

There have been various NP-hardness proofs for the problem of scheduling
in wireless networks. Most of these proofs have been designed either for
graph-based models or for the non-geometric SINR model (see Section 4.1 for
a discussion about the non-geometric, or “abstract” SINR model SINRA).

In graph-based models, two different types of interference have been stud-
ied in the literature, namely, primary interference and secondary interference.
Primary interference occurs when a node transmits and receives packets at
the same time. Secondary interference occurs when a node receives two or
more separate transmissions. In [2], Arikan proved that the point-to-point
link scheduling problem is NP-complete if both primary and secondary inter-
ference are considered in a general graph. In [46], Hajek and Sasaki showed
that when secondary conflicts are tolerated, though, the same problem can
be solved in polynomial in time. In [26], Ephremides and Truong proved that
the problem of scheduling broadcasts without tolerance of secondary conflicts
is NP-complete.

7
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In [20], Clark et al. proved that a series of closely related problems
to scheduling of wireless links, such as coloring in graphs, independent set,
domination, independent domination, and connected domination, are also
NP-complete in unit disk graphs (UDG) (please refer to Section 2.2 for a
definition of a UDG, also see Figure 2.1). Interestingly enough, finding cliques
when a geometric representation (circles in the plane) of a UDG is provided,
was shown to be polynomial in time [20].

Another group of graph-based models are the so called K-hop interfer-
ence models. In these models, no two links within K hops can successfully
transmit at the same time. For a given K, in order to find a minimum-length
schedule, one has to solve a maximum (possibly weighted) matching problem
subject to the K-hop interference constraints.1 For K = 1 the problem can
be solved in polynomial time; for K > 1, the resulting problems are NP-hard
and cannot be approximated within a factor that grows polynomially with
the number of nodes. This was proved by Sharma et al. in [102, 103], using
a reduction from the 3-CNF-SAT problem. For the case of geometric graphs,
such as UDGs, the authors show that the resulting problems admit polyno-
mial time approximation schemes. Note that determining an adequate value
for K for a specific network is a challenging task and strongly depends on
the characteristics of the physical layer.

Another family of hardness results for the scheduling problem is based
on the abstract (non-geometric) SINR model (SINRA) and consist of reduc-
tions without a geometric representation. A typical such proof establishes
an arbitrary gain matrix between the participating nodes, which results in a
standard graph, since the gain between any two nodes can be set to either 1
(“link”) or 0 (“no link”). Afterwards, the hardness is proved by a reduction
from graph coloring, for example as was done by Björklund et al. in [12].
In Section 4.2 we illustrate this kind of hardness proof by showing that it is
NP-hard to approximate the Multi-Slot Scheduling Problem (defined in Sec-
tion 3.6) to within a factor of n1−ε, for any constant ε > 0, in the SINRA
model.

Several related problems have been shown to be NP-hard in the SINRA
model. The joint problem of power control and scheduling with the objective
of minimizing the total transmit power subject to the end-to-end bandwidth
guarantees and the bit error rate constraints of each communication ses-
sion was addressed by Kozat et al. in [67]. The authors proved that this
problem is NP-hard by using a reduction from integer programming under
the assumption that the values of the gain matrix can be chosen arbitrar-
ily. Similarly, Leung and Wang [77] proved that the problem of maximizing
data throughput by adaptive modulation and power control while meeting

1Let dG(i, j) denote the graph (or hop) distance between two vertices in a graph G.
For two edges ei = i1i2, ej = j1j2 ∈ E(G), let d(ei, ej) = minu,v∈{1,2} dG(iu, jv). A
set of edges M is called a K-valid matching if for all e1, e2 ∈ M with e1 6= e2, we have
d(e1, e2) ≥ K.



2.2. SCHEDULING ALGORITHMS AND GRAPH-BASED MODELS 9

u

v

w
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Figure 2.1: Unit disk graph: node u is adjacent to node v (dvu ≤ 1), but not
to node w (dvw > 1).

packet error requirements is NP-hard (again under the assumption that the
values of the gain matrix are arbitrary). Another related problem, proposed
by Chatterjee et al. in [82], is the so called “power constrained discrete rate
allocation problem”. The authors prove that this problem is NP-hard for
CDMA data networks by a reduction from the Knapsack problem, using a
gain matrix with gain value 1 for all links.

The complexity of wireless link scheduling with power control in the geo-
metric SINRG model was examined by Borbash and Ephremides in [14]. A
problem called “MAX-SIR-MATCHING” was introduced, and it was shown
that if this problem is NP-hard, then computing the minimum length sched-
ule is also NP-hard. However, no proof is given about the NP-hardness of
“MAX-SIR-MATCHING”, leaving the complexity issue not fully addressed.

To the best of our knowledge, the first NP-hardness proofs for the link
scheduling problem in the SINRG model are the ones presented in Chapter 4
of this thesis and published in [39]. Some follow-up hardness proofs have
been later based on the result in [39]. In [30], for instance, Fu et al. prove
that a variation of the scheduling problem, called Scheduling Consecutive
Transmission Constraints, is NP-hard in the SINRG model.

2.2 Scheduling Algorithms and Graph-Based Models

As already mentioned in Chapter 1, a popular way to model wireless networks
has been by means of graphs. A graph model usually consists of a connectiv-
ity graph and possibly also of an interference graph. In both graphs, the set
of vertices represents the devices, and a successful transmission occurs when
the sender-receiver pair is connected in the connectivity graph and no other
concurrently scheduled sender-receiver pair inflicts a conflict in the interfer-
ence graph. As a consequence, graph-based scheduling algorithms usually
employ some sort of matching or coloring strategy.
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ri
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rj
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RI
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Figure 2.2: Protocol interference model: there are two radii: transmission
range RT and interference range RI . In this example, node ri is not able
to receive a transmission from node si if node sj concurrently transmits to
node rj–even though ri is not adjacent to sj .

Coloring a general graph is not only an NP-complete problem, but is
also hard to approximate to within factor of n1−ε, for any constant ε >
0 [121]. Wireless networks, however, can usually be better modeled by more
restricted classes of graphs, such as geometric graphs. Geometric graphs are
graphs whose vertices are placed in a metric space (usually in a 2-dimensional
Euclidean plane), and two vertices are connected if and only if the distance
between them is less than or equal to r, for some r > 0. When r = 1,
the geometric graph is commonly called a Unit Disk Graph (UDG) (see
Figure 2.1). When r is different for each node and two vertices u and v are
connected if and only if the distance between them is less than or equal to
min (r(u), r(v)), then the graph is called a disk graph. Intuitively, disk graphs
are intersection graphs of (possibly equal sized) circles in the plane and have
been extensively used to model broadcast networks.

One commonly used graph-based interference model is the Protocol
model [45]. In this model, a transmission by a node si is successfully received
by a node ri iff the intended receiver ri is sufficiently apart from the sender sj
of any other simultaneous transmission, i.e., d(sj , ri) ≥ (1+ρ)d(si, ri),∀sj 6=
si. The constant ρ > 0 models situations, where a guarding region is speci-
fied by the protocol to prevent a neighboring node from transmitting (on the
same channel) at the same time. This model implicitly assumes that senders
use power control to adjust their signals. There are, therefore, two radii: a
transmission range RT and an interference range RI . A node can success-
fully transmit to a receiver node in its transmission range only if the receiver
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is not within the interference range of any other concurrently transmitting
node (see Figure 2.2).

The problem of scheduling in graph models has been studied extensively
and presents a vast and rich body of literature, only a small fraction of which
is going to be covered in this section.

In [46], Hajek and Sasaki propose a polynomial time algorithm for the
problem of scheduling links in a general graph, when secondary interference
is tolerated. In [26], Ephremides and Truong analyze the complexity and
provide heuristic solutions (that can be implemented distributively) for the
problem of scheduling broadcasts in general graphs, considering primary and
secondary interference. In [94], Ramanathan and Lloyd study both the link
scheduling and the broadcast scheduling problems in trees and in general
graphs. They prove that tree networks can be scheduled optimally in poly-
nomial time, and that arbitrary networks can be scheduled so that the length
of the schedule is bounded by a length that is proportional to a function of
the network’s thickness times the optimum, where thickness is defined to
be the minimum number of planar graphs into which a given graph can be
partitioned.

In [54], Hunt et al. present approximation schemes for several graph
problems, such as maximum independent set, minimum vertex cover and
minimum dominating set, when restricted to geometric graphs, such as UDGs
and (r, s)-civilized graphs 2. The approximation schemes in [54] exhibit the
same time versus performance trade-off as approximation schemes for planar
graphs. In [70], Krumke et al. build upon the results in [54] and present a
series of approximation algorithms for the distance-2 coloring problem, also
in geometric graphs, such as (r, s)-civilized graphs.

In [74], Kumar et al. study the joint problem of scheduling and routing.
Using LP formulations, the authors propose a “cross-layer” framework to
maximize the throughput of the network to within a constant approxima-
tion factor in different graph-based interference models, such as the protocol
model [45].

In [73], Kumar et al. study decentralized algorithms for the joint problem
of routing and scheduling in the distance-2 interference model for various
families of disk graphs.

In [111], Wang et al. propose centralized and distributed approxima-
tion algorithms (with a constant factor approximation ratio) for the schedul-
ing problem in two graph-based interference models: “fixed power protocol
model” and “RTS/CTS model”. The “fixed power protocol model” assumes
that each node si has its own fixed transmission power, or interference range,
and any other (receiver) node rj within this range will be interfered with
the signal of si. The “RTS/CTS model” reflects the communication under

2A graph is called (r, s)-civilized if its vertices can be mapped to points on the plane
such that the length of each edge is ≤ r and distance between any two points is ≥ s, for
some pair of reals r > 0 and s > 0.
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the RTS/CTS based scheme of IEEE 802.11 DCF (Distributed Coordination
Function). The exchange of RTS and CTS messages between the sender and
the receiver ensures that nodes within one hop of the sender or the receiver
cannot participate in a communication, which is equivalent to saying that the
chosen set of node pairs must constitute a 2-valid matching. In [102], Sharma
et al. analyze formulations of the scheduling problem as weighted matching
problem under K-hop interference models. Using the results from [54], they
develop a PTAS for the problem for geometric graphs, such as disk graphs
and (r, s)-civilized graphs.

In [56], Joo et al. analyze the so called Greedy Maximal Scheduling (GMS)
scheme to solve the link scheduling problem subject to theK-hop interference
constraints in trees and geometric graphs. GMS has low complexity and
may be implemented in a distributed manner. Joo et al. show that the full
capacity region can be achieved by this scheme in trees, and an efficiency
ration between 1/6 and 1/3 can be obtained in geometric graphs.

Although the algorithms discussed in this section present extensive theo-
retical analysis, they are constrained to the limitations of a model that over-
simplifies the nature of wireless communication. In the next section we are
going to discuss scheduling algorithm designed for a series of more realistic
models, namely the fading channel models.

2.3 Scheduling Algorithms and the SINR Model

In the physical interference model, or the SINR model, a signal is received
successfully if the SINR—the ratio of the received signal strength to the sum
of the interference caused by all other nodes sending simultaneously, plus
noise—is above a hardware-defined threshold (see definition in Section 3.3).
The inefficiency of graph-based scheduling protocols in the physical interfer-
ence (or SINR) model has been shown both through simulations [7, 42, 43],
and through experiments (on mica2 sensor nodes running with TinyOS) [87].
In fact, in [87], Moscibroda et al. show that any protocol which obeys the
laws of graph-based models can be broken by a protocol explicitly defined
for the physical model. There have been some efforts to model the properties
of the physical model using SINR-derived conflict graphs, e.g. [15, 55, 106],
however, the obtained bounds are usually too loose, or are only valid in
restricted network topologies.

Given that algorithms designed for graph-based models may render in-
feasible schedules or schedules that poorly explore the network’s capacity,
the question of how to design protocols specifically designed for the physical
communication model has been studied, leading to a large and rich body of
literature.

The joint problem of scheduling and power control has been extensively
studied in the SINR model. In [41], Grandhi et al. analyze the problem
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of determining whether a given matching (or set of sender-receiver pairs)
is feasible under SINR constraints. In particular, they show that, given
a set of k sender-receiver pairs, the maximum SIR that can be achieved
simultaneously at all the receivers is the reciprocal of the spectral radius of
a k × k nonnegative irreducible matrix A, in which Aij = Gij/Gii if i 6= j
and Aij = 0 if i = j and Gij is the gain (or path-loss) between sender sj and
receiver ri. The obtained SIR is achieved by using the Perron eigenvector
as a power vector. This result was extended by incorporating the case of
nonzero ambient noise N > 0 in [13] by Borbash and Ephremides. However,
the problem is that the maximum SINR obtained in this way may be too
low to guarantee correct reception at all receivers. A brute force approach
for finding the optimal schedule would involve checking, for all 2n subsets of
links, whether the obtained power vector provides a sufficiently high SINR,
which incurs an exponentially growing time complexity.

Power assignment strategies typically fall into three groups: uniform
power ssignment, “energy metric” or liner power assignment, and link re-
moval algorithms. Uniform power assignment has been widely adopted in
practical systems, and works by assigning the same power level to all nodes
in the network [44, 50, 104]. Linear power assignment is another frequently
used strategy, and works by assigning a power level proportional to a so-called
“energy metric”, i.e., proportional to the minimum power required to reach
the receiver node [5, 83, 113]. In [86], Moscibroda and Wattenhofer show
that both of these strategies can lead to very long schedules, when compared
to schedules that employ a sophisticated power control mechanism.

Another group of power assignment algorithms is based on the results
in [41, 118], where it was shown that finding a power assignment yelding
the maximum achievable signal to interference ratio (the result was later
extended to include noise e.g. in [13]) can essentialy be reduced to solving
an Eigenvalue problem for the link gain matrix, which takes time O(n3). If
the maximum achievable ratio is below the minimum threshold β, a set is
“unfeasible”. A number of heuristics that remove links from such unfeasi-
ble set according to different criteria, such as the amount of interference a
link causes or experiences, have been proposed [76, 110, 118, 119]. Other
heuristics for the joint problem of scheduling and power control can be found
in [21, 24].

In [85], Moscibroda et al. present examples of network topologies for
which all the above mentioned heuristics perform very poorly, i.e., generate
schedules of length Ω(n), where n is the number of links in the network. Sig-
nificant progress in terms of providing worst-case guarantees for a polynomial
time power assignment algorithm was achieved in [86], where Moscibroda et
al. propose an algorithm that successfully schedules a strongly connected set
of links in polylogarithmic number of time slots, even in arbitrary worst-case
networks. This result has been extended and applied to different scenarios,
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such as topology control [31, 88], sensor networks [84], scheduling combined
with routing [16], or ultra-wideband [53]. Until the time of writing of this
thesis, however, no algorithm with a non trivial approximation guarantee has
been presented for the problem of scheduling an arbitrary set of links using
power control in the SINR model. As an exception we can maybe cite [30],
where Fu et al. derive an algorithm with the same approximation guarantee
as the scheduling algorithm without power control, presented in [39]. Some
very recent results, discussed in Section 2.7, promise a breakthrough in this
respect.

Scheduling algorithms without power control with approximation guar-
antees in the SINR model have not been very numerous. In [15], Brar
et al. present a greedy scheduling algorithm with approximation ratio of
O(n1−2/(ψ(α)+ε)(logn)2/(ψ(α)+ε)), where ψ(α) is a constant that depends on
the path-loss exponent α. This result, however, holds only under the as-
sumption that nodes are distributed uniformly at random in a square of unit
area. In [39] (see Section 5.1 and Section 5.2), we proposed scheduling algo-
rithms with a factor O(g(L)) approximation guarantee in arbitrary network
topologies, where g(L) is the so called diversity of the network. The diversity
depends on the topology of the network and captures the variation in the
lengths of the links to be scheduled. The problem is that the diversity of a
network can be as large as n. In [17], Chafekar et al. proposed an algorithm
with approximation guarantee of O(log ∆), where ∆ is the ratio between the
maximum and the minimum distances between nodes. This parameter can
be arbitrarily large (note that g(L) ≤ log ∆). Following the result in [39], the
undesired dependency on the diversity g(L) of the network has been inherited
by a number of scheduling algorithms in the SINR model, e.g. [22, 30].

In contrast to the above mentioned results, the scheduling algorithm that
we proposed in [37] (see Section 5.1) has constant approximation guarantee
for the One-Slot Scheduling Problem (defined in Section 3.4) and an ap-
proximation ratio of O(logn) for the Multi-Slot Scheduling Problem (defined
in Section 3.6). These bounds are valid in the physical interference model
and arbitrary node distributions. To the extent of our knowledge, these are
the first scheduling algorithms with approximation guarantee independent
of the topology of the network. We complement our results by looking at
the algorithms’ performance in metric spaces beyond the two-dimensional
Euclidean plane (see Section 6.3). We prove that the analysis is extendable
to higher-dimension Euclidean spaces, provided that the path-loss exponent
α is strictly higher than the number of dimensions.

2.4 Capacity of Randomly Deployed Networks

Throughput capacity of randomly deployed wireless networks has been in-
tensely studied from the information theory perspective. In their seminal
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work [45], Gupta and Kumar provide upper and lower bounds on the capac-
ity of networks with two kinds of topology: one where nodes are distributed
uniformly at random in a disk of unit area, and one where nodes are “opti-
mally” distributed on a regular grid lattice. In the former case, the authors
show that if each node is capable of transmitting W bits per second, the per
node capacity of the network with n nodes is Θ(W/

√
n logn). In the “opti-

mum” topology and traffic pattern, the capacity is Θ(W/
√
n). These results

hold in both the protocol and the physical interference models and hold a
rather pessimistic character, since they essentially state that large networks
cannot achieve high throughput.

Using similar techniques, in [68], Kozat and Tassiulas show that this ca-
pacity bound can be improved up to Θ(W/ logn), if the ad hoc network is
overlaid with an infrastructure network. To achieve this bound, the number
of (also distributed uniformly at random) access points to the infrastruc-
ture has to grow linearly with n, and the ad hoc network (excluding the
infrastructure nodes) has to form a connected topology. The capacity of
multichannel wireless networks with channel switching constraints was stud-
ied by Bhandari and Vaidya in [8, 9]. In particular, in [8] it was shown that,
in a model where each node is allowed to switch between a pre-assigned ran-
dom subset of f channels out of c (each having bandwidth W/c), the per-flow

capacity is Θ(W
p
prnd/n logn), where prbd ≥ 1 − e−f

2/c. The capacity of
random networks has been further analyzed in many different contexts, such
as MIMO [19], multi-user cooperation [90], use of relays [35], multicast [78],
data gathering [36], and cognitive networks [109]. Although these results are
important, they do not provide algorithmic tools to determine the capacity
of concrete wireless networks. In practice, network topologies hardly ever
follow any particular random distribution.

2.5 Distributed Scheduling Algorithms

One of the commonly used communication models to analyze distributed
algorithms for wireless networks is the synchronous message passing model,
which models the network as an undirected graph, in which nodes repre-
sent the devices, and edges represent point-to-point communication channels.
Time is divided into time-slots, all nodes start the execution of a protocol
simultaneously, typically in time slot t = 0, and in each time slot each node
can reliably exchange one message with each of its neighbors. To simulate
the broadcast nature of wireless communication, it is common to assume
that nodes cannot send different messages to different neighbors. As already
pointed out, scheduling protocols are usually based on graph coloring algo-
rithms. There have been proposed a rich variety of distributed scheduling al-
gorithms for the message passing model in combination with graph-based in-
terference models [26, 56, 73, 98, 111]. Although this model allows algorithms
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to be rigorously analyzed, it fails in capturing many essential characteristics
of wireless communication, such as unreliable communication, collisions, or
lack of synchronization.

The above cited algorithms usually establish a TDMA (Time Division
Multiple Access) schedule, assigning to each node a sequence of time-slots
in which they are allowed to transmit. When it comes to designing a MAC
(Medium Access Control) protocol, a “fixed” TDMA schedule might pro-
vide low channel utilization when contention is low, since time slots are re-
served for particular nodes even when they do not have any data to transmit.
Other disadvantages of TDMA-based MAC protocols are their dependency
on tight time synchronization constraints and networks information, such
as the 2-hop neighborhood of each node. To overcome some of these issues,
many MAC protocols combine TDMA scheduling with CSMA (Carrier Sense
Multiple Access). In a CSMA scheme, a node checks the channel for con-
current traffic before transmitting, and if the channel is busy, it waits for
a random period of time before transmitting again. A multitude of MAC
protocols implementing some combination of TDMA and CSMA have been
proposed [25, 52, 57, 58, 91, 97, 105, 107, 117]. The evaluation of the perfor-
mance of these protocols is typically done through simulations or experiments
in specific network topologies, providing no analytical guarantees for general
cases.

A model that better captures the nature of wireless communication, but
still permitting rigorous analysis, is the radio network model, extensively
studied in the context of the broadcast problem [6, 10, 11, 18, 66]. In this
model, time is also divided into time slots, all nodes start the execution of
the algorithm (or wake up) simultaneously (i.e., there is access to a global
clock), and in each time slot each node can transmit one message to all nodes
within its transmission range. A message is received correctly by a node in
a time slot only if exactly one of its neighbors transmitted in that time
slot. Otherwise a collision occurs. This model has been further extended
by dropping the assumption of a global clock and studied in the context
of the wake-up problem [28, 34, 59]. In the latter model, each node wakes
up asynchronously, upon successful reception of a message. The network is
assumed to be single-hop, so as soon as one node transmits successfully, all
nodes are woken up. In [59], Jurdzinski and Stachowiak showed that when
nodes know the total number n of nodes in the (one-hop) network, the wake
up can be done in time O(logn log (1/ε)) with probability at least 1− ε. If n
is unknown, the authors proved a lower bound of Ω(n/ logn).

The closest communication model to the one that we use in Chapter 7,
is the so called unstructured radio network model, proposed by Kuhn et al.
in [71, 72]. This model introduces an even harsher definition of asynchrony
than the one used to study the wake-up problem. It is assumed that nodes can
wake up and join the execution of the protocol asynchronously at any time,
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i.e., nodes do not have to be woken up by a clear message reception. Upon
waking up, nodes do not have any information about their neighborhood,
about which nodes are awake, or for how long they have been awake. As
opposed to our work, the analysis in [71, 72] still assumes an underlying
graph-based interference model.

To the extent of our knowledge, there have not been a lot of work on
distributed algorithms in the physical interference model. In [99], Richa et
al. present a distributed algorithm for establishing a dominating set in the
SINR model. In [75], Lebhar and Lotker propose an algorithm to emulate
a UDG-like structure in the SINR model and a network where nodes are
distributed uniformly at random on the plane. In [38] (see Chapter 7), we
propose efficient distributed algorithms for the problem of local broadcasting
in the SINR model. We propose two distributed randomized algorithms. One
is a very simple Aloha-like algorithm that is based on the assumption that
each node knows the number of its neighbors; the other is more involved and
makes no assumptions about topology knowledge. Finally, aloha-based MAC
schemes have also been analyzed in the SINR model [4, 29, 112]. In contrast
to our work, the analysis presented in these papers is primarily based on the
assumptions of homogenous and uniformly random node distributions that
do not provide any strong worst-case bounds.

2.6 Scheduling and Network Coding

Network coding is a technique that extends the traditional definition of rout-
ing by allowing routers to not just forward copies of received messages, but
to mix the bits from different packets before forwarding them. The topic has
received a lot of attention in the research community, starting with the pio-
neering work of Ahlswede et al. [1], where the authors prove that full capacity
(i.e. the maximum flow or minimum cut between a source and a receiver)
can be achieved in a graph where one source multicasts information to other
nodes in a multihop fashion and any node in the network is allowed to en-
code all its received data before passing it on. Network coding within one
such multicast flow has been extensively studied ever since. In [79], Li et al.
showed that every (solvable) multicast network has a scalar linear solution
over a sufficiently large finite field alphabet, i.e., the multicast capacity can
be achieved using linear codes. In [101], Sanders et al. provided polynomial
time algorithms for constructing coding and decoding schemes for multicas-
ting at the maximal data rate. In [51], Ho et al. showed that multicast
capacity can be achieved in a distributed manner, by using random linear
codes over a sufficiently large finite field. In [115], Wu at al. showed that the
minimum energy-per-bit multicast in a graph-based wireless network model
can be solved as a linear program.

Network coding in more general networks, with an arbitrary collection
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of point-to-point connections and not just one multicast flow, was shown
to be a much more difficult problem. In [23], Dougherty et al. prove that
linear codes are not sufficient to achieve full capacity in this case, and in [65],
Koetter and Medard show that finding linear codes for networks with more
than one flow is NP-hard. In [63], Katti et al. integrated network coding into
a link layer enhancement scheme for (arbitrary) multi-hop wireless networks.
A mixing engine was introduced into the nodes, operating between the MAC
and the network layer, in order to identify opportunities to make bitwise
XORs of different packets and sending them in a single transmission. In [80],
Liu et al. analyzed the theoretical throughput gains of such a scheme in
a random network topology and showed that network coding provides no
order difference improvement on the capacity bounds obtained by Gupta
and Kumar in [45] for networks that do not employ network coding. In [81],
Liu et al. analyze the constant factor throughput improvement obtained by
network coding in the same network model studied by Gupta and Kumar
in [45].

Network coding in the physical layer, or analog network coding, is similar
in spirit to digital network coding. However, it operates on the raw analog
signal, instead of first decoding and then mixing packets in a bitwise manner.
Some techniques, such as cochannel signal separation, explore differences in
the characteristics of interfered signals, such as the signal’s strength, to de-
code several signals simultaneously [48, 49]. Other analog coding techniques
exploit the fact that, in a wireless network, often a receiver has prior knowl-
edge about some packets destined to other nodes, by having overheard or
forwarded them earlier. This situation has been extensively studied in the
context of 2-way relay channel [62, 95, 96, 69]. The capacity bounds of analog
network coding in a 2-way relay channel have been thoroughly analyzed from
an information theoretic perspective [62, 69, 93, 92, 114, 116]. In [62] Katti
et al. show that joint relaying and network coding can double the through-
put for certain channel conditions. In [116], Xue et al. analyze the influence
of traffic patterns and channel conditions on the gains achieved by network
coding.

In [120], Zhang at al. propose an algorithm for separating two physical-
layer signals using higher level information. The approach is not directly
implementable in practice, though, because of several assumptions that the
authors make, e.g., they assume that the interfering signals are synchronized
at the symbol boundaries and that both signals have undergone the same
attenuation when arriving at the router. These problems are overcome in [61],
where Katti et al. make analog network coding more practical. The authors
propose a communication scheme, where pairs of nodes that wish to exchange
packets through a relay node are encouraged to transmit simultaneously. The
relay node, without decoding the collided signal, amplifies and forwards it.
The destination nodes then extract the packet destined to them by filtering
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out their own contribution from the mixed signal. Katti et al. design and
implement the approach using software radios and show through experiments
that significant gains can be achieved in several network topologies, such as
the canonical 2-way relay channel (to which the authors refer as “Alice and
Bob” topology), the “X” topology (two flows intersecting at one relay node),
and unidirectional flow in a chain topology.

In [40] (see Chapter 8), we study the combined problem of analog net-
work coding and link scheduling in the physical interference model. We
make use of two definitions of analog network coding: one definition that
uses cochannel signal separation to decode several messages simultaneously,
and another definition that is based on the “amplify and forward” approach
of [61]. We first analyze whether the ability to decode several signals simul-
taneously alters the complexity of the scheduling problem (see Section 8.3
and Section 8.4), and then propose a heuristic to schedule an arbitrary set
of links using cochannel signal separation (see Section 8.5). As opposed to
the related work discussed in this section, which is mostly aimed at deriving
information theoretic capacity bounds or implementing working prototype
systems, we are more interested in analyzing the impact of analog network
coding on our link scheduling problem from an algorithmic perspective. We
derive our results in the geometric setting of the physical interference model,
and do not assume any underlying graph structure, as is frequently done
when analyzing the complexity of network coding problems [65].

2.7 Latest Developments

The problem of scheduling wireless links in the physical interference model
has been receiving an increasing attention in the algorithmic community. A
lot of work is being carried out at the time of writing of this thesis. We
would like to mention some of the results that came to our knowledge, some
of which have not been published yet.

An interesting line of research has investigated static properties of the
SINR model. In [3], for instance, Avin et al. analyze the shape of recep-
tion zones under uniform power assignment, i.e., when all nodes transmit
at the same power level. Specifically, based on some algebraic properties
of the polynomials defining the reception zones, the authors show that the
reception zones are convex and relatively well-rounded. The authors refer to
the partition of the plane in such reception zones as “SINR diagrams”, and
argue that a deeper understanding of this kind of structures might play a key
role in the development of algorithms for wireless networks, similar to what
Voronoi diagrams represent to proximity queries in computational geometry.

The problem of joint scheduling and power control has been studied by
Fanghänel et al. [27]. They define oblivious power assignment to be an as-
signment in which the power value of a link depends only on the distance



20 CHAPTER 2. RELATED WORK

between the sender and the receiver. They prove that oblivious power assign-
ments cannot achieve approximation ratios better than Ω(n) for the directed
version of the problem. This is the worst possible performance guarantee
that could be expected. Interestingly, for bidirectional version of the prob-
lem, i.e., when the SINR constraints have to be satisfied at both the receiver
and the sender, the authors prove that there exists an algorithm with poly-
logarithmic approximation guarantee.

The scheduling problem without power control has been further studied
by Halldórsson and Wattenhofer in [47]. The authors develop an algorithm
with constant approximation guarantee and prove that the problem is in
APX.



Chapter 3

Preliminaries, Models, and

Definitions

This chapter starts with some preliminary definitions. In Section 3.1 we
introduce some concepts from the computational complexity theory, and in
Section 3.2 we present the definition of a metric space. The chapter pro-
ceeds with the description, in Section 3.3, of the wireless network model
used to analyze the algorithms proposed in this thesis, namely the Physical
interference model. The chapter is concluded with the definitions of three
main problems studied in this work: the One-Slot Scheduling Problem, de-
fined in Section 3.4, the Weighted One-Slot Scheduling Problem, defined in
Section 3.5, and the Multi-Slot Scheduling Problem, defined in Section 3.6.

3.1 Computational Complexity Theory

In this thesis we study optimization problems which are not likely to admit
polynomial-time algorithms. Therefore, we focus on approximation algo-
rithms for these problems. Below are some important definitions from the
computational complexity theory, that will be used throughout this work.

The complexity class NP-complete is a class of decision problems1, which
are both NP (verifiable in Nondeterministic Polynomial time) and NP-hard
(any problem in NP can be translated into this problem). Consider an NP-
complete problem Π. Intuitively, the first property states that candidate
solutions to Π can be verified quickly. The second property implies that, if
Π can be solved in polynomial time, then so can every problem Π′ ∈ NP.

In order to prove the first property, it is enough to show that it is possible
to decide whether a candidate solution to Π is correct or not in polynomial

1Informally, a decision problem is a question with a yes-or-no answer, depending on
the values of some input parameters.
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time. In order to prove the second property, a polynomial-time many-to-
one reduction from an already known NP-hard problem Π′ to Π has to be
provided. A polynomial-time many-to-one reduction from a problem Π′ to Π
is a deterministic algorithm, which transforms any instance π′ ∈ Π′ into an
instance π ∈ Π, such that the answer to π is YES if and only if the answer
to π′ is YES.

If a problem is NP-hard, we are unlikely to find a polynomial-time al-
gorithm to solve it exactly. However, it may still be possible to find near-
optimal solutions in polynomial time. An algorithm that returns provably
near-optimal solutions is called an approximation algorithm. We say that an
approximation algorithm has a ratio bound of ρ(n) if, for any input of size
n, the cost ALG of the solution produced by the approximation algorithm is
within a factor of ρ(n) of the cost OPT of an optimal solution:

max

�
ALG

OPT
,
OPT

ALG

�
≤ ρ(n). (3.1)

This definition applies both for minimization and maximization problems.
When it comes to classifying NP-hard problems according to their hard-

ness of approximation, three main classes have been identified [108]. The
approximation factors for theses classes of problems are constant (> 1),
Ω(logn), and nε for a fixed constant ε > 0, if the problem is a minimization
problem; and constant (< 1), O(1/ logn), and 1/nε for a fixed ε > 0, if the
problem is a maximization problem. Examples of problems are Vertex Cover
and Steiner Tree in the first class, Set Cover in the second class, and Clique
and Coloring in the third class.

To prove that a problem Π2 is hard to approximate, it is sufficient to pro-
vide a so-called gap-preserving reduction from a problem Π1, already known
to be hard to approximate with factor ρ1(|π1|) ≤ 1 (assuming P 6= NP),
where Π1 is a minimization problem, and π1 is an instance of Π1.

A gap-preserving reduction from Π1 to Π2, assuming both are minimiza-
tion problems2, comes with four parameters (functions), f1, ρ1, f2, and ρ2.
Given an instance π1 of Π1, it computes, in polynomial time, an instance π2

of Π2 such that

• OPT (π1) ≤ f1(π1) ⇒ OPT (π2) ≤ f2(π2),

• OPT (π1) > ρ1(|π1|)f1(π1) ⇒ OPT (π2) > ρ2(|π2|)f2(π2).

We proceed with some terminology regarding metric spaces.

3.2 Metric Space

A metric space is a set V together with a function d (called a metric or
distance function), which assigns a real number d(x, y) to every pair x, y ∈ V

2The cases, where one or both of Π1 and Π2 are maximization problems, are similar.
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satisfying the following properties (or axioms):

• d(x, y) ≥ 0 (non-negativity);

• d(x, y) = 0 iff x = y (identity of indiscernibles);

• d(x, y) = d(y, x) (symmetry);

• d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

The last property is called the triangle inequality because (when applied
to R2 with the usual metric) it says that the sum of two sides of a triangle
is at least as big as the third side.

In a metric space M = (V, d), the ball of radius R around element x ∈ V ,
denoted by BR(x), consists of all points that are within distance R of x.
Formally,

BR(x) = {y ∈ V | d(y, x) ≤ R}.

In the following section we introduce the physical interference model, used
to model a wireless communication network in this thesis.

3.3 The Physical Interference (SINR) Model

As already discussed in Chapter 1, traditionally, wireless multi-hop networks
have been modeled by means of graphs. A graph model for a wireless network
typically consists of two graphs: a connectivity graph and an interference
graph (also referred to as conflict graph). In both graphs, the set of vertices
represents the devices (senders and receivers). A successful message trans-
mission is said to occur whenever the intended receiver ri is connected by
an edge in the connectivity graph to the sender si, and no other sender sj ,
adjacent to ri in the interference graph, transmits simultaneously. For a set
of simultaneous transmissions to be feasible, therefore, the edges representing
them in the conflict graph must not be adjacent. As a natural consequence,
solving the scheduling problem in this kind of model usually boils down to
finding independent sets and colorings in graphs.

Although the concept of an edge is a useful abstraction and allows for
elegant algorithm design and analysis, it is a stark oversimplification of the
physical laws behind the wireless communication medium. As opposed to a
binary and local, distance-defined concept of an edge, the wireless signal is of
continuous and accumulative nature. Whereas one transmission originated
outside the pre-defined interference range of a node x may not disrupt the
signal at x, the interference of many, possibly far-away located, transmitters
might accumulate and prevent the correct reception at x. This illustrates
that a set of transmissions forming an independent set in a graph model
might be conflicting in the underlying physical model, and might therefore
represent an unfeasible scheduling solution.
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Fading channel models, such as the physical interference model [45], offer
a more realistic representation of wireless communication. The definition of
a successful transmission in this model, as opposed to the binary concept
of a conflict in a graph-based model, accounts for interference generated by
all senders that transmit simultaneously. Since the SINR depends on which
transmissions are being scheduled concurrently in each time-slot, it is not
possible to build an interference graph a priori. The notion of an interference
edge is not a binary relation anymore, and thus a conflict graph cannot be
constructed without knowing the solution beforehand.

In this thesis we study the problem of scheduling wireless communication
requests (or simply links) in the physical interference model.

We assume that the input to the problem is a set L = {l1, . . . , ln} of n
wireless links, where each link li represents a communication request from a
sender si to a receiver ri:

li = (si, ri).

The communication devices, such as senders and receivers, are viewed as
nodes positioned in a metric space (e.g. the Euclidean plane). The Euclidean
distance between two nodes si, rj is denoted by

dij = d(si, rj),

so the length of a link li is referred to by

dii = d(si, ri).

We assume that there are no primary conflicts in the transmission setup,
i.e., each node is either a sender or a receiver and each receiver is associ-
ated with only one sender. These conflicts can be resolved efficiently by
introducing additional nodes at the same position such that there is one
sender-receiver pair for each link. Therefore we neglect them for simplicity’s
sake.

Moreover, we assume that each link has a unit-traffic demand, and model
the case of non-unit traffic demand by replicating each link k times, where
k is the demand on the link.

In the physical interference model, the received signal power decays pro-
portionally to the inverse of the distance between the sender and the receiver
to the power of a so called path-loss exponent α, which is a constant, whose
exact value depends on external conditions of the medium (humidity, ob-
stacles, etc.), as well as the exact sender-receiver distance. It is commonly
assumed that α > 2 [45]. Therefore d−αij denotes the propagation attenuation
or link gain between sender si and receiver ri. If P (si) is the transmitting
power level of a sender si, the received power at the receiver ri is

Pii = Pri(si) =
P (si)

dαii
.
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The power received from si by the receiver rj of a concurrently scheduled
link lj is referred to as interference and denoted by

Iij = Irj (si) = Prj (si) =
P (si)

dαij
.

Note that since the power level received at the receiver cannot be higher
than the power level at which the sender actually transmitted, there is an
implicit assumption here that the minimum distance between any sender-
receiver pair is one, i.e.:

d(si, rj) ≥ 1, ∀si, rj | li, lj ∈ L.

Without loss of generality, we assume that the input instance L is always
normalized, such that the minimum sender-receiver distance is at least one,
i.e., the space in which the nodes (s1, r1), . . . , (sn, rn) ∈ L are located is
“stretched” by a factor of max(1, 1/minli,lj∈L(dij)).

We denote by St = {l1, . . . , lm} the set of concurrently scheduled links
in time-slot t. As in [45], we assume that transmissions are slotted into
synchronized time-slots of equal length and in each time-slot t, a node can
either transmit or remain silent.

The total interference Iri(St) (sometimes also referred to as Ili(St), or
simply as Iri or Ili) experienced by a receiver ri is the sum of the interference
power values created by all nodes in the network transmitting simultaneously
in time-slot t (except the intending sender si), that is,

Iri = Iri(St)

=
X
lj∈St,
lj 6=li

Iri(sj).

Let N denote the ambient noise power level. We define the signal-to-
interference-plus-noise ratio of a link li, transmitting in time-slot t as

SINRli = SINRri(St)

=
Pii

Iri +N

=

P (si)
dα

iiP
lj∈St,
lj 6=li

P (sj)

dα
ji

+N
.

Finally, let β ≥ 1 denote a hardware-dependent minimum SINR thresh-
old required for a successful message reception. A successful transmission
between a sender si and a receiver ri in time-slot t occurs if and only if

SINRli(St) ≥ β. (3.2)
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We say that a schedule S = {S1, . . . ,ST } is feasible, or correct, if the
following condition holds:

SINRli(St) ≥ β, ∀li ∈ St, ∀t ∈ {0, . . . , T − 1}.

Throughout this thesis, we deal with the scheduling problem under uni-
form power assignment [45], i.e., we assume that all nodes transmit with the
same power level P :

P (si) = P, ∀li ∈ L.

Nevertheless, our analysis holds in case nodes transmit with different but
fixed power levels, provided that either the ratio Pmax/Pmin between the
maximum and the minimum power levels is bounded by a constant, or there
are only a constant number of possible power levels.

An important aspect of our model is the placement of nodes. We assume
that nodes can be placed arbitrarily in the plane, possibly in a worst-case
fashion (as opposed to uniform random distribution).

In practice, networks with heterogenous topologies are quite typical, and
protocols should be designed such that they are capable of coping well with
such heterogeneous topologies. In a sensor network, for instance, the density
of sensors is expected to be much higher in areas of interest in order to
capture all the desired data, whereas other locations are expected to contain
the minimum number of nodes just to maintain connectivity. Note that
the worst-case node deployment assumption makes the analysis significantly
more involved compared to random, uniform scenarios.

Next we present formal definitions of three variations of the scheduling
problem.

3.4 One-Slot Scheduling Problem (OSP)

The One-Slot Scheduling Problem can be formulated as follows. The input to
the problem is a set of links L = {l1, . . . , ln}, where each link li represents a
communication request from a sender si to a receiver ri. The objective of the
One-Slot Scheduling Problem is to maximize the number of links scheduled
concurrently in one time-slot, such that all messages are received successfully.
In other words, we attempt to use one slot to its full capacity.

Formally, a set S = {l1, . . . , lm} ⊆ L is a solution to an instance of the
One-Slot Scheduling Problem if the following conditions hold:

S = argmax
S′⊆L

|S ′|,

SINRli(S
′) ≥ β, ∀li ∈ S ′. (3.3)
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3.5 Weighted One-Slot Scheduling Problem (WOSP)

The Weighted One-Slot Scheduling Problem is a “weighted version” of the
One-Slot Scheduling Problem. It can be formulated as follows. The input to
the problem is a set of links L = {l1, . . . , ln}, where each link li is assigned a
weight w(li). The weights might represent, for example, the relative priorities
of the communication requests, or the revenue values associated to different
clients. The objective of the problem is to pick a subset of weighted links,
such that the total weight (or value) is maximized and the SINR level is at
least β at every scheduled receiver.

A set S = {l1, . . . , lm} ⊆ L is a solution to an instance of the Weighted
One-Slot Scheduling Problem if the following conditions hold:

S = argmax
S′⊆L

X
li∈S′

w(li),

SINRli(S
′) ≥ β, ∀li ∈ S ′. (3.4)

3.6 Multi-Slot Scheduling Problem (MSP)

As opposed to the one-slot versions of the scheduling problem, where the
objective is to use one time-slot to its full capacity, the objective of the
Multi-Slot Scheduling Problem is to schedule all links in as few time-slots as
possible, guaranteeing that all messages a delivered successfully according to
the SINR condition (3.2).

More precisely, let L = {l1, . . . , ln} be the input set of communication
requests. A schedule is represented by S = (S1,S2, . . . ,ST (S)), where T (S)
denotes the length of the schedule and St = {l1, . . . , lm} ⊆ L is a subset of
links scheduled in time-slot t.

A schedule S is a solution to an instance of the Multi-Slot Scheduling
Problem if the following conditions hold:

S = argmin
S′=(S′1,S′2,...,S′T (S′))

T (S ′),

T (S′)[
t=1

S ′t = L,

SINRli(S
′
t) ≥ β, ∀li ∈ S ′t ⊆ S ′, t ∈ {0, . . . , T (S ′)− 1}. (3.5)

The above presented problem definitions will be the focus of the following
Chapters 4, 5, and 6.





Chapter 4

Complexity in Geometric SINR

As has been discussed in Section 2.1 of the Related Work Chapter, there are
relatively few results on the hardness of network problems in a geometric
setting. However, insights on the complexity are very important for the
design of efficient algorithms.

In this chapter we analyze the complexity of two problems defined in
Chapter 3: the Multi-Slot Scheduling Problem and the Weighted One-Slot
Scheduling Problem. We prove both problems to be NP-hard in the so-called
geometric SINR model (SINRG).

We distinguish “abstract SINR” (SINRA) from “geometric SINR”
(SINRG) model according to the freedom with which the path-loss matrix
can be defined. In the SINRA model, as opposed to the SINRG model,
path-loss between nodes is not constrained by their Euclidean coordinates,
but can be set arbitrarily (i.e., triangular inequality must not be preserved
when defining the path-loss).

We begin this chapter with a discussion about the SINRA and the
SINRG models in Section 4.1. We proceed by illustrating how a typical
hardness proof in the SINRA model works in Section 4.2, where we provide
such a proof for the Multi-Slot Scheduling Problem. Our main complexity
results are presented in Sections 4.3 and 4.4, where we show that the Multi-
Slot Scheduling Problem and the Weighted One-Slot Scheduling Problem are
both NP-hard in the SINRG model.

4.1 Geometric x Abstract SINR (SINRG x SINRA)

When studying wireless networks, the choice of the interference model is of
fundamental significance. Not only has the selected model to incorporate
the nature of real networks, but also to facilitate the development of rigorous
reasoning. One model of choice is the “abstract” Signal-to-Interference-plus-
Noise-Ratio (or short, SINRA) model. In the SINRA model, a signal is
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received successfully depending on the ratio of the received signal strength
and the sum of the interference caused by nodes sending simultaneously (plus
noise).

The wireless networking community usually adheres to a geometric SINR
(or short, SINRG) model. In the SINRG model, the nodes live in space,
and the gain (or signal attenuation) between two nodes is determined by
the distance between the two nodes. In particular, a signal fades with the
distance to the power of α, α being the so-called path-loss parameter.

SINRG makes some simplifying assumptions, such as perfectly isotropic
radios, no obstructions, or a constant ambient noise level. On the other hand,
SINRA is not all that realistic either, as it allows arbitrary values in the gain
matrix among the participating nodes of a wireless network. In reality, if a
node u is close to a node v, which in turn is close to a node w, then u and
w will also be close. So the entries in the gain matrix will be constrained
by the other entries. Thus, SINRG is too optimistic, whereas SINRA is
too pessimistic. Hence, a real network is positioned somewhere between the
SINRG and SINRA models.

When studying algorithms or protocols, upper bounds should be derived
for the pessimistic model, as an algorithm for a strictly1 more pessimistic
model will also work for reality. However, also the converse is true: If one is
interested in lower bounds (impossibility results or capacity constraints), one
must use the optimistic model. A strictly more optimistic model guarantees
that results are applicable in practice.

In this chapter, we formally prove that the Multi-Slot Scheduling Problem
and the Weighted One-Slot Scheduling Problem are both NP-hard in the
SINRG model. Since the SINRG model is weaker than reality, this implies
that one cannot compute an optimal schedule of wireless requests in practice,
unless P = NP.

To the best of our knowledge, these are the first NP-hardness proofs for
SINRG. As we have discussed in Section 2.1 of the Related Work Chap-
ter, there have been various NP-hardness proofs for wireless network models,
in particular for the so-called unit disk graphs (UDG) or for the SINRA
model. In contrast to our work, these proofs are graph-based. In an or-
thodox SINRA proof one establishes an arbitrary gain matrix between the
participating nodes of a wireless network, giving O(n2) degrees of freedom.
In particular, this allows to build a graph, as the gain between any two nodes
can be set to either 1 (“link”) or 0 (“no link”). One ends up with a standard
graph, and it trivially follows that e.g. scheduling is as hard as coloring in
graphs. A similar argument holds for proofs for the UDG model. This is not
surprising, as the G in UDG stands for graph.

In reality, however, gain cannot be chosen arbitrarily. As we argued

1Note that models are rarely strictly harder than reality; SINRA is a typical example,
as SINRA does not include several difficulties of reality, e.g. short-term fading.
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before, the triangular inequality makes all the entries in the gain matrix
interdependent. If we turn to the SINRG model, we must choose positions
of the nodes in space (e.g. in a plane), which determine the attenuation
between two nodes, giving only O(n) degrees of freedom. Arguing that two
nodes cannot transmit concurrently in a schedule becomes much harder, since
the nodes all influence each other. This is what intuitively makes the problem
harder. In SINRG, one must always deal with the complete (weighted)
graph; this asks for a different kind of proof.

Before presenting the main results of this chapter, in the next section
(Section 4.2) we illustrate a typical hardness proof in the SINRA model.

4.2 Multi-Slot Scheduling Problem in SINRA

In this section we show that it is NP-hard to approximate the Multi-Slot
Scheduling Problem in the “abstract SINR” model (SINRA) to within a
factor of n1−ε, for any constant ε > 0.

Theorem 4.1. There is no n1−ε factor approximation algorithm for the
scheduling problem in the SINRA model, for any constant ε > 0, assuming
P 6= NP.

Proof. We will prove the result by presenting a gap-preserving reduction
from the graph coloring problem. In [121] it was shown that it is NP-hard
to approximate the graph coloring problem to within n1−ε for all ε > 0.

Consider an instance πC of the graph coloring problem defined for an
undirected graph G = (V,E) on n vertices. We construct (in polynomial
time) an instance πS of scheduling, such that

OPT (πC) ≤ k ⇒ OPT (πS) ≤ k, (4.1)

OPT (πC) > n1−εk ⇒ OPT (πS) > n1−εk. (4.2)

For each v ∈ V , we add a link lv = (rv, sv). The SINR parameters are set to
β = 1, N = 0, and the n× n path-loss matrix A is defined as follows:

• (v, w) ∈ E ⇒ Awv = Avw = 1,

• (v, w) /∈ E ⇒ Awv = Avw = n,

• v = w ⇒ Awv = Avw = 1.

To see that (4.1) holds, assume that we can color πC with k or less colors. We
claim that links associated to nodes with the same color (let’s call each such
subset V (ci), 1 ≤ i ≤ k) can be scheduled concurrently, giving a schedule of
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length k (or less). Since nodes colored with the same color are not adjacent,
the SINR at each link lv can be lower bounded by

SINRlv (V (ci)) =
P
1P

w∈V (ci),
w 6=v

P
n

≥ n

n− 1
> 1

= β, ∀lv, v ∈ V (ci), i ∈ {1, . . . , k}.

To see that (4.2) holds, assume we cannot color πC with ≤ n1−εk colors.
We have to show that πS cannot be scheduled in n1−εk time-slots or less.
Assume that we could, and consider a schedule of size n1−εk. Since any
coloring of this size must have a violation (an edge to a node x of the same
color) at at least one node v ∈ V . If s is the color of v, i.e., v ∈ V (cs)., the
SINR at the link lv associated with this node is:

SINRlv (V (cs)) ≤
P
1

P
1

+
P

w∈V (cs),
w 6=v,w 6=x

P
n

< 1

= β, lv | v, x ∈ V (cs), s ∈ {1, . . . , k}.

This shows that any schedule of size n1−εk or less will have at least one
violated node, given the necessary contradiction.

4.3 Multi-Slot Scheduling Problem in SINRG

Proving a problem to be NP-hard implies that there exists no polynomial
time algorithm for determining an optimal schedule, unless P = NP. It
is widely believed that an NP-hard computational problem is not tractable
efficiently.

We proceed by giving a polynomial time reduction from the Partition
Problem, an NP-complete special case of the well known Subset Sum prob-
lem, to the Multi-Slot Scheduling. If the solution to an instance of the Multi-
Slot Scheduling problem implies a solution to any instance of the Partition
Problem, then Multi-Slot Scheduling must be at least as hard as Partition.

Theorem 4.2. Multi-Slot Scheduling is NP-hard.

Proof. We show that the Partition Problem is reducible to the Multi-Slot
Scheduling Problem in polynomial time. The Partition Problem (proved to
be NP-complete by Karp in his seminal work [60]) can be formulated as
follows: Given a set I of integers, is it possible to divide this set into two
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rn+1 rn+2

sn+1

sn+2

s1

r1

s2 r2

sn

rn

     Prn+2(sn+2) = 
β*σ/2

Prn+1(sn+1) = 
β*σ/2

Irn+1(s1) = 
Irn+2(s1) = i1

Irn+1(s2) = 
Irn+2(s2) = i2

Irn+1(sn) = 
Irn+2(sn) = in

dmin

dmin

dmin

Figure 4.1: Reduction from Partition: link ln+1 (or ln+2) can be scheduled if
and only if the interference caused by simultaneously scheduled links sj , j ∈
{1 . . . n} is less our equal to σ/2.
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subsets I1 and I2, such that the sums of the numbers in each subset are
equal? The subsets I1 and I2 must form a partition in the sense that they
are disjoint and they cover I.

Partition Problem: Find I1, I2 ⊂ I = {i1, . . . , in} s.t.:

I1 ∩ I2 = ∅,
I1 ∪ I2 = I, andX
ij∈I1

ij =
X
ij∈I2

ij =
1

2

X
ij∈I

ij .

The proof proceeds as follows. First, we define a many-to-one reduction
from any instance of the Partition Problem to a geometric instance of the
Multi-Slot Scheduling Problem. Then, we argue that the instance of the
Multi-Slot Scheduling Problem cannot be scheduled in T ≤ 1 time slots, but
can be scheduled in 1 < T ≤ 2 time-slots if and only if the instance of the
Partition problem is solved.

Let us look at a set I = {i1, . . . , in} of integers, where the elements of I
add up to σ,

nX
j=1

ij = σ.

Without loss of generality, we can assume all elements to be distinct
and positive2. We construct the following Multi-Slot Scheduling Problem
instance with n+ 2 links L = {l1, . . . , ln+2} (see Figure 4.1). We refer to the
sender node belonging to lj as sj and the receiver node rj . We assign each
of these nodes a position (X,Y) in the plane. For each integer ij in I we set
the x-axis coordinate of sj to (P/ij)

1/α,

pos(sj) =

 �
P

ij

� 1
α

, 0

!
∀1 ≤ j ≤ n.

Next, we designate for every ri, 1 ≤ i ≤ n its position to be at distance
dmin to its sender si, where

dmin = P
1
α ·

�
1

(imax−1)1/α − 1

i
1/α
max

�
�
1 + (nβ)

1
α

� , 3 (4.3)

2Note that the assumption that the integers in the Partition instance are distinct is
not essential for the reduction to work, and we make it merely for simplicity’s sake.

3Note that this implies that some sender-receiver distances are less than one and the
received power Pri

= P/dα
min can be larger than the transmitting power P . As has been

stated in Section 3.3, to overcome this issue, we assume that the problem instance is
normalized such that the minimum distance between any sender-receiver pair is at least
one. The power level P is normalized accordingly, such that it is high enough for the
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and imax is the maximal value of the integers in set I. Thus

pos(ri) = pos(si) + (dmin, 0).

Finally, we place rn+1 and rn+2 at the center (0, 0) and their senders
sn+1, sn+2 perpendicular to the x-axis, at distance (2P/βσ)1/α, i.e.,

pos(rn+1) = pos(rn+2) = (0, 0),

pos(sn+1) =

 
0,

�
2P

β · σ

� 1
α

!
,

pos(sn+2) =

 
0,−

�
2P

β · σ

� 1
α

!
.

Having defined the geometric instance of the Multi-Slot Scheduling Prob-
lem for any instance of the Partition Problem, we proceed by showing that
in order to find a schedule of length 1 < T ≤ 2, a solution to the Partition
Problem is required. Clearly, it is not possible to schedule all links in one slot,
since the receivers rn+1 and rn+2 are at the same position and we assume
β ≥ 1.

In order to transmit successfully, the SINR constraint at the intended
receiver has to be satisfied. In the following lemma we prove that the re-
ceivers r1, . . . , rn are close enough to their respective senders to guarantee
successful transmission, regardless of the number of other links scheduled
simultaneously.

Lemma 4.3. Let Li = {lj | 1 ≤ j ≤ n+ 1 and i 6= j}. It holds for all i ≤ n
that the SINR exceeds β when the link li is scheduled concurrently with the
set Li,

SINRri(Li) =

P
dα

iiP
lj∈Li

P
dα

ji

> β.

Proof. We are not considering ln+2, since ln+1 and ln+2 can never be sched-
uled simultaneously and the distance between sn+2 and any other node is
the same as the distance between sn+1 and this node.

Since the positions of the sender nodes s1, . . . , sn depend on the values
of i1, . . . , in, we can determine the minimum distance between two sender

longest link in the input set to transmit successfully in the presence of ambient noise.
For the sake of simplicity, we do not change the notation to reflect this normalization.
Power P therefore denotes an already normalized constant. Note that the exact value of
P does not affect the reduction, since P is still uniform (fixed and equal for all nodes)
and can be determined for any instance of Partition.
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nodes sj , sk.

d(sj , sk) = |d(sj , rn+1)− d(sk, rn+1)|

=

�����
�
P

ij

� 1
α

−
�
P

ik

� 1
α

�����
≥ P

1
α

�
1

(imax − 1)1/α
− 1

i
1/α
max

�
. (4.4)

Thus, one can deduce that the sender sj closest to ri, i 6= j is located at
least at distance d(sj , si) − dmin from ri (dmin is defined in (4.3)). All the
other sender nodes (including sn+1) are farther away. This suffices to show
a lower bound for SINRri(Li).

SINRri(Li) >

1
dα
min
n

(d(sj ,si)−dmin)α

≥ 1

n

��
1 + (nβ)

1
α

�
− 1
�α

= β. (4.5)

Having proved that successful transmission is guaranteed for links
l1, . . . ln, no matter how many other links are scheduled concurrently, we
now return to the proof of Theorem 4.2.

We claim that there exists a solution to the Partition Problem if and
only if there exists a 2-slot schedule for L. For the first part of the claim,
assume we know two subsets I1, I2 ⊂ I, whose elements sum up to σ/2. To
construct a 2-slot schedule, ∀ij ∈ I1, we assign the link lj to the first time
slot, along with ln+1, and assign the remaining links to the second time slot.
Due to Lemma 4.3 we can focus our analysis on the receivers rn+1 and rn+2.
The situation is the same for both receivers, so it suffices to examine rn+1.
The signal power rn+1 receives from its sender node sn+1 is

Prn+1(sn+1) =
P��

2P
βσ

� 1
α

�α =
βσ

2
.

The interference rn+1 experiences from each sender sj is

Irn+1(sj) =
P��

P
ij

� 1
α

�α = ij ,
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which results in total interference of

Irn+1 =
X
ij∈I1

ij =
σ

2
.

This allows to lower bound the SINR at rn+1

SINRrn+1 ≥
Prn+1(sn+1)

Irn+1

=
βσ/2

σ/2
= β,

which, in combination with Lemma 4.3, proves that our schedule guarantees
successful transmission for all links.

For the second part of the claim, we need to show that if no solution
to the Partition Problem exists, we cannot find a 2-slot schedule for L. No
solution to the Partition Problem implies that for every partition of I into
two subsets, the sum of one set is greater than σ/2. Assume we could still
find a schedule with only two slots. Since the receivers rn+1 and rn+2 are
at the same position, they have to be assigned to different slots to permit a
successful transmission. Because we have to split L \ {ln+1, ln+2} into two
sets and the received power from sj , j = 1, . . . , n at (0,0) is ij , we end up with
a total interference at (0,0) greater than σ/2 for one slot, which prevents the
correct reception of the signal from sn+1 or sn+2.

4.4 Weighted One-Slot Scheduling Problem in SINRG

In this section we prove that the decision version of the Weighted One-Slot
Scheduling Problem, under uniform power assignment scheme, is also NP-
hard in the SINRG model.

Theorem 4.4. Weighted One-Slot Scheduling Problem is NP-hard.

Proof. We prove that the Knapsack Problem is reducible to the Weighted
One-Slot Scheduling Problem in polynomial time.

Let us first introduce the Knapsack Problem: Consider n kinds of items,
x1 through xn, where each item xj has a value pj and a weight wj . The
maximum weight that we can carry in a bag is W . Our aim is to choose the
items we put in the bag such that the sum of the values is maximized. We
can formulated this task as an integer program.

Knapsack Problem:

max

nX
j=1

pjxj , s.t. (4.6)

nX
j=1

wjxj ≤ W, (4.7)

xj ∈ {0, 1}, j = 1, . . . , n



38 CHAPTER 4. COMPLEXITY IN GEOMETRIC SINR

rn+1sn+1

w(ln+1)=2Σpj
Prn+1(sn+1) = 

β*W

w(l1) = p1
Irn+1(s1) = w1

w(l2) = p2
Irn+1(s2) = w2

     w(ln) = pn
Irn+1(s) = wn

s1 r1

s2 r2

sn rn

dmin

dmin

dmin

Figure 4.2: Reduction from Knapsack: the weight of simultaneously sched-
uled links is maximized if and only if the sum of the values pj assigned to
them is maximized and the knapsack capacity W is not violated.

Without loss of generality, we assume that there are only items of distinct
integer weights. As in the proof for the Multi-Slot Scheduling Problem, we
start by defining a any-to-one reduction from any instance of the Knapsack
Problem to a geometric instance of the Weighted One-Slot Scheduling Prob-
lem, and afterwards prove that the latter can be solved if and only if the
former is also solved.

We have to dispose links in the plane, such that the rules of the Knapsack
Problem are enforced (see Figure 4.2). We position a sender node si in the
plane for each item xi, such that the received power from si at (0,0) is exactly
the item weight wi, i.e.,

pos(si) =

 �
P

wi

� 1
α

, 0

!
, ∀1 ≤ j ≤ n.

Now we set ri close enough to si to guarantee successful reception regard-
less of other links.

pos(ri) = pos(si) + (dmin, 0), where

dmin = P
1
α ·

�
1

(wmax−1)1/α − 1

w
1/α
max

�
�
1 + (nβ)

1
α

� , 4

4As has been done in Section 4.3, we assume that the problem instance is normalized
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and wmax is the largest item weight in this problem instance.
In the next step we place an additional link ln+1, such that rn+1 is at

(0,0) and sn+1 is in such a distance that the received power at (0,0) is βW .

pos(rn+1) = (0, 0),

pos(sn+1) =

 
0,

�
P

βW

� 1
α

!
.

Thereafter, we assign a weight to each link:

w(li) = pi, ∀1 ≤ i ≤ n

w(ln+1) = 2 ·
nX
j=1

pj .

Note that SINRri > β,∀i = 1 . . . n, even if all link transmissions are
concurrent, since we can apply Lemma 4.3 (due to the fact that we chose the
distance between a sender and a receiver of a link to be dmin in both reduc-
tions). If we execute an algorithm solving this Weighted One-Slot Schedul-
ing Problem, we obtain a solution for the Knapsack Problem: Let SOPT be
the set of links of an optimal solution to the One-Shot problem constructed
above. The described assignment of weights ensures that ln+1 is picked, since
without it the maximal sum of weights cannot be reached. We can compute
SINRrn+1 as follows

SINRrn+1 =
Prn+1(sn+1)

Irn+1

=

P �
P

βW

� 1
α

!α

P
lj∈SOP T

P �
P

wj

� 1
α

!α

= β · WP
lj∈SOP T

wj
,

and since a valid solution allows ln+1 to be transmitted successfully, we have
SINRrn+1 > β. Consequently a solution to the Weighted One-Slot Schedul-
ing Problem satisfies X

lj∈SOP T

wj < W.

Hence, each of the selected links li stands for xi in (4.6) and (4.7), which
fulfills the condition of the Knapsack Problem. Because SOPT maximizes the

such that the minimum distance between any sender-receiver pair is at least one, and the
power level P is high enough for the longest link in the input set to transmit successfully
in the presence of ambient noise.
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sum of the weights at the same time, the sum of the values of the items of the
Knapsack Problem is maximized as well. This implies that no algorithm can
solve the One-Shot Scheduling problem without solving an NP-hard problem.

4.5 Outlook

In this chapter we have established that the Multi-Slot Scheduling Problem
and the Weighted One-Slot Scheduling Problem are both NP-hard in the
“geometric SINR” (SINRG) model. As we discussed in Section 4.1, the
SINRG model is weaker than reality. This implies that one cannot compute
an optimal schedule of wireless requests in practice, unless P = NP.

In order to prove that the problems discussed in this chapter are also NP-
complete, we have to prove that they are in the complexity class NP. It turns
out that, for some operations on integers, it is not yet clear whether they can
be computed efficiently by a Turing machine. E.g., it is not known how a sum
of square roots of integers can be compared quickly to an integer [89]. Since
our model requires the computation of roots of integers, we do not know
whether scheduling and related problems are in NP. If we assume the Real
RAM model (often used in computational geometry), all our computations
can be implemented efficiently.

Note that some problems still remain open in this context, e.g., whether
the One-Slot Scheduling Problem is also NP-hard. Moreover, given that the
Partition and the Knapsack problems are only weakly NP-hard, the hardness
results presented in this chapter are also weak, in the sense that they do not
establish strong NP-hardness.5

Since the problems that we defined in Chapter 3 are unlikely to admit
polynomial-time optimal solutions, in the following chapters we will turn our
attention to designing efficient approximation algorithms. In particular, in
Chapters 5 and 6, we propose scheduling algorithms that compute feasible
solutions in the SINRG model in polynomial time with worst-case approxi-
mation guarantees for arbitrary network topologies.

5A problem is said to be NP-hard in the strong sense if it remains so even when all
of its numerical parameters are bounded by a polynomial in the length of the input.



Chapter 5

Diversity Scheduling

Solving problems in the SINR model is very difficult, as is documented by
the vast amount of literature with heuristics on this subject (see Section 2.3
of the Related Work Chapter). In this chapter we present the first scheduling
algorithms with a proven approximation guarantee in the physical interfer-
ence model.

We propose two scheduling algorithms. In Section 5.1 we present an algo-
rithm for the Multi-Slot Scheduling Problem, and in Section 5.2 we present
an algorithm for the Weighted One-Slot Scheduling Problem.

These algorithms represent our initial efforts to solve the link scheduling
problem in the SINR model, and algorithms with significantly improved ap-
proximation guarantees are going to be presented in Chapter 6 of this thesis.

Before describing the algorithms, let us introduce the notion of link
length diversity g(L), namely the number of magnitudes of distances between
senders and receivers in the network. Formally, g(L) is defined as

g(L) := |{m|∃li, lj ∈ L : blog(dii/djj)c = m}|. (5.1)

For our problem, g(L) denotes the number of non-empty length classes of
the set of links to be scheduled. Note that, in realistic scenarios, the diversity
g(L) can usually be regarded as a constant. In theory, however, g(L) can be
as large as n, the number of links in the network.

Both algorithms in this chapter consist of two steps: first, the problem in-
stance is partitioned into disjoint link length classes; then, a feasible schedule
is constructed for each length class using a greedy strategy.

5.1 O(g(L)) Approximation Algorithm for MSP

The algorithm presented in this section is inspired by the heuristic proposed
by Moscibroda et al. in [86], which schedules a strongly connected set of

41
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links in the SINR model using linear power assignment. Although similar
in spirit, the algorithm in [86] is not designed to schedule an arbitrary set
of links and does not provide an approximation guarantee for the obtained
solution.

Algorithm 1 Approximation Algorithm for the Multi-Slot Scheduling Prob-
lem.
1: input: Set of links L = {l1, . . . , ln};
2: output: Schedule S = {S1, . . . ,ST };
3: Let G = {G0, . . . , Gblog (max dii)c} such that Gk is the set of links li of

length 2k ≤ dii < 2k+1;
4: Set µ according to (5.2);
5: t := 0;
6: for all Gk 6= ∅ do
7: Partition the plane into squares of width µ · 2k;
8: 4-color the squares such that no two adjacent squares have the same

color;
9: for j = 1 to 4 do

10: repeat
11: for all squares Akj of width µ · 2k and color j do
12: Pick one not yet scheduled link li ∈ Gk with receiver ri in Akj ; (if

there is any such li left unscheduled)
13: Lkj := Lkj ∪ li; (schedule li in time-slot t)
14: end for
15: t := t+ 1;
16: St := Lkj ;
17: until all links with receivers in any square Akj have been scheduled
18: end for
19: end for
20: return S;

The algorithm (for a description in pseudo-code see Algorithm 1) starts
by partitioning the input set of links L into dlog (max dii)e (where max dii
is the length of the longest link li ∈ L) possibly empty length classes. Each
length class Gk is scheduled separately. First, the plane is partitioned into
square grid cells of side µ · 2k, where µ is defined as follows

µ = 4

�
8β · (α− 1)

(α− 2)

� 1
α

, (5.2)

and then the grid cells are colored regularly with 4 colors (see Figure 5.1).
Links whose receivers belong to different squares of the same color are sched-
uled simultaneously. Note that the inner repeat loop (lines 10-17) con-
structs a schedule of length ∆k

j = maxAk
j∈Gk

(|Akj |), which is the maxi-



5.1. O(G(L)) APPROXIMATION ALGORITHM FOR MSP 43

1 2 1 2 1 21 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

μ2k

3 4 3 4 3 4

μ2k

Figure 5.1: In line 11 of Algorithm 1, the algorithm picks all squares colored
with color j. The example shows an inner loop iteration for length class Gk
and j = 3. The algorithm schedules one unscheduled link from each selected
square (if there exists one).

mum number of links in length class Gk, whose receivers are in the same
grid cell of color j. Given that there are 4 colors and g(L) non-empty
length classes, all links are scheduled in 4 · ∆ · g(L) time slots, where
∆ = max

Ak
j∈
n
G0,...,Gblog (max dii)c

o (|Akj |).1

We show now that the schedule obtained by Algorithm 1 is correct, by
proving in Theorem 5.1 that all links can be scheduled successfully in their
respective time slot.

Theorem 5.1. Consider an arbitrary set of links L to be scheduled. For
every time slot t, the set St of links output by Algorithm 1 is scheduled suc-
cessfully, i.e., the SINR at every intended receiver is larger than β.

Proof. We demonstrate that all transmissions scheduled in a time slot t are
received successfully by the intended receivers, i.e., their SINR is sufficiently
high.

Without loss of generality, let us examine links in a length class Gk. Every
link li ∈ Gk satisfies dii < 2k+1, thus the perceived power at ri from si is at
least

Pri(si) ≥
P

2α(k+1)
. (5.3)

1Here we overload the term Ak
j to denote the set of receivers ri | li ∈ Gk, located

inside the grid cell Ak
j ; and the term Gk to denote the grid comprised by cells of width

µ · 2k.
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Since Algorithm 1 schedules at most one link in each cell with the same
color concurrently, the closest 8 senders sj scheduled in the same time slot
must be at least at distance d(ri, sj) ≥ µ2k − 2k+1 = 2k(µ − 2) to ri (see
Figure 5.1). Consequently, the sum of their interference experienced by ri is
less than

8X
j=1

Pri(sj) ≤
8P

(2k(µ− 2))α
.

In the next step, we consider the (at most) 16 senders sj at distance 3µ2k −
2k+1 ≤ d(ri, sj) ≤ 5µ2k − 2k+1. They contribute a total interference of

25X
j=9

Pri(sj) ≤
16P

(2k(3µ− 2))α
.

We continue aggregating the interference from nodes sj at distance range

(2l − 1)µ2k − 2k+1 ≤ d(ri, sj) < (2l + 1)µ2k − 2k+1,

∀l = 1, 2, . . .. Since at most 8l links are picked in each interval, the interfer-
ence caused by them is at most

d(ri,sj)<

(2l+1)µ2k−2k+1X
d(ri,sj)≥

(2l−1)µ2k−2k+1

Pri(sj) ≤
8P · l

(2k((2l − 1)µ− 2))α
.

Thus, the total interference at a scheduled receiver ri can be upper bounded
by

Iri ≤
∞X
l=1

8P · l
(2k((2l − 1)µ− 2))α

≤ 8P

2kα

∞X
l=1

l

( 1
2
(2l − 1)µ)α

(5.4)

≤ 8P

2(k−1)αµα

∞X
l=1

l

(2l − l)α

≤ 8P

2(k−1)αµα

∞X
l=1

1

lα−1

≤ 8P

2(k−1)αµα
(α− 1)

(α− 2)
, (5.5)

where (5.4) follows because x−2 > x/2, ∀x > 4 and µ > 4, given that β ≥ 1
and α > 2; and (5.5) follows from a bound on Riemann’s zeta function. Using



5.1. O(G(L)) APPROXIMATION ALGORITHM FOR MSP 45

Akmax

ri

μ2k

Figure 5.2: Lower Bound: an optimum algorithm could schedule at most q
links with receivers in Akmax in length class Gk in a single time slot.

(5.3), (5.5), and plugging in the value of µ, defined in (5.2), the SINR at
receiver ri can be lower bounded by

SINRri =
Pri(si)

Iri

>
P

2α(k+1)

8P

2(k−1)αµα

(α−1)
(α−2)

=
µα

4α · 8 · (α−1)
(α−2)

= β,

Now we turn our attention to the efficiency of Algorithm 1. In particular,
in Theorem 5.2 we bound its approximation ratio.

Theorem 5.2. The approximation ratio of Algorithm 1 is O(g(L)), where
g(L) is the length diversity of the input, defined in (5.1).

Proof. The proof relies on the choice of a so called critical grid cell2

Akmax = argmax
Ak

j∈
n
G0,...,Gblog (max dii)c

o |Akj |, (5.6)

i.e., we choose the cell with the highest density ∆ = |Akmax| over all g(L)
generated grids (see Figure 5.2). Note that ∆ is the number of links li
whose receiver is located in cell Akmax and whose length class is Gk, i.e.,

2Here we overload the term Ak
j to denote the set of receivers ri | li ∈ Gk, located

inside the grid cell Ak
j ; and the term Gk to denote the grid comprised by cells of width

µ · 2k.
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2k ≤ dii < 2k+1. We proceed by showing that an optimum algorithm OPT
can schedule all ∆ in at least TOPT ≥ d∆/qe time slots, where q is a constant
dependent on parameters α and β (µ is defined in (5.2)):

q =

�
2(
√

2µ+ 1)
�α

β
. (5.7)

Assume, by contradiction, that OPT schedules all links in less than TOPT
time slots. Therefore, there must exist a time slot t′, 1 ≤ t′ ≤ TOPT , such
that more than q links in Akmax are scheduled simultaneously. We pick one
of the scheduled links li, ri ∈ Akmax in time slot t′ and calculate the resulting
SINR level at ri:

SINRri∈Ak
max

≤
P
dα

ii

P ·
Pq
j=0 d(sj , ri)

−α

<
P

2kα

P · q · (2
√

2µ2k + 2k+1)−α
(5.8)

= β, (5.9)

where (5.8) follows from the fact that dii ≥ 2k, djj < 2k+1 and d(ri, rj) ≤
2
√

2µ2k; and (5.9) follows from definition (5.7) of q.
Hence, to schedule all links in the critical square Akmax, OPT needs time

TOPT ≥
�

∆

q

�
. (5.10)

On the other hand, Algorithm 1 schedules all links in L in time

TALG1 ≤ 4 ·∆ · g(L). (5.11)

The approximation ratio follows from (5.10) and (5.11):

TALG1

TOPT
≤ 4q · g(L)

= O(g(L)). (5.12)

5.2 O(g(L)) Approximation Algorithm for WOSP

Algorithm 1 can be adapted to solve the Weighted One-Slot Scheduling
Problem described in Section 3.5 of Chapter 3 (see pseudo code of the
adapted version in Algorithm 2). As before, the input set L is partitioned
into dlog (max dii)e (possibly empty) length classes, and grids with cell size
µ ·2k, k ∈ {0 . . . blog (max dii)c} are colored with 4 colors j ∈ {1 . . . 4}. Then,
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Algorithm 2 Approximation Algorithm for the Weighted One-Slot Schedul-
ing Problem.

1: input: Set of links L = {l1, . . . , ln};
2: output: One-slot schedule S;
3: Let G = G0, . . . , Gblog(max dii)c such that Gk is the set of links li of length

2k ≤ dii < 2k+1;
4: Set µ according to (5.2);
5: for all Gk 6= ∅ do
6: Partition the plane into squares of width µ · 2k;
7: 4-color the cells such that no two adjacent cells have the same color.
8: for j = 1 to 4 do
9: for all squares Akj of width µ · 2k and color j do

10: Pick the heaviest link li ∈ Gk with receiver ri in Akj ; (if there is
any li whose receiver is in Akj )

11: Lkj := Lkj ∪ li;
12: end for
13: end for
14: end for
15: return S := argmaxLk

j

P
li∈Lk

j
w(li);

4 · g(L) feasible one-slot schedules Lkj are generated by greedily picking the
heaviest link in all squares Akj of the same color. In the end, the heaviest
one-slot schedule Lkj among all colors and all link classes is chosen.

Since we pick one link per selected square, the feasibility of any schedule
Lkj constructed by Algorithm 2 has been proved in Theorem 5.1. In the next
theorem we analyze the approximation ratio of this algorithm.

Theorem 5.3. The approximation ratio of Algorithm 2 is O(g(L)), where
g(L) is the length diversity of the input (defined in (5.1)).

Proof. We start by defining OPTk to be a subset of the optimum schedule
OPT comprised by links that belong to length class Gk, i.e., OPTk = {li ∈
OPT | 2k ≤ dii < 2k+1}. Observe that

w(OPT ) =

blog(max dii)cX
k=0

w(OPTk). (5.13)

In Theorem 5.2 we showed that an optimum algorithm could schedule at
most q (defined in (5.7)) links in each cell Akj at a time. Therefore, given that
every feasible schedule Lkj computed by Algorithm 2 contains the heaviest
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link in every forth cell, the following bound holds:

w(Lkj ) ≥ 1

4q
· w(OPTk), (5.14)

∀j ∈ {1 . . . 4}, k ∈ {0 . . . blog (max dii)c}.

Since Algorithm 2 returns the one-slot schedule S of maximum weight
over all length classes and colorings (there are at most 4 · g(L) non-empty
one-slot schedules Lkj ), the approximation ratio follows:

w(S) ≥ 1

4 · g(L)
·
blog(max dii)cX

k=0

w(Lkj )

≥
(5.14)

1

16q · g(L)
·
blog(max dii)cX

k=0

w(OPTk)

=
(5.13)

w(OPT )

16q · g(L)
⇒

w(OPT )

w(ALG2)
≤ 16q · g(L)

= O(g(L)). (5.15)

5.3 Outlook

The approximation ratio of the algorithms presented in this chapter is
O(g(L)). Although this is the first result to provide any approximation
guarantee for the link scheduling problem in the SINR model, it leaves a
lot of space for improvement, given that, depending of the topology of the
network, this guarantee becomes extremely bad (Ω(n)), i.e., not better than
the guarantees offered by the most naive solutions to the problem.

This undesired dependency on the diversity g(L) of the network, however,
has been inherited by a number of scheduling algorithms in the SINR model,
e.g. [22, 30].

In the next chapter we are going to present improved scheduling algo-
rithms, whose approximation guarantee no longer depends on the the diver-
sity g(L) or any other topological characteristic of the network.



Chapter 6

Approximative Scheduling

The first result presented in this chapter (Section 6.1) is an algorithm that
maximizes the number of concurrently scheduled links in one time-slot, i.e., it
solves the One-Slot Scheduling Problem. We prove that the algorithm has a
constant approximation guarantee. As opposed to the algorithms presented
in Chapter 5, this result holds regardless of the topology of the network.
This means that, given a set of links, with arbitrary length diversity g(L)
and arbitrarily distributed in the Euclidean space, it returns a subset of
links obeying the SINR constraints, of size at most a constant factor smaller
than the maximum possible. To the extent of our knowledge, this is the
first scheduling algorithm with approximation guarantee independent of the
topology of the network.

In Section 6.2, we further use this (maximization) one-slot scheduling al-
gorithm to derive a minimum-length schedule with O(logn) approximation
factor. In Section 6.3, we complement our results by looking at the algo-
rithm’s performance in metric spaces beyond the two-dimensional Euclidean
plane. We prove that the analysis is extendable to higher-dimension Euclid-
ean spaces, provided that the path-loss exponent is strictly higher than the
number of dimensions. Moreover, we show that our algorithm is also valid
in more realistic bounded-distortion spaces, such as spaces induced by non-
isotropic signal distortions.

Finally, in Section 6.4 we present simulation results, which indicate that
our algorithm, besides having an exponentially better approximation ratio
in theory, is also practical. It is easy to implement and achieves superior
performance in various network scenarios.

6.1 Constant Approximation Algorithm for OSP

In order to solve the (minimization) Multi-Slot Scheduling Problem, we
use a “master-slave” approximation strategy, where the “slave” problem is
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the (maximization) One-Slot Scheduling Problem (defined in Section 3.4).
Firstly we show that our one-slot scheduling algorithm has constant ap-
proximation guarantee. Thereafter we show that by iteratively computing
constant approximations of maximum one-slot schedules, we obtain a factor
O(logn) for the overall minimum-length scheduling problem.

We start with some definitions. The relative interference (RI) of a link
lu on link lv is the increase caused by lu in the inverse of the SINR at lv,
namely

RIv(u) =
Iuv
Pvv

.

The affectedness of link lv, caused by a set S of links, is the sum of the
relative interferences of the links in S on lv, as well as the effect of noise,
scaled by β, or

alv (S) = β

 
N

Pvv
+
X
lu∈S

RIv(u)

!

= β ·
P
lu∈S Iuv +N

Pvv
. (6.1)

Observe that a solution S is valid, or feasible, iff the affectedness (by the
other nodes in S) of each link in S is at most 1:

alv (S) ≤ 1, ∀lv ∈ S. (6.2)

Algorithm 3 Approximation Algorithm for the One-Slot Scheduling Prob-
lem.
1: input: Set of links L = {l1, · · · , ln};
2: output: One-slot schedule S;
3: Set c according to (6.3);
4: repeat
5: Add the shortest link lv ∈ L to S;
6: Delete lu ∈ L, where duv = d(su, rv) ≤ c · dvv;
7: Delete lw ∈ L, where alw (S) ≥ 2/3;
8: until L = ∅
9: return S;

The one-slot scheduling algorithm (for a description in pseudo-code see
Algorithm 3) greedily schedules links in increasing order of length, i.e.,
“strong” links are scheduled first. After a link lv is added to the solution
S, its “safety” is guaranteed in two steps. Firstly (line 6), all links lu (re-
maining in L) whose senders are within the radius c ·dvv of the receiver rv are
removed from L (c is a constant always bigger than 2, and is defined in (6.3)).
Secondly (line 7), all links lw, whose affectedness alw (S) rose to or above a
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threshold of 2/3, are removed. This process is repeated until all links in L
have been either scheduled or deleted. The strength of this simple algorithm
lies in the combination of elimination steps in lines 6 and 7, which ensures
that the greedily constructed solution does not lose its feasibility after addi-
tion of new links. Next we prove that the obtained schedule is both correct
and competitive, i.e., is only a constant factor away from the optimum.

6.1.1 Correctness

In this section we prove that the solution S obtained in Algorithm 3 is correct,
i.e., all selected links can be scheduled concurrently without collisions.

Lemma 6.1. Algorithm 3 produces a valid solution.

Proof. Let S−v be the set of links shorter than lv, i.e., those added to S before
lv, and S+

v be the set of links longer than lv, i.e., those added after lv. When
a link lv is added to the solution, its affectedness is less than 2/3, since it
has not been deleted in the previous step. Therefore, the interference caused
on lv by concurrently scheduled shorter links (plus the ambient noise N) is
alv (S−v ) < 2/3. It remains to show that S+

v affects lv by at most 1/3.

Our first observation is that disksDw of radius dvv(c−1)/2 around senders
in S+

v do not intersect. Consider two senders sw, sz ∈ S+
v . We will first

consider the case when lw was added to S+
v before lz, i.e. dww ≤ dzz; and then

the case when dww > dzz. In the first case, we know that d(sz, rw) ≥ c · dww.
Therefore, by triangular inequality, we have that d(sz, sw) ≥ d(sz, rw) −
dww ≥ c · dww − dww = dww(c − 1) ≥ dvv(c − 1) (the last inequality follows
from the fact that sw ∈ S+

v ). In the second case, when dww > dzz, the
reasoning is the same: d(sw, rz) ≥ c · dzz, since lz was added first, and
d(sw, sz) ≥ dzz(c−1) ≥ dvv(c−1). Therefore, disks Dw of radius dvv(c−1)/2
around senders in S+

v do not intersect.

Next, we partition the sender set in S+
v into concentric rings Ringk of

width c · dvv around the receiver rv. Each ring Ringk contains all senders
sw ∈ S+

v , for which k(c ·dvv) ≤ dwv ≤ (k+1)(c ·dvv). We know that the first
ring Ring0 does not contain any sender. Consider all senders sw ∈ Ringk for
some integer k > 0. All disks of radius dvv(c− 1)/2 around each sw must be
located entirely in an extended ring Ringk of area

A(Ringk) = [(dvv(k + 1)c+ dvv(c− 1)/2)2 −
(dvvkc− dvv(c− 1)/2)2]π

= (2k + 1)d2
vvc(2c− 1)π.

Since disks Dw of area A(Dw) ≥ (dvv(c−1)/2)2π around senders in S+
v do

not intersect, and the minimum distance between rv and sw ∈ Ringk, k > 0
is k(c · dvv), we can use an area argument to bound the number of senders
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inside each ring. The total interference coming from ring Ringk, k ≥ 1 is
then bounded by

Ilv (Ringk) ≤
X

sw∈Ringk

Ilv (sw)

≤ A(Ringk)

A(Dw)
· P

(kcdvv)α

≤ (2k + 1)

kα
· 4P

(cdvv)α
c(2c− 1)

(c− 1)2

≤ 1

k(α−1)
· P
dαvv

253

cα
.

where the last inequality holds since k ≥ 1 ⇒ 2k + 1 ≤ 3k and c ≥ 2 ⇒
c− 1 ≥ c/2. Summing up the interferences over all rings yields

Ilv (S+
v ) <

∞X
k=1

Ilv (Ringk)

≤
∞X
k=1

1

kα−1
· P
dαvv

253

cα

<
α− 1

α− 2
· P
dαvv

253

cα
,

where the last inequality holds since α > 2. This results in affectedness

alv (S+
v ) =

βIlv (S+
v )

Pv(v)

<
α− 1

α− 2
· 253β

cα

≤ 1/3, where

c = max

 
2,

�
2532β

α− 1

α− 2

� 1
α

!
. (6.3)

We have shown that ∀lv ∈ S, alv (S) ≤ 2/3 + 1/3 = 1, which means that
SINRlv ≥ β for every scheduled link. This concludes the proof of the lemma.

6.1.2 Approximation Ratio

To analyze the performance of Algorithm 3, we compare the solution ALG
to an optimal solution, say OPT . In order to compare the two solutions,
we will count the number of links eliminated by the algorithm that could
have been scheduled in the optimum., i.e., we bound the size of the set
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OPT ′ = OPT \ ALG. Partition OPT ′ into OPT1, consisting of links in
OPT ′ that are deleted in the first elimination step of the algorithm (line
6), and OPT2, with links deleted in the second elimination step (line 7).
Overload these terms to refer also to the sizes of these sets.

Lemma 6.2. Let X be a feasible solution and let lv be a link in X. The
number of senders in X within distance k · dvv, k ≥ 1 of the receiver rv is at
most kα. Moreover, the number of senders in X within distance k ·dvv of the
sender sv is at most (k + 1)α.

Proof. The relative interference of each sender su ∈ X \ {sv}, where duv ≤
k · dvv, on lv is

RIu(v) =
Iuv
Pvv

=
P/dαuv
P/dαvv

=

�
dvv
duv

�α
≥ 1

kα
.

Since the affectedness of lv is at most one, there can be at most kα such
senders. Moreover, since points within distance k · dvv from rv are within
distance (k+1)dvv from sv, the number of senders in X within distance k ·dvv
of the sender sv is at most (k + 1)α.

Lemma 6.3. OPT1 ≤ ρ1 · ALG, where ρ1 = (2c + 1)α and constant c as
defined in (6.3).

Proof. Consider the set Xv from OPT1 eliminated in line 6 of Algorithm 3,
in the iteration when link lv was added to the solution. Each link lw ∈ Xv
is of length at least dvv and has its sender of distance at most c · dvv from
receiver rv. Therefore, all senders in Xv are within distance 2c ·dvv ≤ 2c ·dww
from sw. By Lemma 6.2, there can be at most (2c+ 1)α senders in Xv.

For the second part of the proof, i.e., to bound the number of deleted
links in the second elimination step (line 7) of Algorithm 3, we will need
the following two definitions and a combinatorial lemma, to which we refer
as the blue-dominant centers lemma. Informally, if we are given two sets of
points, let’s call them red and blue points, we say that a blue point is blue-
dominant if it is “shadowed”, or “protected”, by other blue points from the
red points in all directions. We call the set of blue points that “protect” the
blue-dominant point from the red points a guarding set.

Definition 6.4. Let R and B be two disjoint sets of points in a metric space
(V, d). Let’s call them red and blue points, respectively. For q a positive inte-
ger, a point b ∈ B is q-blue-dominant if every ball Bδ(b) around b, comprised
by points w such that d(w, b) ≤ δ, contains q ∈ Z+ times more blue points
than red points. Formally,

∀δ ∈ R+
0 : |Bδ(b) ∩ B| > q · |Bδ(b) ∩R|.
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b2
b3

60

r

b1

b4

b6

b5b∗

d(b∗, bj)
d(b∗, r)

b6

Figure 6.1: Constructing a q-guarding set Gq(r), q = 1 of size at most 6·q = 6
for the red point r (Gq(r) = {b1, . . . , b6}).

Definition 6.5. Let R and B be defined as above. Let r ∈ R be a red point
and G(r) ⊆ B be a set of blue points. We say that G(r) is guarding r if
for all b∗ ∈ B \ G(r), we have that Bd(b∗,r)(b

∗) ∩ G(r) 6= ∅. Furthermore,
we say that Gq(r) is q-guarding r if for all b∗ ∈ B \ Gq(r), we have that
Bd(b∗,r)(b

∗) ∩Gq(r) ≥ q.

Lemma 6.6. (Blue-dominant centers lemma in 2D) Let R and B be two
disjoint sets of red and blue points in the 2-dimensional Euclidean space, and
q be a positive integer. If |B| > 6q|R| then there exists at least one q-blue-
dominant point in B.

Proof. Process the points in R in an arbitrary order while maintaining a
subset B′ of B as follows (initially, B′ = B). For r ∈ R construct a q-
guarding set Gq(r) ⊆ B′ (guarding r relative to the current B′) and remove
Gq(r) from B′.

We claim that it is possible to construct a guarding set Gq(r) of size at
most 6q. The procedure to construct Gq(r) is as follows (see Figure 6.1).
Consider a red point r. Draw 6 sectors of 60◦ originating at r. For each of
these 6 sectors secj , include the closest q blue points bj ∈ secj in Gq(r) (if
secj has less than q blue points from B′, pick all the blue points in this sector).
Now Gq(r) has size at most 6q, and we claim that it is guarding r. Suppose
it is not. Then there is a point b∗ ∈ B′ \Gq(r) with Bd(b∗,r)(r) ∩Gq(r) < q.
Suppose b∗ is located in secj and we selected q blue points bj from secj into
Gq(r). This means that d(b∗, bj) > d(b∗, r) for some bj ∈ secj , which implies
that the sector angle is larger than 60◦. (Note that if Gq(r) contains less
than q blue points bj from sector secj , then b∗ would have been picked to
guard r in that sector, also establishing a contradiction.)
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After going through all points in R, the set B′ is still nonempty by the as-
sumption on the relative sizes of R and B. We claim that every point b∗ ∈ B′
is now q-blue-dominant. This holds since (1) all Gq(r)’s are pairwise disjoint
and (2) every ball Bδ(b

∗), b∗ ∈ B′, that contains a red point r, contains also
q blue points. Hence, for every blue node b∗ ∈ B′, every ball Bδ(b

∗) contains
q times more blue points than red points (“more”, since the center b∗ is also
blue).

Using the result of Lemma 6.6, we are now able to bound OPT2, the num-
ber of links deleted in the second elimination step (line 7) of the algorithm.

Lemma 6.7. OPT2 ≤ ρ2 ·ALG, where ρ2 = 6 · 3α+1.

Proof. Suppose otherwise. Consider the set of senders from ALG ∪ OPT2.
Label those from OPT2 as blue (B = {sb | lb ∈ OPT2}) and those from ALG
as red (R = {sr | lr ∈ ALG}). By Lemma 6.6, there is a q-blue-dominant
point (sender) s∗ in B, where q = 3α+1. We shall argue that the link l∗ would
have been picked by our algorithm, leading to a contradiction.

Consider any red point sr ∈ R. Let G∗(sr) be the set of points (senders)
in sr’s q-guarding set that are closer to s∗ than s∗ is to sr. They are all within
radius d(s∗, sr) from s∗. By the blue-dominant center property, |G∗(sr)| ≥
q. By Lemma 6.2, we have that d(s∗, sr) ≥ 2d(s∗, r∗). By the triangular
inequality, it then follows that d(sr, r

∗) ≥ d(s∗, sr)−d(s∗, r∗) ≥ (1/2)d(s∗, sr)
and for each sb ∈ G∗(sr), d(sb, r

∗) ≤ d(s∗, sb) + d(s∗, r∗) ≤ (3/2)d(s∗, sr).
The relative interference of the red sender sr on r∗ is then bounded by

RIr∗(sr) =
d(s∗, r∗)α

d(sr, r∗)α

≤ 2α · d(s
∗, r∗)α

d(s∗, sr)α
.

In comparison, the combined relative interference of the blue senders
sb ∈ G∗(sr) on r∗ is at least

X
sb∈G∗(sr)

RIr∗(sb) =
X

sb∈G∗(sr)

d(s∗, r∗)α

d(sb, r∗)α

≥ q

�
2

3

�α
d(s∗, r∗)α

d(s∗, sr)α

≥
� q

3α

�
·RIr∗(sr)

> 2 ·RIr∗(sr).

Since this holds for any sr ∈ R, the total interference that r∗ receives
from blue senders (those in OPT2) is at least twice as high as the interference
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it would receive from the red senders (those in ALG). Since l∗ is in OPT , it
is affected by at most 1 by OPT2. So we have

al∗(ALG) <
1

2
· al∗(OPT2)

≤ 1

2
.

Since the affectedness of l∗ is less than 2/3, it would not have been deleted
by Algorithm 3, which establishes the contradiction.

Theorem 6.8. The approximation ratio of Algorithm 3 is O(1).

Proof. The result follows by adding the bounds of Lemmas 6.3 and 6.7, which
results in OPT ≤ OPT ′ +ALG ≤ ALG(ρ1 + ρ2 + 1), where ρ1 = (2c+ 1)α,
ρ2 = 6 · 3α+1, and c = max(2, (2532β(α− 1)/(α− 2))1/α).

6.2 O(log n) Approximation Algorithm for MSP

In this section we apply our (maximization) one-slot scheduling algorithm
to derive a minimum-length schedule. The minimum-length scheduling algo-
rithm (for a description in pseudo-code see Algorithm 4) consists in iteratively
computing a one-slot schedule using Algorithm 3. Each one-slot solution is
scheduled in a separate slot, and the remaining links are repeatedly used as
input to Algorithm 3. The procedure continues until all links in L have been
scheduled.

Algorithm 4 Approximation Algorithm for the Multi-Slot Scheduling Prob-
lem.
1: input: Set of links L = {l1, · · · , ln};
2: output: Schedule S = {S1, · · · ,ST };
3: t := 0;
4: repeat
5: St := OneSlotSchedule(L); (Algorithm 3)
6: L := L \ St;
7: t := t+ 1;
8: until L = ∅
9: return S;

The correctness of the obtained schedule has been proved in Lemma 6.1,
and in the following theorem we show that the overall approximation ratio
of Algorithm 4 is O(logn).
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Theorem 6.9. The approximation ratio of Algorithm 4 is O(logn).

Proof. For each iteration t of Algorithm 4, define cost-effectiveness of a one-
slot schedule St to be the average cost at which it schedules new elements,
i.e. 1/|St|, and define the price p(li), li ∈ St of a link to be the average cost
at which it is scheduled. Note that the total cost of a schedule is

Pn
i=1 p(li).

Number the links in input L in the order in which they were scheduled by
Algorithm 4, resolving ties arbitrarily. Let l1, · · · , ln be this numbering. In
any iteration, the optimum solution can schedule the remaining links at a
total cost of at most OPT . Therefore, among all possible one-slot schedules,
there must be one having cost-effectiveness of at most OPT/|n− i+1|. Since
Algorithm 3 selected St of size at most a constant factor (say ρ) smaller than
the best possible, it follows that

p(li) ≤ ρ · OPT

(n− i+ 1)
.

This gives a total cost of

nX
i=1

p(li) ≤
�

1 +
1

2
+ · · ·+ 1

n

�
ρ ·OPT

= O(logn) ·OPT.

6.3 Going Beyond Two Dimensions

In this section we look into the issue of whether the analysis of Algorithm 3
could be extended beyond the two-dimensional Euclidean space. We show
that, by adjusting the constants, the same techniques work in D-dimensional
Euclidean spaces, provided that the path-loss exponent is high enough (α >
D). For the first part of the analysis (Lemmas 6.1 and 6.3), we compute
the value of the constant c (see Def. 6.3) for three dimensions. For higher
dimensions D, cD can be computed analogously, by working with volumes
of n-spheres, instead of disk areas as for 2D. For the second part of the
proof (Lemmas 6.6 and 6.7), we show that the blue-dominant centers lemma
can be extended to more general metric spaces, by applying the concept of
independence-dimension, which we define in Def. 6.11.

Lemma 6.10. Algorithm 3 produces a valid schedule in a three-dimensional
Euclidean space, if α > 3 and c = c3D,

c3D = max

 
2,

�
25337β

α− 2

α− 3

� 1
α

!
. (6.4)
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Proof. The proof proceeds along the lines of Lemma 6.1, replacing disk areas
for ball volumes, which renders:

Ilv (S+
v ) <

∞X
k=1

Ilv (Ring3D
k )

≤
∞X
k=1

1

kα−2
· P
dαvv

25327

cα3D

<
α− 2

α− 3
· P
dαvv

25327

cα3D
,

which, by plugging in the value of c3D results in affectedness of any scheduled
link lv by longer links of alv (S+

v ) ≤ 1/3. This, together with the affected-
ness by shorter links of alv (S−v ) < 2/3, guarantees correct reception at all
concurrently scheduled links.

To prove the approximation ratio, firstly we count the number of links
OPT1 scheduled in the optimal solution, but eliminated by the algorithm in
line 6. As in Lemma 6.3, we have OPT1 < ρ1(3D) · ALG, where ρ1(3D) =
(2 · c3D + 1)α and c3D is defined in (6.4).

For the second part of the proof, we investigate a little bit further into
the blue-dominant centers lemma (6.6). More specifically, given a metric
space (V, d), where V is a set of points and d is a distance function, we want
to find out for which metric spaces there is a constant κ with the following
property. Whenever we have two disjoint sets of red and blue points, R ⊂ V
and B ⊂ V, with

|B| > κ · |R|, (6.5)

then at least one of the blue points is (1-)blue-dominant (Def. 6.4).

Definition 6.11. Let (V, d) be a metric space and let v ∈ V. A set I ⊆ V\{v}
is called independent with respect to v if

∀w ∈ I : Bd(v,w)(w) ∩ I = {v, w}.

The maximum cardinality of a set Q of points in V that is independent relative
to some point v ∈ V \ Q is called the independence-dimension of (V, d),
denoted by γ.

Lemma 6.12. Let R and B be as usual and let r ∈ R. There is always a
subset G of B of cardinality at most γ that is guarding r (Def. 6.5).

Proof. Sort the points in B in order of non-decreasing distance to r. Proceed
through the sorted list and add a point to an initially empty set G when the
resulting set remains independent w.r.t. r. The claim is that the set G is
guarding r in the end (when |G| ≤ γ since we kept it independent w.r.t. r).
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Suppose not. Then there is a point b ∈ B \ G with Bd(b,r)(b) ∩ G = ∅. So
the reason we did not add b to G when we encountered it is that there was
already a point b′ ∈ G so that b ∈ Bd(b′,r)(b′). But note that d(b′, r) ≤ d(b, r),
so b ∈ Bd(b′,r)(b

′) (⇔ d(b′, b) ≤ d(b′, r)) implies b′ ∈ Bd(b,r)(b), which is a
contradiction.

Lemma 6.13. (Blue-dominant centers lemma) Let (V, d) be a metric space
with finite independence-dimension γ. If R and B are disjoint finite sets of
points in V with |B| > q · γ · |R| then there is a q-blue-dominant point in B.

Proof. The proof is along the same lines of Lemma 6.6, only replacing 6 by
γ and applying Lemma 6.12 to guarantee that the size of each guarding set
Gi(r) is at most γ.

We can use the more general version of the blue-dominant centers lemma
(Lemma 6.13) to bound the number of links OPT2 eliminated by Algorithm 3
in its second elimination step (line 7). As in Lemma 6.7, we have OPT2 <
ρ2(γ) ·ALG, where ρ2(γ) = 3α+1 · γ and γ is the independence-dimension of
our metric space (e.g. γ = 12 in the 3D Euclidean space).

In Lemma 6.13 we deduced that the constant κ in (6.5) can be chosen
as the so-called independence-dimension, defined in Definition 6.11. This
means that our scheduling algorithm can be applied in spaces with bounded-
independence property. Consider, for instance, spaces induced by signal dis-
tortions. Our SINRG model makes an overly optimistic assumption that
the radios are perfectly isotropic and there are no obstructions. What if the
signal is attenuated by a certain factor in one direction but by another factor
in another direction? Then we still have a bounded-independence property.
This means that, although our algorithm might not be valid in the (overly
pessimistic) SINRA model, it can handle more realistic scenarios than the
SINRG model, where the distortion is such that the independence-dimension
of the induced space is bounded.

6.4 Simulation Results

In this section we present some simulation results to better illustrate the
practical appeal of the scheduling algorithms proposed in Chapters 5 and 6
for the Multi-Slot Scheduling Problem. We refer to Algorithm 1, introduced
in Section 5.1, as ApproxDiversity and to the Algorithm 4, introduced in Sec-
tion 6.2, as ApproxLogN. We compare the performance of ApproxDiversity
and ApproxLogN to the performance of the scheduling algorithms proposed
in [15], to which we refer as GreedyPhysical. As ours, GreedyPhysical is a
polynomial-time algorithm, designed to schedule an arbitrary set of links in
the SINR model. To the extent of our knowledge, at the time of writing of
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this thesis, this was the only algorithm in the literature to fulfill these criteria
(see Related Work Chapter).

We generated two kinds of topologies: random and clustered (see Fig-
ures 6.2(a) and 6.2(b)). In the random topology, n receiver nodes were dis-
tributed uniformly at random on a plane field of size 1000x1000 units, and
n senders were positioned uniformly at random inside disks of radius lmax
around each of the receivers. In the clustered topology, nC cluster center
positions were selected uniformly at random on the plane, and n/nC sender-
receiver pairs were positioned uniformly at random inside disks of radius rC
around each of them. The clustered topology aims to simulate a scenario of
heterogeneous density distribution. In practice, networks with heterogenous
topologies are more typical. Consider, for example, a sensor network. In
some spots of interest the density of sensors is expected to be much higher
in order to capture all the desired data, whereas some locations are expected
to contain the minimum necessary amount of nodes just to maintain connec-
tivity.

In all experiments, the number of simulations was chosen large enough to
obtain sufficiently small confidence intervals.

Firstly, we analyze the lengths of the schedules as a function of the number
of nodes (n ∈ {100·20, 100·21, · · · , 100·28}). In Figures 6.3(a) and 6.3(b) the
results for random topology are shown. Since this scenario is not very chal-
lenging, all three algorithms have good performance, computing schedules
of comparable sizes. GreedyPhysical presents slightly better performance in
very low density scenarios (less than 1600 nodes). As the density increases,
however, ApproxLogN presents increasingly better relative performance. In
high densities (25.6K nodes) it computes, on average, 50% shorter schedules
than GreedyPhysical and 2.5 times shorter schedules than ApproxDiversity.

In Figures 6.4(a) and 6.4(b) the results for the clustered topology are
shown. As could be expected, the greedy algorithm is not able to deal with
this more difficult scenario very efficiently. Even in very sparse topologies
(100 nodes), GreedyPhysical computes 3 times longer schedules than Approx-
LogN. As the density increases, the relative performance of the greedy algo-
rithm deteriorates. ApproxLogN and ApproxDiversity compute even shorter
schedules than in the random case, which indicates that they are able to
schedule many clusters in parallel. The performance of ApproxLogN is still
superior to that of ApproxDiversity.

In Figures 6.5(a) and 6.5(b) we analyze the influence of the cluster radius.
In topologies with smaller clusters, i.e., in scenarios with higher density het-
erogeneity, the difference in performance becomes more accentuate. Whereas
GreedyPhysical’s performance slightly decreases with decreasing cluster ra-
dius, ApproxLogN and ApproxDiversity are able to compute ever shorter
schedules. Smaller cluster radius means more separate clusters, which makes
it easier to schedule clusters in parallel. GreedyPhysical, however, is not able
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(a) Random.

(b) Clustered.

Figure 6.2: Simulated topologies: 1Kx1K field, α = 3, β = 1.2, N = 0
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Figure 6.3: Random Topology: lmax = 20.
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to take advantage of this possibility. Among all three algorithms, Approx-
LogN presents the best performance in all cases. Note that for large cluster
radius (rC > 25), the ApproxDiversity approach presents an extremely poor
performance. This is due to the fact that, in this scenario, links are relatively
very long, and the grid structure built by the algorithm uses very large cells,
which forces it to schedule very few links in parallel.

Next we analyze the influence of the path-loss exponent α in both ran-
dom (Figures 6.6(a) and 6.6(b)) and clustered (Figures 6.7(a), and 6.7(b))
topologies. It can be seen that the performances of ApproxLogN and Ap-
proxDiversity improve with increasing α, whereas GreedyPhysical is more or
less invariant to the path loss exponent. For α < 3, in the random topology,
GreedyPhysical presents a better performance than the other two algorithms.
In the clustered topology, however, its performance is very poor even for low
α and deteriorates relative to the other two approaches with increasing α in
both kinds of topologies. Among all three algorithms, ApproxLogN presents
the best performance for all values of α in the clustered topology and for
α ≥ 3 in the random case.

To sum up, the simulations show that ApproxLogN, besides having
an exponentially better analytical approximation ratio, presents advantages
in challenging practical scenarios, such as high-density and heterogeneous-
density networks. GreedyPhysical showed to be a reasonable heuristic for
low-density uniformly distributed networks, besides having the advantage of
being robust to variable path-loss. Its performance, however, rapidly dete-
riorates in more difficult topologies. ApproxDiversity, although robust to
increasing density and heterogeneity of the network, presented performance
inferior to that of ApproxLogN in all simulated scenarios.

6.5 Outlook

As we have already pointed out, all the solutions to the link scheduling
problem in the SINR model have either considered special-case topologies,
or presented optimality guarantees that become arbitrarily bad depending
on the topology of the network. In this chapter we have proposed the first
scheduling algorithm with an approximation guarantee independent of the
topology of the network.

If we define network throughput capacity, as in [45], to be the number of
bits per second every node can on average transmit to its destination, we can
compute it in the following way: Given a set L of n communication requests,
such that each node is able to transmit at W bits per second over a common
wireless channel (with fixed power level and no routing), the capacity C(L)
of a network L lies in the interval

W

T
≤ C(L) <

W

T
·O(logn),
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where T is the size of the schedule returned by Algorithm 4.



Chapter 7

Local Broadcasting

In this chapter we study a problem of both theoretical and practical interest:
the local broadcasting problem. Local broadcasting is an operation used as
a building block for many higher-layer protocols (such as routing, synchro-
nization, or coordination protocols) in wireless ad-hoc and sensor networks.
As a consequence, the time required to successfully transmit a message to all
neighbors in the physical proximity of a node frequently lower bounds and
often dominates the overall performance of such critical higher-layer proto-
cols.

We analyze the local broadcasting problem in a particularly harsh com-
munication model, which we describe in Section 7.1. This communication
model is based on the so-called unstructured radio network model [72], and
one of its key characteristics is that there is no pre-defined global start time
of the algorithm, meaning that nodes wake up asynchronously and join the
network at any time during the execution of the protocol. As opposed to
previous work, which used graph-based definitions of interference, we make
our analysis in the physical interference model.

We present two distributed randomized algorithms. To begin with, in
Section 7.2, we study a very simple Aloha-like algorithm that is based on
the assumption that each node knows the number of its neighbors, i.e., the
number of nodes in geographical proximity. In Section 7.3, we present a sec-
ond algorithm, whose analysis is significantly more involved. This algorithm
makes no assumptions about topology knowledge, and provably achieves close
to optimal performance. We present upper bounds on the execution time of
the algorithms in Sections 7.2 and 7.3, and we present lower bounds for both
algorithms in Section 7.4. Therefore, our analysis establishes approximation
guarantees for both algorithms, showing that their performance is close to
optimal even in worst-case situations. Finally, in Section 7.5, we look into
the average-case behavior of the proposed algorithms through simulations.

69
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7.1 Communication Model

The most intuitive communication model in distributed computing is prob-
ably the synchronous message passing model. It models the network as an
undirected graph, in which vertices represent computing devices and edges
represent bidirectional communication channels between pairs of nodes. Time
is assumed to be divided into globally synchronized time-slots, all nodes start
the execution (of a distributed algorithm) simultaneously, and are allowed to
reliably exchange at most one message (of unlimited size) with each of their
neighbors in each time slot. Between consecutive time slots, nodes can per-
form “unlimited” local computation. The efficiency of a distributed algorithm
is then measured in terms of the maximum number of time slots it takes for
a node to complete its task and/or in terms of the total number of messages
sent by all nodes during the execution of the task.

When it comes to modeling wireless networks, the message passing model
might abstract away too many important characteristics, such as, for exam-
ple, the fact that a wireless channel is not always reliable, or the fact that
having access to a global clock in a distributed system is usually not possible.
In this work we use a communication model, which is based on the so called
unstructured radio network model, introduced by Kuhn et al. in [72, 71].
This model can be characterized by the following properties:

1. Time is divided into synchronous time slots, but no global clock is
assumed to exist.

2. A message is received correctly iff exactly one neighbor transmits. Note
that an underlying graph structure is assumed, which establishes which
nodes are neighbors and which are not.

3. There is no collision detection at the nodes, i.e., they cannot distinguish
between a clear channel and a channel with two collided messages.

4. Nodes wake up asynchronously at any time, i.e., new nodes can join at
any time during the execution of the protocol, and upon waking up,
nodes do not have any information about which nodes are awake or for
how long they have been awake.

5. Nodes have no information about how many neighbors they have.

6. Nodes have an estimate on the total number of nodes n in the network.

7. Nodes have unique IDs, which however do not have to be in the range
{1 . . . n}.

This model represents a particularly harsh network scenario, especially
because of property (4).
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In this work we combine this communication model with the physical
interference model. The main difference to our model is in property (2). Since
we assume no underlying communication graph in our model, we cannot use
definition (2) of a successful transmission. Instead, we use the SINR definition
(3.2) of a successful transmission, presented in Chapter 3. As is going to be
described later in the section, we are going to analyze two scenarios that
differ in property (5).

Note that assumption (1), that time is divided into time-slots, is basically
for the sake of the analysis. Our algorithms do not rely on synchronized time-
slots in any way. This would be too unrealistic an assumption, given that
nodes do not have access to a global clock and synchronizing time-slots is an
expensive task. Assuming a slotted channel in the analysis is justified due
to the analysis of slotted vs. unslotted Aloha [100], where it was shown that
the two scenarios differ only by a factor of 2.

Next we define the problem studied in this chapter.

Definition 7.1. The problem of Local Broadcasting can be formulated as fol-
lows. Given a set of nodes V , such that each one wishes to locally broadcast a
message to all its neighbors within a certain broadcasting range, the objective
is to schedule all these requests in as few time-slots as possible.

In order to reason about our algorithms, we now introduce several new de-
finitions and notation. We define terms broadcasting range, proximity range,
and transmission range of a node, all of which are important in the context
of our work.

Definition 7.2. The local broadcasting range RB of a node x is the distance
up to which x intends to broadcast its messages. We refer to the region within
this range as broadcasting region Bx and to the number of nodes in it as ∆B

x .
A local broadcast is complete if every node x in the network has transmitted
a message to every node in Bx.

Definition 7.3. The transmission range RT of a node x is the maximum dis-
tance from which it can receive a clear transmission (SINRx ≥ β), assuming
no other transmission occurs simultaneously in the network. We refer to the
region within this range as Tx and to the number of nodes in it as ∆T

x . Given
fixed power level P and ambient noise N , and assuming zero interference in
Equation 3.2, the transmission range RT is

RT ≤
�

P

β ·N

�1/α

.

In addition to these two definitions, we will make use of the novel notion
of a proximity range RA, which is a range between the broadcast and trans-
mission range of a node. Intuitively, it describes the distance within which
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nodes responsible for the most significant part of interference experienced by
x are located. The exact definition of the proximity range is determined by
parameters α and β of the SINR model, and changes for each of the algo-
rithms (see Equations (7.2) and (7.4) for the precise definitions), but in all
cases, it is at least twice as big as the broadcasting range (RA ≥ 2RB). We
call the region covered by this radius proximity region Ax and refer to the
number of nodes in it as ∆A

x .

Finally, we define a successful local broadcast.

Definition 7.4. Consider a transmitter x and a power level P . We define
a successful local broadcast to be a transmission of a message, such that it is
successfully received by all receivers y located in the local broadcasting region
Bx. The successful reception condition is defined as in (3.2), Chapter 3.

The ideas behind the proximity and transmission ranges are reminiscent
to those in the protocol interference model, where an interference (or carrier
sensing) range (maximum distance up to which a node sensing the channel
detects an ongoing transmission) and a transmission range (maximum dis-
tance up to which a packet can be received) are defined. The proximity range
RA can be viewed as a separator of the deployment area into a “close-in”
region (from where the most significant share of interference comes from) and
a “far away” region (from where the incoming interference is still significant,
but can often be treated as a constant).

In the analysis we show that when the proximity range RA is carefully
chosen, a node can perform a successful local broadcast with high probability
whenever it is the only transmitting node in its proximity range. Therefore,
in spite of the global nature of the SINR interference model, concurrent local
broadcasts are possible when enough spatial separation exists, i.e., the local
broadcasting range RB is sufficiently smaller than the proximity range RA.

We analyze two topology awareness scenarios:

• Known competition: The nodes know the number ∆A
x of nodes in their

proximity range Ax.

• Unknown competition: In this more realistic scenario, nodes are clue-
less about the current number of nodes in close proximity with which
they have to compete for the shared medium. However, we assume
that all nodes have the same estimate on the total number of nodes in
the network n̂ = |V |.1 In other words, each node may have between 0
and n nodes in its proximity range, but it does not know how many.

We conclude the section with some useful facts and remarks.

1 Notice that without this minimal assumption and in absence of a global counter,
every algorithm requires at least time Ω(n/ log n) until a single successful broadcast is
achieved, even in a single hop network [59].
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Fact 7.5. Given a set of probabilities p1...pn with ∀i : pi ∈ [0, 1
2
], the follow-

ing inequalities hold (proof in [59]):

(1/4)
Pn

k=1 pk ≤
nY
k=1

(1− pk) ≤ (1/e)
Pn

k=1 pk .

Fact 7.6. For all n, t, such that n ≥ 1 and |t| ≤ n,

et
�

1− t2

n

�
≤
�

1 +
t

n

�n
≤ et.

Fact 7.7. Consider two disks D1 and D2 of radii R1 and R2, R1 > R2, we
define χR1,R2 to be the smallest number of disks D2 needed to cover the larger
disk D1. Because the limit of the ratio of the area of D1 to the total area of
smaller disks D2 when R2 → 0 is 2π/3

√
3 [64], and because all small disks

D2 intersecting D1 are completely inside the area of radius R′ = R1 + 2R2,
it holds that

χR1,R2 ≤ 2π

3
√

3
· (R1 + 2R2)

2

R2
2

.

Remark 7.8. We assume that the ambient noise level N is upper bounded
by a fraction of the maximum tolerable interference level for a successful
broadcast ((Iy + N) � P/β(RB)α), such that spatial reuse is achievable by
concurrent local broadcasts:

N ≤ P

2β(2RB)α
. (7.1)

Note that the exact value of the maximum ambient noise level does not
influence our analysis in any significant way, the upper bound in (7.1) is set
for the sake of simplicity.

7.2 Known Competition

We start the technical part of this chapter by analyzing the performance
of a simple algorithm, which we call Multi-Hop Aloha. Multi-Hop Aloha
assumes that each node knows the number of nodes ∆A

x in its proximity range
RA. Then, after waking up, each node x simply transmits with probability
p = 1/∆A

x and remains silent with probability 1− p.
Our goal is to show that, although the SINR model is intrinsically global

and the interferences of distant nodes can accumulate and cause collisions, it
is possible to guarantee efficient medium access (in particular, local broad-
casts) using this simple and completely distributed algorithm. Specifically,
in the analysis we prove that with high probability, every node x performs
at least one successful local broadcast after O(∆A

x logn) time-slots.
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7.2.1 Analysis

For the purpose of our analysis, we introduce the concept of probabilistic
interference, which is the expected value of total interference experienced by
a node.

Definition 7.9. Consider a node x ∈ V . The probabilistic interference at
x, ψVx , is defined as the expected value of interference experienced by x in a
certain time-slot.

ψVx = P
X

v∈V \{x}

pv
dαvx

,

where P is the transmission power, pv is the sending probability of node v in
time-slot t, and dvx is the distance between x and the interfering node v.

In the following lemma we show that, given an upper bound on the sum
of sending probabilities inside each broadcasting region Bv, v ∈ V , the prob-
abilistic interference caused by nodes located outside the proximity region
Ax of a node x can be bounded by a constant. Given an upper bound on
the expected interference coming outside the region Ax, it becomes possible,
in a way, to abstract away this interference and to reason mainly about the
interference caused by nodes within the proximity range RA. The analysis
in the physical interference model then becomes similar to the analysis used
in the protocol interference model.

Lemma 7.10. Consider a node x and its proximity region Ax, of radius RA.
If in a time-slot t, the sum of transmission probabilities inside all broadcasting
regions can be bounded by a constant, i.e., if

P
w∈Bv

pw ≤ c,∀v ∈ V , then
the probabilistic interference experienced by x, caused by nodes outside region
Ax, can be bounded by

ψv/∈Ax
x = P

X
v/∈Ax

pv
dαvx

≤ c · P
�
α− 1

α− 2

�
332(α−2)R

(2−α)
A R−2

B .

Proof. Consider rings Ringl of width RA around x, containing all nodes
v, for which lRA ≤ dvx ≤ (l + 1)RA. The first such layer Ring0 is the
proximity region Ax. Consider all nodes v ∈ Ringl for some integer l > 0.
All corresponding broadcasting regions Bv must be located entirely in an
extended ring Ringl+ of area

A(Ringl+) =
�
((l + 1)RA +RB)2 − (lRA −RB)2

�
π

= (2l + 1)(R2
A + 2RARB)π

< (2l + 1)(R2
A + 2RARB +R2

B)π

= (2l + 1)(RA +RB)2π

≤ (2l + 1)(3/2RA)2π.
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Each transmitter v in Ringl, l ≥ 1 has distance at least l · RA from x, each
transmitter w ∈ Bv has distance d(w, x) ≥ (lRA −RB) from x. Since RB ≤
1/2RA and l ≥ 1, d(w, x) ≥ l · RA/2. By applying a geometric argument2,

we can bound the probabilistic interference ψRing
l

x incurred by nodes located
in ring Ringl, l ≥ 1 as

ψRing
l

x =
X

v∈Ringl

ψvx

≤ A(Ringl+)

A(Bv)
· P

X
w∈Bv,

v∈Ringl

pw
(lRA/2)α

≤ (2l + 1)

lα
· P · c · 322α−2R

(2−α)
A R−2

B

≤ 1

l(α−1)
· P · c · 332α−2R

(2−α)
A R−2

B .

Summing up the interferences over all rings yields

ψv/∈Ax
x <

∞X
l=1

ψRing
l

x

≤ c · P ·
∞X
l=1

1

lα−1
· 332α−2R

(2−α)
A R−2

B

< c · P · α− 1

α− 2
332α−2R

(2−α)
A R−2

B ,

which concludes the proof of the lemma.

In the following theorem we prove that the algorithm is correct and effi-
cient.

Theorem 7.11. After O(∆A
x logn) time-slots, each node x performs a local

broadcast successfully, with probability at least 1−1/n2. The claim also holds
for all nodes with probability at least 1− 1/n.

Proof. Given the user-defined broadcasting range RB , we define the proxim-
ity range RA of a node x to be a function of RB , α and β:

RA = RB

�
332αβ ·

�
α− 1

α− 2

�� 1
(α−2)

. (7.2)

2Here the argument is similar to the one used in Lemma 6.1, only instead of using
a bound on the minimum distance between senders (located in the ring area), we use a
bound on the sum of sending probabilities inside each broadcasting region Bv . Note that
when two such regions intersect, the sending probabilities within the intersected area is
counted twice. Therefore, by “geometric argument”, we mean that there can be at most
A(Ring)/A(Bv) such disjoint broadcasting regions Bv in each ring.
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Note that RA > 2RB , since β ≥ 1 and 2 < α ≤ 6. It follows that if a
node y is located inside the broadcasting region of x, then

Bx ⊂ Ay∈Bx ⇒ ∆B
x ≤ ∆A

y ⇒

py =
1

∆A
y

≤ 1

∆B
x

⇒
X
y∈Bx

py ≤ 1. (7.3)

The main goal is to bound the expected SINRy∈Bx of the intended re-
ceiver of x. Consider the proximity region Ay of the receiver y. Using (7.2),
(7.3) and Lemma 7.10 (note that constant c in the Lemma is equal to 1 due
to (7.3), i.e., c = 1), we can bound the probabilistic interference experienced
by y caused by nodes located outside Ay:

ψ
v/∈Ay
y < 1 · P · α− 1

α− 2
332α−2R

(2−α)
A R−2

B

=
P

4βRαB
.

Given the expected value of interference at the intended receiver y, caused
by transmissions outside Ay, we can use Markov inequality to claim that the
probability that the interference at y caused by transmissions outside its

proximity region exceeds 2 · ψv/∈Ay
y is less than 1/2. Consequently, provided

that x is the only node transmitting in Ay, with probability PSINR≥β ≥ 1/2,
the SINR at the intended receiver y ∈ Bx can be lower bounded by

SINRy∈Bx ≥
P
dα

xy

2 · ψv/∈Ay
y +N

> β,

which holds since dxy ≤ RB and ambient noise N is upper bounded by (7.1).

The probability P
Ay
none that no node attempts to transmit in the proximity

region Ay of y is at least

P
Ay
none ≥

Y
w∈Ay

(1− pw)

≥
Fact 7.5

�
1

4

�P
w∈Ay

pw

≥
�

1

4

�P
v∈Ay

P
w∈Bv

pw

≥
Eq.(7.3)

�
1

4

�P
v∈Ay

≥
�

1

4

�χRA,RB

.

Putting everything together, we define the probability that node x per-
forms a local broadcast successfully at a time-slot as

P send
success

≥ PSINR≥β · P
Ay
none

≥
�

1

2

��
1

4

�χRA,RB

.
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Since at each time slot each node locally broadcasts successfully with
constant probability, the probability Pfail that a node does not transmit

successfully after λdlogne time-slots, where λ = 4∆A
x · 4χ

RA,RB
, is

Pfail
send

≤

 
1− 1

2∆A
x

�
1

4

�χRA,RB
!λdlogne

<
1

n2
.

Because there are n nodes to be scheduled, the probability that the claim
holds for all nodes is at least

Pall ≥
�

1− 1

n2

�n
≥
�

1− 1

n

�
.

Note that Theorem 7.11 proves that Multi-Hop Aloha is not only effi-
cient and provides fast media access, but is also fair, given that each node’s
schedule depends only on the local parameter ∆A

x , allowing fast schedul-
ing in low-density areas, regardless of the existence of highly dense regions
somewhere else in the network.

7.3 Unknown Competition

The simple protocol in the previous section crucially depends on nodes know-
ing the number of neighbors in their proximity. If nodes do not have this
information, designing an efficient algorithm becomes substantially more dif-
ficult, because nodes do not know at what probability they should transmit.
In this section we describe and analyze the SSMA (Slow-Start Media Access)
protocol. Since nodes do not know with how many nodes they have to com-
pete for the medium, we use a technique that allows each node to start with
a very low sending probability and exponentially increase it until they make
an attempt to transmit or hear a successful broadcast on the channel. The
idea is to eliminate conflicts through randomization, but still guarantee fast
medium access for all nodes. The only assumption here is that each node
has a rough estimate n̂ of the total number of nodes in the network. From
now on, we will refer to the estimate n̂ as n.3

The SSMA protocol (Algorithm 5) works in rounds, each of which con-
tains δdlogne time-slots. In every time-slot, a node sends with probability p.
Starting from a very small value, this sending probability p is doubled in the
beginning of every round. For the algorithm to work properly, we must pre-
vent the noise floor (i.e., the sum of sending probabilities) from reaching too
high values. Otherwise, too many collisions will occur. Hence, upon making

3Notice that the algorithm’s running time depends only poly-logarithmically on the
estimate of n. Hence, it degrades only marginally even if the estimate is very inaccurate.
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an attempt to send or upon receiving a message (i.e., when SINRx ≥ β), a
node x resets the value of p and starts the incrementing process again. Once
a node makes an attempt to broadcast (without knowing whether it was
successful or not), it increments a counter. After a node has made λdlogne
attempts, it stops executing the algorithm.

Consider the broadcasting region Bx of a node x. Let t be a time-slot in
which a message is sent by a node y ∈ Bx and received (without collision) by
all other nodes z ∈ Bx, z 6= y. We say that a Drastic Interference Reduction
(DIR) occurs in the broadcasting region Bx in time-slot t, since all nodes
decide to reset their sending probability.

Algorithm 5 SSMA: Slow-Start Media Access

1: count := 0;

2: λ := 4 · 4(3/2)χRA,RB
;

3: δ := 12 · 4(3/2)(1+χRA,RB );
4: loop
5: p := 1

4n
;

6: for i := 0 to dlogne do
7: p := 2p;
8: for j := 0 to δdlogne do
9: if (SINRx ≥ β) then

10: goto line 5; (reset)
11: end if

12: s :=

�
1 with probability p
0 with probability (1− p)

13: if (s = 1) then
14: transmit();
15: count := count+ 1;
16: goto line 5; (reset)
17: end if
18: end for
19: end for
20: if (count > λdlogne) then halt; fi
21: end loop

The parameters δ and λ are chosen as to optimize the results and guar-
antee that all claims hold with high probability. Parameter δ is chosen large
enough to ensure that, with high probability, there is a round in which a
DIR occurs. Parameter λ is chosen large enough to ensure that each node
performs a local broadcast successfully in at least one round with high prob-
ability.
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7.3.1 Analysis

We begin the analysis by defining the proximity range RA:

RA = RB

�
342(2α−1)β

�
α− 1

α− 2

�� 1
(α−2)

(7.4)

We proceed in the following manner. In Lemma 7.12, we prove that, dur-
ing the entire execution of the algorithm, the sum of sending probabilities
in every broadcasting region Bx is bounded by a constant. In Lemma 7.13,
we show that every node x makes (λ logn) attempts to transmit and stops
executing the algorithm after O(∆T

x log3 n) time-slots, where ∆T
x is the num-

ber of nodes in its transmission region (Def. 7.3). Finally, in Theorem 7.14,
we prove that Algorithm 5 is correct and efficient, i. e., after O(∆T

x log3 n)
time-slots, every node is scheduled successfully, i.e, every node performs a
successful local broadcast. All claims hold with high probability.

Lemma 7.12. Consider the execution of Algorithm 5. The sum of sending
probabilities of nodes in any broadcasting region Bx, x ∈ V at any time-slot t
is upper bounded by X

y∈Bx

py ≤
3

2
, (7.5)

with probability at least (1− 1/n).

Proof. The claim holds in the beginning of execution, since all nodes start
with sending probability 1/4n. Consider a time slot t1, in which for the first
time the sum of sending probabilities exceeds 1/2 in one of the broadcasting
regions, say Bx. We now consider the time interval τ = [t1 . . . t1 + δdlogne].
We first claim that the sum of sending probabilities in the considered interval
is at most 3/2. The claim holds since (1) by choice of t1, at the beginning of
the interval the sum of sending probabilities is at most 1/2; (2) by definition
of Algorithm 5, during the specified interval each node can at most double
its sending probability; and (3) there can be only less than n newly awaken
nodes, which in δdlogne time slots can achieve sending probability at most
1/2n each, yieldingX

v∈Bx

ptv ≤ 2 · 1

2
+ n · 1

2n
≤ 3

2
, ∀t ∈ τ.

Therefore, the following bounds hold for the entire time interval τ :

1

2
≤

X
v∈Bx

ptv ≤
3

2
∀t ∈ τ (7.6)

0 ≤
X
v∈By
y 6=x

ptv ≤
3

2
∀t ∈ τ. (7.7)
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The second inequality holds because t1 is the very first time slot in which
the sum of sending probabilities exceeds 1/2. Hence, in each By, y 6= x, the
sum of sending probabilities is at most 3/2 in the considered time interval.
(Otherwise, one of By would have reached 1/2 before Bx and t1 would not
be the first time slot considered).

The proof proceeds by showing that, before the claimed bound is sur-
passed, the sum of sending probabilities in Bx falls back to less than 1/2,
since, with high probability, a DIR occurs in Bx in the considered interval.
Record that a Drastic Interference Reduction (DIR) occurs in the broad-
casting region Bx in time-slot t when all nodes y ∈ Bx decide to reset their
sending probability, which happens if every node y ∈ Bx either makes an
attempt to transmit or receives a clear message (SINRy ≥ β).

We proceed by bounding the probabilistic interference experienced by a
node z ∈ Bx, caused by nodes located outside its proximity region Az, in
interval τ . Using (7.4), (7.7), and Lemma 7.10 (c = 3/2), we have

ψw/∈Az
z <

3

2
· P
�
α− 1

α− 2

�
332(α−2)R

(2−α)
A R−2

B

=
P

4β(2RB)α
.

By Markov inequality, the probability that the interference at z ∈ Bx,
caused by transmissions outside its proximity range, exceeds 2 ·ψw/∈Az

z is less
than 1/2. Therefore, with probability PSINR≥β ≥ 1/2, the signal received
by z from transmitter v ∈ Bx can be lower bounded by

SINRz∈Bx >

P
(dvz)α

2 · ψw/∈Az
z +N

> β,

which holds since dvz ≤ 2RB and ambient noise N is upper bounded by (7.1).
We proceed by calculating the probability that exactly one transmission

(v, z) ∈ Bx occurs:

PBx
one ≥

X
v∈Bx

0
BB@pv · Y

w∈Bx
w 6=v

(1− pw)

1
CCA

≥
X
v∈Bx

pv ·
Y
w∈Bx

(1− pw)

≥
Fact 7.5

X
v∈Bx

pv ·
�

1

4

�P
w∈Bx

pw

≥
Eq.(7.6)

1

2

�
1

4

� 3
2

.
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Furthermore, we define the probability that no other node transmits in
Az:

PAz
none ≥

Y
w∈Az
w 6=z

Y
k∈Bw

(1− pk)

≥
Fact 7.5

Y
w∈Az
w 6=z

�
1

4

�P
k∈Bw

pk

≥
Eq.(7.7)

Y
w∈Bx
w 6=v

�
1

4

� 3
2

≥
Fact 7.7

�
1

4

� 3
2χ

RA,RB

. (7.8)

Hence, the probability that a DIR occurs in one time slot is

PDIR ≥ PBx
one · PAz

none · PSINR≥β

≥ 1

2
· 1

2

�
1

4

� 3
2 (1+χRA,RB )

.

The probability that a DIR does not occur in the whole interval τ is

PDIR ≤

 
1− 1

4

�
1

4

� 3
2 (1+χRA,RB )

!δ logn

<
1

n3
,

where δ = 12 · 43/2(1+χRA,RB ).
The argument that a DIR occurs with probability (1− n−3) in the crit-

ical interval τ is not sufficient, since the number of such intervals could be
infinitely large. However, we can bound the total number of intervals using
the fact that each node maintains a counter and makes at most (λ logn)
attempts to transmit, stopping the execution of the algorithm afterwards.
Since there are n nodes, there can be at most (n · λ logn) critical intervals
τ during the entire execution of the algorithm. The probability that a DIR
occurs in all such intervals is therefore

PDIR(all τ ’s) ≥
�

1− 1

n3

�nλ logn

≥
�

1− 1

n

�
.
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In the following lemma we prove that the sending probability, although
bounded from above as shown in Lemma 7.12, grows quickly enough, allowing
each node x to make λdlogne transmission attempts in time O(∆T

x log3 n).

Lemma 7.13. Given the number of nodes ∆T
x in the transmission region

Tx of a node x, every node x makes λdlogne attempts to transmit and stops
executing Algorithm 5 after O(∆T

x log3 n) time-slots.

Proof. The first observation is that, since a node x can only reset its sending
probability upon reception of a clear transmission (SINRx ≥ β), the reset
can only be caused by nodes within its transmission range RT . Given that
there are at most (∆T

x −1) nodes in the transmission region Tx and that each
of these nodes makes at most λdlogne attempts to transmit, node x can reset
its sending probability at most (∆T

x − 1)λdlogne times.

On the other hand, according to the definition of Algorithm 5, every
node starts with sending probability p0 = 1/(4n) and doubles its sending
probability after δdlogne consecutive time-slots without resets. Assuming
that x does not reset its sending probability, after δdlogne(dlogne+ 2) time
slots, x transmits with probability p = 1.

Putting everything together, after at most (∆T
x − 1)λδdlogne2(dlogne+

1) + δdlogne(dlogne + 2) = O(∆T
x log3 n) time slots, every node makes

λdlogne attempts to transmit and halts the execution of the algorithm.

Using Lemmas 7.12 and 7.13, we can now prove that Algorithm 5 is
correct and efficient.

Theorem 7.14. Given the number of nodes ∆T
x in the transmission region

Tx of a node x, every node x performs a local broadcast successfully after
O(∆T

x log3 n) time-slots with probability at least 1 − 1/n2. The bound holds
for all nodes with probability at least 1− 1/n.

Proof. The high probability result is based on the fact that each attempt to
transmit has a constant probability of success, i.e., once a node x attempts to
transmit, all intended receivers y ∈ Bx in its broadcasting region will receive
the message successfully (SINRy ≥ β) with constant probability. Since each
node makes λdlogne attempts to transmit, setting λ to high enough a value
gives the high probability result.

In Lemma 7.12 we proved that the sum of sending probabilities in every
broadcasting region Bx is bounded by 3/2 during the entire execution of
Algorithm 5 w.h.p. Using this fact we can apply Lemma 7.10 to bound the
probabilistic interference experienced by a receiver y ∈ Bx, caused by nodes
located outside its proximity range by

ψ
w/∈Ay
y <

P

4β(2RB)α
.
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As argued earlier, with probability PSINR≥β ≥ 1/2, the SINR at the
intended receiver y ∈ Bx can be lower bounded by

SINRy∈Bx ≥
P

(dxy)α

2 · ψw/∈Ay
y +N

> 2αβ

> β.

Using the result of Lemma 7.12, the probability that the transmission
(x, y) is the only one in the proximity range of y can be calculated in the
same way as in (7.8).

Putting everything together, the probability that transmission attempt is
successful can be lower bounded by

P send
success

≥ PSINR≥β · P
Ay
none

≥ 1

2

�
1

4

� 3
2χ

RA,RB

.

Applying Lemma 7.13, which states that after time O(∆T
x log3 n) node x

makes λ logn attempts to transmit and the fact that each attempt has con-
stant probability of success, the probability that node x does not broadcast
successfully during the entire execution of Algorithm 5 is

Pfail
send

≤

 
1− 1

2

�
1

4

� 3
2χ

RA,RB
!λdlogne

<
1

n2
,

where λ = 4·4(3/2)χRA,RB
. Because there are at most n nodes, the probability

that the claim holds for all nodes is at least

P all
success

≥
�

1− 1

n2

�n

≥
�

1− 1

n

�
.

The upper bound on the execution time of the algorithm is proportional
to the number of nodes ∆T

x in the transmission range RT of each node,
which depends on the transmission power level P . Note that, since nodes
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aim to broadcast messages only to those receivers located within their broad-
casting region Bx, and since high power levels require higher energy spend-
ing, the power level P should be chosen somehow proportional to the maxi-
mum sender-receiver distance, which is RB . Therefore, RT /RB is typically
bounded by a constant, and ∆T

x remains a local property.

7.4 Lower Bound

The algorithms presented in the previous sections achieve local broadcasts
in time O(∆A

max logn) and O(∆T
max log3 n), respectively. We now show that

this is close to optimal.

Theorem 7.15. Both algorithms schedule all local broadcasts in time at most
a poly-logarithmic factor away from the optimum.

Proof. Consider a broadcasting region Bx and the number of nodes in it
∆B
x . A successful broadcast corresponds to a local broadcast within radius

RB around a sender x. Since the receivers inside this area can decode the
signal of only one sender at a time, the transmission can succeed only if no
other node sends within this area simultaneously. This means that disks
of radius RB do not overlap in the optimum. Therefore, the optimum can
schedule only one node in each broadcasting region at a time and, therefore,
needs at least ∆B

max time-slots to schedule all nodes, TOPT ≥ ∆B
max.

Multi-Hop Aloha and SSMA, on the other hand, need at most
O(∆A

max logn) and O(∆T
max log3 n) time-slots to schedule all broadcasts suc-

cessfully with high probability. Given that ∆A
max ≤ ∆B

max · χRA,RB and
∆M
max ≤ ∆B

max ·χRT ,RB , where χRA,RB and χRT ,RB are constants defined in
Fact 7.7, we have

TAloha ≤ TOPT · χRA,RB ·O(logn), and

TSSMA ≤ TOPT · χRT ,RB ·O(log3 n),

i.e., our algorithms are only a poly-logarithmic factor away from the opti-
mum.

7.5 Simulation results

Our analytical studies show that both algorithms for local broadcasting per-
form provably well in worst-case scenarios. In this section we use simulations
to investigate the performance in the average case, when nodes are distrib-
uted uniformly at random in the plane. Our simulations are coded in the
Sinalgo 4 simulation framework, which is a packet-level wireless network sim-
ulator. The Sinalgo framework can be tuned to model a wide variety of wire-
less communication models, including the physical and the protocol models.

4http://dcg.ethz.ch/projects/sinalgo
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For our purposes, we used a communication model that accurately captures
SINR-based signal propagation in a wireless communication environment,
modeling the reception of packets according to definition (3.2). The simula-
tions were set up on a square of area 1000× 1000; the number of simulations
was chosen in order to reduce the confidence interval to a meaningful value.

In Figures 7.1(a) and 7.1(b), we evaluate the average and maximum time
needed for all nodes to perform a successful local broadcast. The broadcast-
ing range was set to RB = 25, and the total number of nodes was varied from
n = 1000 to n = 5000. The average number of neighbors in a broadcasting
region Bx ranged from ∆B

x = 2 (for n = 1000) to ∆B
x = 10 (for n = 5000).

The SINR parameters used in the simulations were α = 6 and β = 1, but
as we show in Figures 7.2(a) and 7.2(b), SSMA is robust to changes in these
parameters. In Figure 7.1(a), it can be seen that the number of time slots
needed for a successful broadcast increases with increasing density. In Fig-
ure 7.1(b), we compare the average execution time to the asymptotic bounds
presented in the analysis sections. Recall that Multi-hop Aloha and SSMA
have time complexity O(∆A logn) and O(∆T log3 n), respectively. The plot-
ted lines show the hidden constants in the asymptotic bounds, i.e., the ratio
of the maximum execution time Tmax and ∆A · logn (in the simulation of
SSMA, the transmission range is equal to the proximity range (∆T = ∆A)).
The simulations suggest that, when nodes are distributed uniformly on the
plane, the hidden constants are actually very small. Moreover, SSMA has
similar performance to Multi-hop Aloha, even though it uses no information
about network topology. Interestingly, the performance of SSMA approaches
that of the simple Multi-hop Aloha more closely as the number of nodes in
the system (and hence the density) increases.

In Figures 7.2(a) and 7.2(b), we analyze the influence of SINR parameters
α and β on the average broadcasting time. In Figure 7.2(a), we use β = 1 and
α ∈ {3, 4, 5, 6}. In Figure 7.2(b), we use α = 6 and β ∈ {1, 1.5, 2, 2.5, 3}. The
simulations were performed on n = 1000 nodes, and the broadcasting range
was set to RB = 25. In Figure 7.2(a), it can be seen that the performance
of Multi-hop Aloha strongly depends on the path-loss exponent α. This is
due to the fact that the transmission probability is inversely proportional
to the number of nodes within proximity range RA, which decreases with
higher path-loss (see Eq. 7.2). SSMA, on the other hand, is less sensitive to
the path-loss, given that its transmission probability is not dependent on the
topology of the network. In Figure 7.2(b), it can be seen that, due to the
dependency of Aloha’s sending probability on β (see Eq. 7.2), the execution
time slightly increases with increasing β. Once again, the influence of β on the
performance of SSMA is less explicit. Overall, on average, the performance of
the SSMA protocol was comparable to the performance of Multi-hop Aloha,
even though the former operates without having topology knowledge.
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Figure 7.1: Simulation Results.



7.5. SIMULATION RESULTS 87

 0

 100

 200

 300

 400

 500

 600

 700

 6 5 4 3

T
im

e 
to

 s
uc

ce
ss

fu
l b

ro
ad

ca
st

SINR path-loss exponent alpha

Aloha Tavg
SSMA Tavg

(a) Influence of the path-loss exponent α.

 0

 50

 100

 150

 200

 250

 300

 350

 3 2.5 2 1.5 1

T
im

e 
to

 s
uc

ce
ss

fu
l b

ro
ad

ca
st

SINR threshold beta

Aloha Tavg
SSMA Tavg

(b) Influence of the SINR threshold β.

Figure 7.2: Influence of SINR parameters.



88 CHAPTER 7. LOCAL BROADCASTING

7.6 Outlook

In this chapter we analyzed the complexity of a wireless communication prim-
itive such as local broadcasting in the physical interference model. We looked
into two distributed randomized algorithms and found out that, even when
only limited knowledge about the topology is provided, close to optimum per-
formance can be achieved in a global interference model, such as the physical
model.

Our analysis reveals some important insight into the structural relation-
ship between the protocol and physical model. In particular, we prove that
if the transmission probability of each node meets certain characteristics, the
performance of our algorithms can be decoupled from the global nature of
the physical interference model, and each node is capable of performing a
successful local broadcast in time proportional to the number of neighbors
in its physical proximity. This holds regardless of the density distribution of
the nodes in the network.



Chapter 8

Scheduling and Analog Network

Coding

One of the key concepts on which wireless interference models rely is the
definition of a successful transmission. So far, in this thesis, we have assumed
that a receiver successfully decodes one, and only one, message at a time.
The message that is decoded successfully is the one which was sent by the
transmitter whose signal strength is the highest compared to the sum of
signals of concurrently scheduled transmissions at that moment.

Analog network coding brings some revision into the assumption that
wireless interference is harmful and that a receiver can decode only the
strongest signal at a time. Cochannel separation techniques allow the re-
ceiver to decode several signals simultaneously under the assumption that
these signals differ significantly in their strength [48, 49]. Analog network
coding in a 2-way relay topology makes it possible to simultaneously decode
two signals of similar strength, under the assumption that the receiver knows
one of the interfered signals by having overheard or forwarded it earlier [61].

As already pointed out in the Related Work Chapter, most of the results
in network coding have concentrated on capacity improvements from an in-
formation theoretic perspective [62, 69, 81, 96], and sometimes on feasibility
and gains of practical solutions in restricted network topologies [61, 63, 116],
but have not addressed the issue of complexity of scheduling an arbitrary set
of links in the physical interference model. Does the fact that a receiver is
able to decode more than one signal simultaneously make the problem eas-
ier? Does the problem remain NP-hard? Does it open possibilities for better
approximation algorithms?

In this chapter we make some initial steps into the study of these issues.
We analyze two models with different definitions of analog network coding.
In one model (described in Section 8.1), we assume that a receiver is able
to decode several signals simultaneously, provided that these signals differ in

89
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strength significantly. In the second model (described in Section 8.2), we as-
sume that routers are able to forward the superposition of two interfering sig-
nals of nodes that wish to exchange a message, and nodes are able to decode
the “collided” message by subtracting their own contribution from the inter-
fered signal. For each network coding definition, we construct an instance
of the scheduling problem in the geometric physical interference model, in
which nodes are distributed in the Euclidean plane, and present NP-hardness
proofs for both scenarios (see Sections 8.3 and 8.4). Moreover, in Section 8.5
we present a scheduling algorithm that explores the first definition of analog
network coding. We prove that the algorithm builds a correct schedule in
the physical interference model, where nodes are arbitrarily distributed in
Euclidean space. Finally, in Section 8.6, we analyze the throughput gain of
the algorithm in different network topologies through simulations.

Next, we define two variations of the link scheduling problem, which make
use of two different definitions of a successful transmission: Scheduling with
Analog Coding by Filtering (SACF ) and Scheduling with Analog Coding by
Signal Mixing (SACSM).

8.1 Analog Coding by Filtering (SACF )

In this model, we assume that a receiver r is able to decode several signals
simultaneously, provided that these signals differ in strength significantly.
This kind of model has been studied in the context of cochannel signal sep-
aration [48, 49].

Consider a set of concurrently scheduled links St, and a subset of k
signals sorted in decreasing order of power received at a node r: Υ =
{Pr(s1), Pr(s2), . . . , Pr(sk)}. We assume that the receiver r is able to decode
all k signals in Υ if and only if the following condition holds ∀x ∈ {1, . . . , k}:

Pr(sx)P
Pr(sy)∈Υ,

Pr(sy)<Pr(sx)

Pr(sy) +
P

sz∈St,
Pr(sz)/∈Υ

Pr(sz) +N
≥ β, (8.1)

where the first component of the denominator is the accumulated interference
caused by transmissions in Υ, which have weaker power level than Pr(sx);
the second component of the denominator is the accumulated interference of
all other concurrent transmissions in the network, which are not in Υ; N is
the ambient noise; and β is the minimum SINR threshold.

The idea is that, one by one, each signal Pr(sx) ∈ Υ can be “filtered
out” from the accumulated interference, provided that the SINR between
this signal and the remaining interference is above the threshold β. The key
point here is that a receiver r is able to decode not only the strongest signal,
as in the traditional physical interference model, but also a relatively weak
signal, provided that each of the stronger signals has been filtered out. There-
fore, a signal Pr(sx) can be correctly decoded if and only of all concurrently
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Figure 8.1: Analog network coding by signal mixing.

scheduled stronger signals (Pr(sy)) obey the following constraints:

Pr(sy)

Pr(sx) +
P

sz∈St,
Pr(sz)<Pr(sy)

Pr(sz) +N
≥ β,

∀sy ∈ St, where Pr(sy) > Pr(sx), and (8.2)

Pr(sx)P
sz∈St,

Pr(sz)<Pr(sx)

Pr(sz) +N
≥ β. (8.3)

8.2 Analog Coding by Signal Mixing (SACSM)

The second definition of analog network coding that we analyze was in-
troduced in [61, 120]. This model explores the fact that in a wireless
network, when two packets collide, nodes often know one of the colliding
packets due to having forwarded it earlier or having overheard it. Con-
sider a situation where two nodes A and B wish to send a message to each
other (see Fig. 8.1). Due to the interference of concurrent transmissions or
due to the ambient noise, A and B cannot communicate directly, but only
through a relay node R. Instead of scheduling 4 sequential transmissions
A → R,R → B,B → R,R → A, as in the traditional approach, by using
analog network coding, A and B can transmit simultaneously, allowing their
transmissions to interfere at R. The router, not being able to decode the
collided packets, can simply amplify and forward the interfered signal. It has
been shown in [61] that A (as well as B) is able to decode B’s packet by sub-
tracting the contribution of its own packet from the interfered signal, even
if the two transmissions are not fully synchronized and the wireless channel
distorts the signals. As a result, only two time-slots are sufficient to schedule
these requests.

In order for such a signal mixing to result in two successful transmissions,
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the following SINR conditions must hold in two time slots ti, tj , j > i:

PR(A)P
sy∈Sti

,

sy /∈{A,B}
IR(sy) +N

≥ β, (8.4)

PR(B)P
sy∈Sti

,

sy /∈{A,B}
IR(sy) +N

≥ β, (8.5)

PA(R)P
sy∈Stj

,

sy 6=R
IA(sy) +N

≥ β, (8.6)

PB(R)P
sy∈Stj

,

sy 6=R
IB(sy) +N

≥ β. (8.7)

This means that in order for A (and B) to be able to decode the mixed
signal (PR(A) + PR(B)) amplified and forwarded by R in time-slot tj , the
signals received by R in time-slot ti from both B and A must, individually,
obey SINRlAR(Sti \ {B}) ≥ β and SINRlBR(Sti \ {A}) ≥ β. Note that the
relative signal strength of A and B does not have to exceed any threshold. In
fact, it has been shown in [61] that even when PR(A) = PR(B), the signals
can still be correctly decoded by their receivers. However, note that the mixed
signal sent by R must still have SINRlRA(Stj ) ≥ β and SINRlRB (Stj ) ≥ β
at both receivers A and B in time-slot tj .

For those transmissions that occur without employing signal mixing, we
define a successful transmission as in standard physical interference model
(see Eq. 3.2).

For the sake of simplicity, in sections 8.3 and 8.4 we set N = 0 and
ignore the influence of noise in the calculation of SINR, given that this
has no significant effect on the results. In Section 8.5, where we present an
algorithm to solve the SACF problem, however, we do consider the case of
non zero ambient noise N .

8.3 Complexity of SACSM

In this section we prove that scheduling with analog coding by signal mixing
is NP-hard in the physical interference model, where nodes live in a Euclidean
space (geometric SINR model).

The hardness proof is by reduction from the well known NP-complete
numerical matching with target sums problem (NMTS) [33], which can be
formulated as follows: Given 3 sets A, B, C of positive integers, is it possible
to match each element i ∈ A to a distinct element j ∈ B, such that their sum
(i + j) equals to each of the elements k ∈ C? The triples (i, j, k) must form
a partition in the sense that they are disjoint and cover A ∪ B ∪ C.
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cq

PR2(ck) = β*k
PR2(el) = 

β*(min(PR2(aq),PR2(bq))-ε)

IR2(R) = min(PR2(aq),PR2(bq))-ε

PR2(bj) = jPR2(ai) = i

Figure 8.2: Reduction from NMTS: all 4q links can be scheduled success-
fully in 2q time-slots if and only if senders a1, . . . , aq, b1, . . . , bq, c1, . . . , cq,
are partitioned into q triples (ai, bj , ck) such that (i+ j) = k.

NMTS problem: Find q triples triplel = (i, j, k), i ∈ A = {i1, . . . , iq}, j ∈
B = {j1, . . . , jq}, k ∈ C = {k1, . . . , kq}, such that:

triple1 ∩ triple2 ∩ · · · ∩ tripleq = ∅, (8.8)

triple1 ∪ triple2 ∪ · · · ∪ tripleq = A ∪ B ∪ C,
(i+ j) = k, ∀(i, j, k) ∈ triplel, ∀l ∈ {1, . . . , q}.

Note that, for a solution to exist, we need:X
i∈A

i+
X
j∈B

j =
X
k∈C

k. (8.9)

Theorem 8.1. SACSM is NP-hard.

Proof. We prove that NMTS is reducible to SACSM in polynomial time.
First, we define a many-to-one reduction from any instance of NMTS to an
instance of SACSM. Then, we argue that the instance of SACSM cannot be



94 CHAPTER 8. SCHEDULING AND ANALOG NETWORK CODING

scheduled in T ≤ 2q time-slots, but can be scheduled in T = 2q time-slots if
and only if there is a solution to the NMTS problem instance.

Consider any instance of NMTS defined by A = {i1, . . . , iq},B =
{j1, . . . , jq}, C = {k1, . . . , kq}. The instance of SACSM is constructed by
placing (4q + 2) nodes in the plane in the following way (see Figure 8.2).
First, two nodes R and R2 are placed at positions (0, r(R)) and (0, 0), re-
spectively. Thereafter, q nodes, corresponding to integers j ∈ B are placed on
a straight line originating at R2 at angle (π/2− θb); q nodes, corresponding
to integers i ∈ A are placed on a line originating at R2 at angle (π/2 + θa);
and q nodes, corresponding to integers k ∈ C are placed on a line originating
at R2 at angle −π/2. The polar coordinates of each of these 3q + 2 nodes
are:

r(R) = max(amax, bmax) + ε, θ(R) = π/2, (8.10)

r(R2) = 0, θ(R2) = 0,

r(ai) =

�
1

i

�1/α

, θ(ai) = π/2 + θa, ∀i ∈ A,

r(bj) =

�
1

j

�1/α

, θ(bj) = π/2− θb, ∀j ∈ B,

r(ck) =

�
1

βk

�1/α

, θ(ck) = −π/2, ∀k ∈ C,

where ε is a small positive constant, and angles are defined as follows:

θa = min(θ1a, θ
2
a), θb = min(θ1b , θ

2
b ), where (8.11)

θ1a = arccos

 
β

2
α (a2

min + r(R)2)− a2
min − r(el)

2

2β
2
α aminr(R) + 2aminr(el)

!

θ2a = arccos

0
B@a

2
min + r(R)2 −

�
cmin+r(R)

β1/α

�2

2aminr(R)

1
CA,

θ1b = arccos

 
β

2
α (b2min + r(R)2)− b2min − r(el)

2

2β
2
α bminr(R) + 2bminr(el)

!

θ2b = arccos

0
B@ b

2
min + r(R)2 −

�
cmin+r(R)

β1/α

�2

2bminr(R)

1
CA,

where amin = (1/imax)
1/α, imax = maxi∈A(i), bmin = (1/jmax)

1/α, jmax =
maxj∈B(j), cmin = (1/kmax)

1/α, kmax = maxk∈C(k), amax =
(1/imin)1/α, imin = mini∈A(i), bmax = (1/jmin)1/α, jmin = minj∈B(j).
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Next we position the last q nodes {e1, . . . , eq} at the following location:

r(el) =
r(R)

β
1
α

, θ(el) = −π/2, l ∈ {1, . . . , q}. (8.12)

The communication requests are defined as follows: nodes
{c1, . . . , cq, e1, . . . , eq} all demand to transmit to the same receiver R2;
nodes {a1, . . . , aq} and {b1, . . . , bq} are grouped into two groups A and
B, respectively, and wish to transmit q messages {m(a1), . . . ,m(aq)} from
group A to group B and q messages {m(b1), . . . ,m(bq)} from group B to
group A. The exact recipient of a message m(ai) is not set, being enough
to transmit successfully to any node bj ∈ B. The same holds for a message
m(bj), originated at node bj ∈ B, which has to be transmitted to any node
ai ∈ A.1

Having defined the geometric instance of SACSM for any instance of
NMTS, we show that it cannot be scheduled in T < 2q time-slots using
signal mixing analog coding.

It is enough to look at the 2q transmissions from nodes
{c1, . . . , cq, e1, . . . , eq} to receiver R2. Given that signal mixing analog
coding allows simultaneous decoding of two signals only when one of the
signals is already known by the receiver, and at time t = 0 receiver R2 does
not know any of the considered 2q signals, it needs at least 2q time-slots to
receive and successfully decode each of them.

We proceed by showing that the problem instance defined in equations
(8.10) through (8.12) can be scheduled in T = 2q time-slots using signal
mixing analog coding if and only if there is a solution to the NMTS problem.

(⇒) For the first part of the claim, assume we know q triples (i, j, k), i ∈
A, j ∈ B, k ∈ C, such that conditions (8.8) through (8.9) are satisfied. To
construct a 2q-slot schedule, we assign transmissions ai → R, bj → R, ck →
R2,∀(i+j) = k to every odd slot {t1, t3, . . . , t2q−1} (we refer to the odd-time-
slot schedules as S2t+1). Note that the relay node R receives a collided signal
(PR(ai)+PR(bj)). To every even slot {t2, t4, . . . , t2q} we assign the transmis-
sions R → {ai, bj} and el → R2 (we refer to the even-time-slot schedules as
S2t). In this way we schedule all 4q requests in 2q time-slots. Now we prove
that the obtained schedule is valid, i.e., all messages are decoded successfully.

1Note that the above description of the scheduling instance establishes a set-to-set
communication, as opposed to point-to-point communication.
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First we look at the odd time-slots. The SINR at receiver R2 is equal to:

SINRR2(S2t+1) =
PR2(ck)

PR2(ai) + PR2(bj)

=

P
r(ck)α

P
r(ai)α + P

r(bj)α

=
Pβk

P (i+ j)
= β

Now we check the conditions (8.4) and (8.5):

PR(ai)P
sj 6=ai
sj 6=bj

IR(sj)
=

PR(ai)

PR(ck)

=
d(ck, R)α

d(ai, R)α

=
(r(R) + r(ck))

α

(r(ai)2 + r(R)2 − 2r(ai)r(R) cos θa)
α
2

≥ (r(R) + cmin)α

(a2
min + r(R)2 − 2aminr(R) cos θa)

α
2

= β. (8.13)

The last inequality holds by plugging in the value of θa, defined in (8.11)
(here we assume that θa is acute enough, s.t. d(R, amin) > d(R, amax).).
Condition (8.5) is proved as in (8.13), using bi instead of ai and θb instead
of θa.

Now we look at the even time-slots. The SINR at receiver R2 is equal to:

SINRR2(S2t) =
PR2(el)

PR2(R)

=

P
r(el)

α

P
r(R)α

= β
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And finally we check the conditions (8.6) and (8.7):

Pai(R)P
sj 6=R Iai(sj)

=
Pai(R)

Pai(el)

=
d(el, ai)

α

d(R, ai)α

=

�
r(ai)

2 + r(el)
2 − 2r(ai)r(el) cos (π − θa)

�α
2

(r(ai)2 + r(R)2 − 2r(ai)r(R) cos θa)
α
2

≥
�
a2
min + r(el)

2 + 2aminr(el) cos θa
�α

2

(a2
min + r(R)2 − 2aminr(R) cos θa)

α
2

= β.

Condition (8.7) is proved in the same way, only using bi instead of ai and θb
instead of θa.

To sum up, we showed that in every odd time-slot, conditions (8.4) and
(8.5) hold for every relay node R participating in signal mixing; in every even
time-slot, conditions (8.6) and (8.7) hold for every sender ai and bj partici-
pating in signal network coding; every mixed packet forwarded by the relay
node R can be decoded by at least one node in each group A and B, since
exactly one node in every group is the sender of one of the mixed packets; and
condition (3.2) holds for every transmission {c1, . . . , cq, e1, . . . , eq} → R not
employing network coding. This proves that our schedule guarantees success-
ful decoding for all transmissions scheduled in each time-slot t ∈ {t1, . . . , t2q}.

(⇐) For the second part of the claim, we need to show that if no solu-
tion to the NMTS problem exists, we cannot find a 2q-slot schedule for the
SACSM instance. No solution to NMTS implies that for at least one triple
(i, j, k), i ∈ A, j ∈ B, k ∈ C, it holds that (i + j) > k. Assume we could
still find a valid schedule with only 2q slots. As we have already pointed
out, transmissions from nodes {c1, . . . , cq, e1, . . . , eq} to receiver R2 have to
be scheduled sequentially. So let’s assume we have q time-slots, in which
senders {c1, . . . , cq} are scheduled, and another q time-slots, in which senders
{e1, . . . , eq} are scheduled. We will show that there is no way to schedule
the remaining senders {a1, . . . , aq, b1, . . . , bq} in parallel. First we look at
time-slots t with an assigned sender el. Assume that at least one sender ai
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(or bj) transmits simultaneously. The SINR at R2 would be:

SINRR2(St) =
PR2(el)

PR2(ai)

=

P
r(el)

α

P
r(ai)α

≤

P 
max(amax,bmax)+ε

β
1
α

!α

P
(amax)α

< β.

This means that all 2q senders {a1, . . . , aq, b1, . . . , bq} have to be scheduled
in the remaining q time-slots, together with senders {c1, . . . , cq}. Since signal
mixing analog coding only applies to 2 simultaneous transmissions, one from
set A and another from set B, exactly 2 senders {ai, bj} have to be scheduled
in each of these q time-slots. Now consider the time slot t, correspondent to
triple (ai, bj , ck) | (i+ j > k). The SINR at receiver R2 is:

SINRR2(St) =
PR2(ck)

PR2(ai) + PR2(bj)

=

P
r(ck)α

P
r(ai)α + P

r(bj)α

=
Pβk

P (i+ j)
< β,

i.e., at least one transmission ck → R2 cannot be decoded correctly within
2q time-slots if there is no solution to the NMTS problem. This completes
the proof.

8.4 Complexity of SACF

In this section we prove that scheduling with analog coding by filtering is
also NP-hard in the geometric SINR model.

We proceed by presenting a polynomial-time reduction from 3-Partition,
a problem closely related to the subset sum problem. 3-Partition was proved
to be NP-complete by Garey and Johnson in 1975 [32] and can be formulated
as follows: Given a set I of integers, is it possible to partition this set into
m subsets I1, . . . , Im, such that the sum of the numbers in each subset is
equal? The subsets I1, . . . , Im must form a partition in the sense that they
are disjoint and they cover I. Let σ denote the (desired) sum of each subset
Ii, or equivalently, let the total sum of the numbers in I be mσ. The 3-
Partition problem remains NP-complete when every integer in I is strictly
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R

sk,1

dmin

dmin

dmin

s1

r1

s3 r3

sn
rn

s2 r2

C1

C2

CK

sk,m

sk,2

s1,1

sk-1,1

PR(sk1) = β*σ IR(s1) = i1

PR(skm) = β*σ

PR(sk-11) = β*(β*σ+σ)

sk,3

IR(s2) = i2

IR(s3) = i3

IR(sn) = in

s1,m

PR(s11) = 
β*(Σ2..kP(ring)+σ)

PR(sk2) = β*σ

PR(sk-1m) = β*(β*σ+σ)

CK-1

sk-1,m

PR(s1m) = 
β*(Σ2..kP(ring)+σ)

sk-1,2

PR(sk-12) = β*(β*σ+σ)

Figure 8.3: Reduction from 3-Partition: all (K ·m+n) links can be scheduled
successfully inm time-slots if and only if the senders s1, . . . , sn, corresponding
to the integers i1, . . . , in, are partitioned into m subsets, each summing up
to exactly σ.

between σ/4 and σ/2, in which case, each subset Ii is forced to consist of
exactly three elements [32].

3-Partition problem: Find I1, . . . , Im ⊂ I = {i1, . . . , in} s.t.:

I1 ∩ I2 ∩ · · · ∩ Im = ∅,
I1 ∪ I2 ∪ · · · ∪ Im = I, andX

ij∈I1

ij =
X
ij∈I2

ij = · · · =
X
ij∈Im

ij =
1

m

X
ij∈I

ij .

Theorem 8.2. SACF is NP-hard.

Proof. We prove that 3-Partition is reducible to SACF in polynomial time.
First, we define a many-to-one reduction from any instance of 3-Partition to
a geometric (Euclidean) instance of SACF. Then, we argue that the instance
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of SACF cannot be scheduled in T ≤ m time-slots, but can be scheduled in
T = m time-slots if and only if the instance of 3-Partition is solved.

Consider a set I = {i1, . . . , in} of positive integers, where

nX
j=1

ij = m · σ, ij <
σ

2
, ∀ij ∈ I.

The instance of SACF is constructed by placing (K ·m+ n) senders and
(n+1) receivers in the plane in the following way (see Figure 8.3). First, one
receiver R is placed at position (0, 0). Thereafter, K circles are drawn around
R, and m senders are placed on each circle’s circumference. The outermost
circle CK has radius (P/β · σ)1/α. Each inner circle’s radius is recursively
determined as

r(CK) =

�
1

β · σ

� 1
α

(8.14)

r(Ci) = β
1
α ·

 
kX

j=i+1

1

r(Cj)α
+ σ

! 1
α

,

∀i ∈ {K − 1, . . . , 1}.

The polar coordinates of each of m senders si,1, . . . , si,m placed on circum-
ference Ci are:

r(si,j) = r(Ci), (8.15)

∀i ∈ {1 . . .K}, j ∈ {1 . . .m},
θ(si,j) ∈ [0, 2π).

All the positioned m ·K senders have as intended receiver the receiver R.
Now we place the remaining n senders s1, . . . , sn and n receivers r1, . . . , rn.

For each integer ij in I, we set the radial coordinate of sj to (P/ij)
1/α

and leave its angular coordinate free.

r(si) =

�
1

ij

�1/α

, ∀ij ∈ I,

θ(si) ∈ [0, 2π).

Next we position the receivers ri, 1 ≤ i ≤ n at distance dmin to their
corresponding senders si:

r(ri) = r(si) + dmin, where

dmin =

1

(imax−1)1/α − 1

i
1/α
max

1 + ((n+K − 1)β)
1
α

, 2 (8.16)

θ(ri) ∈ [0, 2π),
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and imax is the maximal value of the integers in set I.

Having defined the geometric instance of SACF for any instance of 3-
Partition, we proceed by showing that it cannot be scheduled in T < m
time-slots using analog coding by filtering. For that, consider any pair of
senders si,x, si,y positioned at the same circumference Ci. Since they are
equidistant from their intended receiver R, the power perceived at R is the
same:

PR(si,x)

PR(si,y)
= 1 < β, ∀si,x, si,y ∈ Ci, i ∈ {1 . . .K}.

Given that the power levels of any pair of such transmissions do not differ,
SINR conditions (8.2) and (8.3) cannot be fulfilled, and R cannot decode
them simultaneously. Since this argument applies to any pair of senders
belonging to the same circumference, and that there are m senders in each
circumference, at least m time-slots are needed to schedule any m-tuple of
such requests.

To proceed with the proof, we first need Lemma 8.3, in which we show
that each receiver ri ∈ {r1, . . . , rn}, corresponding to an integer i ∈ I, is close
enough to its respective sender to guarantee successful transmission, regard-
less of other links scheduled simultaneously. Since no two senders si,x, si,y
positioned at the same circumference Ci can be scheduled simultaneously, we
assume that at most (K+n) senders are scheduled in the same time-slot as ri,
i.e., one sender in each of K circumferences, plus n senders si, corresponding
to the n integers in I.

Lemma 8.3. Consider a time-slot t, in which the schedule St contains (n+
K) senders (one sender in each of K circumferences, plus n senders si,
corresponding to the n integers in I). It holds that for every receiver ri ∈
{r1, . . . , rn}, ri decodes its message successfully, i.e., constraints (8.2) and
(8.3) are satisfied.

Proof. We start by establishing a minimal distance between a receiver ri ∈
{r1, . . . , rn} and any interfering server sj , j 6= i or sx,y, x ∈ {1, . . . ,K}, y ∈
{1, . . . ,m}.

Since the positions of senders s1, . . . , sn depend on the integers i1, . . . , in,
we can determine the minimum distance between two sender nodes si, sj .

d(si, sj) = |d(si, R)− d(sj , R)|

=

�����
�

1

ii

� 1
α

−
�

1

ij

� 1
α

�����
≥ 1

(imax − 1)1/α
− 1

i
1/α
max

= dmin

�
1 + ((n+K − 1)β)

1
α

�
.
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We proceed by showing that any sender sx,y positioned on a circumference
Cx, x ∈ {1, . . . ,K}, is even farther away:

d(si, sx,y) = |d(si, R)− d(sx,y, R)|

≥ 1

i
1/α
max

− 1

(β · σ)1/α
(8.17)

≥ 1

(imax − 1)1/α
− 1

i
1/α
max

(8.18)

= min (d(si, sj)),

where (8.17) and (8.18) hold because σ > 2 · imax, β > 1, and imax ≥ 1. (i.e.,
((σ · β)− imax) ≥ (imax − (imax − 1)))

By triangular inequality, we have:

d(sj , ri) ≥ d(si, sj)− dmin

= dmin · ((n+K − 1)β)
1
α ,

∀i, j ∈ I, i 6= j.

This suffices to show that constraints (8.2) and (8.3) are satisfied for any
receiver ri, i ∈ {1, . . . , n}. Since d(sj , ri) > dmin = d(si, ri), the power re-
ceived at ri from si is stronger than from any other concurrent transmissions.
Therefore, constraint (8.2) does not apply, and we only need to show that
constraint (8.3) is satisfied:

Pri(si)P
sj∈St,

Pri
(sj)<Pri

(si)
Pri

(sj)

≥

P
dα
min

(n+K − 1) · P
d(sj ,ri)α

≥

1
dα
min

(n+K−1)�
dmin·((n+K−1)β)

1
α

�α

= β.

Having proved that successful transmission is guaranteed for receivers
r1, . . . rn under concurrent transmission of K senders sx,y positioned at
different circumferences Cx, x ∈ {1, . . . ,K} and any number of senders
sj , j ∈ {1, . . . , n} corresponding to the integers in the 3-Partition instance,
we now return to the proof of Theorem 8.2.

We claim that there exists a solution to the 3-Partition problem if and
only if there exists an m-slot schedule for the problem instance defined in
equations (8.14) through (8.16).
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(⇒) For the first part of the claim, assume we know m subsets
I1, . . . , Im ⊂ I, whose elements sum up to σ. To construct an m-slot sched-
ule, ∀ij ∈ I1, we assign the corresponding sender sj to time-slot 1, along with
K senders s1,1, s2,1, . . . , sK,1. For every ij ∈ I2, we assign the corresponding
sender sj to time-slot 2, along with K senders s1,2, . . . , sK,2. And so on until
senders sj corresponding to ij ∈ Im are assigned to time slot m, along with
K senders s1,m, . . . , sK,m. In this way we scheduled all mK + n requests in
m time-slots. Now we prove that the obtained schedule is valid, i. e., all
messages are decoded successfully.

Due to Lemma 8.3, we can assume that all senders si, i ∈ {1, . . . , n}
transmit successfully and focus our analysis on the senders s1,t, . . . , sK,t, t ∈
{1, . . . ,m}. Since in each time-slot t only K senders positioned on distinct
circumferences are scheduled together, the situation is the same in each t.
Therefore, we only look at one time-slot and show that all K transmissions
are decoded successfully at receiver R.

The signal power R receives from each sender si,t, i ∈ {1, . . . ,K} is equal
to

PR(si,t) =
P

r(si)α

=
P

β ·
�PK

j=i+1
1

r(Cj)α + σ
� .

The interference R experiences from concurrently scheduled senders is

IR(si,t) =

KX
j=i+1

PR(sj,t) +
X
sj∈It

PR(sj)

=

KX
j=i+1

P

r(sj,t)α
+
X
sj∈It

P · ij

= P ·

 
KX

j=i+1

1

r(Cj)α
+ σ

!
,

Therefore, using the notation introduced in Section 8.1, we show that condi-
tion (8.1) holds ∀sx,t ∈ Υ = {s1,t, . . . , sK,t} and, therefore, all K senders in
Υ transmit successfully to receiver R in time slot t:

PR(sx,t)P
PR(sy,t)∈Υ,

PR(sy,t)<PR(sx,t)

PR(sy,t) +
P
PR(sz)/∈Υ PR(sz)

=
PR(si,t)

IR(si,t)

=

P

β·
�PK

j=i+1
1

r(Cj)α +σ

�

P ·
�PK

j=i+1
1

r(Cj)α + σ
�

= β,
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which, in combination with Lemma 8.3, proves that our schedule guaran-
tees successful decoding for all transmissions scheduled in each time-slot
t ∈ {1, . . . ,m}.

(⇐) For the second part of the claim, we need to show that if no solution
to the 3-Partition problem exists, we cannot find an m-slot schedule for
our scheduling instance. No solution to 3-Partition implies that for every
partition of I into m subsets, the sum of one set It is greater than σ. Assume
we could still find a schedule with only m slots. As we have already pointed
out, senders positioned on the same circumference Ci, i ∈ {1, . . . ,K} have to
be scheduled separately. Therefore, in each time-slot t ∈ {1, . . . ,m}, exactly
one sender positioned on each circumference Ci has to be scheduled. We
argue that it is not possible to schedule n senders sj correspondent to the
integers ij ∈ {1, . . . , n} concurrently. Consider a time-slot t, a sender sK,t,
positioned on the outermost circumference CK , and a subset It of integers
such that

P
ij∈It

ij > σ. To prove that sK,t’s transmission cannot be decoded

correctly at receiver R, we can ignore the (K−1) senders positioned on inner
circumferences and only analyze the senders sj correspondent to the integers
ij ∈ It. We show that neither condition (8.2) nor (8.3) are satisfied at
receiver R. To show that (8.2) does not hold, we observe that the ratio of
the power levels of sK,t and sj is always below β and, therefore, sj ’s signal
cannot be filtered out at receiver R, ∀ij ∈ It.

PR(sj)

PR(sK,t)
≤

P 
1

i
1/α
max

!α

P�
1

(βσ)1/α

�α

=
imax

βσ

< β,

where the last inequality holds since imax < σ/2.
Now we show that (8.3) also does not hold, since the sum of set It is

greater than σ.

PR(sK,t)P
sj∈It

PR(sj)
=

P�
1

(βσ)1/α

�α

P
P
ij∈It

1�
1/i

1/α
j

�α

<
βσ

σ
= β,

Since neither condition (8.2) nor (8.3) are satisfied for link sK,t → R when
the sum of subset It is greater that σ, the transmission cannot be decoded
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successfully and the schedule needs more than m time slots. This completes
the proof of Theorem 8.2.

8.5 Algorithm for SACF

In this section we present a scheduling algorithm that explores analog cod-
ing by filtering in the physical interference model. The algorithm greedily
schedules links, checking for coding opportunities at each step. The result is
a schedule of length T , where in each time-slot all transmissions can be de-
coded successfully according to equation (8.1). Note that we do not provide
approximation guarantees for this algorithm, i.e., we do not know how well
it performs in comparison to an optimal solution to the SACF problem. We
compare its performance to scheduling algorithms that do not employ coding
techniques through simulations in Section 8.6.

We start by defining a function SACF (r,Υ, I, β′), which returns true iff
a receiver r is able to decode all signals in a given set Υ. More precisely,
given a set of k signals (sorted in decreasing order of power received by r)
Υ = {Pr(s1), Pr(s2), . . . , Pr(sk)}, a set of all other concurrent signals I, and
an SINR threshold β′, SACF (l,Υ, I, β′) = true iff the following condition
holds ∀x ∈ {1, . . . , k}:

Pr(sx)P
Pr(sy)∈Υ,

Pr(sy)<Pr(sx)

Pr(sy) +
P
Pr(sz)∈I Pr(sz) +N

≥ β′.

Algorithm 6 starts by setting two constants: β′ = 3β/2, a slightly higher
SINR threshold than the original β; and c, a constant defined in (8.20). The
algorithm schedules links in increasing order of their length. Once a link
lx is selected to be scheduled in time-slot t (line 8), some of the remaining
links ly (those that have not been scheduled yet) are eliminated from the
current time-slot in two steps. To do that, the signals which have already
been scheduled in this time-slot (li ∈ St) are divided into two subsets: Υ,
containing signals from senders located within distance dyy of receiver ry
(line 10), and I, containing signals from the remaining senders in St (line
11). In the first elimination step (line 12), all links ly that do not meet the
decoding condition SACF (ry,Υ, I, β

′) and have an SINRry (St) (ratio of
signal to the interference from senders in St, plus noise) lower than β′ are
removed. In the second elimination step (line 13), all links whose senders are
within distance c ·dxx from receiver rx are removed. This process is repeated
until all links have been either scheduled in time-slot t or deleted. The whole
process is repeated using the deleted links as input, until all links have been
scheduled.

In the following theorem we prove that the schedule S obtained by Al-
gorithm 6 is correct, i.e., all selected links can be scheduled concurrently
without collisions using analog coding by filtering.
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Algorithm 6 SACF Algorithm

1: input: Set of links L = {l1, . . . , ln};
2: output: Schedule S = {S1, . . . ,ST } of length T , meeting feasibility

conditions SACF (8.1);
3: Set c according to (8.20);
4: β′ := 3β/2;
5: t := 0;
6: repeat
7: repeat
8: St := St ∪ {lx}, where lx = argminli∈L\{St∪D} dii;
9: for ly ∈ L \ {St ∪D} do

10: Υ := {Pry (si), si ∈ St | d(ry, si) ≤ dyy};
11: I := {Pry (si), si ∈ St \Υ};
12: if !SACF (ry,Υ, I, β

′) and SINRry (St) < β′ then D := D∪{ly};
13: else if d(rx, sy) ≤ c · dxx then D := D ∪ {ly};
14: end for
15: until L \ {St ∪D} = ∅
16: L := L \ St;
17: D := ∅;
18: t := t+ 1;
19: until L = ∅
20: return S;

Theorem 8.4. Algorithm 6 produces a valid schedule according to SACF
feasibility conditions, defined in (8.1).

Proof. Consider a time-slot t and an arbitrary link lx scheduled in St. Let
S−x be the set of links shorter than lx, i.e., those added to St before lx, and
S+
x be the set of links longer than lx, i.e., those added after lx. When a

link lx is added to the solution, two conditions hold: (1) the signal from
the intended sender sx can be decoded with SINR threshold β′ = 3β/2,
since lx either satisfies SACF (rx,Υ, S

−
x \Υ, β′) or SINRrx(S−x ) ≥ b′, where

Υ = {Prx(si) | si ∈ St | d(si, rx) ≤ dxx}; and (2) senders in S+
x are located

outside the disk of radius c · dxx. It remains to show that the additional
interference from S+

x is small enough to allow the signal from sx to be decoded
with SINR threshold β. We need to show that either SACF (rx,Υ, {S−x \Υ}∪
S+
x , β)=true or SINRrx(S−x ∪ S+

x ) ≥ β, i.e.:

• SACF (rx,Υ,St \Υ, β) or

• SINRrx(St \ sx) ≥ β.

In order to bound the interference from S+
x we use the fact that, by the

second elimination criterion of the algorithm, disks of radius c · djj around
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each receiver rj ∈ S+
x do not contain any sender sz 6= sj . Using this fact and

the triangular inequality, we can lower bound the distance between any two
senders (sj , sz) ∈ S+

x as d(sj , sz) ≥ d(rj , sz)−djj ≥ c·djj−djj = djj(c−1) ≥
dxx(c− 1). Therefore, disks Dj of radius dxx(c− 1)/2 around senders in S+

x

do not intersect.
We partition the space into concentric rings Ringk of width c ·dxx around

the receiver rx. Each ring Ringk contains all senders sj ∈ S+
x , for which

k(c · dxx) ≤ d(sj , rx) ≤ (k + 1)(c · dxx). We know that the first ring Ring0
does not contain any sender. Consider all senders sy ∈ Ringk for some integer
k > 0. All disks of radius dxx(c−1)/2 around each sj must be located entirely
in an extended ring Ringk of area

A(Ringk) = [(dxx(k + 1)c+ dxx(c− 1)/2)2 −
(dxxkc− dxx(c− 1)/2)2]π

< (2k + 1)d2
xx2c

2π.

Since disks of area A(Dy) ≥ (dxx(c − 1)/2)2π around senders in S+
x do

not intersect, and the minimum distance between rx and sy ∈ Ringk, k > 0
is k(c · dxx), we can use an area argument to bound the number of senders
inside each ring. The total interference coming from ring Ringk, k ≥ 1 is
then bounded by

Irx(Ringk) ≤
X

sy∈Ringk

Irx(sy)

≤ A(Ringk)

A(Dy)

P

(kcdxx)α

≤ (2k + 1)P23c2

kαdαxxcα(c− 1)2

≤ 1

k(α−1)

P253

dαxxc(α)
,

where the last inequality holds since k ≥ 1 ⇒ 2k + 1 ≤ 3k and c ≥ 2 ⇒
(c− 1) ≥ c/2. Summing up the interferences over all rings yields

Irx(S+
x ) <

∞X
k=1

Irx(Ringk)

≤
∞X
k=1

1

kα−1

P253

dαxxc(α)

<
α− 1

α− 2

P253

dαxxc(α)

≤ Prx(sx)

3β
, (8.19)
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where the last two inequalities hold since α > 2 and c is defined as follows

c = max

 
2,

�
2532β

α− 1

α− 2

� 1
α

!
. (8.20)

If we define Υ+
i to be the set of signals in Υ coming from senders lo-

cated closer to rx than si, we know that, since SACF (rx,Υ, S
−
x , β

′)=true or
SINRrx(S−x ) ≥ β′, the following bounds on interference hold:

Irx(S−x \Υ+
i ) +N ≤ Prx(si)

β′

≤ 2Prx(si)

3β
, ∀Prx(si) ∈ Υ,

in case analog coding is used, and

Irx(S−x ) +N ≤ Prx(sx)

β′

=
2Prx(sx)

3β
, (8.21)

in case no coding is performed. In both cases, by using the bound (8.19) on
Irx(S+

x ) (and the fact that Prx(si) ≥ Prx(sx),∀Prx(si) ∈ Υ), we obtain

Irx({S−x \Υ+
i } ∪ S

+
x ) +N ≤ 2Prx(si)

3β
+
Prx(sx)

3β

≤ Prx(si)

β
,∀Prx(si) ∈ Υ

⇒ SACF (rx,Υ,St \Υ, β).

for encoded transmissions, and

Irx(S−x ∪ S+
x ) +N ≤ 2Prx(sx)

3β
+
Prx(sx)

3β

≤ Prx(sx)

β

⇒ SINRrx(St \ sx) ≥ β.

for non-encoded transmissions. This completes the proof.

8.6 Simulation Results

In this section we present some simulation results to illustrate the gain
in throughput obtained by using analog network coding by filtering. We
generated a topology, where nodes are distributed on a square field of size
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W = 1000, and links have different levels of variance in length. More pre-
cisely, nC length classes were defined, such that the link length lk in each
class ck, 1 ≤ k ≤ nC is uniformly distributed between lmax = W/2k and
lmin = W/2k+1 + W/2k+2. In each length class, n/nC receiver nodes were
distributed uniformly at random in the deployment field, and the respec-
tive senders were positioned uniformly at random at distance lk from their
intended receivers. With high diversity topologies we tried to simulate sce-
narios, where more coding opportunities would arise.

We compare the performance of Algorithm 6 to the performance of three
scheduling algorithms without coding: GreedyPhysical (proposed in [15]),
ApproxDiversity (proposed in Section 5.1), and ApproxLogN (proposed in
Section 6.2). All these algorithms are polynomial in time and are specifically
designed for the SINR model. In all experiments, the number of simulations
was chosen large enough to obtain sufficiently small confidence intervals.

Firstly, we analyze the size of the obtained schedule as a function of
the number of length classes (see Figure 8.4(a)). It can be seen that the
more diverse the link lengths, the more coding opportunities exist in the net-
work, and the higher the gain of the coding approach relative to non-coding
scheduling algorithms. In Figure 8.4(b) we analyze the influence of the total
number of nodes on the relative performance of the algorithms. Since the
number of length classes is maintained constant, the number of coding op-
portunities does not increase significantly. Therefore, the gain in throughput
due to network coding does not vary much with varying network density. In
Figure 8.5(a) we analyze the impact of the path-loss exponent α. It can be
observed that when α < 3, the GreedyPhysical algorithm achieves slightly
better performance than the coding algorithm. This can be explained by the
fact that the second elimination step of Algorithm 6 depends on the con-
stant c, defined in (8.20), which increases when α approaches 2. For higher
values of α, however, the coding approach becomes increasingly more effi-
cient. In Figure 8.5(b) we analyze the impact of the SINR threshold β. It
can be seen that the value of β does not influence the performances of the
algorithms, which is expected, given that β is just a ratio. In Figures 8.4(a)
through 8.5(b), it can be observed that the throughput gain of coding is the
smallest relative to algorithm ApproxLogN. This is due to the fact that Ap-
proxLogN outperforms the other algorithms, as demonstrated in Section 6.4.
Nevertheless, the coding approach achieves gains that vary from 3.5% (when
nC = 2) up to 10% (when nC = 10) and 20% (when nC = 10 and α = 6).

Overall, the simulation results showed that the gain of the analog coding
by filtering approach depends both on the topology of the network and on
the SINR parameters. The more coding opportunities a network topology
generates, the more explicit the gain of the SACF algorithm over non-coding
scheduling algorithms is.
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when variable n, α = 5, β = 1.2)
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8.7 Outlook

Given that network coding changes the definition of a successful transmission,
allowing a receiver to decode several messages simultaneously, it is interesting
to analyze whether the complexity of the scheduling problem is altered. By
showing that the problem remains NP-hard, we can conclude that the basic
difficulties of scheduling wireless requests in a global interference model, such
as geometric SINR, remain challenging even with coding capability.

Note that the 3-Partition and NMTS problems are strongly NP-hard.
Therefore, as opposed to the hardness results presented in Chapter 4, the
proofs presented in this chapter are of strong NP-hardness, i.e., the problems
remain hard even when all their numerical parameters are bounded by a
polynomial in the length of the input.

We also proposed a scheduling algorithm that explores analog network
coding opportunities in the network. We showed through simulations that
better throughput can be obtained in certain network topologies. Finding
lower bounds for the scheduling problem with analog network coding, how-
ever, remains a subject of future research.



Chapter 9

Conclusions

Although wireless networks are practically omnipresent in our lives nowadays,
surprisingly little is known about their algorithmic complexity and efficiency.
In order to deploy a wireless network infra-structure, be it a cellular network,
a WLAN, or a sensor network, the network engineers still have to rely on
their know-how and build each new project from scratch, making daunting
measurements and tuning endless parameter lists.

As we have pointed out in the Related Work Chapter, the research com-
munity has tried to approach wireless network problems from different per-
spectives. One widely used strategy has been to model the network as a
graph and then apply graph-theoretic techniques to propose algorithms and
present extensive theoretical analysis. Another research direction has been
to use more realistic models, such as for example the physical interference
model. Most of the work using this model has either consisted of heuris-
tics and simulation-based evaluations of specific protocols, or has focused on
theoretical capacity bounds of special-case networks, such as grid or random
topologies. Unfortunately these results do neither give insights into the com-
putational complexity of the problem, nor do they provide algorithmic tools
that could be used to develop new protocols.

In this thesis we intended to gain a somewhat deeper understanding of
wireless networks. Our goal was to promote research in this area from heuris-
tics and special-case analysis to theoretical analysis of arbitrary instances in
a more realistic network model.

Our starting point was to prove that link scheduling is an NP-hard prob-
lem in the geometric physical interference model (SINRG), i.e., in a model
where wireless interference is represented by the signal-to-interference-plus-
noise ratio at each receiver, and nodes live in the Euclidean space. The
SINRG model assumes that the envionment is unobstructed, and that the ra-
dios are perfectly omnidirectionl, which makes it a more optmistic, or weaker
model than reality. This implies that one cannot compute an optimal sched-

113
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ule of wireless requests in practice, unless P = NP.

Since we established that the scheduling problem is unlikely to admit
polynomial-time optimal solutions, we turned our attention to designing effi-
cient approximation algorithms. In particular, we proposed the first schedul-
ing algorithm that computes a feasible solution in the SINRG model in poly-
nomial time with worst-case approximation guarantees for arbitrary network
topologies.

The approximation ratio of our first scheduling algorithm depended on
the topology of the network, and for some problem instances could become
extremely bad (Ω(n)), i.e., not better than the guarantees offered by the most
naive solutions to the problem. Nevertheless, this undesirable dependency
on the topology of the network has been inherited by a number of follow-
up results in this area, as we mentioned in the Related Work Chapter. In
Chapter 6 of this thesis we overcame this problem, and proposed the first
scheduling algorithm with an approximation guarantee independent of the
topology of the network.

Besides the basic problem of wireless link scheduling, we also looked into
related problems, such as distributed algorithms and analog network coding
in the physical interference model. We analyzed distributed randomized al-
gorithms and found out that, even when only limited knowledge about the
topology is provided, close to optimum performance can be achieved in a
global interference model. We also studied the scheduling problem assum-
ing that analog network coding could be used to allow a receiver to decode
several messages simultaneously. We showed that the problem remains NP-
hard in the geometric physical interference model, and proposed a scheduling
algorithm that achieves superior throughput capacity.

To us this thesis, together with other results, represents a real break-
through, since it has brought novel analytical tools into the study of wireless
network problems. Compared to the state-of-the-art at the starting time of
this work, we now have a much deeper and broader understanding of the
topic, particularly of the problem of wireless link scheduling, which is a fun-
damental building block of the general capacity problem in wireless networks.

Many problems, however, remain open in this area, which keeps it more
interesting and fervent than ever. It is still unknown, for example, whether
the scheduling problem with power control is NP-hard or not. Neither are
there any non-trivial lower bounds for this problem. The area of distributed
algorithms in an intrinsically global model such as the physical interference
model is particularly challenging, and remains wide open for future research.
The topic of analog network coding also presents a lot of potential for explo-
ration.

As opposed to the time when we started this thesis, today the problem of
scheduling wireless links in the physical interference model is being a target
of increasing interest and attention in the algorithmic community. As we
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pointed out in the last section of the Related Work Chapter, there is a lot
of on-going work in this area, and many of the open problems that we have
discussed might be solved in the near future. As a conclusion, we are very
glad to be part of this progress and are looking forward to what is to come.
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