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Abstract—We present a generally applicable tree-like sparse
multilayer architecture that has a balanced connection from
all input neurons to all output neurons. If the ratio between
input and output neurons is fixed, the parameters required
by our architecture scale with O(n1.5) as compared to O(n2)
in a fully connected layer, where n is the number of input
neurons. Our sparse 2-layer architecture performs similar and/or
superior when compared to its fully connected 1-layer and 2-layer
counter parts on the IMDB review sentiment classification task,
the Reuters news categorization task and the CIFAR-10 image
classification task.

Index Terms—Deep Learning, Neural Networks, Sparsity, Text
Sentiment Analysis, Text Categorization, Image Classification

I. INTRODUCTION

With the continuous increase in computation power and the
success of deep learning in recent years, we see a trend to
apply neural networks to ever more complex tasks. A prime
example here is image classification, where problems shifted
from handwritten digit classification (MNIST [1]), gray-scale
images of 28x28 pixels with 10 classes, to general image
classification, e.g., ImageNet [2], RGB images of 469x387
pixels on average with 1000 classes. To solve these complex
tasks, we often require a high dimensional latent representation
such that the neural network has enough internal representation
power to learn the complex relations. Meanwhile, a full
connectivity between high dimensional internal representations
requires large amounts of memory and computation power. A
full connectivity often also leads to networks with too much
capacity which over-fit the training set. Sparsity is therefore
one of the success factors of convolutional neural networks [3],
which are applicable to a variety of tasks [4] and used in all
state-of-the-art modern architectures for image classification
[5]–[12]. However, up to now, sparse architectures either try
to introduce problem specific priors [3], [4], [13]–[16] or focus
on reducing the number of connections by a certain factor [17].
In contrast, the question we seek to answer with this paper
is, how sparse we can make a network under the constraint
of a full connectivity between all input and output neurons.
An extreme variant is to connect each input and output node
with just a single path. Or, from the vantage point of an output
respectively input node, connecting to all the input respectively
output nodes with just a tree. Can such a sparse network still

learn, or is there a price to be paid? We show that the generally
applicable sparse architecture we propose has a performance
similar or superior to fully connected layers while using much
fewer parameters.

II. RELATED WORK

Denil et al. [18] show that many deep neural network
architectures experience immense redundancy in their parame-
terization. Since sparsity in neural networks limits the memory
and computation required to compute a given inference, many
approaches are discussed in the literature which we roughly
divide into three categories:

To the first category we refer to as a posteriori sparsity,
but more often it is referred to as pruning [19]–[21]. The goal
of a posteriori sparsity is to prune unused connections after
the training in an effort to reduce the network size without
losing too much accuracy when compared to the full network.
Han et al. [21] show that popular neural network architectures
can be compressed by 35x to 49x without a drop in accuracy,
suggesting that many connections in the neural networks are
not needed in the first place. A posteriori sparsity is basically
for free, as one does not risk much by simply removing
redundant edges.

The second category we call learned or dynamic sparsity.
Castellano et al. [20] and Han et al. [22] suggest to prune
during training, while Louizos et al. [23] propose to use a
learned L0 regularization enforcing sparsity during training.
Pruning during training is more risky than pruning a posteriori
as one does not yet know whether weights will remain low,
or whether they might be needed in later training. Besides
enforcing hard sparsity constraints during training, any weight
decay regularization gradually decreases the unused weights to
0 and thereby sparsifies the network as well [24]. Glorot et al.
[25] attribute the success of rectified linear units as non-linear
activation functions also to the sparse representations they
introduce. Randomized approaches, that introduce sparsity on
the representations (Dropout, [26]) or connections (DropCon-
nect, [27]) during training also became popular because of
their regularization and generalization capabilities.

In contrast to introducing sparsity during or after training,
we focus on developing a sparse network architecture a priori,



i.e., before training. A priori sparsity (pruning before training)
is the most tricky of the three, since the network is not allowed
to develop connections where it might need them. Nevertheless
it is frequently done, most prominently in the domain of
convolutional neural networks (CNNs) [3]. Some work, e.g.,
[6], [7], only uses convolutional layers for image classification.
Besides the success of CNNs, recent work [14]–[16] suggests
to group neurons into capsules for structured entity representa-
tions, hence limiting the connectivity between capsules. Most
recent architecture suggestions [5]–[12] focus mainly on the
CNN part of the network. In this paper however, we take
a closer look at the fully connected layers without weight
sharing, which many architectures (e.g. [5], [8]–[12]) use for
the final classification. While problem specific architectures
(e.g., [13]) can improve performance, we aim in this work
to develop a generally applicable sparse architecture. Closest
related to our work is the work of Bourely et al. [17], who
propose several architectures for sparsity within one layer as
alternative to fully connected layers and show that sparsity
can increase generalization due to a limited network capacity
which is not as prone to over-fitting. In contrast to Bourely et
al. we propose a multilayer sparse architecture that guarantees
a balanced connectivity between input and output neurons. We
hypothesize and show in our experiments that an unbalanced
connectivity introduced by random sparsity can result in a
bigger performance variation across training runs and worse
performance overall, since the architecture is more sensitive to
initialization. Also, while Bourely et al. only use one learning
rate in their experiments, we find that different architecture
types need different learning rates for optimal performance.

The literature also provides a large body of work [28]–
[33] that introduces linear dependencies between weights
to compress the computation and storage requirements of
ordinary neural networks. Our architecture is similar in that
it groups inputs together in the first layer. However, the non-
linearity in the hidden layer allows it to approximate a larger
set of functions while the balanced connectivity makes it less
sensitive to initialization.

III. TREECONNECT

In our proposed architecture, hidden nodes are shared
among trees but no two paths between any input and output
neuron exist. A small example 2-layer network can be seen in
Figure 1.

This simple structure is, due to its full connectivity between
input and output, generally applicable to all problems. We now
describe the properties of 2-layer TreeConnect networks and
then generalize to l-layer networks.

The number of trainable parameters NFC in a fully con-
nected layer with bias is NFC = n · m + m, where n is
the number of input neurons and m is the number of output
neurons. Similarly, the number of trainable parameters in a 2-
layer fully connected network is N2FC = n ·h+h+h ·m+m,
where h is the number of neurons in the hidden layer. In
a 2-layer TreeConnect network, the input layer neurons are
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Fig. 1. Example 2-Layer TreeConnect network with 9 input neurons and
4 output neurons. The highlighted red connections show the tree structure
when viewed from the output neuron while the dashed blue box shows a
fully connected subnet in the first layer, also referred to as channel in this
paper.

partitioned into c equally sized channel inputs, and partition-
wise fully connected to the corresponding h

c neurons of the
hidden layer. Additionally, each output neuron is connected
to c neurons of the hidden layer, one from each channel.
Therefore, the total amount of trainable parameters in a
TreeConnect network is

NTreeConnect = c· n
c
· h
c
+h+c·m+m =

n · h
c

+h+c·m+m

Note that by varying the hidden layer size h, we can trade
off sparsity vs. hidden representation size. On one end of
the spectrum, if h = c, the number of parameters in the
TreeConnect network scales linearly with n, but the small
hidden layer acts as a bottleneck in the information flow. On
the other end of the spectrum, if h = c · m, each output
neuron is connected through a completely separated tree to
all input neurons, i.e., no hidden neurons are shared among
trees. However, in this case the number of parameters scales
as O(n ·m), i.e., the architecture is not sparser than a fully
connected layer.

If we define r = m
n to be the compression ratio and assume√

n and
√
m to be integer numbers, we can choose c =

√
n

and h =
√
n ·m = n ·

√
r such that the number of parameters

in the TreeConnect network is

NTreeConnect =
n2 ·
√
r√

n
+ n ·

√
r + r · n

√
n+ r · n

For fixed r this number scales as O(n1.5) as compared to
O(n2) for a fully connected layer. With h =

√
n ·m the

compression from input to hidden is equal the compression
from hidden to output. We believe this to be a good trade-off
between sparsity and hidden layer size.

Formally, for a given input activation ~x, the output activation
~y of a 2-layer TreeConnect network can be computed as

~z = σz(W1~x+ ~bz)

z∗i = zc·i mod h for i ∈ {0, ..., h− 1}
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Fig. 2. Example 3-Layer TreeConnect network with 8 input neurons and
8 output neurons. The highlighted red connections show the tree structure
when viewed from an output neuron while the dashed blue box shows a fully
connected subnet in the first layer.

~y = σy(W2 ~z∗ + ~by)

where W1 and W2 are block diagonal weight matrices,
~bz and ~by are the bias vectors and σz(·) and σy(·) are the
activation functions of the hidden and output layer, respec-
tively. Since W1 and W2 are block diagonal weight matrices
with non-overlapping blocks, the computation of TreeConnect
network activations can efficiently be parallelized.

If σz(·) is chosen to be the identity function, the TreeCon-
nect network is equivalent to a fully connected layer with
linear dependencies between the weights, similar to low-rank
matrix neural networks proposed in the literature [28], [29].

If one wants to emphasize the non-linear multi-layer struc-
ture, one can generalize the TreeConnect architecture to a
deeper, l-layer architecture. An example 3-layer architecture
can be seen in Figure 2. With a similar deduction as for
the 2-layer version it can be shown that the trainable pa-
rameters of a general l-layer TreeConnect network scale as
O(l ·n(2·l−1)/l), while a l-layer fully connected network needs
O(l ·n2). However, since the gain in parameter savings is most
profound in the 2-layer version we focus the experiments in
this paper on simple 2-layer TreeConnect networks. Note that
for deeper architectures one can also concatenate multiple 2-
layer TreeConnect networks.

IV. EXPERIMENTS

To evaluate the proposed architecture, we implement several
variations and test their training and generalization perfor-
mance on the IMDB sentiment classification dataset [34], the
Keras [35] version of the Reuters newswire text categorization
dataset and the CIFAR-10 [36] image classification dataset.

In the TreeConnect network implementation, we grouped
fully connected neurons together and used a glorot-uniform
initialization [37] for all layers and architectures. We train
all architectures with mini batches of 64 samples, using three
different initial learning rates (0.001, 0.0001 and 0.00001) for
the Adam optimizer [38] with all other hyper-parameters left
at the default values. For the sake of visibility, we only report
the training curve with the learning rate best suited for the
specific architecture in terms of maximal achieved validation
accuracy over the course of training. In all architectures we use
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Fig. 3. IMDB sentiment classification validation set accuracy over the course
of training. The number in brackets is the maximal achieved validation
accuracy throughout the training.

ReLU [25] non-linearities as activation function on all hidden
layers, if not stated otherwise. With our experiments we seek
to answer the following questions:

1) How does a 2-layer TreeConnect network compare to
a 1-layer fully connected network with equal input and
output dimensions?

2) How does a 2-layer TreeConnect network compare to a
2-layer fully connected network with equal input, hidden
and output dimensions?

3) How does a 2-layer TreeConnect network compare to a
2-layer fully connected network with a similar number
of trainable parameters?

We base our implementation on Keras [35] layers and
leave a run time optimized implementation for future work.1

Note also that our goal was not to achieve state of the
art performance, but rather to give an empirical comparison
of different architectures. In experiments with low variance
between training runs we report a typical run, otherwise we
report average and standard deviation of 5 training runs.

In the following we use the shorthand notations FCn to
denote a fully connected layer with n output neurons and P(k)
or P(k, k) to denote an average pooling operation, 1- or 2-
dimensional, with a kernel of size k or k × k, respectively.
Further, we use TC((c, a - b) - m) to denote a 2-layer
TreeConnect network with c channels in the first layer, each
with a input neurons and b output neurons in the hidden layer,
and m output neurons. As an example, the network in Figure 1
would be described as TC((3, 3 - 2) - 4).

A. IMDB Sentiment Classification

The IMDB movie review sentiment classification dataset
[34] contains 50,000 movie reviews, split equally into test
and validation set. The goal is a binary classification into
positive and negative reviews. We preprocess the dataset
by discarding all but the 5,000 most frequent words and

1An implementation of our final CIFAR10 experiment is available at
https://github.com/OliverRichter/TreeConnect.
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Fig. 4. Reuters news categorization validation set accuracy. The number in
brackets is the maximal achieved validation accuracy throughout the training.
The dashed line’s architecture is the same as the TreeConnect architecture,
but has no ReLU activation on the hidden layer.

truncate/pad all reviews to a length of 512 words. To each
word we assign a trainable 256-dimensional embedding and
average the 512 embeddings to get a 256-dimensional input
to the network. This simple averaging across the entire review
gives an independence to (relative) word location and yielded
better performance than recurrent neural networks or CNN
based architectures we tried. We use a sigmoid activation on
the output neuron and a binary cross-entropy loss.

Specifically, we compare the following four architectures:
• Shallow: P(512) - FC1

Parameters in the network: 257
• Full: P(512) - FC16 - FC1

Parameters in the network: 8,225
• TreeConnect: P(512) - TC((16, 16 - 1) - 1)

Parameters in the network: 289
• Small: P(512) - FC2 - FC1

Parameters in the network: 517
Note that the “Small” architecture is the smallest possible

fully connected 2-layer architecture that is not too similar to
the “Shallow” architecture.

We train each architecture for 10 epochs and find that all
architectures performed best, in terms of maximal achieved
validation accuracy throughout the training, for the highest
learning rate of 0.001. We show the corresponding validation
accuracies in Figure 3. Even though the training curves differ,
the maximal achieved validation accuracy is quite similar for
all architectures. We also tried deeper architectures, but did not
find them to improve validation accuracy for this problem.

B. Reuters Text Categories

The Reuters newswire dataset consists of 11,228 newswires
from 46 topics, split into 8,982 training and 2,246 validation
samples. We use the same preprocessing as for the reviews
before, but use a larger word embedding size of 1,024 dimen-
sions and train for 50 epochs. We use a softmax activation
on the output layer and train the network with a cross-entropy
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Fig. 5. Reuters news categorization average validation accuracy of 5 training
runs for each architecture: a random sparse architecture with the architecture
re-sampled for every run (“RandomSparse”), a random sparse architecture
with the architecture fixed across training runs (“SparseFixed”) and the
TreeConnect architecture. The shaded area indicates the standard deviation
across training runs while the numbers in brackets show the average and
standard deviation of the maximal achieved validation accuracy.

loss between the network output and the one-hot encoded topic
labels. We show the results of following four architectures:

• Shallow: P(512) - FC46
Parameters in the network: 47,150

• Full: P(512) - FC736 - FC46
Parameters in the network: 788,302

• TreeConnect: P(512) - TC((32, 32 - 23) - 46)
Parameters in the network: 25,806

• Small: P(512) - FC24 - FC46
Parameters in the network: 25,750

Also in this setup we find that all architectures prefer the
highest learning rate (0.001). As with the IMDB dataset, we
did not find deeper architectures to improve performance.
In contrast, the results presented in Figure 4 suggest that
the problem is close to linearly separable for large enough
trainable embeddings, since linear models (“Shallow” and
“Linear TC”) outperform all others. The results also suggest
that a TreeConnect network is, in terms of validation perfor-
mance, closer to a single fully connected layer than to a two
layer network. This similarity becomes even more pronounced
when the non-linearity in the hidden layer of the TreeConnect
network is removed (shown as dashed line in Figure 4).

To test our claim that TreeConnect is more resilient to
initialization than other sparse architectures, we take the
“Shallow” architecture and randomly mask 45.3125% of the
weights to 0 such that the trainable parameters are in the
same range as the TreeConnect architecture’s. We train this
random sparse architecture 5 times with 5 different weight
mask and 5 times with a single weight mask kept across
training runs, always with a learning rate of 0.001. We
compare the validation accuracy achieved against 5 training
runs of the TreeConnect architecture in Figure 5. Not only does
the TreeConnect architecture outperform the random sparse
architectures, it also shows a smaller standard deviation across
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Fig. 6. Validation accuracy on CIFAR-10 when directly connecting input to
output through shallow architectures. The number in brackets is the maximal
achieved validation accuracy throughout the training.

training runs and thereby more resilience to initialization. Note
that even with the weight mask (and thereby the architecture)
fixed, the random sparse architecture still experiences a large
variation across training runs due to the random initialization
of trainable parameters.

C. CIFAR-10 Image Classification

Next, we turn our attention to a more difficult task. The
CIFAR-10 dataset [36] consists of 60,000 32x32 RGB images
from 10 different classes, split into 50,000 training and 10,000
validation samples. We chose this image classification dataset
since it allows for fast experimentation while the classification
task is complex enough to easily verify performance differ-
ences. Again, we use a standard softmax-cross-entropy loss
and train all networks described hereafter for 50 epochs.

1) Application to Pixel Space: First we focus on directly
applying the following four simple architectures between the
3,072 dimensional input and the 10 dimensional output:

• Shallow: FC10
Parameters in the network: 30,730

• Full: FC320 - FC10
Parameters in the network: 986,570

• TreeConnect: TC((64, 48 - 5) - 10)
Parameters in the network: 16,330

• Small: FC5 - FC10
Parameters in the network: 15,425

For this setup, all but the TreeConnect architecture preferred
the medium learning rate of 0.0001, while the TreeConnect
network performed best for the highest learning rate (0.001).
As can be seen from the validation accuracies in Figure 6,
this problem requires a non-linear function approximator for
reasonable performance. Also, a bottleneck in the hidden
layer (as in the “Small” architecture) hinders training severely.
However, the multiple paths from input to output in the
“Full” architecture allow for redundancy in the learned hidden
representation, which helps the training. We therefore turn our
attention to deeper architectures. More specifically:

0 10 20 30 40 50
0.3

0.35

0.4

0.45

0.5

0.55

Epoch

V
al

id
at

io
n

A
cc

ur
ac

y

Shallow (53.03%)
Full (55.98%)

TreeConnect (56.02%)
Small (45.87%)

Fig. 7. Validation accuracy on CIFAR-10 when adding a fully connected layer
to all architectures before the output. The number in brackets is the maximal
achieved validation accuracy throughout the training.

• Shallow: FC256 - FC10
Parameters in the network: 789,258

• Full: FC1024 - FC256 - FC10
Parameters in the network: 3,411,722

• TreeConnect: TC((64, 48 - 16) - 256) - FC10
Parameters in the network: 69,386

• Small: FC22 - FC54 - FC10
Parameters in the network: 69,398

Again, the “Shallow”, “Full” and “Small” architecture prefer
the medium learning rate (0.0001), while the “TreeConnect”
architecture requires the highest learning rate (0.001). Looking
at the validation accuracies in Figure 7 we can see that the
TreeConnect network followed by a fully connected layer
performs similar to a 3-layer fully connected network of equal
hidden layer dimensions, while requiring 49x less parameters.

To see whether the same performance can be achieved by
a one or two layer randomly sparse architecture, we take the
“Shallow” architecture and randomly mask 91.536% of the
weights in the first layer to 0. Further we take the “Full”
architecture and randomly mask 98.4375% of the weights in
the first layer and 93.75% of the weights in the second layer
such that the trainable parameters are in the same range as the
TreeConnect architecture’s. An initial run showed that both
new architectures perform best for the highest learning rate of
0.001. We run each architecture for 5 training runs, sampling
the weight masks for each run individually. As can be seen in
Figure 8, the variance across training runs is not as significant
anymore. This is because a path from most inputs to most
outputs is given with high probability in this setting. However,
the balanced TreeConnect architecture still outperforms the
two other sparse architectures.

2) Fully Connected Feature Extractor: Since the TreeCon-
nect architecture might introduce a small architectural prior
by grouping close pixels into channels, we next investigate
architectures with a fully connected layer to the first hidden
representation. This first layer decouples the local relations
in the input, such that the first hidden layer is unstructured.
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Similar to before, we also end all architectures with a fully
connected layer to the 10 output classes. This setup allows
us to test the proposed architecture between two unstructured
hidden representations. Further, since we do not want the
first layer to dominate the total number of parameters in the
network, we down sample the input by average pooling (P)
the images with a 4x4 kernel. The first architectures we try
with this setup are the following small architectures:

• Shallow:
P(4,4) - FC256 - FC64 - FC10
Parameters in the network: 66,506

• Full:
P(4,4) - FC256 - FC128 - FC64 - FC10
Parameters in the network: 91,210

• TreeConnect:
P(4,4) - FC256 - TC((16, 16 - 8) - 64) - FC10
Parameters in the network: 53,322

• Small:
P(4,4) - FC176 - FC88 - FC44 - FC10
Parameters in the network: 53,910

We find that all architectures perform best, in terms of
maximal achieved validation accuracy, for the highest learning
rate (0.001). We report the validation accuracy over the course
of training in Figure 9. As can be seen, all architectures
perform very similar, which might be due to the fact that even
with average pooling most network parameters (49,408) are
concentrated in the first fully connected layer.

To overcome the concentration of network parameters to the
first layer, we increase the hidden layer sizes. More precisely,
we compare the following 4 larger architectures:

• Shallow:
P(4,4) - FC16384 - FC1024 - FC10
Parameters in the network: 19,950,602
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Fig. 9. Validation accuracy over the course of training of the four small
architectures that start and end with a fully connected layer. The number in
brackets is the maximal achieved validation accuracy throughout the training.

• Full:
P(4,4) - FC16384 - FC4096 - FC1024 - FC10
Parameters in the network: 74,480,650

• TreeConnect:
P(4,4) - FC16384 - TC((128, 128 - 32) - 1024) - FC10
Parameters in the network: 3,832,842

• Small:
P(4,4) - FC3456 - FC864 - FC216 - FC10
Parameters in the network: 3,842,866

Here we find that all but the “Full” architecture require
the medium learning rate (0.0001) for the best performance,
while the “Full” architecture requires the lowest learning rate
(0.00001). The corresponding validation performances can be
seen in Figure 10. As can be seen, the TreeConnect architec-
ture performs slightly worse than all other architectures. We
believe this is due to the fact that most parameters (3,162,112
out of 3,832,842) in the TreeConnect architecture are still
concentrated in the first fully connected layer. The sparse
connections from this large layer to the output might not yield
diverse enough gradients to usefully diverge all parameters
from the random initialization fast enough. We therefore turn
our attention to a sparser, more powerful feature extractor.

3) Convolutional Feature Extractor: Since CNNs [3] are
good feature extractors that require only few parameters, we
deploy a simple CNN as first part of our network, such that
we can test our architecture on the extracted features. More
precisely, we pass the full images through 6 convolutional
layers of the following structure: 64 3x3 filters, stride 1 - 64
3x3 filters, stride 1 - 128 4x4 filters, stride 2 - 128 3x3 filters,
stride 1 - 128 3x3 filters, stride 1 - 256 4x4 filters, stride 2.
This results in a total number of 842,048 parameters in the
CNN and a output (hidden) layer dimension of 16,384. Note
that compared to fully connected layers, CNNs keep some
of the spacial structure of the input. We use the shorthand
CNN16384 to describe this 6 layer feature extractor and
compare the following architectures:
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Fig. 10. Validation accuracy over the course of training of the four larger
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The worse performance of TreeConnect is due to the unbalanced weight
distribution as explained in the main text.

• Shallow:
CNN16384 - FC256 - FC10
Parameters in the network: 5,186,762

• Full:
CNN16384 - FC2048 - FC256 - FC10
Parameters in the network: 35,073,226

• TreeConnect:
CNN16384 - TC((128, 128 - 16) - 256) - FC10
Parameters in the network: 1,289,418

For the “Small” architecture we implement two versions:
One that uses the same CNN but due to the parameter
limitation suffers from a bottle neck, and one that uses less
filters in the CNN, more precisely 8, 8, 16, 16, 16 and 32
filters. This results in the architectures:

• Bottleneck:
CNN16384 - FC18 - FC167 - FC10
Parameters in the network: 1,289,415

• Small:
CNN2048 - FC552 - FC256 - FC10
Parameters in the network: 1,290,922

Further, we test a RandomSparse architecture which is
equivalent to the “Full” architecture, but in the first and second
fully connected layer 99.22% and 93.75% of the weights are
masked to 0 such that the architecture has a similar number
of trainable weights as in the TreeConnect network. The
weight masks are re-sampled for each training run. A first
run showed that all architectures except the TreeConnect and
RandomSparse network perform best for the medium learning
rate of 0.0001, while the TreeConnect and RandomSparse
architecture perform best for the highest learning rate (0.001).
We train each architecture 5 times with the corresponding
learning rate and report the validation accuracy over the course
of training in Figure 11. Note that the TreeConnect network
outperforms all other architectures. We believe that this is due
to the following reasons:
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with a convolutional feature extractor. Each line indicates the average while
the shaded area indicates 0.2 times the standard deviation across the 5 training
runs. The number in brackets is the maximal achieved validation accuracy
throughout the training, averaged across the 5 training runs.

1) The small amount of connections within the network
regularizes the function approximation in an Occam’s
Razor [39] fashion while maintaining a high dimensional
hidden representation and a full connectivity.

2) In this setup, TreeConnect introduces a slight architec-
tural prior in that it first reduces the dimensionality of the
feature vectors extracted at each spacial location before
mixing the feature vectors of different spacial locations.

We also find that removing filters in the convolutional layers
leads to worse performance than introducing a bottleneck.

V. CONCLUSION

We presented TreeConnect, a simple sparse architecture that
guarantees a connection between all input and output neurons.
Compared to a fully connected layer, the parameters and
computations required scale as O(n1.5) as opposed to O(n2),
n being the number of input neurons. For large hidden repre-
sentations it therefore easily outperforms its fully connected
counterpart in terms of storage and computation requirements.
In our experiments we showed that it also performs similar
if not superior to its fully connected counterpart in terms
of generalization capability. We showed that in a shallow
network the full connectivity between input and output makes
it more resilient to initialization than randomly sparsifying the
network a priori. If compared after a convolutional feature
extractor on the CIFAR-10 [36] image classification task,
TreeConnect can even outperform a 2-layer fully connected
network. We further found in our experiments that sparse
and small architectures require a larger learning rate than
networks with more parameters, therefore a hyper-parameter
search should be done when comparing different architectures.
We leave it to future work to integrate the idea into recurrent
and convolutional neural network structures.
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