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ABSTRACT

We introduce MIDI-VAE, a neural network model based
on Variational Autoencoders that is capable of handling
polyphonic music with multiple instrument tracks, as well
as modeling the dynamics of music by incorporating note
durations and velocities. We show that MIDI-VAE can per-
form style transfer on symbolic music by automatically
changing pitches, dynamics and instruments of a music
piece from, e.g., a Classical to a Jazz style. We evalu-
ate the efficacy of the style transfer by training separate
style validation classifiers. Our model can also interpolate
between short pieces of music, produce medleys and cre-
ate mixtures of entire songs. The interpolations smoothly
change pitches, dynamics and instrumentation to create a
harmonic bridge between two music pieces. To the best of
our knowledge, this work represents the first successful at-
tempt at applying neural style transfer to complete musical
compositions.

1. INTRODUCTION

Deep generative models do not just allow us to generate
new data, but also to change properties of existing data
in principled ways, and even transfer properties between
data samples. Have you ever wanted to be able to cre-
ate paintings like Van Gogh or Monet? No problem! Just
take a picture with your phone, run it through a neural net-
work, and out comes your personal masterpiece. Being
able to generate new data samples and perform style trans-
fer requires models to obtain a deep understanding of the
data. Thus, advancing the state-of-the-art in deep genera-
tive models and neural style transfer is not just important
for transforming horses into zebras, 1 but lies at the very
core of Deep (Representation) Learning research [2].

While neural style transfer has produced astonishing re-
sults especially in the visual domain [21, 36], the progress

1 https://junyanz.github.io/CycleGAN/
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for sequential data, and in particular music, has been
slower. We can already transfer sentiment between restau-
rant reviews [29, 35], or even change the instrument with
which a melody is played [32], but we have no way of
knowing how our favorite pop song would have sounded
if it were written by a composer who lived in the classi-
cal epoch or how a group of jazz musicians would play
the Overture of Mozart’s Don Giovanni. In this work we
a step towards this ambitious goal. To the best of our
knowledge, this paper presents the first successful appli-
cation of unaligned style transfer to musical compositions.
Our proposed model architecture consists of parallel Vari-
ational Autoencoders (VAE) with a shared latent space and
an additional style classifier. The style classifier forces
the model to encode style information in the shared la-
tent space, which then allows us to manipulate existing
songs, and effectively change their style, e.g., from Clas-
sic to Jazz. Our model is capable of producing harmonic
polyphonic music with multiple instruments. It also learns
the dynamics of music by incorporating note durations and
velocities.

2. RELATED WORK

Gatys et al. [14] introduce the concept of neural style trans-
fer and show that pre-trained CNNs can be used to merge
the style and content of two images. Since then, more
powerful approaches have been developed [21, 36]; these
allow, for example, to render an image taken in summer
to look like it was shot in winter. For sequential data, au-
toencoder based methods [29, 35] have been proposed to
change the sentiment or content of sentences. Van den
Oord et al. [32] introduce a VAE model with discrete la-
tent space that is able to perform speaker voice transfer
on raw audio data. Malik et al. [23] train a model to add
note velocities (loudness) to sheet music, resulting in more
realistic performances when being played by a MIDI syn-
thesizer. Their model is trained in a supervised manner,
with the target being a human-like performance of a music
piece in MIDI format, and the input being the same piece
but with all note velocities set to the same value. While
their model can indeed play music in a more human-like
manner, it can only change note velocities, and does not
learn the characteristics of different musical styles/genres.
Our model is trained on unaligned songs from different



musical styles. Our model can not only change the dy-
namics of a music piece from one style to another, but also
automatically adapt the instrumentation and even the note
pitches themselves. While our model can be used to gen-
erate short pieces of music, medleys, interpolations and
song mixtures, the main focus of this paper lies on style
transfer between compositions from different genres and
composers. Nevertheless, at the core of our model lies the
capability to produce music. Thus we will discuss related
work in the domains of symbolic and raw audio generation.
For a more comprehensive overview we refer the interested
readers to these surveys: [4, 13, 16].

People have been trying to compose music with the help
of computers for decades. One of the most famous early
examples is “Experiments in Musical Intelligence” [9],
a semi-automatic system based on Markov models that
is able to create music in the style of a certain com-
poser. Soon after, the first attempts at music composition
with artificial neural networks were made. Most notably,
Todd [30], Mozer [26] and Eck et al. [11] all used Recur-
rent Neural Networks (RNN). More recently, Boulanger-
Lewandowski et al. [3] combined long short term memory
networks (LSTMs) and Restricted Boltzmann Machines to
simultaneously model the temporal structure of music, as
well as the harmony between notes that are played at the
same time, thus being capable of generating polyphonic
music. Chu et al. [7] use domain knowledge to model
a hierarchical RNN architecture that produces multi-track
polyphonic music. Brunner et al. [5] combine a hierar-
chical LSTM model with learned chord embeddings that
form the Circle of Fifths, showing that even simple LSTMs
are capable of learning music theory concepts from data.
Hadjeres et al. [15] introduce an LSTM-based system
that can harmonize melodies by composing accompany-
ing voices in the style of Bach Chorales, which is con-
sidered a very difficult task even for professionals. John-
son et al. [18] use parallel LSTMs with shared weights to
achieve transposition-invariance (similar to the translation-
invariance of CNNs). Chuan et al. [8] investigate the use
of an image-based Tonnetz representation of music, and
apply a hybrid LSTM/CNN model to music generation.

Generative models such as the Variational Autoencoder
(VAE) and Generative Adversarial Networks (GANs) have
been increasingly successful at modeling music. Roberts
et al. introduce MusicVAE [28], a hierarchical VAE model
that can capture long-term structure in polyphonic music
and exhibits high interpolation and reconstruction perfor-
mance. GANs, while very powerful, are notoriously dif-
ficult to train and have generally not been applied to se-
quential data. However, Mogren [25], Yang et al. [33] and
Dong et al. [10] have recently shown the efficacy of CNN-
based GANs for music composition. Yu et al. [34] were
the first to successfully apply RNN-based GANs to music
by incorporating reinforcement learning techniques.

Researchers have also worked on generating raw au-
dio waves. Van den Oord et al. [31] introduce WaveNet,
a CNN-based model for the conditional generation of
speech. The authors also show that it can be used to gen-

erate pleasing sounding piano music. More recently, En-
gel et al. [12] incorporated WaveNet into an Autoencoder
structure to generate musical notes and different instru-
ment sounds. Mehri et al. [24] developed SampleRNN, an
RNN-based model for unconditional generation of raw au-
dio. While these models are impressive, the domain of raw
audio is very high dimensional and it is much more difficult
to generate pleasing sounding music. Thus most existing
work on music generation uses symbolic music represen-
tations (see e.g., [3,5,7–10,15,18,23,25,26,28,30,33,34]).

3. MODEL ARCHITECTURE

Our model is based on the Variational Autoencoder [20]
(VAE) and operates on a symbolic music representation
that is extracted from MIDI [1] files. We extend the stan-
dard piano roll representation of note pitches with veloc-
ity and instrument rolls, modeling the most important in-
formation contained in MIDI files. Thus, we term our
model MIDI-VAE. MIDI-VAE uses separate recurrent en-
coder/decoder pairs that share a latent space. A style clas-
sifier is attached to parts of the latent space to make sure the
encoder learns a compact latent style label that we can then
use to perform style transfer. The architecture of MIDI-
VAE is shown in Figure 1, and will be explained in more
detail in the following.

3.1 Symbolic Music Representation

We use music files in the MIDI format, which is a sym-
bolic representation of music that resembles sheet music.
MIDI files have multiple tracks. Tracks can either be on
with a certain pitch and velocity, held over multiple time
steps or be silent. Additionally, an instrument is assigned
to each track. To feed the note pitches into the model
we represent them as a tensor P ∈ {0, 1}nP ·nB ·nT (com-
monly known as piano roll and henceforth referred to as
pitch roll), where nP is the number of possible pitch val-
ues, nB is the number of beats and nT is the number of
tracks. Thus, each song in the dataset is split into pieces
of length nB . We choose nB such that each piece cor-
responds to one bar. We include a “silent” note pitch to
indicate when no note is played at a time step. The note
velocities are encoded as tensor V ∈ [0, 1]nP ·nB ·nT (ve-
locity roll). Velocity values between 0.5 and 1 signify a
note being played for the first time, whereas a value below
0.5 means that either no note is being played, or that the
note from the last time step is being held. The note veloc-
ity range defined by MIDI (0 to 127) is mapped to the in-
terval [0.5, 1]. We model the assignment of instruments to
tracks as matrix I = {0, 1}nT ·nI (instrument roll), where
nI is the number of possible instruments. The instrument
assignment is a global property and thus remains constant
over the duration of one song. Finally, each song in our
dataset belongs to a certain style, designated by the style
label S ∈ {Classic, Jazz, Pop,Bach,Mozart}.

In order to generate harmonic polyphonic music it is
important to model the joint probability of simultane-
ously played notes. A standard recurrent neural network
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Figure 1. MIDI-VAE architecture. GRU stands for Gated Recurrent Unit [6].

model already models the joint distribution of the sequence
through time. If there are multiple outputs to be produced
per time step, a common approach is to sample each out-
put independently. In the case of polyphonic music, this
can lead to dissonant and generally “wrong” sounding note
combinations. However, by unrolling the piano rolls in
time we can let the RNN learn the joint distribution of si-
multaneous notes as well. Basically, instead of one nT -hot
vector for each beat, we input nT 1-hot vectors per beat
to the RNN. This is a simple but effective way of model-
ing the joint distribution of notes. The drawback is that
the RNN needs to model longer sequences. We use the
pretty midi [27] Python library to extract information from
MIDI files and convert them to piano rolls.

3.2 Parallel VAE with Shared Latent Space

MIDI-VAE is based on the standard VAE [20] with a hy-
perparameter β to weigh the Kullback-Leibler divergence
in the loss function (as in [17]). A VAE consists of an en-
coder qθ(z|x), a decoder pφ(x|z) and a latent variable z,
where q and p are usually implemented as neural networks
parameterized by θ and φ. In addition to minimizing the
standard autoencoder reconstruction loss, VAEs also im-
pose a prior distribution p(z) on the latent variables. Hav-
ing a known prior distribution enables generation of new
latent vectors by sampling from that distribution. Further-
more, the model will only “use” a new dimension, i.e., de-
viate from the prior distribution, if it significantly lowers
the reconstruction error. This encourages disentanglement
of latent dimensions and helps learning a compact hidden
representation. The VAE loss function is

LV AE = Eqθ(z|x)[log pφ(x|z)]− βDKL[(qθ(z|x)||p(z)],

where the first term corresponds to the reconstruction loss,
and the second term forces the distribution of latent vari-
ables to be close to a chosen prior. DKL is the Kullback-
Leibler divergence, which gives a measure of how similar
two probability distributions are. As is common practice,
we use an isotropic Gaussian distribution with unit vari-
ance as our prior, i.e., p(z) = N (0, I). Thus, both qθ(z|x)
and p(z) are (isotropic) Gaussian distributions and the KL
divergence can be computed in closed form.

As described in Section 3.1, we represent multi-track
music as a combination of note pitches, note velocities
and an assignment of instruments to tracks. In order to
generate harmonic multi-track music, we need to model
a joint distribution of these input features instead of three
marginal distributions. Thus, our model consists of three
encoder/decoder pairs with a shared latent space that cap-
tures the joint distribution. For each input sample (i.e., a
piece of length nB beats), the pitch, velocity and instru-
ment rolls are passed through their respective encoders,
implemented as RNNs. The output of the three encoders is
concatenated and passed through several fully connected
layers, which then predict σz and µz , the parameters of
the approximate posterior qθ(z|x) = N (µz,σz).

2 Using
the reparameterization trick [20], a latent vector z is sam-
pled from this distribution as z ∼ N (µz,σz ∗ ε) where ∗
stands for element-wise multiplication. This is necessary
because it is generally not possible to backpropagate gra-
dients through a random sampling operation, since it is not
differentiable. ε is sampled from an isotropic Gaussian dis-
tributionN (0, σε ∗ I), where we treat σε as a hyperparam-
eter (see Section 4.2 for more details). This shared latent
vector is then fed into three parallel fully connected lay-
ers, from which the three decoders try to reconstruct the
pitch, velocity and instrument rolls. The note pitch and
instrument decoders are trained with cross entropy losses,
whereas for the velocity decoder we use MSE.

3.3 Style Classifier

Having a disentangled latent space might enable some con-
trol over the style of a song. If for example one dimension
in the latent space encodes the dynamics of the music, then
we could easily change an existing piece by only varying
this dimension. Choosing a high value for β (the weight of
the KL term in the VAE loss function) has been shown to
increase disentanglement of the latent space in the visual
domain [17]. However, increasing β has a negative effect
on the reconstruction performance. Therefore, we intro-
duce additional structure into the latent space by attaching

2 We use notation σ for both a variance vector and the corresponding
diagonal variance matrix.



Dataset #Songs #Bars Artists
Classic 477 60523 Beethoven, Clementi, ...
Jazz 554 72190 Sinatra, Coltrane, ...
Pop 659 65697 ABBA, Bruno Mars, ...
Bach 156 16213 Bach
Mozart 143 17198 Mozart

Table 1. Properties of our dataset.

a softmax style classifier to the top k dimensions of the la-
tent space (zstyle), where k equals the number of different
styles in our dataset. This forces the encoder to write a
“latent style label” into the latent space. Using only k di-
mensions and a weak classifier encourages the encoder to
learn a compact encoding of the style. In order to change
a song’s style from Si to Sj , we pass the song through the
encoder to get z, swap the values of dimensions zistyle and
zjstyle, and pass the modified latent vector through the de-
coder. As style we choose the music genre (e.g., Jazz, Pop
or Classic) or individual composers (Bach or Mozart).

3.4 Full Loss Function

Putting all parts together, we get the full loss function of
our model as

Ltot =λPH(P, P̂ ) + λIH(I, Î) (1)

+λVMSE(V, V̂ ) + λSH(S, Ŝ)− βDKL(q||p),

where H(·, ·), MSE(·, ·) and DKL(·||·) stand for cross
entropy, mean squared error and KL divergence respec-
tively. The hats denote the predicted/reconstructed values.
The weights λ and β can be used to balance the individual
terms of the loss functions.

4. IMPLEMENTATION

In this section we describe our dataset and pre-processing
steps. We also give some insight into the training of our
model and justification for hyperparameter choices.

4.1 Dataset and Pre-Processing

Our dataset contains songs from the genres Classic, Jazz
and Pop. The songs were gathered from various online
sources; 3 a summary of the properties is shown in Ta-
ble 1. Note that we excluded symphonies from our Clas-
sic, Bach and Mozart datasets due to their complexity and
high number of simultaneously playing instruments. We
use a train/test split of 90/10. Each song in the dataset
can contain multiple instrument tracks and each track can
have multiple notes played at the same time. Unless stated
otherwise, we select nT = 4 instrument tracks from each
song by first picking the tracks with the highest number of
played notes, and from each track we choose the highest
voice, meaning picking the highest notes per time step. If

3 Pop: www.midiworld.com / Jazz: http://midkar.
com/jazz/jazz_01.html / Classic (including Bach, Mozart):
www.reddit.com/r/WeAreTheMusicMakers/comments/
3ajwe4/

a song has fewer than nT instrument tracks, we pick ad-
ditional voices from the tracks until we have nT voices in
total. We exclude drum tracks, since they do not have a
pitch value.

We choose the 16th note as smallest unit. In the most
widely used time signature 4

4 there are 16 16th notes in a
bar. 91% of Jazz and Pop songs in our dataset are in 4

4 ,
whereas for Classic the fraction is 34%. For songs with
time signatures other than 4

4 we still designate 16 16th
notes as one bar. All songs are split into samples of one
bar and our model auto-encodes one sample at a time. Dur-
ing training we shuffle the songs for each epoch, but keep
the bars of a song in the correct order and do not reset the
RNN states between samples. Thus, our model is trained
on a proper sequence of bars, instead of being confused by
random bar progressions.

There are 128 possible pitches in MIDI. Since very low
and high pitches are rare and often do not sound pleasing,
we only use nP = 60 pitch values ranging from 24 (C1) to
84 (C6).

4.2 Model (Hyper-)Parameters

Our model is generally not sensitive to most hyperparame-
ters. Nevertheless we continuously performed local hyper-
parameter searches based on good baseline models, only
varying one hyperparameter at a time. We use the recon-
struction accuracy of the pitch roll decoder as evaluation
metric. Using Gated Recurrent Units (GRUs) [6] instead
of LSTMs increases performance significantly. Using bidi-
rectional GRUs did not improve the results. The pitch roll
encoder/decoder uses two GRU layers, whereas the rest
uses only one layer. All GRU state sizes as well as the size
of the latent space z are set to 256. We use the ADAM opti-
mizer [19] with an initial learning rate of 0.0002. For most
layers in our architecture, we found tanh to work better
than sigmoid or rectified linear units. We train on batches
of size 256. The loss function weights λP , λI , λV and λS
were set to 1.0, 1.0, 0.1 and 0.1 respectively. λp was set to
1.0 to favor high quality note pitch reconstructions over the
rest. λV was also set to 1.0 because the MSE magnitude is
much smaller than the cross entropy loss values.

During our experiments, we realized that high values
of β generally lead to very poor performance. We further
found that setting the variance of ε to the value of σε = 1,
as done in all previous work using VAEs, also has a neg-
ative effect. Therefore we decided to treat σε as a hyper-
parameter as well. Figure 2 shows the results of the grid
search. σε is the variance of the distribution from which
the ε values for the reparameterization trick are sampled,
and is thus usually set to the same value as the variance of
the prior. However, especially at the beginning of learn-
ing, this introduces a lot of noise that the decoder needs to
handle, since the values for µz and σz , output by the en-
coder, are small compared to ε. We found that by reducing
σε, we can improve the performance of our model signif-
icantly, while being able to use higher values for β. An
annealing strategy for both β and σε might produce better
results, but we did not test this. In the final models we use
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Pitch Instrument Style Velocity
Train Test Train Test Train Test Train Test

CvJ 0.90 0.85 0.99 0.87 0.98 0.92 0.008 0.029
CvP 0.96 0.88 0.99 0.89 0.96 0.91 0.017 0.036
JvP 0.88 0.80 0.99 0.86 0.94 0.69 0.043 0.048
BvM 0.91 0.75 0.99 0.82 0.94 0.74 0.010 0.033

Table 2. Train and test performance of our final models.
The velocity column shows MSE loss values, whereas the
rest are accuracies.

β = 0.1 and σε = 0.01. Note that during generation we
sample z from N (0,σẑ), where σẑ is the empirical vari-
ance obtained by feeding the entire training dataset through
the encoder. The empirical mean µẑ is very close to zero.

4.3 Training

All models are trained on single GPUs (GTX 1080) un-
til the pitch roll decoder converges. This corresponds to
around 400 epochs, or 48 hours. We train one model for
each genre/composer pair to make learning easier. This re-
sults in four models that we henceforth call CvJ (trained
on Classic and Jazz), CvP (Classic and Pop), JvP (Jazz and
Pop) and BvM (Bach and Mozart). The train/test accura-
cies/losses of all final models are shown in Table 2. The
columns correspond to the terms in our model’s full loss
function (Equation 1).

5. EXPERIMENTAL RESULTS

In this section we evaluate the capabilities of MIDI-VAE.
Wherever mentioned, corresponding audio samples can be
found on YouTube. 4

5.1 Style Transfer

To evaluate the effectiveness of MIDI-VAE’s style transfer,
we train three separate style evaluation classifiers. The in-
put features are the pitch, velocity and instrument rolls re-
spectively. The three style classifiers are also combined to

4 www.youtube.com/channel/
UCCkFzSvCae8ySmKCCWM5Mpg

Train Songs Test Songs
Before After Diff. Before After Diff.

CvJ 0.92 0.38 0.54 0.87 0.39 0.48
CvP 0.94 0.43 0.51 0.92 0.45 0.47
JvP 0.72 0.60 0.12 0.72 0.62 0.10
BvM 0.77 0.45 0.32 0.66 0.47 0.19

Table 3. Style transfer performance (ensemble classifier
accuracies before and after) between all style pairs.

output a voting based ensemble prediction. The accuracy
of the classifiers is computed as the fraction of correctly
predicted styles per bar in a song. We predict the likelihood
of the source style before and after the style change. If the
style transfer works, the predicted likelihood of the source
style decreases. The larger the difference, the stronger the
effect of the style transfer. Note that for all experiments
presented in this paper we set the number of styles k = 2,
that is, one MIDI-VAE model is trained on two styles, e.g.,
Classic vs. Jazz. Therefore, the style classifier is binary
and a reduction in probability of the source style is equiv-
alent to an increase in probability of the target style of the
same magnitude. All style classifiers use two-layer GRUs
with a state size of 256.

Table 3 shows the performance of MIDI-VAE’s style
transfer when measured by the ensemble style classifier.
We trained a separate MIDI-VAE for each style pair. For
each pair of styles we perform a style change on all songs
in both directions and average the results. The style trans-
fer seems to work for all models, albeit to varying degrees.
In all cases except for JvP, the predictor is even skewed
below 0.5, meaning that the target style is now considered
more likely than the source style.

Table 4 shows the style transfer results measured by
each individual style classifier. We can see that pitch and
velocity contribute equally to the style change, whereas in-
strumentation seems to correlate most with the style. For
CvJ and CvP, switching the style heavily changes the in-
strumentation. Figure 3 illustrates how the instruments of
all songs in our Jazz test set are changed when switch-
ing the style to Classic. Only few instruments are rarely
changed (piano, ensemble, reed), whereas most others are
mapped to one or multiple different instruments. Naturally,
the instrument switch between genres with highly overlap-
ping instrumentation (JvP, BvM) is much less pronounced.
Classifying style based on the note pitches and velocities of
one bar is more difficult, as shown by the “before” accura-
cies in Table 4, which are generally lower than the ones of
the instrument roll based classifier. Nevertheless, the style
switch changes pitch and velocity towards the target style,
albeit less strongly than the instrumentation. MIDI-VAE
retains most of the original melody, while often changing
accompanying instruments to suit the target style. This is
generally desirable, since we do not want to change the
pitches so thoroughly that the original song cannot be rec-
ognized anymore. We provide examples of style trans-
fers on a range of songs from our training and test sets
on YouTube (see Style transfer songs).
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Pitch Velocity Instrument
Bf. Af. Bf. Af. Bf. Af.

CvJ Test 0.77 0.66 0.67 0.57 0.90 0.20
CvP Test 0.77 0.67 0.71 0.60 0.91 0.27
JvP Test 0.65 0.63 0.67 0.64 0.67 0.55
BvM Test 0.55 0.47 0.60 0.49 0.64 0.47

Table 4. Average before and after classifier accuracies for
all classifiers (pitch/instrument/velocity) for the test set.

5.2 Latent Space Evaluation

Figure 4 shows a t-SNE [22] plot of the latent vectors for
all bars of 20 Jazz and 20 Classic pieces. The darker the
color, the more “jazzy” or “classical” a song is according
to the ensemble style classifier. The genres are well sepa-
rated, and most songs have all their bars clustered closely
together (likely thanks to the instrument roll being con-
stant). Some classical pieces are bleeding over into the
Jazz region and vice versa. As can be seen from the light
color, the ensemble style classifier did not confidently as-
sign these pieces to either style.

We further perform a sweep over all 256 latent dimen-
sions on randomly sampled bars to check whether chang-
ing one dimension has a measurable effect on the generated
music. We define 27 metrics, among which are total num-
ber of (held) notes, mean/max/min/range of (specific or all)
pitches/velocities, and style changes. Besides the obvious
dimensions where the style classifier is attached, we find
that some dimensions correlate with the total number of
notes played in a song, the highest pitch in a bar, or the
occurrence of a specific pitch. The changes can be seen
when plotting the pitches, but are difficult to hear. Fur-
thermore, the dimensions are very entangled, and chang-
ing one dimension has multiple effects. Higher values for
β ∈ {1, 2, 3} slightly improve the disentanglement of la-

[ Classic (o) ] [ Jazz (+) ]

Figure 4. t-SNE plot of latent vectors for bars from 20 Jazz
and Classic songs. Bars from the same song were given the
same color. Lighter colors mean that the ensemble style
classifier was less certain in its prediction.

tent dimensions, but strongly reduce reconstruction accu-
racy (see Figure 2). We added samples to YouTube to show
the results of manipulating individual latent variables.

5.3 Generation and Interpolation

MIDI-VAE is capable of producing smooth interpolations
between bars. This allows us to generate medleys by con-
necting short pieces from our dataset. The interpolated
bars form a musically consistent bridge between the pieces,
meaning that, e.g., pitch ranges and velocities increase
when the target bar has higher pitch or velocity values. We
can also merge entire songs together by linearly interpolat-
ing the latent vectors for two bar progressions, producing
interesting mixes that are surprisingly fun to listen to. The
original songs can sometimes still be identified in the mix-
tures, and the resulting music sounds harmonic. We again
uploaded several audio samples to YouTube (see Medleys,
Interpolations and Mixtures).

6. CONCLUSION

We introduce MIDI-VAE, a simple but effective model for
performing style transfer between musical compositions.
We show the effectiveness of our method on several differ-
ent datasets and provide audio examples. Unlike most ex-
isting models, MIDI-VAE incorporates both the dynamics
(velocity and note durations) and instrumentation of mu-
sic. In the future we plan to integrate our method into a
hierarchical model in order to capture style features over
longer time scales and allow the generation of larger pieces
of music. To facilitate future research on style transfer for
symbolic music, and sequence tasks in general, we make
our code publicly available. 5

5 https://github.com/brunnergino/MIDI-VAE
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[4] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pa-
chet. Deep learning techniques for music generation-a
survey. arXiv preprint arXiv:1709.01620, 2017.

[5] Gino Brunner, Yuyi Wang, Roger Wattenhofer, and
Jonas Wiesendanger. JamBot: Music theory aware
chord based generation of polyphonic music with
LSTMs. In 29th International Conference on Tools
with Artificial Intelligence (ICTAI), 2017.

[6] Kyunghyun Cho, Bart van Merrienboer, Çaglar
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