
Sensor Networks
Di t ib t d C ti d N t kiDistributed Computing and Networking

Get Together to Gather Data
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General Trend in Information Technology

Large-scaleCentralized Networked Large-scale
Distributed Systems

Centralized
Systems

Networked
Systems

New Applications and
System Paradigms

Internet



Today, we look 
much cuter!

PowerRadioAnd we’re usually 
carefully deployed

Processor
Sensors

MemoryMemory

3



A Typical Sensor Node: TinyNode 584
[Shockfish SA, The Sensor Network Museum]

• TI MSP430F1611 microcontroller @ 8 MHz

• 10k SRAM, 48k flash (code), 512k serial storage

868 MH X i XE1205 lti h l di• 868 MHz Xemics XE1205 multi channel radio

• Up to 115 kbps data rate, 200m outdoor range

Current 
Draw

Power 
Consumption 

uC sleep with timer on 6.5 uA 0.0195 mW

uC active, radio off 2.1 mA 6.3 mW

uC active, radio idle listening 16 mA 48 mW

C ti di TX/RX tuC active, radio TX/RX at 
+12dBm 62 mA 186 mW

Max. Power (uC active, radio 
TX/RX at +12dBm + flash write) 76.9 mA 230.7mW
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After Deployment

multi-hop 
communication
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Ad Hoc Networks                vs. Sensor Networks

• Laptops, PDA’s, cars, soldiers • Tiny nodes: 4 MHz, 32 kB, …

• All-to-all routing • Mostly data gathering

• Often with mobility (MANET’s) • Usually no mobility
– but link failures

• Trust/Security an issue
– No central coordinator • One administrative control

• Maybe high bandwidth • Long lifetime Energy

There is no strict separation; more 
variants such as mesh or 
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Animal Monitoring (Great Duck Island)

1. Biologists put sensors in 
underground nests of storm petrelg p

2. And on 10cm stilts 
3. Devices record data about birds
4 Transmit to research station4. Transmit to research station
5. And from there via satellite to lab
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Environmental Monitoring (PermaSense)

• Understand global warming in 
alpine environmentalpine environment

• Harsh environmental conditions
• Swiss made (Basel, Zurich)( )
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Smart Spaces (Car Parking)

• The good: Guide cars 
towards empty spotstowards empty spots

• The bad: Check which cars 
do not have any time 
remaining

• The ugly: Meter running out: 
take picture and send fine

Park!

T l ft!

Turn right!
50m to go…

Turn left!
30m to go…

[Matthias Grossglauser, EPFL & Nokia Research]



Structural Health Monitoring (Bridge)

Detect structural defects, measuring g
temperature, humidity, vibration, etc.

Swiss Made
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Swiss Made 
[EMPA]



Agriculture (COMMONSense)

• Idea: Farming decision support g pp
system based on recent local 
environmental data.

• Irrigation, fertilization, pest 
control, etc. are output of 
function of sunlight, temperature, 
humidity soil moisture etchumidity, soil moisture, etc.

• (Actual sensors are 
mostly underground)mostly underground)
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Related Areas

Ad Hoc &RFID Ad Hoc & 
Sensor 

Networks

RFID

Networks …
Wearable

MobileWireless
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Periodic data gathering (as in many applications)

• All nodes produce relevant 
information about their vicinity 
periodically.

• Data is conveyed to an 
information sink for further 
processing.

• Data may or may not be 
aggregated.

• Variation: Sense event
(e g fire burglar)(e.g. fire, burglar)
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Data gathering with queries (e.g. TinyDB)

• Use paradigms
familiar fromfamiliar from 
relational
databases to
i lif thsimplify the

“programming”
interface for 
the application
developer.

• TinyDB then supports
in-network aggregation to
speed up communicationspeed up communication.



Overview

• Introduction
A li ti• Applications

• Data Gathering

• Minimizing Messages with Aggregation (Distributed Computing)
• Minimizing Time with Power Control
• Minimizing Energy Consumption with Sleep Schedules

C l i• Conclusion
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Distributed Aggregation

Growing interest in distributed
aggregation!

Sensor networks, distributed
databasesdatabases...

Aggregation functions?
Distributive (max, min, sum, count)
Algebraic (plus, minus, average)
Holistic (median, kth smallest/largest value)( , g )

Combinations of these functions enable complex queries!p q
„What is the average of the 10% largest values?“

What cannot be 
computed usingcomputed using 
these functions?



Aggregation Model

How difficult is it to compute these aggregation primitives?
Simple 

breadth first
Model:

Connected graph G = (V,E) of diameter DG, |V| = n.
Nodes vi and vj can communicate directly if (vi,vj) ∈ E. C il b

breadth-first
construction!

Nodes vi and vj can communicate directly if (vi,vj) ∈ E.
A spanning tree is available (diameter D ≤ 2DG)
Asynchronous model of communication.
All nodes hold a single element

Can easily be
generalized to 

an arbitrary
number of 

l t !All nodes hold a single element.
Messages can contain only a constant number of elements.

elements!
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Distributive & Algebraic Functions

How difficult is it to compute these aggregation primitives?

We are interested in the time complexity! Worst-case for every
legal input and every
execution scenario!

Distributive (sum count ) and
Slowest message arrives 

after 1 time unit!

Distributive (sum, count...) and 
algebraic (plus, minus...) functions 
are easy to compute:

Time complexity: Θ(D) D = Diameter

Use a simple flooding-echo procedure convergecast!

Time complexity: Θ(D), D = Diameter

What about holistic functions (such as k-selection)???What about holistic functions (such as k-selection)???
Is it (really) harder...?
Impossible to perform in-network aggregation?
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Holistic Functions

It is widely believed that holistic functions are hard to compute using
in-network aggregation.
Example: TAG is an aggregation service for ad-hoc sensor networks

It is fast for other aggregates, but not for the MEDIAN aggregate:

Total Bytes Xmitted vs. Aggregation Function

90000
100000

„Thus, we have shown that
(...) in network aggregation

d i ti

50000
60000
70000
80000
90000

te
s 

Xm
itt

ed

can reduce communication
costs by an order of 
magnitude over centralized
approaches and that even

0
10000
20000
30000
40000

To
ta

l B
ytapproaches, and that, even

in the worst case (such as 
with MEDIAN), it provides
performance equal to the 0

EXTERNAL MAX AVERAGE COUNT MEDIAN
Aggregation Function

performance equal to the
centralized approach.“

TAG simulation: 2500 nodes in a 50x50 gridTAG simulation: 2500 nodes in a 50x50 grid



Is it difficult?

However, there is quite a lot of literature on distributed k-selection:

A straightforward idea: Use the sequential algorithm by Blum et al alsoA straightforward idea: Use the sequential algorithm by Blum et al. also 
in a distributed setting Time Complexity: O(D·n0.9114). Not so 

great...g

A simple idea: Use binary search to find the kth smallest value Time 
Complexity: O(D·log xmax), where xmax is the maximum value.

Assuming that xmax ∈ O(nO(1)), we get O(D·log n)... We do not 
want the 

complexity to

A better idea: Select values randomly check how many values are

complexity to 
depend on the 

values!

A better idea: Select values randomly, check how many values are 
smaller and repeat these two steps!

Time Complexity: O(D·log n) in expectation! Nice! Can we 
d b tt ?do better?



Randomized Algorithm

Choosing elements uniformly at random is a 
good idea vgood idea...

How is this done?

A i th t ll d k th i
p1 p2

pt

v

Assuming that all nodes know the sizes
n1,...,nt

of the subtrees rooted at their children
v1,...,vt, the request is forwarded to node vi

p2
request

with probability:

pi := ni / (1+ Σk nk). ...n1 n2 nt

With probability 1 / (1+ Σk nk) node v chooses itself.

Key observation: Choosing an element randomly requiresKey observation: Choosing an element randomly requires 
O(D) time! 
Use pipe-lining to select several random elements!

D elements in O(D) time!



Randomized Algorithm

Our algorithm also operates in phases The set of candidates
decreases in each phase!decreases in each phase!

A candidate is a node whose element is possibly the solution.

A phase of the randomized algorithm:

1. Count the number of candidates in all subtrees
E h t

2. Pick O(D) elements x1,...,xd uniformly at random

3. For all those elements, count the number of 

Each step can 
be performed 
in O(D) time!

smaller elements!

-∞ ∞x1 x2 xd
n1 elem. n2 elem. nd+1 elem.

a1a2 an-1an…… …1 2 n 1 n



Randomized Algorithm

Using these counts, the number of candidates can
be reduced by a factor of D in a constant number ofbe reduced by a factor of D in a constant number of 
phases with high probability.

With probability at 
least 1-1/nc for a 

constant c≥1.

We get the following result:

Theorem: The time complexity of the
randomized algorithm is O(D·logD n) w.h.p.

We further proved a time lower bound of Ω(D·logD n).
This simple randomized algorithm is asymptotically optimal!This simple randomized algorithm is asymptotically optimal!



Deterministic Algorithm

Why is it difficult to find a good deterministic algorithm???
Hard to find a good selection of elements that provablyHard to find a good selection of elements that provably

reduces the set of candidates!

Simple idea: Always propagate the median of all received values! p y p p g

Problem: In one phase, only the hth

smallest element is found if h is the 3
height of the tree...

Time complexity: O(n / h)
3

2 100

One could do a lot better!!!

2 100

1 100 99 102One could do a lot better!!!
(Not shown in this talk) 1 100 99 102



Lower Bound

The proof of the lower bound of Ω(D·logD n) consists of two parts:

Part I. Find a lower bound for the case of two nodes u and v
with N elements each.

Let u0 < u1 < ... < uN-1 and v0 < v1 < ... < vN-1.
How are the 2N elements distributed on u and v? What is the 

d

u v
u v

How are the 2N elements distributed on u and v? order 
between all ui

and vj?

u0
u1.

v0
v1.

uN-1

..

vN-1

..
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Lower Bound

Assume N = 2b. We use b independent Bernoulli variablesp
X0,...,Xb-1 to distribute the elements!
If Xb-1 = 0 N/2 smallest elements go to u and the N/2 
largest elements go to v.a gest e e e ts go to v
If Xb-1 = 1 it‘s the other way round.

The remaining N elements are recursively distributed using 

Ordered list of 

the other variables X0,...,Xb-2!

a a a a
all 2N elements!

a1a2 ... a2N-1a2N...

u v
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Lower Bound

Crucial observation: For all 2b possibilities
for X0 Xb 1 the median is a different

Xb-1

for X0,...,Xb-1, the median is a different 
element.

Determining all Xi is equivalent to finding 

Xb-2

the median!

We showed that at least Ω(log N) rounds are required if B elementsWe showed that at least Ω(log2B N) rounds are required if B elements 
can be sent in a single round in this model!

Part II. Find a lower bound for the original model.

u0 v0D-2 dummy nodesLook at the following
u1

uN 1

v1

vN 1

Look at the following 
graph G of diameter D:

uN-1 vN-1



Lower Bound

u0
u

v0
v

D-2 dummy nodes

u v u1

uN-1

v1

vN-1

u v

One can show that a time lower bound for the alternative model

alternative model original model

implies a time lower bound for the original model!

Theorem: Ω(D·log min{k n-k}) rounds are needed toTheorem: Ω(D logD min{k,n-k}) rounds are needed to 
find the kth smallest element.

Ω(D·logD n) lower bound
to find the median!



Median Summary

• Simple randomized algorithm with time complexity
O(D·logD n) w.h.p.

• Easy to understand, easy to implement...

• Even asymptotically optimal! Our lower boundy p y p
shows that no algorithm can be significantly
faster!

• Deterministic algorithm with time complexity
O(D·logD

2 n).

• If ∃c ≤ 1: D = nc k selection can be solved
Recall the 
50 50 id• If ∃c ≤ 1: D = nc k-selection can be solved

efficiently in Θ(D) time even deterministically!
50x50 grid 

used to test out 
TAG!



Overview

• Introduction
A li ti• Applications

• Data Gathering

• Minimizing Messages with Aggregation
• Minimizing Time with Power Control (Networking)
• Minimizing Energy Consumption with Sleep Schedules

C l i• Conclusion



Data Gathering in Wireless Sensor Networks

• Data gathering & aggregation
– Classic application of sensor networksClassic application of sensor networks
– Sensor nodes periodically sense environment
– Relevant information needs to be transmitted to sink

• Functional Capacity of Sensor Networks
– Sink peridically wants to compute a function f of sensor dataSink peridically wants to compute a function fn of sensor data
– At what rate can this function be computed?

,fn
(2)fn

(1) ,fn
(3)

sink



Data Gathering in Wireless Sensor Networks

Example: simple round-robin scheme
Each sensor reports its results directly to the root one after another

sink
Simple Round-Robin Scheme: 

x1=7 Sink can compute one 
function per n rounds
Achieves a rate of 1/n

x3=4x2=6
fn

(1)

(2) x4=3

x8=5

fn
(2)

fn
(3)

x5=1
x =4

x7=9fn
(4)

t
x6=4 x9=2



Data Gathering in Wireless Sensor Networks

There are better schemes using
Multi-hop relayingy g
In-network processing
Spatial Reuse
Pipelining

sink
Pipelining

fn
(1)

(2)fn
(2)

fn
(3)

fn
(4)

t



Capacity in Wireless Sensor Networks

At what rate can sensors transmit data to the sink?
Scaling-laws how does rate decrease as n increases…? 

Θ(1/√ ) Θ(1/log n) Θ(1)Θ(1/ ) Θ(1/√n) Θ(1/log n) Θ(1)Θ(1/n)

A d d Only perfectlyAnswer depends on:
Function to be computed 
Coding techniques 

Only perfectly
compressible functions
(max, min, avg,…) 

Network topology
Wireless communication model No fancy coding 

techniques

2.
1.

q



“Classic” Capacity…

The Capacity of Wireless Networks
G t K 2000

[Arpacioglu et al, IPSN’04]
Gupta, Kumar, 2000

[Liu et al INFOCOM’03]

[Giridhar et al, JSAC’05]

[Barrenechea et al, IPSN’04]
[Grossglauser et al INFOCOM’01]

[Toumpis, TWC’03]

[Gastpar et al, INFOCOM’02]

[Gamal et al, INFOCOM’04]
[Liu et al, INFOCOM 03] [Grossglauser et al, INFOCOM 01]

[Kyasanur et al, MOBICOM’05]
[Kodialam et al, MOBICOM’05]

[Li et al, MOBICOM’01]
[Bansal et al, INFOCOM’03]

[Yi t l MOBIHOC’03]

[Mitra et al, IPSN’04]

[P l t l INFOCOM’03]

[Dousse et al, INFOCOM’04]
[Zhang et al, INFOCOM’05]

t[Yi et al, MOBIHOC’03] [Perevalov et al, INFOCOM’03] etc…



Worst-Case Capacity 

• Capacity studies so far make very strong assumptions on 
node deployment, topologiesp y , p g
– randomly, uniformly distributed nodes
– nodes placed on a grid 
– etc... 



Like this?



Or rather like this?



Worst-Case Capacity 

• Capacity studies so far have made very strong assumptions on 
node deployment, topologies

d l if l di t ib t d d– randomly, uniformly distributed nodes
– nodes placed on a grid 
– etc...etc... 

We assume arbitrary node distributiony

worst-case topologies

Classic Capacity Worst-Case CapacityClassic Capacity Worst-Case Capacity

How much information can be
transmitted in nice well behaving networks

How much information can be
Transmitted in any networktransmitted in nice, well-behaving networks Transmitted in any network



Models

• Two standard models in wireless networking

Protocol Model 
(graph-based, simpler)

Physical Model 
(SINR-based, more realistic)



Protocol Model

• Based on graph-based notion of interference
• Transmission range and interference range

(1 )
Algorithmic work on 

worst case topologies
(1+Δ)rx

(1+Δ)ry
worst-case topologies 

usually in protocol models
(unit disk graph,…) 

ry

y
rx

x R( )
R(y)

x R(x)

R( ) i i i t f fR(x) is in interference range of y
R(x) and R(y) cannot 
simultaneously receive!



Physical Model

• Based on signal-to-noise-plus-interference (SINR)
• Simplest case:

packets can be decoded if SINR is larger than β at receiverpackets can be decoded if SINR is larger than β at receiver

Received signal power from sender
Power level 
of sender u Path-loss exponent

g p

Minimum signal-to-
interference ratio

NoiseNoise

Distance betweenReceived signal power from two nodesReceived signal power from 
all other nodes (=interference)



Models

• Two standard models of wireless communication

Protocol Model 
(graph-based, simpler)

Physical Model 
(SINR-based, more realistic)

• Algorithms typically designed and analyzed in protocol model

Premise: Results obtained in protocol model do not 
divert too much from more realistic model!

Justification: 
Capacity results are typically (almost) the same in both models
(e.g., Gupta, Kumar, etc...)



Example: Protocol vs. Physical Model

A sends to D, B sends to C
A B C D

1m

A i l f ( d f d di t h i !)

4m 2m

A B

Assume a single frequency (and no fancy decoding techniques!)

Is spatial reuse possible?
NO Protocol Model

Let α=3, β=3, and N=10nW

Is spatial reuse possible? 
YES Physical Model

In Reality!Transmission powers: PB= -15 dBm and PA= 1 dBm

SINR of A at D:

In Reality!

SINR of A at D: 

SINR of B at C: 



This works in practice!

• We did measurements using standard mica2 nodes! 

• Replaced standard MAC protocol by a (tailor made) SINR MAC“• Replaced standard MAC protocol by a (tailor-made) „SINR-MAC

• Measured for instance the following deployment...

u u u u u u s’
06

]

• Time for successfully transmitting 20‘000 packets: 

u1 u2 u3 u4 u5 u6

be
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H
ot

ne
ts

nh
of

er
, W

eb

Speed-up is almost a factor 3
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Upper Bound Protocol Model 

• There are networks, in which at most one node can transmit! 
like round-robin

C id ti l d h i• Consider exponential node chain
• Assume nodes can choose arbitrary transmission power

sink

d( i k ) (1 1/Δ)i 1

xi

• Whenever a node transmits to another node

d(sink,xi) = (1+1/Δ)i-1

All nodes to its left are in its interference range!
Network behaves like a single-hop network

In the protocol model, the 
achievable rate is Θ(1/n).



Lower Bound Physical Model

• Much better bounds in SINR-based physical model are possible
(exponential gap)( p g p)

• Paper presents a scheduling algorithm that achieves
a rate of Ω(1/log3n)

In the physical model, the 
achievable rate is Ω(1/polylog n).

• Algorithm is centralized, highly complex not practical 

( p y g )

g , g y p p
• But it shows that high rates are possible even in worst-case networks

• Basic idea: Enable spatial reuse by exploiting SINR effects. 



Scheduling Algorithm – High Level Procedure

• High-level idea is simple 
• Construct a hierarchical tree T(X) that has desirable properties

1) Initially, each node is active
2) Each node connects to closest active node loop until no)
3) Break cycles yields forest
4) Only root of each tree remains active

loop until no 
active nodes

Phase Scheduler: 
How to schedule T(X)?

The resulting structure has some nice properties
If each link of T(X) can be scheduled at least once in L(X) time-slots 
Then a rate of 1/L(X) can be achievedThen, a rate of 1/L(X) can be achieved 



Scheduling Algorithm – Phase Scheduler

• How to schedule T(X) efficiently
• We need to schedule links of different magnitude simultaneously!
• Only possibility: 

senders of small links must overpower their receiver!

R(x) x

d

If we want to schedule both links…
… R(x) must be overpowered

M t t it t th dαal
an

ce
de

d! 1)

If senders of small links overpower their receiver… 
their “safety radius” increases (spatial reuse smaller)

Must transmit at power more than ~dα

S
ub

tle
 b

is
 n

ee

2)
… their “safety radius” increases (spatial reuse smaller)S



Scheduling Algorithm – Phase Scheduler

1) Partition links into sets of similar length
Factor 2 between two setssmall large

2) Group sets such that links a and 
b in two sets in the same group

Factor 2 between two sets small large

b in two sets in the same group
have at least da ≥ (ξβ)ξ(τa-τb) ·db

Each link gets a τij value Small links have large τij and vice versa

τ=1τ=2τ=3

Schedule links in these sets in one outer-loop iteration
Intuition: Schedule links of similar length or very different length

3) Schedule links in a group Consider in order of decreasing length
(I will not show details because of time constraints.)

Together with structure of T(x) Ω(1/log3 n) bound



Worst-Case Capacity in Wireless Networks

Worst-Case Capacity Traditional Capacity

Max. rate in arbitrary, Max. rate in random, 
if d l

Worst Case Capacity

Networks

Traditional Capacity

Protocol Model

worst-case deployment

Θ(1/n)

uniform deployment

Θ(1/log n)

Model

m
ar

, 2
00

5]

Protocol Model

Physical Model

Θ(1/n)

Ω(1/log3 n)

Θ(1/log n)

Ω(1/log n)

G
iri

dh
ar

, K
u

The Price of Worst-Case Node PlacementExponential gap

[G

- Exponential in protocol model 
- Polylogarithmic in physical model

(almost no worst-case penalty!)

Exponential gap 
between protocol and

physical model!

51

(a ost o o st case pe a ty )



Conclusions

• Introduce worst-case capacity of sensor networks
How much data can periodically be sent to data sink 

• Complements existing capacity studies
• Many novel insights• Many novel insights

1) Possibilities and limitations of wireless communication)
2) Fundamentals of wireless communication models
3) How to devise efficient scheduling algorithms, protocols

Sensor Networks Scale! Protocol Model Poor! Efficient Protocols!
Efficient data gathering is 
possible in every (even 
worst-case) network! 

Exponential gap between
protocol and physical model!

Must use SINR-effects
and power control to 
achieve high rate!



Overview of results so far

• Moscibroda, Wattenhofer, Infocom 2006 
– First paper in this area, O(log3 n) bound for connectivity, and more
– This is essentially the paper I presented on the previous slides

• Moscibroda, Wattenhofer, Zollinger, MobiHoc 2006
First results beyond connectivity namely in the topology control domain– First results beyond connectivity, namely in the topology control domain

• Moscibroda, Wattenhofer, Weber, HotNets 2006
– Practical experiments, ideas for capacity-improving protocol

• Moscibroda Oswald Wattenhofer Infocom 2007• Moscibroda, Oswald, Wattenhofer, Infocom 2007
– Generalizion of Infocom 2006, proof that known algorithms perform poorly

• Goussevskaia, Oswald, Wattenhofer, MobiHoc 2007
– Hardness results & constant approximation for constant powerHardness results & constant approximation for constant power

• Chafekar, Kumar, Marathe, Parthasarathy, Srinivasan, MobiHoc 2007
– Cross layer analysis for scheduling and routing

• Moscibroda, IPSN 2007Moscibroda, IPSN 2007
– Connection to data gathering, improved O(log2 n) result

• Locher, von Rickenbach, Wattenhofer, ICDCN 2008
– Still some major open problemsj p p



Main open question in this area

• Most papers so far deal with special cases, essentially scheduling a 
number of links with special properties The general problem is stillnumber of links with special properties. The general problem is still 
wide open:

• A communication request consists of a source and a destination, 
which are arbitrary points in the Euclidean plane. Given n
communication requests, assign a color (time slot) to each request.communication requests, assign a color (time slot) to each request. 
For all requests sharing the same color specify power levels such 
that each request can be handled correctly, i.e., the SINR condition 
is met at all destinations The goal is to minimize the number ofis met at all destinations. The goal is to minimize the number of 
colors.

• E.g., for arbitrary power levels not even hardness is known…



Overview

• Introduction
A li ti• Applications

• Data Gathering

• Minimizing Messages with Aggregation
• Minimizing Time with Power Control
• Minimizing Energy Consumption with Sleep Schedules (DC & N?)

C l i• Conclusion



Environmental Monitoring

• Continuous data gathering

• Unattended operation

• Low data rates

• Battery powered

• Network latency• Network latency

• Dynamic bandwidth demands

Energy conservation is crucial to prolong network lifetimeEnergy conservation is crucial to prolong network lifetime



Energy-Efficient Protocol Design

• Communication subsystem is the main energy consumer
Power down radio as much as possible– Power down radio as much as possible

TinyNode Power Consumption

uC sleep, radio off 0.015 mW

Radio idle, RX, TX 30 – 40 mW

• Issue is tackled at various layers
– MAC 
– Topology control / clustering
– Routing

Orchestration of the whole network stack
to achieve duty cycles of ~1‰



Dozer System

• Tree based routing towards data sink
– No energy wastage due to multiple paths– No energy wastage due to multiple paths
– Current strategy: SPT

TDMA b d li k h d li• TDMA based link scheduling
– Each node has two independent schedules 
– No global time synchronization child

parent

g y

• The parent initiates each TDMA round with a beacon
Enables integration of disconnected nodes– Enables integration of disconnected nodes

– Children tune in to their parent’s schedule

activation frame

contention window

beacon

beacon

activation frame
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Dozer System

• Parent decides on its children data upload times
Each interval is divided into upload slots of equal length– Each interval is divided into upload slots of equal length

– Upon connecting each child gets its own slot
– Data transmissions are always ack’ed

• No traditional MAC layer
– Transmissions happen at exactly predetermined point in timeTransmissions happen at exactly predetermined point in time 
– Collisions are explicitly accepted
– Random jitter resolves schedule collisions

Clock drift queuing

data transfer

Clock drift, queuing, 
bootstrap, etc.

time

jitter

slot 1 slot 2 slot n timeslot 1 slot 2 slot n



Dozer System

• Lightweight backchannel
Beacon messages comprise commands– Beacon messages comprise commands

• Bootstrap periodic channel 

– Scan for a full interval
– Suspend mode during network downtime

activity check

• Potential parents
– Avoid costly bootstrap mode on link failure
– Periodic refresh the list
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Dozer System

• Clock drift compensation
First fixed guard times– First fixed guard times

– Later improved versions

• Application scheduling
– TinyOS is single threaded and non-preemptive
– TDMA is highly time critical– TDMA is highly time critical

• Queuing strategy
– Fixed size buffers



Evaluation

• Platform
TinyNode– TinyNode 

– MSP 430
– Semtech XE1205

Ti OS 1– TinyOS 1.x

• Testbed
– 40 Nodes
– Indoor deployment

> 1 month uptime– > 1 month uptime
– 30 sec beacon interval
– 2 min data sampling interval



Dozer in Action



Tree Maintenance

1 week of operation

on average 1.2%



Energy Consumption

on average 1.67‰

Mean energy consumption of 0.082 mW



Energy Consumption

2.8‰ duty cycle

3.2‰ duty cycle

scanning

overhearingoverhearing

updating

#children

• Relay node• Leaf node • Relay node
• No scanning

• Leaf node
• Few neighbors
• Short disruptions



Overview

• Introduction
A li ti• Applications

• Data Gathering

• Minimizing Messages with Aggregation
• Minimizing Time with Power Control
• Minimizing Energy Consumption with Sleep Schedules (DC & N?)

C l i• Conclusion



Map of Computer Science
[ f h ]

few hard 
results?

[www.confsearch.org]

networking

ICDCNICDCN

small 
community

distributed
computingcomputing



My Own Private View on Networking Research

Class Analysis Communi
cation

Node 
distribution

Other 
drawbacks

Popu
laritycation 

model
distribution drawbacks larity

Imple- Testbed Reality Reality(?) “Too specific” 5%
mentation
Heuristic Simulation UDG to 

SINR
Random, 
and more

Many…! (no 
benchmarks)

80%
SINR and more benchmarks)

Scaling 
law

Theorem/
proof

SINR, 
and more

Random Existential 
(no protocols)

10%
law proof and more (no protocols)

Algorithm Theorem/
proof

UDG, and 
more

Any (worst-
case)

Worst-case 
unusual

5%
proof more case) unusual

I’m here!
In other words I’m applying distributedIn other words, I m applying distributed 

computing methods to networking problems!



Conclusions

• We have seen three stories about data gathering, arguably a main 
task of sensor networks These stories show that there still is quite atask of sensor networks. These stories show that there still is quite a 
bit of research ahead of us.

Practice is Theory is useless trivial…Theory is useless…

TheoryPractice

• The stories also show that theory and practice are not really 
connecting well in this area. If even a group doing both cannot 
combine theory and practice, one shall not be surprised 
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y p , p
that the two camps largely ignore each other.



Thank You!
Questions & Comments?

Papers
Locher, Kuhn, Wattenhofer [SPAA 2007]

Moscibroda, Wattenhofer [INFOCOM 2006]
Burri von Rickenbach Wattenhofer [IPSN 2007]Burri, von Rickenbach, Wattenhofer [IPSN 2007]

plus a few more


