
The Append Memory Model: Why BlockDAGs Excel Blockchains
Darya Melnyk

dmelnyk@ethz.ch

ETH Zurich

Zurich, Switzerland

Roger Wattenhofer

wattenhofer@ethz.ch

ETH Zurich

Zurich, Switzerland

ABSTRACT
This paper presents a novel shared memory model that simplifies

the analysis of consensus on a Chain and a DAG. In this new model,

referred to as the append memory model, nodes are allowed to

write new values to the unordered memory, but not to overwrite

already existing values. We show that although this model differs

from the standard shared memory model with n shared read-write

registers, many known results from the shared memory model still

hold in the append memory model: It is, for example, impossible to

establish consensus onn nodes with one crash failure if the nodes in

the system are asynchronous. We also consider the append memory

model in a synchronous setting with Byzantine failures. For this

case, we show that Byzantine agreement cannot be solved in less

than t + 1 rounds, where t is the number of Byzantine nodes in the

system. Assuming a probabilistic access restriction to the append

memory, we compare the Byzantine agreement protocols on the

Chain and the DAG. We show that the DAG structure achieves an

almost optimal resilience (close to t < n/2) in contrast to the Chain

structure that can tolerate less than t < n
1+λ ·(n−t) Byzantine nodes,

where λ is the rate at which the nodes access the memory.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; Dis-
tributed computing methodologies.

KEYWORDS
Chain, DAG, Shared Memory, Byzantine Agreement

ACM Reference Format:
Darya Melnyk and Roger Wattenhofer. 2020. The Append Memory Model:

Why BlockDAGs Excel Blockchains. In Proceedings of the 32nd ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’20), July 15–
17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3350755.3400272

1 INTRODUCTION
Blockchain systems are world-scale systems. Consequently, block-

chain research is carried out in the message passing model. In this

paper, we propose to examine blockchain systems from a shared
memory point of view. In the past, considering distributed systems

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400272

from the shared memory viewpoint has given the research commu-

nity valuable insights, and this is not different for the new area of

blockchains. In the course of our studies, we found out that shared

memory simplifies reasoning. As such, shared memory is a valuable

model that can help us understand the fundamentals of blockchains.

In this paper, we will introduce a new shared memory model

called the append memory model. It is as a variant of the shared

memorymodel, where data can only be appended (but not modified)

in memory. On the one hand, append memory is stronger than

standard shared memory, since all written commands appear in

the memory. On the other hand, it is also weaker because two

concurrent writes to the same register in the shared memory result

in only one value being written, whereas in the append memory

model such ties cannot be broken. We will show that the append

memory model obeys some of the same fundamental impossibility

results of asynchronous consensus, and that Byzantine agreement

cannot be established in less than t + 1 rounds in the synchronous

model.

Our main result will assume a probabilistic access to the ap-

pend memory. This model variant is a clean version of message

passing proof-of-work blockchains; it allows us to neatly examine

one of the main open blockchain research questions: Are DAG-

based blockchains superior to tree-based blockchains? In order to

understand their difference, we compare Byzantine agreement on

a classic tree-based blockchain and a DAG-based blockchain. We

show that the DAG achieves an almost optimal resilience (close to

t < n/2). An orthodox chain, on the other hand, tolerates less than

t < n/(1 + λ(n − t)) Byzantine failures, where λ is the access rate

of a node to the memory.

1.1 Model
The model consists of n nodes (in the literature often also referred

to as processors), v1, . . . ,vn , that communicate via a shared mem-

ory and aim to establish a relative order on the messages written

to the memory. The shared memory consists of n registers, each as-

sociated with exactly one node in the system. Each of the registers

Ri is unbounded in space and formally supports two operations -

Ri .read() and Ri .append(msg). We will therefore name this shared

memory the append memory. The Ri .read() operation can be exe-

cuted by any node in the system and it returns a complete view of

the register Ri . The Ri .append(msg) operation can only be executed

by the node vi and it appends the message msg to the current state

of the memory without removing any previous information from

Ri . Since the idea of this memory is to establish a relative order of

the messages written to the memory, we assume that a message

msg from vi contains some value from this node and a reference

to a previous state of the memory that is defined by the underly-

ing protocol. We assume that the appended messages, just like the

registers, are unbounded in space.

https://doi.org/10.1145/3350755.3400272
https://doi.org/10.1145/3350755.3400272
https://doi.org/10.1145/3350755.3400272

In the above definition of the append memory, the n registers

can also be viewed as one single registerM to which all nodes ap-

pend their values, with the exception that the single register cannot

establish any order on the appended messages. These messages are

instead weakly ordered using references to previous states from

the underlying protocol. We will therefore also define theM .read()

operation, which is going to read the whole memory. It corresponds

to executing Ri .read() for all i . Analogously, the M .append(msgi)
operation appends a new message at any place in M , which cor-

responds to executing Ri .append(msg) in the previous definition.

Observe that the single registers Ri may establish a total ordering

of all messages corresponding to the node vi . This ordering can

also be incorporated in the single register view by forcing all nodes

to refer to their previous appends in the protocol.

Each node is assumed to have a binary input value at the be-

ginning of the protocol. The nodes then communicate through the

append memory in order to agree on a common output value. We

differentiate between correct and faulty nodes in the protocol. The

correct nodes follow the protocol at all times. For faulty nodes,

we consider two settings: they can either have a crash failure or a
Byzantine failure. Nodes that crash just stop executing the protocol

at an arbitrary point in time. Byzantine nodes can, on the other

hand, deviate from the protocol in any possible way, thus making

their behavior unpredictable. The task of a protocol is to establish

consensus on one of the input values in the presence of faulty nodes

while satisfying the standard consensus properties:

Agreement: All correct nodes decide on the same value.

Termination: All correct nodes must terminate after executing a

finite number of operations.

Validity: If all correct nodes have the same input value b, they
must agree on b at the end of the protocol.

These three consensus properties can also be weakened such that

each of the properties is only satisfied with high probability (w.h.p.).

We call the relaxed propertiesweak agreement, weak termination and
weak validity respectively. They will be necessary for the discussion
of randomized consensus algorithms in the append memory model.

The corresponding agreement problems will be then referred to as

weak consensus or weak Byzantine agreement.
We will also discuss different communication models in this pa-

per. Since all nodes are communicating through a shared memory

we assume that the messages that are appended to the memory

instantly become available for other nodes to read. The nodes them-

selves do, however, not have to be synchronized, and can perform

their operations at different points of time. We therefore make

use of the definitions similar to Dolev et al. [6] and differentiate

between synchronous and asynchronous nodes:

Synchronous: There exists a constant ∆ > 0 such that any in-

terval between two operations executed locally by a single

node is bounded from above by ∆. The upper bound ∆ is

known to all nodes.

Asynchronous: The time between two operations of a node is not

bounded. However, in an infinite protocol run, each correct

node must perform infinitely many operations. Otherwise,

the node is called faulty.

The definitions so far do not put any restriction on the access

to the memory. In the synchronous and the asynchronous model,

the nodes decide locally and independently of other nodes when

the memory will be accessed next. In Section 5, we will consider an

alternative model inspired by the proof of work, where access to

the memory is restricted by a Poisson process. We will assume that

all nodes can read the memory at any time. An append operation,

however, will require a token that is given to the node by some

authority who controls the access:

Randomized Memory Access: The access probability to the ap-

pend memory model for each nodev inside the time interval

∆ is a Poisson distributed random variable Xv with rate λ.
All random variables Xv ,v ∈ {v1, . . . ,vn } are independent
and therefore the access rate to the memory by all nodes is

described by the random variable Y B
∑
v Xv ∼ Pois(λn)

Note that the proposed append memory model deviates from

the standard shared memory models in several ways: the append

memory cannot order the access threads from different nodes, as the

ability to do so would directly imply consensus. This assumption is

inherited from the message passing model, where two nodes that

received the same two messages might have received them in an

opposite order. Moreover, the nodes in the append memory have

the ability to read the whole memory content with one memory

access. This assumption also comes from message passing systems

where the nodes receive messages (appends) from other nodes

while participating in the protocol and thus reconstruct the whole

memory content. Also the randomized memory access is unusual

for shared memory models, where the access is usually controlled

by the memory itself. Since the append memory withdraws the

power of ordering messages from the memory, an access strategy

on the protocol side is required in order to be able to establish a

weak ordering.

1.2 Related Work
The problem of sharing data among several processors in a sys-

tem has been well studied in the literature. Early solutions to this

problem required mutual exclusion [4, 5], i.e. only one process was

allowed to access and alter the memory at a time while the other

processors were denied access. The first discussion on the wait-free

implementation of shared objects goes back to Herlihy [12]. In this

paper, he defined the consensus number as the maximum number of

nodes that can establish consensus in the system using arbitrarily

many shared objects. According to this definition, a hierarchy of

shared objects can be established. In particular, Herlihy showed that

the consensus number of read-write registers is 1, i.e. consensus

cannot be established by two processors using read-write registers.

Byzantine agreement in the shared memory was first considered

by Malkhi et al. [16]. They used the concept of sticky bits [20] and

access control lists in order to restrict Byzantine power. Sticky bits

are bits that remain in the memory and cannot be overwritten. They

also showed that Byzantine agreement is impossible in their model

if t > n/3 and provided a protocol that could tolerate (
√
n − 1)/2

Byzantine failures. Alon et al. [2] later showed that the bound on

the resilience is tight by using exponentially many sticky bits.

The first blockchain protocol was introduced by Satoshi Nakamoto

[17], who invented Bitcoin – a distributed cryptocurrency system

based on peer-to-peer communication and the construction of a

Blockchain. The Nakamoto consensus needs to satisfy two main

properties: consistency and liveness. The first rigorous analysis of

Nakamoto consensus on a Blockchain was given by Garay et al. [9].

In their work, they analyzed the blockchain in the synchronous

communication network, assuming that all messages of the current

round arrive at the beginning of the next round. They showed that

Nakamoto consensus solves Byzantine agreement with validity un-

der the assumption that the Byzantine nodes have strictly less than

1/3 of the hashing power of the network. They further propose a

more elaborate consensus protocol on the Blockchain for which

they show a resilience of up to 1/2. Many following attempts were

made in order to formalize Nakamoto consensus in a more general

model: Pass et al. [18] extend the synchronous model of [9] and

consider a δ -synchronous network, where δ is an upper bound on

message delay known to all nodes in the network. Pass and Shi [19]

later simplified the previous model mostly for didactic purposes.

Another formalization of consistency of Nakamoto consensus was

given by Kiffer et al. [13], who use a Markov chain based analysis

to prove consistency in a synchronous setting.

All aforementioned papers note that the analysis of Nakamoto

consensus generally is involved, and therefore needs complicated

models in order to describe their system rigorously. The first simple

analysis of Nakamoto consensus was provided by Ling Ren [21].

Instead of focusing on the definition of the communication model,

[21] focuses on a correct analysis of the chain growth and there-

fore differentiates between blocks which are "non-tailgaters" and

"loners". The former describes blocks which were mined after see-

ing the last correct block in the system, while the latter denotes

blocks which are non-tailgaters and are not non-tailgated. This way,

both, forks in the Blockchain introduced by the Byzantine nodes,

as well as forks produced by the correct nodes, are taken care of.

Ren further shows that Nakamoto consensus satisfies consistency

and liveness under the honest majority assumption, provided that

the block generation rate of the correct nodes is much larger than

the communication delay.

Other structures for reaching Nakamoto consensus have also

been considered in the literature. In [22], it was shown that the

so-called inclusive Blockchain, which relies on the DAG structure,

can provide safety in the Blockchain protocol even if the system

is asynchronous for a short period of time. The DAG structure is

usually considered under one of the tie-breaking rules, such as the

GHOST protocol [22] or the pivot chain [14] rule.

Observe that, while many protocols also considered Byzantine

agreement besides Nakamoto consensus, consistency and liveness

actually do not necessarily require consensus as a building block.

This was first shown by Gupta [11]. In a follow-up work, Guerraoui

et al. [10] show that Nakamoto consensus has a consensus number 1.

Other than the protocols mentioned previously, such systems work

in the fully asynchronous setting but does not satisfy consistency

at any point of time in the protocol, and would therefore require

checkpointing techniques in order to be applied in cryptocurrency

systems.

1.3 Our Contribution
Our contribution deviates from the previous work in several ways.

Many papers try to directly solve Nakamoto consensus in the mes-

sage passing model, thereby oversimplifying the communication

model [9] or falsely calling a synchronous communication system

(partially) asynchronous [13, 18]. Instead, we focus on deriving

a shared memory model for Blockchain protocols, which allows

us to assimilate the local views of the nodes and thereby derive

simpler protocols for Blockchain and DAG. Note that the append

memory is not as strong as the concept of sticky bits [16] since it

does not make use of registers that implicitly solve consensus for

two parallel writes. In Section 2, we therefore show that asynchro-

nous consensus cannot be solved in this append memory model,

as the nodes cannot uniquely define the ordering of concurrently

appended commands. In Section 5, it is shown that this result also

holds for the asynchronous communication model with randomized

memory access. We further show that our proposed model is not

stronger than the message passing model, as it can be simulated in

the message passing at a high message complexity cost (see Section

4). The advantage of the append memory model is that it simplifies

the analysis of Blockchain protocols. In Section 5, we will therefore

compare the analysis of the DAG and the Chain in the append

memory. We will show that Byzantine agreement on the DAG can

achieve almost optimal resilience of < 1/2, while Byzantine agree-

ment on the Chain highly depends on the append rate of the correct

nodes. Our results suggest that the DAG is not only a better model

for Byzantine agreement because of its simplicity compared to the

Chain, but also because it achieves an optimal resilience.

2 IMPOSSIBILITY OF ASYNCHRONOUS
DETERMINISTIC CONSENSUS IN THE
APPEND MEMORY

The append memory provides a common history of the appended

commands to all nodes participating in the consensus. In this sec-

tion, we will show that it is impossible to reach consensus in the

append memory if the processors in the system are asynchronous

and at least one of the processors may crash. With respect to the

append memory, the definition of asynchronous nodes says that an

arbitrary amount of time can pass between a read and an append

operation, meaning that a node might append to an obsolete state of

the memory. Dolev et al. also provide a definition for synchronous

and asynchronous communication, and show possibility and impos-

sibility results for different communication and processor settings.

Their impossibility results hold for the message passing model and

rely on the fact that the buffers of the nodes may receive messages

in a different order. Such an assumption cannot be made in the

append memory since the append memory establishes a common

view of the system to all nodes and the states of the system are

defined by the point of time at which a node reads the memory.

We will follow the outline of the impossibility proof of Loui

and Abu-Amara [15] who showed that it is impossible to reach

consensus in the shared memory with read-write protocols. Among

other results, the authors provide a proof of impossibility for t-
resilient read-write protocols, where the number of read and write

operations in the system is unbounded. Our analysis will deviate

from the one by Loui and Abu-Amara because our append memory

does snot allow processors to overwrite the memory cells.

Theorem 2.1. There exists no t-resilient consensus protocol in the
append memory for all n > 2.

2.1 Definitions
A consensus protocol is a system that consists of n nodes V =
{v1, . . .vn }. Each node is equipped with an initial bit which is

the nodes input value. Since the nodes communicate via an ap-

pend memory, all nodes have read access to the append memory

M . We say that the state of a node is defined by the nodes current

value and its last read of the append memory, i.e. if a node last

read the memory at time τ , its local view of the memory will be

M(τ). The state of the node from the last read operation is denoted

by si = (M(τ), vali). A configuration C of the system is defined

as the set of the states {s1, . . . , sn } of all n nodes in the system

together with the current view of the memoryM(τ ∗). We therefore

define this configuration to beC B {s1, . . . , sn }×M(τ ∗). The initial
configuration of the system consists of the initial bits of the nodes

and an empty view of the memory and M(0) = {�}, denoted C0.

Each node supports the read and append operations. We will call

an execution of a read or an append operation by a node v an event
ev . We assume that the nodes are asynchronous. In this system, an

event ev can always be applied to a configuration C , if the event is
a read operation. If the event is an append operation, it can only

be applied to C if it follows the construction rules of the append

memory. Let the current state of node v in the configuration C be

si = (M(τ), vali). An event ev applied toC at time τ ′ transitionsC
to a new configuration ev (C) in the following way:

(a) ev is a read operation of the append memory withM(τ) ⊊
M(τ ′): node v will possibly update its value vali and tran-

sition to a new state s ′i = (M(τ ′), vali). The corresponding
configuration C will transition to the configuration ev (C)
where ev (C) = {s1, . . . , si−1, s

′
i , si+1, . . . , sn } ×M(τ ′).

(b) ev is a read operation of the append memory at time τ ′ > τ ,
with M(τ) = M(τ ′): node v will not change its state and

therefore ev (C) = C holds.

(c) ev is an append operation executed at time τ ′ for the view
M(τ) of the append memory: according to the definition of

the append memory, a value from the node v can be ap-

pended to an obsolete state of the memory as long as it does

not contradict the order of messages of v in the current ap-

pend memory state M(τ ∗). A state is considered obsolete

with respect to a weak ordering defined by the underlying

protocol. LetM(τ ′) be the state of the append memory after

event ev has been applied to it. Then, the new state of the

system is described by ev (C) = {s1, . . . , sn } ×M(τ ′).

We say that a configuration C ′
is accessible from another config-

urationC if there is a sequence e1, . . . , ej of applicable events, such
that C ′ = ei (ei−1 (. . . e1(C))). In the following, we define a compu-
tation graph G for an algorithm A which describes the accessible

configurations: The vertices of G contain all possible initial con-

figurations of the protocol as well as all configurations accessible

from these states. There is a directed edge from a configuration

C to another configuration C ′
, iff there exists an event e which is

applicable to C such that C ′ = e(C) holds. In this case e will be

the label of the edge from C to C ′
. Note that Property (b) allows

self-loops at each configuration of the computation graph. Note

that a configuration C ′
is accessible from a configuration C if there

is a directed path from C to C ′
in G.

Next, we define a computation of A as a (not necessarily finite)

sequence of configurations C0,C1,C2, . . ., such that for each pair

of consecutive configurations Ci ,Ci+1 there exists a directed edge

fromCi toCi+1 in the computation graphG . A configuration is said

to have a decision state if one of the nodes in the configuration has

decided on one of the values in {0, 1}. A computation terminates in
a configurationCj if every correct node inCj has reached a decision

state.

Since algorithm A solves consensus, in some of the configura-

tions there will be nodes which have reached a decision state. Also,

the algorithm has to satisfy the consensus properties from Section

1.1:

• A satisfies agreement, if every configuration has at most

one decision state.

• A satisfies termination, if for every initial configuration C0

every computation terminates.

• A satisfies validity, if for the input configurationwhere every

node has input value 0, i.e.C
(0)

0
B {(�, 0), (�, 0), . . . , (�, 0)}×

{�}, every computation terminates with every correct node

deciding 0. Analogously, every computation starting inC
(1)

0
B

{(�, 1), (�, 1), . . . , (�, 1)} × {�} terminates with every cor-

rect node deciding 1.

Let C(C) be the set of decision values which are accessible from

configurationC underA. We say thatC is bivalent, if C(C) = {0, 1}.

C is called univalent if |C(C)| = 1. In particular, C is 0-valent if

C(C) = 0 and it is 1-valent if C(C) = 1.

So far, we have only addressed correct nodes in the definition.

We call a node correct if for an infinite computation the node takes

infinitely many steps. Otherwise, the node is faulty. A computation

that that has no events by some nodev is calledv-free. An algorithm
A is 1-resilient, if for any v ∈ V and any reachable configuration

C in G all v-free computations terminate.

2.2 Proof of Theorem 2.1
The proof of Theorem 2.1 is organized as follows: In Lemma 2.2

we will first present that for any algorithm A which satisfies the

properties of consensus there exists a bivalent initial configuration

C0. In Lemma 2.3 we will show that for any bivalent configuration

C and any node v there exists another reachable bivalent configu-

ration C ′
, such that on the directed path from C to C ′ v performs

an event. Finally, we will show how these lemmas can be used in

order to establish an infinite computation starting in C0 in which

every correct node performs infinitely many events.

Lemma 2.2. There exists a bivalent initial configuration of the
system if t ≥ 1.

Proof. The proof is based on the fact that the validity condition

has to be satisfied for both input values and is almost identical to

proof in [15]. Will therefore skip it at this point. □

Lemma 2.3. Let C be a bivalent configuration and ep be an appli-
cable event to C . Let D be the set of configurations reachable from
C that do not contain any events from p. Then, there is a bivalent
configuration C ′ ∈ ep (D) reachable from C .

Proof. Observe first that the event ep is applicable to every

configuration in D: if ep is a read command, it is applicable to

every configuration in D. On the other hand, if ep is an append

command, it can either be appended to the configuration C , or
it can be appended to any future configuration as the nodes are

asynchronous and there can be an arbitrary delay between a read

and an append command in the system. Let e(D) be the set of all

configurations that result fromD by applying the event ep to them.

For the rest of the analysis, assume by contradiction that there are

only univalent configurations in ep (D).

We will first show that ep (C ∪D) contains both, 0- and 1-valent

configurations: By definition, C must contain 0- and 1-valent con-

figurations since it is bivalent. Assume w.l.o.g. that ep (C) is a 0-

valent configuration. Note that all configurations that are reachable

from ep (C) must also be 0-valent. Therefore, there must exist a

configuration D ∈ D which is 1-valent. Then, the configuration

ep (D) ∈ ep (D) is also 1-valent. Further, there exist two configu-

rations D0 and D1 in C ∪ D such that D1 = eq (D0) and such that

E0 B e(D0) is 0-valent and E1 B e(D1) is 1-valent. This follows by

an induction argument on the path from C to D.
We differentiate between four cases for the events ep and eq :

ep and eq are read events: If both events are read events, then

the corresponding events are commutative since they do

not change the view of the memory. Consider the configura-

tion eq (E0). Since E0 is a 0-valent configuration, eq (E0)must

also be 0-valent. However, since ep and eq are commutative,

eq (E0) is equal to the configuration E1, which is a 1-valent

configuration. This is a contradiction.

ep and eq are append events: We need to show that the append

events are also commutative. Note that the append events

are consecutive and that neither of the nodes p or q has a

read event in between. if both nodes previously read the

same view of the memory, they will append to the same

view in the memory. Any later read operation will not be

able to differentiate which of the appends was written to

the memory first. The same property holds if the nodes

append to different views of the memory. Since the nodes

are asynchronous, they can always append to previous views

of the memory and therefore it is not possible to determine

the order of the appends. Since the events are commutative,

the same analysis applies as in the first case.

ep is a read and eq an append event: Note that if ep is a read

configuration, it does not change the view of the memory, i.e.

in configurationsD0 and E0 the view of the memory is identi-

cal. Therefore, if eq is applied to either of the configurations,

the configurations of all nodes excludingp are the same inD1

and eq (E0). As the node p might crash during the execution

of the algorithm and since the algorithm is deterministic, by

applying the same set of events, the remaining nodes must

end up in the same configurations independent of whether

they started in D1 or in eq (E0). This is a contradiction since

the corresponding configurations have different valencies.

ep is an append and eq is a read event: In this case we can as-

sume that node q crashes after reaching the configurations

E0 or E1. The rest of the analysis is analogous to the previous
case. □

Proof of Theorem 2.1. Let A be a deterministic algorithm that

solves consensus in the append memory and can tolerate crash

failure. We will prove Theorem 2.1 by showing that there exists a

scheduling of events under which A will not terminate. Note that

there exists an initial configuration C0 that is bivalent according to

Lemma 2.2. From this configuration on, we consider a sequence of

events in which each node takes infinitely many turns: let v1 . . .vn
be some ordering of all nodes in the system. By Lemma 2.3 there

exists a path from the bivalent configurationC0 to a bivalent config-

urationC1, in which the nodev1 executes an event ev1
. By applying

Lemma 2.3, we find another path from the bivalent configuration

C1 to a bivalent configurationC2, in which the node v2 executes an
event. Lemma 2.3 can be applied infinitely many times in a round

robin fashion to the nodes in the sequencev1 . . .vn . Since each new
configuration Ci is a bivalent configuration, A will not terminate

for any node in the system. This concludes the impossibility proof.

3 CONSENSUS IN THE APPEND MEMORY
WITH SYNCHRONOUS NODES

In this section we will discuss possibility and impossibility results

for the introduced append memory when the nodes in the system

are synchronous. We will first show that the lower bound on the

number of rounds needed to solve Byzantine agreement is t +
1. We will achieve this bound by slightly adapting the proof of

Aguilera and Toueg [1] which was originally introduced for the

synchronous consensus in the message passing model with crash

failures. The advantage of this proof in comparison to the lower

bounds in [7, 8] is that the authors use the notation of univalent and

bivalent configuration which we have introduced in the previous

section. Other than in the mentioned papers, our lower bound will

only hold for the Byzantine model. The previous papers assume

that a crashed node can send messages to a subset of the nodes

in the system before crashing. This cannot happen in the append

memory since the nodes only communicate with one authority

(which has control over the memory). Therefore, all values that

have reached the memory will be available to all correct nodes

after a time interval of ∆. This implies that agreement with crash

failures can be solved in the append memory with synchronous

nodes within one round only.

In the case of Byzantine failures, the situation becomes different.

A Byzantine node can exploit the small asynchrony of ∆ in the

reads of the nodes such that its append commands will be read by a

subset of the nodes in the same round. This gives us the possibility

to apply the results from Aguilera and Toueg [1] as we will explain

in the next section. In Section 3.2, we will provide a matching

upper bound which is based on the upper bounds for interactive

consistency in the work of Dolev and Strong [7].

3.1 Lower Bound on the Number of Rounds
In this section, wewill make use of the notation presented in Section

2.1. Since we consider a round based algorithm, a configuration C
will be associated with the configuration at the end of a round. A

round is defined as a communication step with the memory, which

includes at most one append and one read operation per node. A

transition from one configuration to the next can be described by a

combination of append and read operations from all n nodes.

Lemma 3.1. For any round i with 0 < i ≤ t , where t denotes
the number of Byzantine nodes in the system, holds: if at the end
of round i − 1 the system was in a bivalent configuration, there is a

Algorithm 1 Byzantine Agreement with Synchronous Nodes (code

for node v)

Input: append memoryM , input value val(v)
1: for round r = 1, . . . , t + 1 do
2: M .append(val(v),Lr−1), where L0 B {�}

3: Wait for ∆ time

4: M .read and let Lr be the set of all appended commands in

Round r
5: end for
6: Let a value val(w) be accepted, if there exists a chain of t + 1

distinct nodes v,w1,w2, . . . ,wt such that (val(v),�) is listed
in (w1,L1), (w1,L1) is in (w2,L2), . . . , and (wt−1,Lt−1) is in
(wt ,Lt)

7: Decide on the majority of all accepted values in val(w)

computation in which at the end of round i the system is again in a
bivalent configuration.

Proof. We will prove this lemma by induction over i . In Lemma

2.2 we showed the base case, i.e. that there exists an initial bivalent

configuration. By the induction hypothesis, we assume that C is

the bivalent configuration at the end of round i − 1. Next, we can

assume that at most one node can exhibit Byzantine behavior per

round, we call this node bi−1. The power of bi−1 in the append

memory lies in the fact that it can delay its own messages such that

only part of the nodes will see its message in the memory in round

i , and the other nodes will only be able to see it with the next read

in round i + 1.
Assume for contradiction that all configurations at the end of

round i are univalent. Since C is bivalent, there must exist transi-

tions to 0 and 1-valent configurations. Let the configuration which

is reached by a transition where all nodes perform their actions

correctly be 1-valent w.l.o.g. We denote this configurationC1
. More-

over, letC0
be a 0-valent configuration which results through some

transition from C . Note that the transitions C → C0
and C → C1

only differ in the actions of bi−1, since all other nodes behave cor-
rectly and deterministically. Similar to Lemma 2.2, we can construct

a sequence of neighboring configurations that differ in the view

of one node only such that they have to have the same valency.

The construction is the same as in [1]: Let S denote the (possibly

empty) set of nodes that see the append of bi in the memory in

the configuration C0
. Consider a configuration C ′

which results

from C0
by letting an additional node v < S see the append of

bi . Note that C
0
and C ′

are indistinguishable if v fails in round i
and therefore both have to be 0-valent. We can continue adding

nodes one by one to S and apply the previous argument repeatedly

to show that the configuration C1
also has to be 0-valent. This is

a contradiction to C1
being 1-valent, and thus there must exist a

bivalent configuration in round i . □

Note that Lemma 3.1 implies that Byzantine agreement in the

append memory cannot be solved with synchronous nodes in less

than t + 1 rounds. In particular, the lemma shows that there exist a

bivalent initial configuration and a t-round computation such that

the system ends up in a bivalent configuration at the end of round

t . Therefore, the nodes need at least t + 1 rounds in order to reach

a univalent configuration and thus achieve agreement.

3.2 A Simple Deterministic Algorithm with
Synchronous Nodes

The idea for the synchronous deterministic algorithm in the append

memory is similar to the interactive consistency idea in Byzan-

tine Agreement [7]. In interactive consistency algorithms, in every

round nodes forward complete views of the system to all other

nodes. After t + 1 rounds, a decision can be made about whether

to accept a proposed input value. This results in exponential infor-

mation exchange. In our case, the views of the nodes are almost

the same, since all nodes have access to the append memory. The

only differences in the views of the memory can appear through

the Byzantine strategy that was described in the previous seec-

tion. Algorithm 1 shows a possible implementation of Byzantine

agreement with synchronous nodes.

Theorem 3.2. Algorithm 1 solves Byzantine Agreement in the
append memory for t < n/2 Byzantine nodes within O(t∆) time.

Proof. In order to prove the theorem, we need to show that

Algorithm 1 satisfies termination, agreement, and validity. Termi-

nation is trivially satisfied since all nodes execute the algorithm for

O(t∆) time and decide. We will show that agreement is satisfied

because all nodes will agree on whether to accept each input value

or not, i.e. their decision will be based on the same input set. Va-

lidity will follow from agreement by showing that additionally to

equivalent views, all nodes will accept all correct input values.

Note at first that every correct value will be accepted in Line 6,

since there are n − t > t + 1 correct nodes: Each correct node will

see all correct values appended in the previous round. Therefore,

each correct append will be listed in n − t correct appends of the
next round, i.e. there will be at least t ! chains starting in any correct

value which satisfy the condition in Line 6.

Consider next a Byzantine input valueb1. Assume that no correct

node contains this value in the set L1, otherwise, the value will be
accepted. b1 cannot be accepted if no other Byzantine node contains
this value in its set L1. Assume next that the node b2 contains b1
in its set L1. Then, either a correct or some other Byzantine node

has to contain this append in their set L2. Since the chain in Line 6

needs to have t + 1 distinct elements and since there are at most

t Byzantine nodes, at least one correct node has to contain some

append from the Byzantine chain for the value b1 to get accepted.

If one correct node has a value from the Byzantine chain in its set

Li , every correct node will read this set and either accept the value

b1, if i = t , or extend the chain by referring to the correct append

in the set Li+1. Therefore, a byzantine value will be accepted by

the algorithm iff at least one correct node extends the chain of

Byzantine appends. □

4 SIMULATION OF THE APPEND MEMORY
WITH MESSAGE PASSING

In this section, we show how the append memory can be simulated

through the message passing model using a simulation similar to

the ABD simulation [3]. This completes our theoretical analysis

of the append memory and shows that it is a suitable abstraction

for different Blockchain and DAG algorithms. In particular, the

previous two sections already imply that asynchronous consensus

Algorithm 2 Simulation ofM .append() (code for node v)

Input: append value val(v), local memory viewMv
1: Broadcast append(val(v))v
2: upon receiving a message from nodew do
3: Append message fromw toMv
4: Broadcast ack(append(val(w))w)v
5: end upon
6: upon receiving ack(append(val(v))v)w from > n/2 nodesw

do
7: terminate append operation

8: end upon

Algorithm 3 Simulation ofM .read() (code for node v)

1: BroadcastM .read()

2: upon receivingM .read() from nodew do
3: Send local viewMv tow
4: end upon
5: upon receivingMw from > n/2 nodesw do
6: Append all newly seen values in the local viewsMw toMv

and terminate

7: end upon

is impossible in the append memory model as well and that the

lower bound on the number of rounds for deterministic Byzantine

agreement in the synchronousmodel is the well-known bound of t+
1 rounds. This already shows that our appendmemory abstraction is

not stronger than the results achieved in the message passing model.

Here we will show that the message passing model can naturally

simulate the appendmemorymodel if the nodes sign their messages

and assuming that these signatures cannot be forged.

Algorithm 2 and 3 respectively present the simulation of the

append and the read abstractions. Note that the correct nodes need

to be available at all times, i.e., they always have to respond to

append and read messages from other nodes. We will use signatures

in order for the nodes to be able to prove that another node sent

them a message. We will denote a message val(v) signed by node

v by (val(v))v .

Lemma 4.1. Algorithm 2 correctly simulates anM .append(val(v))
operation in the append memory.

Proof. Note at first that anM .append(val(v)) operation from a

correct node will always reach all other correct nodes. Therefore,

all correct nodes will append a correct value to their local view of

M , and node v will receive > n/2 acks for its message.

Since Byzantine nodes cannot forge the signatures of the correct

nodes, their local view will either contain a message from some

correct node or no message at all. □

Lemma 4.2. Algorithm 3 correctly simulates anM .read() operation
in the append memory.

Proof. By requesting the views of the memory from more than

n/2 nodes in the system, a node will receive all append commands

added to the local views of the memory by all correct nodes. This

is because an append of a node only terminates if > n/2 nodes

appended the corresponding value to their local view of thememory

and by requesting the memory view from > n/2 nodes, the append
operation will be visible in at least one memory view.

Observe that Byzantine nodes can append multiple values in

parallel by sending different messages to different nodes. This is

not a contradiction to the correctness of the simulation as such

behavior is also possible in the appendmemory. Since nodes that see

two values from a Byzantine party in the append memory cannot

distinguish which of the values has been appended first, both values

have to be accepted by the correct nodes. The same is achieved in

Line 6 of Algorithm 3, where all correct nodes accept all values. □

Note that we made use of signatures in order to make sure that

a Byzantine party cannot pretend to have received a different value

from the correct node than the value sent by the correct node itself.

The above algorithms would also work without signatures. In that

case, nodes can only append a value to their own local memory, if

they have seen it in at least f + 1 different views of the memories.

Such an adjustment would, however, reduce the resilience of our

protocol.

Our analysis shows that the append memory abstracts away

the unnecessary communication overhead which often makes the

discussion of algorithms in the message passing model difficult

and heavy in terms of message complexity. Observe that the size

of the local view of the memory increases over with each append

operation. Thus, a simulation of an algorithms where all nodes par-

ticipate, such as Algorithm 1, would lead to exponential information

exchange.

5 APPEND MEMORYWITH RANDOMIZED
ACCESS

The benefit of a randomized access strategy to the append memory

is that algorithms in the permissioned and permissionless settings

of Byzantine agreement can be considered. In the first setting, the

number of nodes and the corresponding signatures are known to

all participants, while in the latter setting, only the upper bound

on the fraction of Byzantine nodes is known. In this section, we

will focus on the permissioned setting when deriving the bounds.

All the presented results can, however, be trivially extended to the

permissionless setting as well.

We will first discuss the randomized access to the append mem-

ory with respect to the synchronous or asynchronous nodes. We

will show that the impossibility result from Section 2 can also be

applied to this model:

Theorem 5.1. There exists no deterministic protocol that can solve
Byzantine agreement with asynchronous nodes in the append memory
with randomized access.

Proof. Note that the definition of asynchronous nodes states

that arbitrary time can pass between any two local operations of a

node. The randomized access to the append memory as defined in

Section 1.1 only gives out tokens to nodes, such that the nodes can

use the token in order to append commands to the memory. As the

time between any two operations is unbounded, we can assume

that the time between receiving a token and appending a message

to the memory is also unbounded. In the worst case, the delays are

significantly larger than the append rate to the memory, such that

the access order of the memory defined by the random access rule

Algorithm 4 Byzantine Agreement with Absolute Timestamps

(code for node v)

Input: append memoryM , input value val(v)
1: M .read()

2: while there are less than k writes in the memory do
3: M .read()

4: upon granted access to the memory do
5: M .append(val(v))
6: end upon
7: end while
8: Order all appends by the timestamps

9: Decide on the sign of the sum of the first k appends

becomes insignificant. Therefore, the proof of Theorem 2.1 can also

be applied to this setting. □

The proof of Theorem 5.1 only works because the rate for mem-

ory access is independent of the delay resulting from the asyn-

chrony of nodes. This suggests that it is reasonable to consider

randomized access to the append memory model together with

synchronous nodes. Then, the access rate to the memory can be

connected to themaximum delay given between any two operations

of the nodes.

In the following sections, we will assume that the input values of

the nodes are −1 or +1. The decision value will then be determined

as the sign of the sum of all accepted values. Note that by the

definition of the random access, each node vi is associated with a

random variable Xi ∼ Pois(λ) which denotes the expected number

of appends by node vi during ∆. Let X B
∑n
i=1 Xi be the variable

denoting how many appends appear in expectation during the time

∆ in the memory. Note that the variableX is also Poisson distributed

with X ∼ Pois(λn).
In Section 5.1, we will discuss the best possible scenario for the

append memory, where each append is equipped with an absolute

timestamp. This example will serve as a baseline for the resilience

that can be achieved in our model. In Section 5.2, we will show that

the chain rule, which is often used as a base structure in Blockchain

protocols, only tolerates up to t < n/(1+ λ(n − t)) Byzantine nodes.
Finally, in Section 5.3, we will show that Byzantine agreement in

the append memory model with DAGs gives optimal resilience.

5.1 Byzantine Agreement with Absolute
Timestamps

In this section, we assume that all appends to the memory will

be equipped with an absolute timestamp handed out by a central

authority upon appending a command to the memory. This way,

all appends in the memory will have a unique ordering which is

visible to all nodes. Algorithm 4 shows how Byzantine agreement

can be solved in this model. Although agreement and termination

will follow trivially, the validity condition can only be satisfied with

high probability. In particular, the probability to satisfy the validity

condition will depend on the number of appends to the memory

and the difference between the number of correct and Byzantine

nodes in the system.

Theorem 5.2. Algorithm 4 satisfies agreement, termination and
weak validity.

Proof. Algorithm 4 satisfies agreement, because the timestamps

uniquely determine the first k writes into the memory, and because

all nodes have the same view of the memory. By choosing k to be

an odd number, the sum of the first k values will be either positive

or negative, thus determining the decision value. Termination is

satisfied since there eventually will be k writes to the memory such

that all nodes will leave the while loop in Line 2.

The validity condition can only be satisfied with high probability,

as there is always a negligible probability that the first writes will

all be from Byzantine nodes. In order to show validity of Algorithm

4, we will consider the sum of all written values as the sum of

binomially distributed random variables. For large number of nodes

n, this sum can be approximated by the normal distribution due

to the central limit theorem. We can use the tail bounds for the

normal distribution in order to finally show that the majority of

the k coinflips will be from correct nodes with high probability.

Assume that the validity assumption holds, i.e. that all correct

nodes have the same input bit +1. W.l.o.g. we can assume that all

Byzantine nodes will write the value −1 to the memory. Otherwise,

the Byzantine strategy would not be optimal. Note that with prob-

ability pcorr =
n−t
n , each append to the memory is from correct

node, while with probability pbyz =
t
n , it is Byzantine. Next, we

only consider the first k appends to the memory. Then, the prob-

ability for each append to be correct or Byzantine will follow the

Binomial distribution. Let Yi be the random variable defining the

value of the i-th append in the memory. With above probabilities,

we have Pr[Yi = +1] =
n−t
n and Pr[Yi = +1] =

t
n . We are in-

terested in the probability for the sum of all random variables to

be smaller than 0, i.e. the case when a majority of all appended

values is Byzantine. Since the nodes in the algorithm wait for at

least k coinflips to be appended, the sum of the coinflips converges

to the normal distribution N

(
k · n−2tn ,k −

(
k · n−2tn

)
2

)
. We can

now compute the probability for the Byzantine nodes to reach a

negative sum by appending negative values to the memory when

given access:

Pr

[k∑
i=1

Yi < 0

]
< Pr

[k∑
i=1

Yi − µ < µ

]
< exp

(
−

µ2

2σ 2

)
where exp

(
−

µ2

2σ 2

)
= exp

(
−

k2(n−2tn)2

2·(k−k2(n−2tn)2)

)
< exp(1

2
· k · (n−2tt)2).

Note that in the worst case, #corr − #byz = n − 2t = Ω(1), k =
Ω(n log(n)) appends to the memory are needed in order to satisfy

validity with high probability. If the difference however is equal to

#corr −#byz = Ω(n), k = Ω(log(n)) appended values to the memory

are sufficient to satisfy validity with high probability. □

5.2 Byzantine Agreement with Chains
In this section, we will review the results of Garay and Kiayias [9]

and Ren [21]. We will show that Byzantine agreement on the chain

can also be achieved for t < n/2 Byzantine nodes if the nodes use a
randomized strategy in order to break ties. Algorithm 5 shows an

example of such an implementation in the appendmemory. The idea

of the algorithm is to let nodes append their values to the longest

chain based on their view of the append memory. Since access to

Algorithm 5 Byzantine Agreement with Chains

Input: append memoryM , input value val(v)
1: M .read()

2: while there is no longest chain of length at least k in the

memory do
3: M .read()

4: upon granted access to the memory do
5: Let C be the set of the last states in the longest chains

ofM
6: Choose c ∈ C according to a tie-breaking rule

7: M .append(c, val(v))
8: end upon
9: end while
10: Decide on the sign of the sum of the first k appends in the

longest chain

the memory is randomized, with a certain probability, there is a

longest chain that consists of a majority of correct input values,

such that the decision value satisfies validity. We will differentiate

between two tie-breaking rules for the algorithm:

Deterministic tie-breaking: In this rule the correct nodes choose
the first longest chain in the memory [9].

Randomized tie-breaking: In this rule, the correct nodes choose

one of the longest chains uniformly at random [21].

Both these strategies were mentioned in [9], however, no anal-

ysis was given for the second rule. For the deterministic rule, the

following upper bound on the number of Byzantine nodes holds:

Theorem 5.3. Algorithm 5 with deterministic tie-breaking cannot
solve weak Byzantine agreement for t ≥ n/3 Byzantine nodes.

The proof of this theorem is based on the following idea: Since

the nodes choose the longest chain according to a deterministic rule,

one can assume that all ties will be broken in favor of the adversary.

Therefore, one can assume that every append to the memory from

a Byzantine node will cause a fork in the chain, i.e. it will append its

value to the same append as the last correct node, thus producing

two longest chains. With this strategy, every second append to the

longest chain will on average be Byzantine. If the Byzantine nodes

form a majority, they can change the decision value of the correct

nodes even if the validity condition is satisfied for t ≥ n/3.
Next, we will consider the randomized rule for tie-breaking in

Algorithm 5. In this case, the previous Byzantine strategy will not

be successful, since the correct nodes will only include every second

Byzantine append to the memory and the average ratio of Byzantine

nodes in the longest chain will be 1/3.

In the next theorem, we provide a simple bound on the resilience

of Byzantine agreement on the chain and show that it is dependent

on the rate λ of the Poisson process. The theorem connects the

resilience of Byzantine agreement and the access rate of the nodes:

Theorem 5.4. Algorithm 5 with a randomized tie-breaking rule
has a resilience of t

n ≤ 1

1+λ ·(n−t) . That is, for λ · (n − t) = 1, the
resilience is ≤ 1/2 while for λ · (n − t) = 2 it is ≤ 1/3.

Proof. For simplicity, we will restrict ourselves to an average

analysis in this proof: The rate λ · (n − t) is a measure for how

many appends from correct nodes to the memory will take place on

average within the interval ∆. In the worst-case scenario, when the

delay between any two operations of the correct nodes is δ , appends
by correct nodes inside the same interval ∆ will be concurrent and

therefore generate a fork. Thus, all, but one such correct append

can be considered wasted, as it will not be part of the longest chain.

Assume for contradiction that
t
n >

1

1+λ ·(n−t) . The Byzantine

strategy that can be applied in this case is to play the role of a

tie-breaker among the concurrent correct appends. This is possible

due to the contradiction assumption - the Byzantine party will also

have access to the memory in the same interval ∆. The Byzantine
party can append its value simultaneously to the first correct ap-

pend in the longest chain, and thereby prolong the chain by one

additional append. Thus, all following correct appends from the

same time interval will append their values to an "outdated" state of

the memory, and therefore not make it into the longest chain. With

this strategy, the longest chain of size k will have k/2 Byzantine
values appended to it. Even if all correct nodes have the same input

value, k/2 Byzantine values inside the longest chain of size k are

enough to flip the decision value of the correct nodes. This would

violate the validity condition. □

While the above analysis is simple, it is only derived for the

average case. Note that, in order to derive a similar bound with

high probability, intervals in which the correct nodes have strictly

less than λ · (n − t) concurrent appends need to be estimated and

compared to the number of intervals where the correct nodes have

at least λ · (n − t) appends and the Byzantine party has also at least

one append. Such an analysis has been conducted by Ren [21] who

showed that Nakamoto consensus can achieve a resilience of almost

1/2 if the rate is much smaller than the delay, i.e. when λ ≪ ∆.
Unlike in the analysis of Ren [21], in Byzantine agreement, we

use a fixed interval in order to decide on the agreement value. We

would therefore need to take a closer look at what kind of strategies

Byzantine nodes can apply just before the decision takes place. We

will omit such an analysis for the chain at this point, since it is very

similar to the analysis of the DAG that will be presented in the next

section.

5.3 Byzantine Agreement with DAGs
Contrary to the chain, the DAG follows an inclusive strategy: The

DAG is a directed acyclic graph that starts at some dummy append,

e.g. at the empty state of the memory. All further values that are

appended by the nodes only specify the latest seen appends to the

memory. That is, if a node sees that another node has appended a

value val(v) to the dummy value in the memory, it will list val(v)
as its preceding value instead of the dummy append. Listing pre-

ceding appends can be viewed as drawing an arrow from the new

append to all previous ones which do not have any incoming ar-

rows yet. This strategy generates a directed acyclic graph. Note

that the idea of the DAG is very similar to Algorithm 1, where all

nodes refer to all values they read in the previous round. Since an

implementation of rounds requires the nodes to always participate

in the broadcast, DAG can be seen as a lighter version of it, where a

round consists of parallel appends to the memory. The randomized

access to the memory thereby bounds the number of appends from

Byzantine parties in each round. Algorithm 6 presents a possible

implementation of Byzantine agreement on the DAG.

Algorithm 6 Byzantine Agreement with DAG

Input: append memoryM , input value val(v)
1: M .read()

2: while there is no longest (heaviest) containing at least k values

do
3: M .read()

4: upon granted access to the memory do
5: Let C be the set of the last states of M , which do not

have child nodes

6: M .append(C, val(v))
7: end upon
8: end while
9: Order the values of the DAG with respect to the longest chain

10: Decide on the sign of the sum of the firstk values in the ordering

The correctness of Algorithm 6 is based on one of the tie-breaking

rules in Line 2, such as the heavies chain defined in the Ghost

protocol [22] or simply the longest chain [14]. In this section, we

are interested in the impact of the worst-case construction of the

DAG for Byzantine agreement. In the previous section, it was noted

that the worst-case construction of a chain is reached by letting

correct nodes generate forks and the Byzantine nodes break the

ties. When the nodes are building a DAG, such a construction does

not work here, as there will be correct nodes which will include all

forked values into the ordering at a later point in time.

The analysis of the DAG therefore focuses on two main issues:

The first issue is the rate at which the nodes are appending values.

If the rate is too large, the nodes will likely not have the same

views when appending to the memory and therefore it will not be

possible to determine the global order of the appends. If the rate

is small enough, [14, 22] show that w.h.p. there will be a longest

chain such that the nodes can decide on an identical view and thus

on the ordering of the values in the DAG. The second issue is that

Byzantine nodes have the possibility to alter the algorithm by not

referencing all values they see in the DAG. While the views of the

correct nodes can be identical, a Byzantine strategy can increase

the number of Byzantine values among the first k values that are

considered for decision.

Lemma 5.5. In Algorithm 6, the views of the DAG upon decision
may contain up to Ω(log(n)) additional Byzantine values with high
probability.

Proof. Note that all Byzantine parties can be controlled by one

single adversary, and that they can withhold their values for a small

period of time when the correct nodes are not appending. If the

Byzantine nodes apply the strategy for their values among the

first k appends, this strategy will not change the ratio between the

correct and the Byzantine nodes among these first writes. Instead,

the Byzantine nodes can append a chain of values in the last interval

of size ∆ just before the decision, thus prolonging the longest(or

heaviest) chain and adding their own values to the first k values of

the DAG.

We can bound the length of the time interval T during which

no correct node appends a value to the memory by the Poisson

distribution as follows:

Pr [T > ∆ · log(n)] = exp

(
−
λ(n − t)

t∆
· ∆ · log(n)

)
≤

1

nλ/2

That is, with high probability there will be an append by a correct

node at the end of the interval T .
Next, we calculate the length of the chain that the Byzantine

nodes can produce within the time intervalT . The size of this chain
corresponds to the number of values that Byzantine nodes can insert

into the sequence of the firstk appends, in addition to the values that
are included in the sequence due to the Byzantine rate. LetX denote

the Poisson random variable with rate µ = λt
n log(n) ≤ 1

2
λ log(n),

which corresponds to the Byzantine rate inside the time interval

T . We can use the Poisson tail in order to bound the number of

Byzantine writes during this time interval:

Pr

[
X ≥ µ + λ2 log(n)

]
≤ exp

(
λ log2(n)

µ + λ log(n)

)
≤ exp

(
2

3

log
2(n)

)
The above equation states that with high probability, the Byzantine

nodes will add less than 2λ log(n) values to the memory within a

time interval T . □

Theorem 5.6. Algorithm 6 satisfies all-same-validity, termination
and agreement with high probability.

Proof. Termination and agreement of Algorithm 6 are guar-

anteed at Line 2 and from the fact that there will be a longest or

heavies chain as was shown in [14, 22].

In order to show validity, we consider the same probability dis-

tribution as in the proof of Theorem 5.2. Due to Lemma 5.5, the

amount of correct writes has to be at least 2λ log(n) in order for the

correct nodes to satisfy validity:

Pr

[k∑
i=1

Yi < 2λ log(n)
]
= Pr

[k∑
i=1

Yi − µ < 2λ log(n) − µ
]

≤ exp

(
−
(√
k
(n − 2t

n

)
−

1

√
2k

λ log(n)
)
2
)

We next analyse when the above probability becomes exponen-

tially small, which would imply validity with high probability. In

the worst case, for #corr − #byz = Ω(1), the number of appends

in the memory has to be at least k = Ω(λn log(n)). In the case

#corr − #byz = Ω(n), k = Ω(λ log(n)) values are sufficient. Note

that other than in Theorem 5.2, the number of values that are needed

for a decision with DAG also depends on the rate λ, which follows

from Lemma 5.5. □

The proof shows that the resilience of Byzantine agreement with

DAG is independent of the rate λ. Moreover, this analysis shows

that the DAG can tolerate up to t < n/2 Byzantine nodes, which
corresponds to the optimal bound for Byzantine agreement.

Finally, we would like to emphasize that Nakamoto consensus,

unlike Byzantine agreement, does not require finality. In [22], the

authors mention that the resilience of Nakamoto consensus on the

DAG does not change if the nodes are temporarily asynchronous.

The above analysis, in particular Lemma 5.5, shows that this result

is not true for Byzantine agreement. In Algorithm 6, there is a

predetermined number of appends, on which the nodes base their

decision. In the case of a temporal asynchrony, the Byzantine nodes

could make sure to add more Byzantine values into the set of the

first k appends. Therefore, temporarily asynchronous nodes would

reduce the resilience of Byzantine agreement on the DAG.

REFERENCES
[1] Marcos Kawazoe Aguilera and Sam Toueg. 1999. A simple bivalency proof that

t-resilient consensus requires t+1 rounds. Inform. Process. Lett. 71, 3 (1999), 155 –
158.

[2] Noga Alon, Michael Merritt, Omer Reingold, Gadi Taubenfeld, and Rebecca

Wright. 2005. Tight bounds for shared memory systems accessed by Byzantine

processes. Distributed Computing 18 (11 2005), 99–109.

[3] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly

in Message-Passing Systems. J. ACM 42, 1 (January 1995), 124–142.

[4] P. J. Courtois, F. Heymans, and D. L. Parnas. 1971. Concurrent Control with

"Readers" and "Writers". Commun. ACM 14, 10 (October 1971), 667–668.

[5] Edsger W. Dijkstra. 1965. Solution of a Problem in Concurrent Programming

Control. Commun. ACM 8, 9 (1965).

[6] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the Minimal

Synchronism Needed for Distributed Consensus. J. ACM 34, 1 (January 1987),

77–97.

[7] D. Dolev and H. R. Strong. 1983. Authenticated Algorithms for Byzantine Agree-

ment. SIAM J. Comput. 12, 4 (1983), 656–666.
[8] Michael J. Fischer and Nancy A. Lynch. 1982. A lower bound for the time to

assure interactive consistency. Inform. Process. Lett. 14, 4 (1982), 183 – 186.

[9] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In Advances in Cryptology - EUROCRYPT
2015. 281–310.

[10] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-

Adrian Seredinschi. 2019. The Consensus Number of a Cryptocurrency. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC ’19). 307–316.

[11] Saurabh Gupta. 2016. A Non-Consensus Based Decentralized Financial Transac-

tion Processing Model with Support for Efficient Auditing.

[12] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Trans. Program. Lang.
Syst. 13, 1 (January 1991), 124–149.

[13] Lucianna Kiffer, Rajmohan Rajaraman, and abhi shelat. 2018. A Better Method

to Analyze Blockchain Consistency. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 729–744.

[14] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao.

2018. Scaling Nakamoto Consensus to Thousands of Transactions per Second.

arXiv:cs.DC/1805.03870

[15] Michael C Loui and Hosame H Abu-Amara. 1987. Memory requirements for

agreement among unreliable asynchronous processes. Advances in Computing
research 4, 163-183 (1987), 31.

[16] Dahlia Malkhi, Michael Merritt, Michael Reiter, and Gadi Taubenfeld. 2000. Ob-

jects Shared by Byzantine Processes. In Distributed Computing. 345–359.
[17] Satoshi Nakamoto and A Bitcoin. 2008. A peer-to-peer electronic cash system.

(2008).

[18] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain

Protocol in Asynchronous Networks. In Advances in Cryptology – EUROCRYPT.
643–673.

[19] R. Pass and E. Shi. 2017. Rethinking Large-Scale Consensus. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF). 115–129.

[20] S. A. Plotkin. 1989. Sticky Bits and Universality of Consensus. In Proceedings
of the Eighth Annual ACM Symposium on Principles of Distributed Computing
(PODC). 159 – 175.

[21] Ling Ren. 2019. Analysis of Nakamoto Consensus. IACR Cryptology ePrint Archive
(2019), 943.

[22] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction

Processing in Bitcoin. In Financial Cryptography and Data Security. 507–527.

https://arxiv.org/abs/cs.DC/1805.03870

	Abstract
	1 Introduction
	1.1 Model
	1.2 Related Work
	1.3 Our Contribution

	2 Impossibility of Asynchronous Deterministic Consensus in the Append Memory
	2.1 Definitions
	2.2 Proof of Theorem 2.1

	3 Consensus in the Append Memory with Synchronous Nodes
	3.1 Lower Bound on the Number of Rounds
	3.2 A Simple Deterministic Algorithm with Synchronous Nodes

	4 Simulation of the Append Memory with Message Passing
	5 Append Memory with Randomized Access
	5.1 Byzantine Agreement with Absolute Timestamps
	5.2 Byzantine Agreement with Chains
	5.3 Byzantine Agreement with DAGs

	References

