
Analyzing Connectivity-Based Multi-Hop Ad-hoc Positioning∗

Regina Bischoff Roger Wattenhofer

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland

E-mail: {bischoff,wattenhofer}@inf.ethz.ch

Abstract

We investigate the theoretical limits of positioning algo-
rithms. In particular, we study scenarios where the nodes do
not receive anchors directly (multi-hop) and where no phys-
ical distance or angle information whatsoever is available
(connectivity-based). Since we envision large-scale sensor
networks as an application, we are interested in fast, dis-
tributed algorithms. As such, we show that plain hop al-
gorithms are not competitive. Instead, for one-dimensional
unit disk graphs we present an optimal algorithm HS. For
two or more dimensions, we propose an algorithm GHoST

which improves upon the basic hop algorithm in theory and
in simulations.

1. Introduction

The availability of a global positioning system (GPS)
has spawned a multi-billion dollar market for positioning
with an enormous variety of transportation, industry, and
recreation applications. Apparently “knowing your posi-
tion” opens up a multiplicity of exciting possibilities. An
increasing research activity in the recent years documents
that position-awareness is also a key pervasive computing
technology – for instance for wireless ad-hoc or sensor net-
works. Especially in sensor networks positioning is indis-
pensable: Sensing the environment without attaching “co-
ordinates” to the sensed data seems unusual.

Unfortunately, not every sensor network node can be
equipped with a GPS receiver. A GPS receiver is clumsy,
heavy, and expensive – quite the opposite of a sensor node
which ought to be small, light, and cheap (“smart dust”).
Because of physical constraints a GPS receiver will remain
an order of magnitude more expensive (dimension-, weight-

∗ The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

and money-wise) than a sensor node. Moreover, GPS re-
ceivers do not function properly indoors.

Nonetheless, realistic sensor networks with positioning
information are feasible. The idea is to equip a small frac-
tion of the nodes with a GPS receiver. We call nodes that
know their position anchor nodes. Clearly an anchor node
does not necessarily need to learn its position by means of a
GPS receiver; other technologies are as welcome, one might
even consider keeping an anchor node immobile at all times
and hard-code the anchors’ position into its ROM at deploy-
ment.

Since only a small fraction of nodes are anchors, most
sensor nodes remain small, light, cheap, and – “dumb.” A
dumb node must learn its (approximate) position with the
help of the anchor nodes, and the other nodes.

In this paper we study the problem where most dumb
nodes do not receive the signal of any anchor node directly.
Instead a dumb node must learn its position through multi-
hop paths of other dumb nodes to anchor nodes. We allow
the dumb sensor nodes to be truly cost-effective: A node can
neither learn distance from nor direction to a direct neigh-
bor, not even approximately. By means of beacon signals,
nodes can solely derive connectivity information. In other
words, receiving a neighbor’s signal a node can merely con-
clude that the neighbor is closer than the maximum trans-
mission radius. We name this model “connectivity-based
multi-hop.” We believe that this most closely resembles re-
alistic situations where questions of cost and even accessi-
bility dominate the design.

To our knowledge, all previous positioning algorithms
for the connectivity-based model build their estimations
upon hops. A dumb node computes the number of hops to
several anchor nodes, and then uses the set of tuples (coor-
dinate of anchor, hops to anchor) to approximate its posi-
tion. Some algorithms iterate this process to improve their
position approximations.

In this paper we show that algorithms based exclusively
on the number of hops do not approximate positions well.
In fact, already for a simplified pet environment where all
nodes lie on a straight line (e.g. a highway), such algorithms

will generate larger than necessary errors. Surprisingly, a
simple positioning algorithm we call HS (which stands for
Hop-Skip) that has the same asymptotic time complexity as
the basic hop-based algorithm will guess a position opti-
mally in one dimension.

The analysis of the hop-based algorithm and the HS al-
gorithm – and the lessons learned – enable us to devise a
new algorithm GHoST for multiple dimensions which im-
proves upon the hop-based algorithms.

The paper is organized as follows. In Section 2 we
overview related work. In Section 3 we present a formal
model for our analysis. In Sections 4, 5, and 6 we study
three different positioning algorithms. We first look at a
simple hop-based algorithm HOP that will serve as a basis
of comparison for the efficiency of the more complex algo-
rithms. Most importantly, we prove in Section 4.3 that HOP

is not optimal. We go on to outline an optimal algorithm HS

for one-dimensional unit disk graphs in Section 5. Our tour
of positioning algorithms ends in Section 6 with GHoST,
a general two-dimensional algorithm which improves upon
HOP. In Section 7 we conclude the paper.

2. Related Work

The Global Positioning System (GPS) was proposed by
the US Navy in the 1960’s; the first working prototype was
deployed in 1978 [6].1

GPS is the most successful example of a single-hop po-
sitioning system. In a single-hop positioning system, a node
receives the signals of several anchor nodes directly. A GPS
receiver computes its position by means of the Time [Differ-
ence] of Arrival (T[D]OA) technology, where distance-to-
anchor information is deduced through the time of a signal
propagation. Other single-hop positioning systems use the
Received Signal Strength Indicator (RSSI), or the Angle Of
Arrival (AOA) method. For an example of the RSSI method,
see [1]; for an example of the AOA method, see [13].

In this paper we study multi-hop positioning systems,
that is, systems where nodes typically do not receive the an-
chor nodes’ signals directly. Given the influence of single-
hop positioning systems, it is not surprising that the first
multi-hop proposals tried to adapt the single-hop technolo-
gies. T[D]OA, RSSI, and/or AOA information is collected
and then the position of each node is computed using trian-
gulation [2, 4, 17].

A number of (almost) connectivity-based solutions have
been proposed as well. One of the simplest and earliest is
DV-Hop [14] (as part of a system known as APS [12]). A
node determines how many hops away it is from an an-
chor node. The anchor nodes compute their hops to other

1 The first GPS receiver for civil use cost $150k in 1984 and required
two people to carry it.

anchors as well and use a simple formula to determine the
average hop length (i.e. a hop length is estimated as 0.86 in-
stead of 1). The anchors then broadcast this information.
Having such distance estimates from sufficiently many an-
chors a node locally performs a least square method calcu-
lation to determine its position (as it is done in GPS). In
APS, additional possibilities for the first distance estimates
are suggested which are not connectivity-based. It is, there-
fore, possible to use the ideas and methods of anchor dis-
tance estimation of this paper and combine them with trian-
gulation methods such as in APS.

A method similar to APS has been suggested in [11]. It
first determines the hop distance (called gradient) to the an-
chors (called seeds) and – as a function of the average node
density – calculates the average actual hop distance to an
anchor by the Kleinrock-Silvester formula [8]. Observe that
knowledge of the global average node density (measured as
the number of nodes per unit disk) is critical to this algo-
rithm’s performance and needs to be calculated and propa-
gated separately.

Simulation results in [12] and [11] show that these al-
gorithms (in their connectivity-based variants) only per-
form well under high-density conditions: APS with DV-Hop
needs more than 20% of the nodes to be anchors to stabi-
lize at an average error of about 30% of the radio range and
no data is available for less than 5% of anchors; the algo-
rithm in [11] needs a node density of more than 15 nodes
per disk but already stabilizes at about 8% to 10% of an-
chors.

A recent proposal by He et al [5], dubbed “range-free,”
determines whether a node lies inside or outside of the trian-
gles formed by all 3-tuples of anchors (called “APIT test”).
This creates an area of possible locations for the node in
which the center of gravity is chosen. In order to perform
the APIT test, however, information about the relative dis-
tances of anchors to the nodes is necessary (i.e. whether one
anchor, in a certain general direction, is closer to a node
than another anchor). Thus it does not fit our criteria for
connectivity-based algorithms although it does have less re-
quirements on the physical capabilities of nodes. Addition-
ally, anchor signals need to be received directly, thus [5] is
a single-hop positioning system.

Another hop-based approach [16] contains the key con-
cept of refinement. Among other heuristics, the main idea
is to iterate the position estimation process: Once the nodes
have an estimate of their positions along with a confidence
interval, information is exchanged again to recompute es-
timates. The drawback of such an iteration is that it is far
more time consuming and it is not clear how many iterations
need to be performed until a desired accuracy is achieved.

The most significant difference of our approach to all
related work is that we try to ascertain theoretical lower
bounds for connectivity-based algorithms independent of

any random distribution assumptions. We also aim for fast
and effective algorithms that achieve those lower bounds in
any scenario by comparing to an omniscient optimal algo-
rithm. Additionally, as will be evident in Section 6, the al-
gorithm presented can easily incorporate exact (or good es-
timates of) distances.

A distinguished application on top of a positioning al-
gorithm is geo-routing (a.k.a. geometric, geographic, loca-
tion, or position-based routing). A geo-routing algorithm
needs all nodes to know their coordinates (by means of a
GPS, or a local positioning algorithm). The coordinates are
then used to route messages towards their destinations in
lieu of routing tables. Early proposals of geo-routing date
back twenty years [19]. The first efficient geo-routing al-
gorithm was GFG/GPSR [3, 7], and the currently best geo-
routing algorithm is GOAFR+ [9, 10]. As noticed by sev-
eral researchers independently [15, 18] it is not essential to
have anchor nodes at all. Without anchor nodes available,
all nodes get assigned “virtual coordinates” that reflect the
graph topology well. Again, these coordinates will be used
to run any geo-routing algorithm. Although not mentioned
explicitly in the remainder of the paper, our results also (par-
tially) apply to computing virtual coordinates.

3. Model

In our paper we model a given physical sensor/ad-hoc
network as a graph. A graph G = (V, E) is a set of nodes
V (representing the nodes of the network) and a set of edges
E, connecting the nodes; there is an edge between two
nodes u and v if and only if the nodes u and v are within
mutual transmission range.

We study Euclidean graphs, that is, graphs where each
node has a coordinate in d-dimensional space. More for-
mally, a d-dimensional embedding of G is a coordinate
function coord : V → �

d on the nodes. Throughout
the paper we make the standard assumption that the trans-
mission range of each node is 1 (by scaling the coor-
dinate system). A graph G is a unit disk graph (UDG)
if it has an embedding such that the Euclidean distance
distE(coord(v), coord(u)) ≤ 1 ⇔ {v, u} ∈ E. In the pa-
per, we consider the coordinate embedding as given (but in-
visible to a positioning algorithm).

Apart from the Euclidean distance distE(·) between two
points in

�
d , there is a distance in graphs independent

of any embedding. A hop between u, v ∈ V is an edge
e = {u, v} ∈ E in a graph G = (V, E). A path of length
k is a sequence P = v0v1 . . . vk where vi 6= vj for i 6= j
and {vi, vi+1} ∈ E for 0 ≤ i < k. The graph distance
distG(u, v) between two nodes u, v ∈ V is the length of a
shortest path between u and v in G.

The distinction between graph and Euclidean distance is
crucial in the sense that the physical network and any al-

gorithm operating on it see only the graph distances from
which they try to ascertain the actual Euclidean distances
between nodes. The problem we study can thus be formal-
ized as follows.

Problem 3.1 Given a graph G with an unknown embed-
ding coord as a UDG, the problem of absolute positioning
is for the nodes V to compute an embedding pos such that
distE(coord(v), pos(v)) is minimized ∀v ∈ V . A subset of
nodes Anchors ⊂ V are called anchor nodes. A node A ∈
Anchors knows its position, that is pos(A) = coord(A).
The error of an algorithm for a node v is ErrorALG (v) =
distE(coord(v), pos(v)). The maximum error is then

MaxErrALG(v) = max
coord

ErrorALG (v)

ranging over all possible embeddings of G.

We are studying distributed algorithms according to the
following (standard) model. When a node v transmits a
message (pseudo code “transmit msg”), all the neighbors
of v (denoted by N(v) = {u | {u, v} ∈ E}) will eventu-
ally receive the message.

In a synchronous setting, communication is modeled as
proceeding in rounds: In one round, all messages from the
previous round are received, processed, and new messages
transmitted. Since the real world does not always obey the
rules of synchrony, we also study the asynchronous model,
where the delay of a message is finite, but potentially un-
bounded. All the algorithms presented in the paper also be-
have correctly in an asynchronous setting.

Besides the error of a positioning algorithm, defined in
Problem 3.1, we study the standard distributed computing
costs, that is, message and time complexity. The message
complexity counts the number of messages transmitted by
the nodes over an edge. In the synchronous model, the time
complexity counts the units of time that passed from the
start of the algorithm until the nodes have computed their
position. In the asynchronous model, the time complexity is
defined likewise, with the assumption that all messages in-
cur at most a delay of one time unit.

4. The HOP Algorithm

4.1. General Outline of Algorithms

The positioning algorithms we consider in this paper
consist of two parts: the gathering of connectivity informa-
tion and a local calculation that computes the position based
on that. Roughly speaking, the graph information collected
at v outlines an interval of possible positions for v and our
algorithms take the center of that interval for pos(v) in the
sense that it minimizes MaxErr(v). The main difference
then lies in the information gathering phase. In this section,
we will examine a first and simple such algorithm.

In our algorithm analysis, we will frequently make use
of the set of nodes which are a given graph distance away
from an anchor node.

Definition 4.1 The set of graph distance-h nodes Dh(A)
for a node A ∈ V is

Dh(A) = {v ∈ V | distG(A, v) = h} .

Typically, A will be an anchor node and, when it is clear
from context, we will write Dh.

4.2. The HOP Algorithm

Algorithm 1 A simple hop-counting algorithm HOP at each
node v

1: hops := ∞;
2: upon receipt of (pos(A),h)
3: if (h < hops) then
4: hops := h
5: transmit (pos(A),h+1)
6: end if

The HOP algorithm is described in Algorithm 1. Initially,
an anchor node A transmits the message (pos(A),1).

Lemma 4.2 The HOP algorithm finds the graph distance h
from an anchor node A to a node v in time h.

Lemma 4.3 In the asynchronous model, the HOP algorithm
has message complexity 2n−1 for an edge e, where n is the
number of nodes in the graph. In the synchronous model,
message complexity is 2.

The interval for a node v at graph distance h from an-
chor A is then bounded by h/2 < distE(A, v) ≤ h in one
dimension and the position is reconstructed from the mid-
point of the intersection of all such intervals. We will post-
pone the discussion of higher-dimensional “mid-points” to
Section 6.

4.3. Competitive Analysis of HOP

We want to compare the HOP algorithm to an optimal
one. Let us first define optimality.

Definition 4.4 An optimal algorithm OPT is one which
knows the entire combinatorial structure of the graph G =
(V, E) and then chooses the position in order to minimize
the maximal possible error. The competitive ratio of a posi-
tioning algorithm ALG is c if

MaxErrALG(v) ≤ c · MaxErrOPT(v) + k

for all v ∈ V and some constant k. We say that ALG is c-
competitive.

Lemma 4.5 The HOP algorithm is not competitive.

Proof: Let dAB = d be the Euclidean distance be-
tween anchors A and B. We will construct an example
where HOP’s error is about d/6 for a node v and an opti-
mal algorithm can determine v’s position within one unit.

Consider a unit disk graph G as in Figure 1. Let h be
the graph distance of a node v to both A and B. Suppose
G has n = 3h − 1 nodes. There are h nodes that form
the only shortest path from A to v (excluding v), we call
them x0 = A, x1, . . . , xh−1; there are h nodes from B
to v, y0 = B, y1, . . . , yh−1; and there are h − 1 nodes
z1, . . . , zh−2, zh−1 = v for which N(zi) = {xi, xi+1}
(for i = 1, . . . , h − 2), N(v) = {xh−1, yh−1}, and zi ∈
Di+1(A). Setting coord(A) = 0, the actual coordinates are

coord(xi) = i coord(yi) = d − (1

2
+ ε)i

coord(zi) = i(1 + ε) coord(v) = (h − 1)(1 + ε)

for some arbitrarily small ε with 1

h−1
> ε > 0. This gives

d = (h − 1)(1 + ε) + h(1

2
+ ε) = 3

2
h + ((h − 1)ε − 1).

The HOP (and also DV-Hop) algorithms will receive the
information (0,h) about A and (d,h) about B. By the
symmetry of the hop information, any hop-based algorithm
will put pos(v) = d/2 = 3

4
h + 1

2
((h − 1)ε − 1). The error

for v is ErrorHOP(v) = h
4

+ 1

2
((h−1)ε−1) or almost d/6.

An optimal algorithm will be able to deduce from the
connectivity information that distE(zi, zi+1) > 1 and there-
fore distE(z1, zh−1) = distE(z1, v) > h − 2. Since
A /∈ N(z1), the optimal algorithm can conclude that
distE(A, v) > h − 1. Thus ErrorOPT(v) < (h − 1)ε � 1
and

ErrorHOP(v) >
h

4
+

1

2
ErrorOPT (v) − 1

2

>
(h

4
+

1

2

)

ErrorOPT(v) − 1

2

which is unbounded as h → ∞.
Note that although the counter example against HOP is

one-dimensional, the non-competitiveness of HOP holds for
all dimensions.

5. The HS Algorithm

In this section, we will examine strictly one-dimensional
unit disk graphs. The reason being that we are interested
in tight lower bounds for the accuracy of positioning al-
gorithms in any situation. Understanding these worst-case
scenarios will help us devise better algorithms for “normal”
(i.e. average) scenarios.

5.1. Preliminaries

In order to improve the naive algorithm based on the
above observations, we will introduce the notion of a skip.

1

A B
zi

xi yi

1 + ε

v

1

2
+ ε

Figure 1. Instance of a UDG G where the HOP algorithm is significantly outperformed by an optimal
algorithm.

Definition 5.1 [Skip] For a graph G = (V, E), two nodes
u, w ∈ V form a skip if {u, w} /∈ E and ∃v such that
{u, v}, {v, w} ∈ E.

Definition 5.2 [Skip Distance] A sequence of nodes SP =
v0v1 . . . vk is a skip path of length k if

(i) {vi, vj} /∈ E for all i 6= j and distG(v0, vi) <
distG(v0, vi+1) and

(ii) ∃ui such that P = v0u1v1 . . . ukvk is a path.

The length of the longest skip path between u, v ∈ V is the
skip distance distS(u, v) between u and v.

5.2. Algorithm

Algorithm 2 The HS algorithm at each node v

1: hops := ∞; skips := −1
2: upon receipt of (pos(A),h)◦(u,s) from x do
3: if h = hops+1 then
4: if u = x then
5: transmit (pos(A),h)◦(u,s)
6: else if u /∈ N(v) and s+1 ≥ skips then
7: transmit (pos(A),h)◦(v,s+1)
8: skips := s+1
9: end if

10: else if h < hops or (h = hops and
((u ∈ N(v) and s ≥ skips) or

(u /∈ N(v) and s+1 ≥ skips))) then
11: hops := h
12: if u ∈ N(v) then
13: transmit (pos(A),h+1)◦(u,s)
14: skips := s
15: else
16: transmit (pos(A),h+1)◦(v,s+1)
17: skips := s+1
18: end if
19: end if

The HS algorithm is depicted in Algorithm 2.
Initially, an anchor node A transmits the message
(pos(A),1)◦(A,0).

Theorem 5.3 In one dimension, the HS algorithm finds the
graph and skip distances, h and s, respectively, from an an-
chor node A to a node v.

Proof: Observe that the basic structure of Algorithm 1
is kept (Lines 1-2, 10-11, 5, 7, 13, 16) and merely aug-
mented to include skip information.

To prove the correctness of the skip distance, we will
use induction on the number of hops h as well. We claim
that a node v at distance h and skip distance s will eventu-
ally know its correct hop and skip count. As in Lemma 4.2
we know that all D1 nodes will eventually hear the mes-
sage from A, setting their skip count to 0.

Going from h − 1 → h, we assume that all Dh−1

nodes will know their correct distance and skip distance.
By Lemma 4.2, we know that then the Dh nodes will learn
their distance as well. Based on that, we claim that the Dh

nodes will obtain their correct skip distance. There are two
things we need to show: (i) that s will not be erroneously
too large and (ii) that it will be as large as it is supposed to
be.

First, observe that we can ignore all skips values before
the time that a node receives the correct hops value since
at that point skips is set to the sent value (Lines 14 and
17). Since we know that the nodes in Dh−1 and Dh eventu-
ally obtain their correct distances, we will consider only the
messages sent after that point.

The problem with (i) is that we need to show that a valid
skip counter cannot travel away from A and then back to-
wards it, illegally incrementing itself in the process. Line 10
prevents v from even considering messages from nodes with
equal or higher hop count. Line 3 allows messages from
same-hop nodes. Observe that all nodes in Dh are neigh-
bors, otherwise they would be farther or closer away from
A. We have to distinguish the two possibilities in the if state-
ment. If v forwards the message in Line 5, then any re-
ceivers in Dh will ignore the message (since v 6= u) and
only the legitimate receivers in Dh+1 consider it. If, on the
other hand, v has updated its counter (legally, since u is at
distance < h) (Lines 7, 8) and subsequently another node
w ∈ Dh has picked it up, then we are back at Line 5 and
all the next nodes in Dh will drop it. Observe that this also
guarantees the termination of the algorithm, since eventu-
ally all lesser-hop nodes will have sent off their messages

and same-hop nodes will ignore irrelevant information af-
ter two passes.

We turn to resolving issue (ii). Say v’s skip distance is
in fact s. There are necessarily two more nodes involved,
namely, u /∈ N(v) at skip distance s − 1 and a node w
between them. In order for v to have skip distance s, all
such u’s must at some point send out msg1 = (u,s-1) or
msg2 = (x,s-1) (or both) (Lines 6, 10 guarantee that
they pass on this information even if their skips counter
is already set correctly). By virtue of v being at skip dis-
tance s, either there is a msg1 which w will pass on (Line
5 or 13) as it is (since u ∈ N(w)) and v updates skips
(Line 8 or 17); or there is a msg2 and x /∈ N(w), upon
which w sends (w,s) in Line 7 or 16. Observe that if w is
also in Dh, then v will not set its counter in Line 5 (to pre-
vent higher skip distance neighbors from wrongly influenc-
ing it). In that case, however, we encounter the last possibil-
ity: v must have some node z ∈ Dh−1 as a neighbor (since
v’s true skip distance is in fact s), which will also have heard
msg2 (since w ∈ Dh node already did) and – if z has not in-
cremented the counter – passed it on to v, at which point it
will correctly be in Line 17 and update its counters (since
now x /∈ N(v) given that x /∈ N(w)). This corresponds
to having z as the intermediary node with x ∈ N(z) but
x /∈ N(v).

The following theorem indicates that the time complex-
ity for the improved HS algorithm has not increased signifi-
cantly over the simple HOP algorithm.

Theorem 5.4 After time O(h), a node v at distance h has
received a message with the correct hop and skip count
in the one-dimensional HS algorithm. In an asynchronous
model, for any edge e, the maximum number of messages ex-
changed on e is O(n + sp), where n is the number of nodes
and sp the number of shortest paths from A to v. In a syn-
chronous model, message complexity is in O(1) but with in-
creased message size by a factor of sp.

The interval for v is now bounded by s < distE(A, v) ≤
h and the position is again computed as the mid-point of the
intersection of all such intervals.

5.3. Competitive Analysis of HS

We want to show that an optimal algorithm cannot per-
form substantially better than an algorithm which only
knows the graph and skip distances h and s, respectively.
Specifically, we will prove that our positioning algorithm is
optimal (1-competitive) up to a small additive constant. As
a stepping stone for the main proof we first study the case
of one anchor node.

Lemma 5.5 Take a one-dimensional unit disk graph. As-
sume there is only one anchor node and all nodes know they

are to its right. For the position of a node v as determined
by the HS algorithm, we have

MaxErr(posHS(v)) ≤ MaxErr(posOPT (v)) + ε

for all v and any ε > 0.

On our way to prove the main theorem of this section,
we will need the following two lemmas.

Lemma 5.6 If a node v is distance h from an anchor node
A at 0, then it is possible to construct a one-dimensional
UDG based on G = (V, E) such that pos(v) = h − ε for
some arbitrarily small ε > 0.

Proof: Let the origin of our one-dimensional coordi-
nate axis be at A (i.e. coord(A) = 0), increasing to the
right. Consider stretching the graph G to its maximum pos-
sible position at v. We will use induction on the number
of hops h from the anchor node A at pos(A) = 0 to v.
Let Dh = {vh

0 , . . . , vh
nh

}. Let the ordering be such that, in
their actual positions, we have (setting v = coord(v) for
readability) vh

nh
≤ · · · ≤ vh

1 ≤ vh
0 , (i.e. vh

0 is the right-
most node in Dh). Observe that all nodes in Dh are neigh-
bors, otherwise they would have a different distance to A.
Furthermore, we can identify (the positions of) vh

i with vh
j

if N(vh
i) = N(vh

j) since they are indistinguishable from
the combinatorial point of view. Renamed and relabeled, we
have vh

nh
< · · · < vh

1 < vh
0 .

For h = 1 place the n1 (different) nodes at positions
pos(v1

i) = 1 − i · ε for some sufficiently small 1 � ε > 0
(i.e. εi,1 = i · ε). Then εi,1 − εi+1,1 = ε.

Assume now that we have placed all nodes within h −
1 hops such that pos(vh−1

i) = (h − 1) − εi,h−1. For each
of the vh

i we consider the maximal (leftmost) j for which
vh−1

j ∈ N(vh
i). Now put

pos(vh
i) = pos(vh−1

j) + 1 = h − εj,h−1 (1)

and set εi,h = εj,h−1. It remains to be shown that all the
neighbors of node v = vh

i in G are within distance 1 (and
only those). Note that |vh

i − vh
l | = |εi,h − εl,h| < 1 (since

we chose the initial ε’s sufficiently small). For neighbors in
Dh−1, we have

∆l = pos(v) − pos(vh−1

l) = 1 − (j − l)ε

with ∆l ≤ 1 for vh−1

l ∈ N(v) (l ≤ j) and ∆l > 1 for
vh−1

l /∈ N(v) (l > j).

Lemma 5.7 If a node v has skip distance s from an an-
chor node A at 0, then it is possible to construct a one-
dimensional UDG based on G = (V, E) such that pos(v) =
s + ε for some arbitrarily small ε > 0.

Proof: We will again proceed by induction, this time
on the number of skips s. The notation is adapted from the

proof of Lemma 5.6, i.e. vh
0 > vh

1 > · · · > vh
nh

represent
the different nodes at h hops. Recall that all vh

i are neigh-
bors for the same h. Analogously, let ws

0 > ws
1 > · · · >

ws
ns

represent the different nodes at s skips. Observe that
their hop counts differ by at most one, and they are all neigh-
bors as well. (Otherwise there would be a skip from ws

ns
to

ws
0.)
Apart from A, all v1

i = w0
i and we can place them at

pos(v1
i) = (n1 − i + 1)ε and εi,0 − εi+1,0 = ε. Again, for

a sufficiently small 0 < ε � 1, all nodes are within Eu-
clidean distance 1.

By induction hypothesis, we have that pos(ws−1

i) =
(s − 1) + εi,s−1, where εi,s−1 − εi+1,s−1 = ε. By def-
inition, every ws

i has a minimal (rightmost) j for which
ws−1

j /∈ N(ws
i). Thus we set

pos(ws
i) = pos(ws−1

j) + 1 + δ = s + (εj,s−1 + δ) (2)

for some 0 < δ < ε and we will argue that we can sat-
isfy all the neighboring requirements for w = ws

i . First, all
nodes in N(w) are within one Euclidean unit: |pos(ws

i) −
pos(ws

l)| = |εi,s − εl,s| < 1 and the remaining nodes we
have again

∆l = pos(w) − pos(ws−1

l)

= 1 − (εj,s−1 − εl,s−1) + δ

= 1 − (j − l)ε + δ

such that ∆l < 1 for ws−1

l ∈ N(w) (l < j) and ∆l > 1 for
ws−1

l /∈ N(w) (l ≥ j).
We are now ready for the proof of Lemma 5.5.

Proof: [of Lemma 5.5] Given the knowledge of the en-
tire graph structure G = (V, E), we can construct two in-
stances of a UDG(G) where v’s true position is h−ε1 at the
maximum and s + ε2 at the minimum (εi > 0). Therefore,
the optimal algorithm cannot distinguish between these ex-
tremes and is thus forced to return pos(v) ≈ h−s

2
which is

the position returned by HS who knows only h and s.

Theorem 5.8 HS is optimal in one dimension up to an ad-
ditive constant.

Proof: What remains to be shown is that the above
ideas still hold when there are several anchors present.

A first and basic observation is that, by varying the ε’s
and δ’s in Eqs. (1) and (2), we can place the nodes of a UDG
G such that v is anywhere within its interval I = [L, R],
where L and R denote the left and right borders, respec-
tively.

The second observation is that we can only lose a con-
stant of at most 1 whenever there are anchors on both sides
of v. In Lemma 5.5, we had considered the case of an
anchor A to the left of v. If we place another anchor B
to v’s right, then we need to observe what happens when
the two subgraphs “come together.” Let the actual order of

nodes from left to right be A, u1, . . . , ul, v, wr , . . . , w1, B,
then the previous lemmas are applicable to the subgraphs of
VA = {A, u1, . . . , ul, v} and VB = {v, wr, . . . , w1, B} in-
dependently (since they have no nodes in common except
for v). The only problem that may occur is with nodes ui

and wj which are within one hop of v. In this case, it could
be that some of the ui’s are connected (or not connected) to
the closer of the wj , so that there needs to be a minor adjust-
ment in v’s position as well. Since this independence of the
subgraphs is only violated at those nodes which are within
one unit of the opposite subgraph, there will be an adjust-
ment of at most one unit. Since this happens locally in v’s
neighborhood, one could improve HS so as to elminate this
potential adjustment.

The third claim is that multiple anchors to one side
can again only shrink the interval by another additive con-
stant of at most 1. To prove this, we will consider anchors
pos(A1) > . . . > pos(Al) to the left of v, where again the
coordinates increase to the right. Let hi = distG(Ai, v) and
si = distS(Ai, v). Set

Li = Ai + si Ri = Ai + hi

then the left and right boundaries of v’s interval are

L = max
i

Li R = min
i

Ri

respectively. We claim that L1 and R1 are already good ap-
proximations of L and R (up to one unit). For the right
boundary, consider the distances di = distE(Ai, A1) and
gi = distG(Ai, A1). Then

Ri ≥ Ai + gi + h1 − 1

= (A1 + h1) + gi − di
︸ ︷︷ ︸

≥0

−1

≥ R1 − 1

for all i > 1. The last inequality stems from the fact that
the number of hops between two nodes is always an upper
bound on their Euclidean distance. The −1 in the first in-
equality is due to the fact that all shortest paths from Ai to
v might not go through A1 and would therefore be one hop
less than if we take a detour through A1.

The case for the left boundary is similar. Here, let ti =
distS(Ai, A1). Then

Li ≤ Ai = ti + s1 + 1

= (A1 + s1) + ti − di
︸ ︷︷ ︸

≤0

+1

≤ R1 + 1

for all i > 1. Again, the skip distance is a lower bound on
the actual distance and there might be a shorter path circum-
venting A1. Altogether, the interval bounds on each side can

be decreased by at most 1 on each side, thereby increasing
the maximum error of HS by at most 1.

Putting these three observations together, we can con-
clude that the interval of HS compared to that of an optimal
algorithm is bigger by at most 2, proving the main theo-
rem.

6. The GHoST Algorithm

We now move on to higher dimensions. From Section 4.3
we know that we have to do more than the simple HOP al-
gorithm in order to approach optimal position estimates.
Moreover, HS does not apply directly, because in two or
more dimensions, the minimum Euclidean distance for two
nodes separated by h hops is not h/2 anymore but merely
1, even for maximal skip distance.

Another issue is the construction of the “mid-point” of
the interval intersections in two or more dimensions. Since
we are studying the worst case, we want to find the point
such that the maximum error is minimized. Going back to
one dimension, one can consider the mid-point of a line seg-
ment as the center of the circle with the segement as its di-
ameter. Similarly, in two dimensions, we can (locally) find
the circle of minimal radius which encloses all points in
the intersection. The center of that circle is then the point
with least maximum distance to any other point in the area.
In d dimensions, we find the smallest enclosing (d − 1)-
dimensional sphere.

6.1. Lessons Learned from One Dimension

The crucial insight of the 1-dimensional optimal HS al-
gorithm was that there exist certain local structures in the
unit disk graph (e.g. a skip) from which we can impose
an upper or lower bound on the actual length of a hop. We
will now survey some of these local structures. They can be
classified into stretchers and trimmers. Stretchers and trim-
mers enforce a minimal and maximal length, respectively,
on hops. For example, the skip was a stretcher in one di-
mension; enough to produce an optimal algorithm. In two
dimensions, we have identified several trimmers:

• T0 – a trimmer that considers hop paths of length 2.
Let Pv = uvw and Px = uxw be shortest paths from
u to w. If {v, x} /∈ E, distE(u, w) ≤

√
3. See Fig-

ure 2.

• Tk – a generalization of T0: There are two shortest
paths Pv = uv0 . . . vkw and Px = ux0 . . . xkw con-
necting u and v with {v0, x0}, {vk, xk} /∈ E. For the
remaining nodes, it is irrelevant whether {vi, xi} is an
edge for 0 < i < k, but {vi, xj} /∈ E for i 6= j. Then
distE(u, v) ≤ k +

√
3 as opposed to k + 2.

wu

x

v

> 1

> 1

≤ 1

Figure 2. A trimmer for the path from u to w
(and from x to v). The dashed lines indicate
that there is no connection. With a simple
geometric argument one can impose a maxi-
mum length on the distance of u to w.

• MTk1,k2
– a trimmer resulting from the merging of

two paths from two different anchors. As an exemplary
case, consider two paths from anchors A1 and A2 that
merge after just one hop at node m (MT1,1). Ignor-
ing for the moment a constant adjustment (in the or-
der of one unit), if the graph distance from the Ai to a
node v is h, then distE(Ai, v) ≤

√

1 + (h − 1)2 =
√

h2 − 2(h − 1) < h. The constant adjustment ac-
counts for the possibility of m being in the opposite di-
rection of v with respect to the Ai. An analogous case
can be made if the paths merge at m after k1 hops from
A1 and k2 hops from A2.

6.2. The Algorithm

Based on the arguments of Section 6.1, we can formu-
late a General Hop Stretcher-Trimmer algorithm (GHoST).
The idea is that nodes examine their local neighborhoods –
the details depend on which structures are considered – to
extract the necessary information about existing trimmers
and stretchers. When a node v receives a message with a
shortest hop path from an anchor A, then it can incorporate
its trimmer (stretcher) information and compute a path with
maximum (minimum) actual length that is shorter (longer)
than that of the received path. In some cases, other local
structures might require more information such as includ-
ing paths other than the shortest. In practice, one will have
to make a trade-off between the efficacy of a configuration
and the expense of its computation.

The affects of GHoST to time and message complexity
are similar to those of HS. Let node v be h hops from an-
chor A. Once the nodes in Dh−1 obtained their correct paths
of length h − 1, they send it on to nodes in Dh. In one
time unit, v receives all those transmissions from neighbor-
ing nodes u in Dh−1 and the tuples (u, Pu) will constitute
(the necessary information about) all shortest paths to v. For
message complexity, in the worst case a node has to receive
all the information about shortest paths separately over the
same link.

Observe that GHoST is actually more of a framework
for positioning algorithms. The concrete algorithm is deter-
mined by which stretchers and trimmers are used. If struc-
tures are used which have provable bounds on the path
lengths, such as Tk or MTk1,k2

, then the algorithm inher-
its these bounds and the maximum error is equal to or less
than without them. On the other hand, if we use heuris-
tic structures, then the resulting algorithm cannot provide
worst-case guarantees anymore.

Another side effect of such a framework is that good dis-
tance bounds – obtained from physical measurements – can
easily be integrated into GHoST: Instead of (or in addition
to) computing the local structures resulting in the lower and
upper bounds hl and hu for a hop in the graph, the distance
estimate can give us these values directly.

Altogether, with the remarks of this section, we can con-
clude the following.

Theorem 6.1 In two dimensions, the GHoST algorithm im-
plemented with trimmers Tk has less or equal MaxErr(v)
as HOP (for all nodes v) and has the same time complex-
ity O(h) as HOP (where h is the graph distance from an an-
chor node to the node in question).

6.3. Simulation

Figure 3. The visualization of the GHoST algo-
rithm. The intersection of circles in the center
is the area of all possible positions as calcu-
lated by the algorithm. The center of the cir-
cle (marked by the arrow) is chosen as the
computed position which minimizes the max-
imum error.

The trimmers of Section 6.1 apply to any unit disk graph
and therefore cannot increase the maximum error in rela-

tion to HOP. When no trimmers are present, then GHoST re-
duces to HOP. We want to investigate under what conditions
the effect of local structures improve GHoST’s accuracy.

In our simulations, we have implemented the simple HOP

algorithm as described in Section 4.2 and the GHoST algo-
rithm with the trimmer T0 only. A screen-shot of the visual
part of the application can be seen in Figure 3. Our testing
environment consists of an area of 20 by 20 units. We test
random graphs for node densities (measured in the num-
ber of nodes per unit disk) ranging from 12 to 30 and an-
chor densities from 0.5 up to 10 percent of the nodes (cre-
ating up to almost 4000 hosts). For each combination we
collect 300 position estimates along with the error for both
HOP and GHoST.

Since we are interested in the influence of T0 on HOP,
we calculate the average relative errors of GHoST to HOP

in Figure 4. The absolute errors of GHoST can also be seen
in Figure 4 on the right. The relative error is taken for each
estimate separately instead of over the total average errors
in order to gain a better understanding of how effective the
trimmers are in individual situations. We see that GHoST im-
proves the position estimate even in very low density (node
and anchor) as well as in very high density situations. The
most significant improvements can be seen for modest an-
chor densities (around 2.5%) and fairly high node densities
(around 27).

7. Conclusions

Our goal is to understand the fundamentals of position-
ing, without relying on heuristics. For a simplified one-
dimensional model, we manage to present an algorithm
which solves positioning optimally. In contrast, we show
that the computationally equivalent hop-based algorithm
does not render competitive results.

In the second part of the paper, we showed how to apply
the underlying ideas from the optimal one-dimensional al-
gorithm to improve hop-based algorithms. Our main focus
was on fast distributed algorithms with worst-case guaran-
tees. The simulations then show that such a worst-case ap-
proach also yields promising improvements in average sce-
narios as well. In addition, GHoST can be substituted into
more sophisticated algorithms where now only a hop-based
approach is used.

Acknowledgements

We would like to thank Aaron Zollinger for providing
the framework for the simulations in Section 6.3. The au-
thors are also grateful to Sajal Das for his helpful review
comments.

0.5

2.5

4.5

6.5

8.5

10.5

12

18

24

30

0%

5%

10%

15%

20%

25%

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Anchor Densitity (%)

Node Density

(nodes per

unit disk)

0.5

2.5

4.5

6.5

8.5

10.5

12

18

24

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 E
rr

or

Anchor Density (%)

Node Density

(nodes per

unit disk)

Figure 4. The graph on the left shows the improvement of GHoST over hops in the depcited anchor
and node density ranges. The graph on the right shows the absolute errors of GHoST (in units of the
radio range).

References

[1] P. Bahl and V. N. Padmanabhan. RADAR: An in-building
RF-based user location and tracking system. In Proc. of Joint
Conference of the IEEE Computer and Communications So-
cieties (INFOCOM), 2000.

[2] J. Beutel. Geolocation in a pico radio environment. Master’s
thesis, ETH Zurich, EE Laboratory, Dec. 1999.

[3] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks. In
Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIAL-M), 1999.

[4] S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free position-
ing in mobile ad-hoc networks. In Proc. of Hawaii Interna-
tional Conference on System Sciences (HICSS), 2001.

[5] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher.
Range-free localization schemes in large scale sensor net-
works. In Proc. of Mobile Computing and Networking (MO-
BICOM), 2003.

[6] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins.
Global Positioning Systems: Theory and Practice. Springer,
5th edition, 2001.

[7] B. Karp and H. Kung. GPSR: Greedy perimeter stateless
routing for wireless networks. In Proc. of Mobile Comput-
ing and Networking (MOBICOM), 2000.

[8] L. Kleinrock and J. Silvester. Optimum transmission radii
for packet radio networks or why six is a magic number. In
Nat’l Telecommunications Conference, 1978.

[9] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Ge-
ometric ad-hoc routing: Of theory and practice. In Proc.
of Symp. on Principles of Distributed Computing (PODC),
2003.

[10] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case opti-
mal and average-case efficient geometric ad-hoc routing. In
Proc. of Intl. Symp. on Mobile Ad Hoc Networking and Com-
puting (MOBIHOC), 2003.

[11] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global
coordinate system from local information on an ad hoc sen-
sor network. In Proc. of Information Processing in Sensor
Networks (IPSN), 2003.

[12] D. Niculescu and B. Nath. Ad hoc positioning system (APS).
In Proc. of IEEE Global Communications (GLOBECOM),
2001.

[13] D. Niculescu and B. Nath. Ad hoc positioning system (APS)
using AoA. In Proc. of Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM), 2003.

[14] D. Niculescu and B. Nath. DV based positioning in ad hoc
networks. Journal of Telecommunication Systems, 2003.

[15] A. Rao, C. Papadimitriou, S. Ratnasamy, S. Shenker, and
I. Stoica. Geographic routing without location informa-
tion. In Proc. of Mobile Computing and Networking (MO-
BICOM), 2003.

[16] C. Savarese, J. Rabaey, and K. Langendoen. Robust posi-
tioning algorithms for distributed ad-hoc wireless sensor net-
works. In Proc. of USENIX Technical Conference, 2002.

[17] A. Savvides, C.-C. Han, and M. Srivastava. Dynamic fine-
grained localization in ad-hoc networks of sensors. In Proc.
of Mobile Computing and Networking (MOBICOM), 2001.

[18] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localiza-
tion from mere connectivity. In Proc. of Intl. Symp. on Mo-
bile Ad Hoc Networking and Computing (MOBIHOC), 2003.

[19] H. Takagi and L. Kleinrock. Optimal transmission ranges for
randomly distributed packet radio terminals. IEEE Transac-
tions on Communications, 32(3), 1984.

