
A Tight Runtime Bound for Synchronous Gathering
of Autonomous Robots with Limited Visibility∗

Bastian Degener
Heinz Nixdorf Institute &
Department of Computer

Science
University of Paderborn

bastian.degener@upb.de

Barbara Kempkes
Heinz Nixdorf Institute &
Department of Computer

Science
University of Paderborn
barbaras@upb.de

Tobias Langner
Computer Engineering and

Networks Lab (TIK)
ETH Zurich

langnert@tik.ee.ethz.ch

Friedhelm Meyer
auf der Heide

Heinz Nixdorf Institute &
Department of Computer

Science
University of Paderborn

fmadh@upb.de

Peter Pietrzyk
Heinz Nixdorf Institute &
Department of Computer

Science
University of Paderborn

toon@upb.de

Roger Wattenhofer
Computer Engineering and

Networks Lab (TIK)
ETH Zurich

wattenhofer@tik.ee.ethz.ch

ABSTRACT
The problem of gathering n autonomous robots in the Eu-
clidean plane at one (not predefined) point is well-studied
under various restrictions on the capabilities of the robots
and in several time models. However, only very few run-
time bounds are known. We consider the scenario of local
algorithms in which the robots can only observe their en-
vironment within a fixed viewing range and have to base
their decision where to move in the next step solely on the
relative positions of the robots within their viewing range.
Such local algorithms have to guarantee that the (initially
connected) unit disk graph defined by the viewing range of
the robots stays connected at all times.

In this paper, we focus on the synchronous setting in which
all robots are activated concurrently. Ando et al. [2] pre-
sented an algorithm where a robot essentially moves to the
center of the smallest enclosing circle of the robots in its
viewing range and showed that this strategy performs gath-
ering of the robots in finite time. However, no bounds on the
number of rounds needed by the algorithm are known. We
present a lower bound of Ω(n2) for the number of rounds
as well as a matching upper bound of O(n2) and thereby
obtain a tight runtime analysis of the algorithm of Θ(n2).

∗Partially supported by the EU within FP7-ICT-2007-1
under contract no. 215270 (FRONTS) and DFG-project
“Smart Teams” within the SPP 1183 “Organic Computing”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Modes of Computation;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations; I.2.9 [Artificial Intelligence]:
Robotics—autonomous vehicles; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—multiagent sys-
tems, intelligent agents

General Terms
Algorithms, Performance, Theory

Keywords
local algorithms, distributed algorithms, robot gathering,
mobile robots, multiagent systems

1. INTRODUCTION
In the future, large groups of small and cheap mobile

robots can potentially replace few and expensive robots for
many tasks. Thus, there is a growing interest in figuring out
which kinds of tasks can be solved by such robotic teams.
For mobile robots, it is especially interesting whether they
can build a given formation and which sensoric and actoric
capabilities are needed to do so. Naturally, the goal is to
require as few capabilities as possible in order to be able to
use robots that are as cheap as possible.

In this paper we study a classic mobile network problem,
the robot-gathering problem. As we discuss in more detail in
the related work section, robot-gathering has received con-
siderable attention in the past few years, and there exist var-
ious model variants. We are particularly interested in the
concurrent version of the problem: We are given n robots,
modeled as points in the two-dimensional Euclidean plane,
and these robots want to gather at a single point. In each
synchronous round, every robot observes the plane and the
other robots, decides where to move, and moves there, con-
currently with all other robots. The next round does not

start before the last movement has finished. If robots have
full visibility, the problem is trivial as all robots can compute
the unique center of the smallest enclosing circle (SEC) of all
robots, and then concurrently move there, finishing in one
single round. Hence, we study the distributed version of the
problem where each robot has a limited viewing range and
can only observe other robots that are within unit distance
of its position. This notion implies that the visibility graph
of the robots is a unit disk graph (UDG). Clearly, the UDG
of the robots must be connected initially, meaning that there
is a path from any robot to any other robot just following
the visibility neighborhoods. Additionally we assume that
robots are anonymous, in the sense that they do not have
unique IDs. Again, if robots have unique IDs, the problem
becomes much simpler, as the robots just have to agree on
meeting at the location of the robot with the minimum ID.

The most important question in the aforementioned model
is whether the robots are able to meet at a single point and
how long it takes to do so. The answer to the first question
is known for 15 years. In their seminal paper, Ando, Suzuki,
and Yamashita [2] presented an algorithm that gathers the
robots. In each round, every robot simply moves to the
center of the SEC of the robots in its viewing range, only
constrained by the condition that robots must not lose vis-
ibility to their neighboring robots. As Ando et al. proved,
this approach works, and the robots eventually meet.

More recently, Chazelle [6] showed that similar processes
may have an exponential behavior. It is therefore an inter-
esting task to examine runtime bounds of the original SEC
algorithm by Ando et al. In this paper we show that the
algorithm gathers all robots at a single point in a number
of rounds polynomial in the number of nodes n, in partic-
ular O(n2). Furthermore, we give a matching lower bound
of Ω(n2) and altogether present a tight analysis of the SEC
algorithm, showing that the algorithm needs Θ(n2) rounds
to gather all robots.

2. RELATED WORK
The problem of gathering a set of robots has gained a lot

of interest during the last 15 years. In early work, all robots
had a global view of the positions of the other robots [24,
25]. Several articles have been published for the fully asyn-
chronous and continuous setting, where the robots do not
have a common notion of time, and hence may also observe
each other while moving. A promising approach seems to let
all robots move to the Weber point that – unlike the center
of gravity or the center of the SEC – is invariant to move-
ments of robots towards it. However, Bajaj [4] showed that
the Weber point cannot be computed because it involves
calculating roots of high-order polynomials. Cieliebak et
al. [8] gave an algorithm that solves the gathering problem
if the robots are able to detect whether there is more than
one robot at a given point (multiplicity detection). Cohen
et al. showed that moving to the center of gravity of the
robots leads to convergence, even in highly asynchronous
models [9, 10]. Furthermore, Izumi et al. [19] showed expo-
nential lower bounds for the convergence of a certain class
of randomized algorithms.

We are mainly interested in the local model with limited
visibility, where the robots have to base their decisions only
on the positions of the neighboring robots within a given
range. This setting is more difficult, because a robot does
not know the system as a whole, often not even the total

number of robots. Furthermore, it is essential to always
guarantee the connectivity of the neighborhood graph, given
that it is connected in the beginning. Otherwise it cannot
be ensured that the connectivity will ever be regained. This
is especially an issue in a synchronous and discrete round
model, which is common in the literature [2, 15, 24] and
which we also consider in this paper. As the robots move at
the same time (possibly based on different information), it
is difficult to keep the connectivity.

The gathering problem in the local setting was already
tackled some time ago by Ando et al. [2]. Similar to other lo-
cal algorithms for the gathering problem, their robots move
to the center of the smallest enclosing circle of their neigh-
bors’ locations. This target point definition guarantees that
connectivity is maintained if no two robots are activated
at the same time. But it can be easily seen that connec-
tivity is not necessarily maintained in the synchronous set-
ting. To overcome this problem, the authors restrict the
distance that a robot moves towards its target point in a
clever way, such that connectivity is guaranteed even un-
der worst-case movement of the other robots performing the
same algorithm. Furthermore, Ando et al. showed that their
algorithm allows the robots to gather in a finite number of
rounds. Beyond this result, no runtime bounds were given.
A follow-up article [3] evaluated the quality of their algo-
rithm in a more realistic environment, where sensor data is
not perfectly accurate, and suggested that the algorithm is
robust against measurement errors of the sensors.

The same algorithm, but in an asynchronous setting, was
used by Meyer auf der Heide et al. [22]. Here, the robots
only move one at a time, and so no connectivity maintenance
is required. It is shown that the robots also gather in this
setting, but again, no runtime bounds are given.

Flocchini et al. [17] showed that having a common orien-
tation among the robots is sufficient to solve the gathering
problem in finite time in the fully asynchronous model. The
work by Degener et al. [13] is closest to our new contribu-
tion. It is shown that gathering can be achieved in expected
O(n3 logn) rounds if the robots move sequentially: in each
step only one robot (chosen uniformly at random) is ac-
tivated. Moreover, when active, robots do not only move
themselves, but they need the additional capability to as-
sign new target points to neighbors, which may then move
as well. This is a very powerful assumption, since it enables
a robot to move several robots to the same position and let
them act like one single robot from then on.

Apart from this result, there are no runtime bounds known
for other algorithms for the local gathering problem so far.

Other researchers have analyzed how the algorithms can
cope with failure or inaccuracies of sensor readings. Among
others, Souissi et al. [23] and Izumi et al. [18] presented al-
gorithms that are able to deal with erroneous readings from
a compass. Agmon et al. [1] studied algorithms that toler-
ate the crash of a single robot, and still are able to achieve
gathering of the remaining robots.

The more general problem of constructing geometrical for-
mations with a set of autonomous robots has also attracted
a lot of research. Current work shows how these robots can
form lines between fixed stations [12, 15, 16, 20, 21] or cir-
cles [5, 11].

In this paper, we provide a lower bound of Ω(n2) and, as
our main result, a matching upper bound of O(n2) for the
number of rounds required to gather the robots using the lo-

cal algorithm for the synchronous setting presented by Ando
et al. [2]. The robots used here are considerably weaker than
those discussed in the work of Degener et al. [13], as they
they cannot instruct any robots to move and are not allowed
to view any further than their communication range.

Note, that the needed capabilities are quite restrictive
compared to related work from robot formation problems.
Other capabilities that are considered are for instance com-
passes [18, 23] and other time models such as the semi-
synchronous model, where arbitrary subgroups of robots
move synchronously [14].

3. MODEL DEFINITION

Problem description and notation.
Our model is essentially the one defined by Ando et al. [2].

Given a set R of n robots r1, . . . , rn in the Euclidean plane,
the goal is to gather all robots in one point. A robot is rep-
resented as a singular point in the plane, which means that
robots cannot block each other’s views or paths. We use a
discrete, synchronous time model: In each round t, t ∈ N0,
all robots act synchronously at the same time. We call the
positions p1(t), . . . , pn(t) of the robots at the beginning of
round t the configuration at time t. When the round t under
consideration is clear from the context, we will sometimes
identify a robot ri with its position pi(t). We further call
the configuration at time 0 the start configuration. When we
say time t, we refer to the beginning of round t. The (Eu-
clidean) distance between two robots ri and rj is indicated
by d(pi(t), pj(t)) or also by d(ri, rj). Two robots ri and rj
can see each other, if d(ri, rj) ≤ 1, where we call ri and rj
neighbors and the distance 1 the viewing range of the robots.
The set of all neighbors of a robot ri – its neighborhood – at
time t is denoted as Nt(ri) or just N(ri) if the time is clear
from the context. The notion of limited visibility induces a
unit disk graph, the visibility graph UDGt = (R, Et), where
(ri, rj) ∈ Et iff ri and rj are mutually visible at time t, i.e.
dist(ri(t), rj(t)) ≤ 1. We will furthermore use the convex
hull of a set of robot positions to which we will also refer by
the convex hull of these robots.

We measure the quality of the algorithm by counting the
number of synchronous rounds until the robots have gath-
ered in one point. During each round, the robots act ac-
cording to the Look-Compute-Move (LCM) model: First all
robots synchronously observe their environment and deter-
mine the positions of their neighbors relative to their own
position (Look-operation). During the Compute-operation,
they use the observed positions as input for the algorithm
described in Section 4. The algorithm outputs the point to
which the robots move during the following Move-operation.

The algorithm is based on the smallest enclosing circle
(SEC) of a point set P (which are robot positions in our
context). Its center is the point that minimizes the maxi-
mum distance to any point in P.

Robot model.
Our robots have a limited viewing range, they are obliv-

ious, which means that they do not have a memory, they
do not communicate and they do not use a common coordi-
nate system. Moreover, they cannot be distinguished from
each other – they are anonymous. On the other hand, we
abstract from technical issues. In particular, we assume the

robots to be able to measure positions of neighbors relative
to their own position accurately, they can compute geomet-
ric properties and they can occupy the same position as other
robots.

4. THE ALGORITHM

Algorithm 1 Algorithm of robot ri in round t

1: {compute target point}
2: Ri(t) := {all robots visible from ri including ri itself}
3: Ci(t) := smallest enclosing circle of Ri(t)
4: ci(t) := center of Ci(t)
5: {keep connectivity}
6: ∀rj ∈ Ri(t) : mj := the midpoint between pi(t) and
pj(t)

7: ∀rj ∈ Ri(t) : Dj := the circle with radius 1
2

around mj

8: seg := the line segment pi(t), ci(t)
9: A :=

⋂
rj∈RDj ∩ seg

10: x := the point in A that minimizes d(x, ci(t))
11: {Note that A 6= ∅, since pi(t) ∈ A}
12: pi(t+ 1) := x

The algorithm, which was introduced in [2], works as fol-
lows. First, ri computes its target point ci(t), which is the
center of the smallest enclosing circle around itself and its
neighbors. Because the connectivity of the unit disk graph
could break if all robots would move to their target point,
a second phase is used to compute a point x on the line
segment between pi(t) and ci(t) to which ri finally moves.
For each neighbor rj , ri computes the midpoint mj between
their positions and the limit circle Dj with center mj and
radius 1/2. As long as both ri and rj do not leave this circle,
they will be in distance 1 of each other and therefore neigh-
bors at the beginning of the next round. Finally, x is the
point on the line segment between pi(t) and ci(t) that max-
imizes the distance that ri moves under the constraint that
ri does not leave the circle Dj for any neighbor rj . Since
all robots execute this algorithm, this procedure makes sure
that two neighboring robots never lose their connection.

Lemma 4.1 (Ando et al. [2]). If two robots are neigh-
bors in UDGt at time t, then they are still neighbors in
UDGt+1. In particular, if UDG0 is connected, then UDGt

is connected for all t ≥ 0.

Because of the procedure to keep connectivity, it is possi-
ble that a robot does not move far in direction towards its
target point. We say that a robot rj hinders another robot
ri from reaching some point p on the line segment between
pi(t) and ci(t), if ri would leave Dj when moving to p. If in
any round, two robots move to the exact same point, they
will stay at a common point for the rest of the execution of
the algorithm, because they see the same neighborhood and
hence behave exactly the same. We call such robots to have
merged.

In [2], the authors have already shown that this algorithm
gathers the robots in one point within finite time, but so far
no runtime bounds were known. We will now first show a
lower bound Ω(n2), and then our main result, namely the
upper runtime bound of O(n2) rounds.

d
α

h

Figure 1: A robot configuration on the vertices of a
regular convex polygon yields a worst-case running
time of the algorithm.

5. THE LOWER BOUND
For a lower bound on the number of rounds until gathering

when using the algorithm described in Section 4, consider a
configuration with the robots positioned on the boundary of
a circle, such that each robot has only two neighbors and
the distance between two neighbors on the circle is the same
for all robots. In this configuration, all robots have the same
local view and so all robots do the same. The robots will
therefore still be positioned on the boundary of a circle in
the next round. We will use this observation to prove the
following result.

Theorem 5.1. There is a start configuration such that
the algorithm takes Ω(n2) rounds to gather the robots in one
point.

Proof. Let the robots be positioned on a circle with an
initial distance of 1 between two neighboring robots (see
Figure 1 for an illustration). This means that the initial
circumference of the circle is ≈ n, and its radius is ≈ n

2π
. We

will show that it takes Ω(n2) rounds until the circumference
of the circle is reduced to 2

3
n.

If the circumference of the circle is greater than 2
3
n, each

robot r has only two neighbors, which are in equal distance
d, 1

2
< d ≤ 1, from r. The center of the SEC of r’s neigh-

borhood is the midpoint between its neighbors. We can
therefore compute the distance that r moves as the height h
of the equilateral triangle formed by r and its two neighbors.
To compute h, let α be the internal angle of the triangle at
robot r. Due to the definition of the cosine, h = cos(α

2
) · d.

In the interval between 0 and π
2

, the cosine can be upper
bounded by cos(x) ≤ −x + π

2
. As 0 < α

2
< π

2
, we can

apply this bound and thus cos(α
2

) ≤ −α
2

+ π
2

, resulting in

h ≤
(
−α

2
+ π

2

)
·d. Moreover, since the robots form a regular

polygon with n vertices and the sum of the internal angles
of such a polygon is πn− 2π, we get that α = π− 2π

n
for all

robots. Thus,

h ≤
(
−α

2
+
π

2

)
· d

≤
(
−
(π

2
− π

n

)
+
π

2

)
· d

=
π

n
· d ≤ π

n

C

α

a

B

A

Figure 2: The central angle α of an arc a of the circle
C is the angle subtended at the center of C by the
two points A and B delimiting the arc.

and the robots move at most a distance of π
n

in each round.

Therefore, it takes at least 1
3π
n2 rounds until the radius

is decreased by at least 1
3
n. As the circumference is 2π

times the radius of a circle, decreasing the radius by 1
3
n also

decreases the circumference by 1
3
n. Thus, it takes at least

1
3π
n2 rounds until the circumference is decreased to 2

3
n.

6. THE UPPER BOUND
In this section we will show that the robots gather in
O(n2) rounds. But before we start with the analysis, we
state some well-known facts about smallest enclosing circles,
on which our analysis will rely heavily.

Proposition 6.1 (Chrystal [7]). Let C be the small-
est enclosing circle (SEC) of a point set S. Then either

1. there are two points P,Q ∈ S on the circumference of
C such that the line segment PQ is a diameter of C, or

2. there are three points P,Q,R ∈ S on the circumference
of C such that the center c of C is inside 4PQR, which
means that 4PQR is acute-angled.

Furthermore, the SEC of a set of points is unique.

From this proposition follows directly that the SEC of a
point set P is always within the convex hull of P .

The following definition is illustrated in Figure 2.

Definition 6.2. Let C be the SEC of a set of points S.
An arc of C that contains no points is called a point-free arc.
The length of this arc is defined as the central angle of the
arc.

Note that the central angle of an arc is greater than π if
the arc extends over more than half the circumference of the
circle.

Proposition 6.3 (Chrystal [7]). Let C be the SEC of
a set of n ≥ 2 points. Then there is no point-free arc with
length greater than π.

With these basics, we can now define how we measure
progress. We will use two progress measures.

• As a first progress measure, we will count the num-
ber of rounds in which robots merge. As we have n
robots in the beginning, there can be at most n − 1
such rounds.

l2

l1

S1
P

M

1
8

NR

S2

α

Figure 3: The segments S1 and S1 ∪ S2 of the global
SEC are later used to measure the progress of the
algorithm.

• Since the algorithm is deterministic and it was al-
ready proven in Ando et al.’s original paper [2] that
the robots gather in finite time, we know that, for a
given start configuration, the point where the robots
gather is fixed. We will call this point the gathering
point M. We define a circle Nt with center M and ra-
dius Rt for a round t, such that Nt contains all robots
in round t and its radius is minimal. Due to the defi-
nition of the algorithm and because the center of the
SEC of a point set is always within the convex hull of
the point set, the robots never leave the convex hull of
their neighbors as well as the global convex hull. Rt
can therefore only decrease. We will use Rt as a second
progress measure.

As the robots gather at a point inside the convex hull
of the robot positions in any round t, M is inside the
convex hull of the robot positions of the start config-
uration. Moreover, since UDG0 is connected, the di-
ameter of the convex hull of the robots in round 0 can
be at most n − 1 and therefore also R0 ≤ n − 1. The
idea of the proof is to show that in a constant number
of rounds in which no robots merge, Rt decreases by
at least Ω(1

n
).

Using these two progress measures, with R0 ≤ n− 1 and at
most n− 1 rounds in which robots merge, it follows directly
that the robots gather in O(n2) rounds.

From now on, we will consider an arbitrary but fixed round
t0. Let N := Nt0 and R := Rt0 . For this round, we intro-
duce some further notions (see Figure 3): first, fix an arbi-
trary point P on the boundary of N and draw a line between
P and M. A line l2 that is perpendicular to this line defines a
circular segment of N . The intersection points of l2 and the
circle N are in distance 1

8
from P. Observe that the length

of l2 is bounded by 1
4
. We call S1 the circular segment with

half the height of the segment defined by l2, such that a line
l1 that is parallel to l2 is its chord. Moreover, we define S2

to be the area of the segment defined by l2 minus the area of
S1. The main idea of the analysis is to show that in round
t0 and t0 + 1, either two robots merge or all robots leave S1.
We will conclude that this leads to the desired number of
rounds.

The following analysis is divided into geometric prerequi-

N
> x

c

C

I1

I2

S

x

Figure 4: A circle with center in S and a radius
exceeding the chord length of S intersects with N
outside of S.

sites regarding S1 and S2 (Section 6.1) and the actual anal-
ysis of the algorithm (Section 6.2).

6.1 Geometric Prerequisites
In this section we want to give prerequisites regarding S1

and S2 and smallest enclosing circles with centers in these
segments. These will be used later to make a statement
about which robots can compute target points inside one of
the segments.

Lemma 6.4. Let x be the length of a chord defining a cir-
cular segment S of N . Then any circle C with its center c in
S and radius r > x has an arc outside of N with a central
angle larger than π and thus cannot be the SEC of points
only from N .

Proof. See Figure 4 for an illustration of the setting de-
scribed by the lemma. Since r is larger than the length of
the maximum distance between two points in S, both inter-
section points I1 and I2 of the circle N with any circle with
center in S and radius r > x lie outside of S. Because the
center c lies in S, it follows that the (longer) arc of C from
I1 to I2 outside of N has a central angle larger than π (the
dashed part of the circumference in Figure 4).

Since the chord length of S1 ∪ S2 is bounded by 1
4
, the

following corollary is immediate.

Corollary 6.5. The radius of a SEC of a point set S ⊆
N with its center in S1 ∪ S2 is at most 1

4
.

In the following, we will show two geometrical lemmas
for the position of the center of a SEC, if the configuration
of the underlying points adheres to a few restrictions. The
first lemma follows from Corollary 6.5 and will be used to
show that if a robot can see a robot that is far away from
S1∪S2, it cannot compute a target point inside this circular
segment.

Lemma 6.6. Let S ⊆ N be a set of points. Now let A be
a point in S1 ∪ S2 and B ∈ S be a point in distance at least
1 from A. Then the center of the SEC of S cannot lie in the
segment S1 ∪ S2.

Note that A does not need to be in S.

Proof. Assume that the SEC C has its center c inside
S1 ∪ S2. We know from Corollary 6.5 that C can have at
most radius 1

4
. Since the maximum distance of two points

in S1 ∪ S2 is bounded by 1
4
, B must have a distance of at

least 3
4

from S1 ∪ S2 in order to be in distance at least 1
from A. Hence, B cannot lie in C.

The next lemma is similar to the last one in the sense that
it makes a statement about configurations, for which robots
cannot compute a target point in S1. In particular, it will be
used for robots that can only see one single robot in S1∪S2.
These robots cannot compute a target point in S1.

Lemma 6.7. The center of the SEC of a non-empty point
set S ⊆ N \ (S1 ∪ S2) and a point A ∈ S1 ∪ S2 cannot lie in
the segment S1.

Proof. Assume that the SEC C has its center c inside
S1. We distinguish two cases as given by Proposition 1.

1. C is defined by two points P1 and P2. A must be one
of these points, say P2, otherwise c cannot lie in S1.
Since P1 cannot lie in S1 or S2 by assumption and
because the height of S1 is equal to the height of S2,
the midpoint c of AP1 cannot lie in S1.

2. C is defined by three points P1, P1 and P3. A must be
one of these points, say P3, otherwise c cannot lie in
S1. Since C is the circumcircle of4P1P2A, it lies on the
intersection of the perpendicular bisectors of AP1 and
AP2. The centers of these two segments lie outside
S1 and since the perpendicular bisectors intersect in
the interior of 4P1P2A and this triangle is acute, their
intersection point also cannot lie in S1.

This completes the proof.

Finally, as the main idea of the analysis is to show that if
no robots merge, S1 is empty after two rounds, we will need
the height of S1 to compute the progress with respect to Rt
within two rounds.

Lemma 6.8. The segment S1 has a height h of at least
1

128π·R ∈ Ω
(
1
n

)
.

Proof. We start by computing the angle α (see Figure 3
for a definition of α). The circumference of N is 2πR. Thus,
we can position at most 16πR points on the boundary of N
that are in distance 1

8
from the points closest to them and

that form a regular convex polygon. The internal angle of
each of the points of this polygon is equal to 2α. To compute
such an internal angle, we use that the sum of the internal
angles of a convex polygon is (m − 2) · π, where m is the
number of vertices of the polygon. In our case, this is at
most (16πR − 2) · π. It follows that each angle is at most
(16πR−2)·π

16πR
= π − 1

8R
, and thus α ≤ π

2
− 1

16R
.

Now we can use α and the fact that cos(x) ≥ − 2
π
x+ 1 in

the interval x ∈ [0, π
2

] to compute the height h of S1:

h =
cosα

16
≥

cos
(
π
2
− 1

16R

)
16

≥ 1

16
·
(
− 2

π
·
(
π

2
− 1

16R

)
+ 1

)
=

1

128πR

Because R ≤ n, we have shown h ∈ Ω(1
n

).

6.2 Gathering Algorithm Analysis
Now we can proceed to the actual analysis of the algo-

rithm. We can use the lemmas from Section 6.1 to deter-
mine robots that cannot compute a target point in S1 or
S1∪S2. Nevertheless, according to the algorithm, robots do
not always reach their target point; it is also possible that
they are hindered by other robots. So knowing that a tar-
get point is outside S1 or S1 ∪S2 does not necessarily mean
that the robot actually leaves the respective segment. The
following two lemmas show that robots always reach their
target point, if it is in S1 ∪ S2, and that they cannot be
hindered from leaving S1 and S2.

Lemma 6.9. Robots that compute a target point in S1∪S2

cannot be hindered from reaching it by the limit circle of any
other robot.

Proof. Let ri be a robot that computes a target point
c (which is the center of the SEC C) inside S1 ∪ S2. Then,
according to Corollary 6.5, the radius of C cannot exceed 1

4
and thus the distance between ri and c is also upper bounded
by 1

4
. Now assume that there is a robot re that hinders ri

from reaching c. Since re must be a neighbor of ri, it must
also be included in C and therefore, re can have at most
distance 1

2
from ri. Now let me be the midpoint between

ri and re and therefore the center of the limit circle that
hinders ri from reaching c. me can be at most in distance
1
4

from ri. But that means that ri can move freely in any

direction a distance of 1
2
− 1

4
= 1

4
and hence it can reach its

target point without being hindered by re.

Lemma 6.10. Robots cannot be hindered from leaving S1∪
S2 by the limit circle of any other robot.

Proof. Let ri be a robot that computes a target point
outside S1 ∪ S2 in round t0. Now assume for the sake of
contradiction that there is one robot rj that hinders ri from
leaving S1 ∪ S2. This is only possible if rj is a neighbor of
ri and thus rj must be within distance 1 of ri (see the circle
C1 in Figure 5 with center ri and radius 1: rj must be in
C1). Now let m be the point where ri would leave S1 ∪ S2

if moving to its target point. According to the algorithm it
is only possible that ri is hindered by rj to leave S1 ∪ S2, if
m is not within distance 1

2
from the midpoint mj between

ri and rj (line 6 – 10 of the algorithm). It follows that mj

cannot be inside the circle C2 (Figure 5) with center m and
radius 1

2
. Based on C2 we can define a circle C3 which may

not contain rj , if mj is not in C2: C3’s center is p′i, which
is pi reflected with respect to the point m, and its radius
is 1 (see Figure 5). Summing up, rj must be inside of C1,
but outside of C3. Moreover, the smallest enclosing circle
computed by the algorithm has at most radius 1, and so ri’s
target point is at most in distance 1 of rj . It follows that ri’s
target point must be on the line between m and p′i, because

︸ ︷︷ ︸
≤ 1

4

m

pi

p′i

C1

C3

C2
N

S1 ∪ S2

Figure 5: Illustration of the proof of Lemma 6.10.
The circles indicate where rj can be positioned: C1 is
a circle with center pi and radius 1 and must contain
rj. C2 has center m and radius 1

2
, and C3’s center is

p′i with radius 1. rj must not be in C3.

each point on the straight line through pi and m beyond p′i
is in distance more than 1 from any point that is in C1, but
not in C3.

Case 1 : rj is in S1 ∪ S2. Then, because the chord length
of S1∪S2 is at most 1

4
, the distance between ri and rj is also

at most 1
4
. But that means that ri is at most in distance 1

8
from the midpoint between ri and rj and thus it can move at
least distance 1

2
− 1

8
= 3

8
> 1

4
freely in any direction without

being hindered by rj . But after ri has moved a distance of
1
4
, it has left S1 ∪ S2 leading to a contradiction.
Case 2 : rj is not in S1 ∪ S2. Since a SEC is defined by

two or three points with at least one point on each half of
the boundary of the SEC (Proposition 6.3), there must be a
robot rk that is in S1 ∪ S2 and on the boundary of the SEC
defining ri’s target point. It follows that rk can be at most
in distance 1

4
from m. As pi is also at most in distance 1

4
from m, so is p′i and also pi’s target point, which is between
m and p′i (see above). Thus, rk is at most in distance 1

2
from ri’s target point. Since rk is on the boundary of the
SEC that defines ri’s target point, it follows that the SEC
can have at most a radius of 1

2
. Now, since rj is outside of

C3 and because the distance between m and p′i is at most 1
4

(see above), rj must be in distance greater than 1
2

from ri’s
target point. Thus, rj cannot be in the SEC that defines
ri’s target point, which is a contradiction to ri and rj being
neighbors. It follows that rj cannot hinder ri from leaving
S1 ∪ S2.

With all these prerequisites, we can now show that if no
robots merge, S1 is empty after two rounds. We first analyze
the behavior of some robots in round t0 in Lemma 6.11,
before we plug things together in Lemma 6.12.

Lemma 6.11. Let S be a set of robots in round t0 that
are all positioned in or compute a target point in S1 ∪ S2

and that all have a pairwise different neighborhood. Then at
most one of those robots is in S1∪S2 at the beginning of the
next round.

Proof. Since all robots from S have different neighbors,

there exists a robot ri ∈ S for which no robot from S has a
set of neighbors that is a subset of the neighbors of ri. Thus,
all robots rj ∈ S \ {ri} have a neighbor that is not visible
from ri and therefore in distance more than 1 from ri. If ri
is positioned in S1 ∪ S2, all robots rj ∈ S \ {ri} see a point
B in N (namely the position of the neighbor that ri cannot
see) that is in distance 1 from a point A in S1 ∪ S2 (namely
the position of ri). Lemma 6.6 therefore guarantees that all
neighbors of ri compute a target point outside of S1 ∪ S2.
According to Lemma 6.10, no robot is hindered from leaving
S1 ∪ S2. Thus, only ri can stay in S1 ∪ S2.

If ri is positioned outside S1 ∪ S2, it has its target point
in S1 ∪ S2 according to the definition of S. Corollary 6.5
now gives that the radius of ri’s SEC cannot exceed 1

4
and

thus ri is in distance at most 1
4

from S1∪S2. Using that the

distance between two points in S1∪S2 is at most 1
4
, it follows

that all points within S1∪S2 are in distance at most 1
2

from
ri. Now consider a robot rj ∈ S \ {ri} and a neighbor rk
of rj that is in distance more than 1 from ri. This robot rk
must then be in distance more than 1

2
from S1∪S2. Since rk

is rj ’s neighbor, we know from Corollary 6.5, that the center
of rj ’s SEC – its target point – cannot be in S1 ∪ S2 and
according to Lemma 6.10 rj is not hindered from leaving
S1 ∪ S2. Since this holds for all robots rj ∈ S \ {ri}, ri is
the only robot that can be in S1 ∪ S2 in round t+ 1.

Lemma 6.12. If Rt ≥ 1
2

, either there are robots that merge
in round t or after two rounds, the segment S1 does not con-
tain any robots.

Proof. We consider all robots that are positioned in S1∪
S2 or compute a target point in S1 ∪ S2 in round t. We
divide this set of robots into two subsets and analyze them
separately.

• First, we consider all robots that have a neighbor with
the same neighborhood. Thus, for all these robots
there is another robot that computes the same target
point. Then there are two possibilities: Either one of
these target points is in S1 ∪S2. According to Lemma
6.9, the robots with this target point are not hindered
from reaching it and therefore they merge. If all tar-
get points are outside S1∪S2, Lemma 6.10 guarantees
that all these robots leave S1 ∪ S2.

• Now consider the robots that have a pairwise different
neighborhood. According to Lemma 6.11, at most one
of those robots stays in S1 ∪ S2 during this round.

Thus, if ri is positioned outside S1 at the end of round t,
we are done. Otherwise, since apart from ri no robot is still
in S1 ∪ S2, we know from Lemma 6.7, that neither ri nor
a neighbor of ri can compute a target point in S1 in round
t + 1. Thus, ri leaves S1 in round t + 1 (Lemma 6.10) and
none of its neighbors enters S1. All other robots that are
not neighbors of ri do not see a robot in S1 and thus they
cannot enter S1.

Lemma 6.12 will be used to show that if no robots merge,
Rt decreases by Ω

(
1
n

)
every two rounds. According to the

following Lemma, this procedure stops as soon as Rt <
1
2
.

Lemma 6.13 (Ando et al. [2]). If Rt <
1
2

, the robots
have gathered at one point in round t+ 1.

This lemma holds because if Rt <
1
2
, all robots can see each

other and thus all robots compute the same target point. It
is shown Ando et al.’s original work [2] that the robots do
not hinder each other from reaching this point.

Putting everything together, we are now able to prove the
final result.

Theorem 6.14. The robots gather within O(n2) rounds.

Proof. Fix an arbitrary round t0 ≥ 0. Since Lemma
6.12 holds for any point on the boundary of Nt0 , after two
rounds either two robots have merged or all robots must be
in distance greater than the height of S1 from the boundary
of Nt0 . According to Lemma 6.8, the height of S1 is at least

1
128·Rt

and thus if the robots do not merge, the radius de-

creases by at least 1
128·Rt

, giving that Rt+2 ≤ Rt− 1
128·Rt

≤
Rt− 1

128·R0
. It follows that after 2 · 128 · (R0)2 = 256 · (R0)2

rounds without merging robots, the radius must be less than
1
2
. Now it takes one round to gather the robots (Lemma

6.13). Moreover, since UDG0 is connected, R0 ≤ n. There
are at most n− 1 rounds in which robots merge. The total
number of rounds is therefore at most 256 · n2 + n.

7. CONCLUSION AND OUTLOOK
In this paper we have shown that mobile robots can gather

at a single point in O(n2) rounds, when they execute the
classic synchronous algorithm by Ando et al. [2]. Further-
more we showed that this bound is asymptotically tight for
this algorithm. This raises the question whether there are
more efficient algorithms.

On the other hand there are no nontrivial lower bounds
known for classes of local algorithms for gathering or other
formation problems. One would need a clean definition of
asynchronous or synchronous local gathering strategies. A
crucial property restricting such strategies is that connectiv-
ity has to be maintained. Just looking at the start configura-
tion of the lower bound instance from Section 5, for example,
and only demanding connectivity for this specific start con-
figuration is not sufficient: consider the synchronous algo-
rithm in which each point moves in the direction of the target
point of our algorithm, but goes beyond this point until the
distance to its neighbors is 1. This algorithm maintains con-
nectivity for our specific start configuration, but needs only
a linear number of rounds, if the start configuration posi-
tions neighboring robots in distance 2

3
on the cycle. Similar

results can be shown for asynchronous strategies with spe-
cific activation policies. Such examples demonstrate that
the connectivity constraint has to be reflected much more
severely in lower-bound models for local gathering strate-
gies.

References
[1] Noa Agmon and David Peleg. Fault-tolerant gathering

algorithms for autonomous mobile robots. In Proceed-
ings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, pages 1070–1078,
January 2004.

[2] Hideki Ando, Yoshinobu Suzuki, and Masafumi Ya-
mashita. Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In Pro-
ceedings of the 1995 IEEE International Symposium on
Intelligent Control, ISIC 1995, pages 453–460, August
1995.

[3] Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and
Masafumi Yamashita. Distributed memoryless point
convergence algorithm for mobile robots with limited
visibility. IEEE Transactions on Robotics and Automa-
tion, 15(5):818–828, 1999.

[4] Chanderjit Bajaj. The algebraic degree of geometric
optimization problems. Discrete & Computational Ge-
ometry, 3:177–191, 1988.

[5] I. Chatzigiannakis, M. Markou, and S. Nikoletseas.
Distributed circle formation for anonymous oblivious
robots. In Proceedings of the Third International Work-
shop on Experimental and Efficient Algorithms, WEA
2004, pages 159–174, May 2004.

[6] Bernard Chazelle. Natural algorithms. In Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2009, pages 422–431, January
2009.

[7] George Chrystal. On the problem to construct the min-
imum circle enclosing n given points in a plane. In Pro-
ceedings of the Edinburgh Mathematical Society, Third
Meeting, pages 30–35, 1885.

[8] M. Cieliebak, P. Flocchini, G. Prencipe, and N. San-
toro. Solving the robots gathering problem. In Pro-
ceedings of the Thirtieth International Colloquium on
Automata, Languages and Programming, ICALP 2003,
pages 1181–1196, June 2003.

[9] Reuven Cohen and David Peleg. Robot convergence
via center-of-gravity algorithms. In Proceedings of the
11th International Colloquium on Structural Informa-
tion and Communication Complexity, SIROCCO 2004,
pages 79–88, June 2004.

[10] Reuven Cohen and David Peleg. Convergence prop-
erties of the gravitational algorithm in asynchronous
robot systems. SIAM Journal on Computing, 34(6):
1516–1528, 2005.

[11] X. Défago and A. Konagaya. Circle formation for obliv-
ious anonymous mobile robots with no common sense
of orientation. In Proceedings of the 2nd ACM Inter-
national Workshop on Principles of Mobile Computing,
POMC 2002, pages 97–104, October 2002.

[12] Bastian Degener, Barbara Kempkes, Peter Kling, and
Friedhelm Meyer auf der Heide. A continuous, local
strategy for constructing a short chain of mobile robots.
In Proceedings of the 17th International Colloquium on
Structural Information and Communication Complex-
ity, SIROCCO 2010, pages 168–182, June 2010.

[13] Bastian Degener, Barbara Kempkes, and Friedhelm
Meyer auf der Heide. A local O(n2) gathering algo-
rithm. In Proceedings of the 22nd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA 2010, pages 217–223, June 2010.

[14] Yoann Dieudonné and Franck Petit. Self-stabilizing de-
terministic gathering. In Proceedings of the 5th Inter-
national Workshop on Algorithmic Aspects of Wireless
Sensor Networks, ALGOSENSORS 2009, pages 230–
241, July 2009.

[15] Miroslaw Dynia, Jaros law Kuty lowski, Pawe l Lorek,
and Friedhelm Meyer auf der Heide. Maintaining com-
munication between an explorer and a base station.
In Proceedings of the 1st IFIP International Confer-
ence on Biologically Inspired Collaborative Computing,
BICC 2006, pages 137–146, August 2006.

[16] Miroslaw Dynia, Jaros law Kuty lowski, Friedhelm
Meyer auf der Heide, and Jonas Schrieb. Local strate-
gies for maintaining a chain of relay stations between an
explorer and a base station. In Proceedings of the nine-
teenth annual ACM symposium on Parallel algorithms
and architectures, SPAA 2007, pages 260–269, January
2007.

[17] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro,
and Peter Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science,
337(1–3):147–168, 2005.

[18] Taisuke Izumi, Yoshiaki Katayama, Nobuhiro Inuzuka,
and Koichi Wada. Gathering autonomous mobile
robots with dynamic compasses: An optimal result.
In Proceedings of the 21st International Symposium
on Distributed Computing, DISC 2007, pages 298–312,
September 2007.

[19] Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and
Fukuhito Ooshita. Randomized gathering of mobile
robots with local-multiplicity detection. In Proceedings
of the 11th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, SSS 2009,
pages 384–398, November 2009.

[20] Peter Kling and Friedhelm Meyer auf der Heide. Con-
vergence of local communication chain strategies via lin-
ear transformations. this conference.

[21] Jaroslaw Kutylowski and Friedhelm Meyer auf der
Heide. Optimal strategies for maintaining a chain of
relays between an explorer and a base camp. Theoreti-
cal Computer Science, 410(36):3391–3405, 2009.

[22] Friedhelm Meyer auf der Heide and Barbara Schneider.
Local strategies for connecting stations by small robotic
networks. In Proceedings of the 2nd IFIP International
Conference on Biologically Inspired Collaborative Com-
puting, BICC 2008, pages 95–104, September 2008.

[23] Samia Souissi, Xavier Défago, and Masafumi Ya-
mashita. Gathering asynchronous mobile robots with
inaccurate compasses. In Proceedings of the 25th An-
nual ACM Symposium on Principles of Distributed Sys-
tems, PODC 2006, pages 333–349, July 2006.

[24] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns. SIAM
Journal on Computing, 28(4):1347–1363, 1999.

[25] Ichiro Suzuki and Masafumi Yamashita. Formation and
agreement problems for anonymous mobile robots. In
Proceedings of the 31st Annual Allerton Conference on
Communication, Control, and Computing, pages 93–
102, September 1993.

	Introduction
	Related Work
	Model Definition
	The algorithm
	The Lower Bound
	The Upper Bound
	Geometric Prerequisites
	Gathering Algorithm Analysis

	Conclusion and outlook

