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The number of pairwise relations between object scales quadratically with the number of
objects. For classical problems such as finding the nearest neighbor, we have developed fast
algorithms that trade some precision for speed. Unfortunately, in many Machine Learning
(ML) problems these approximations have yet to be developed. For example, in the field
of Natural Language Processing (NLP), the attention layer between the encoder and the
decoder is usually the main bottleneck of the neural network [1]–[4]. Similarly, in Graph
Neural Networks (GNNs), the number of possible edges scales quadratically with the number
of graph nodes. This limits GNNs to predefined and fixed sparse graphs or a small number
of nodes.

The goal of this project is to develop a new type of architecture for neural networks that
takes a list of n feature vectors as input and outputs a relational pattern, i.e. a graph with
a computational cost smaller than O

(
n2

)
. To achieve this, a special learnable tree which

can be backpropagated through will be constructed and studied. The student will test the
architecture first on a simple toy problem, then on standard graph benchmarks and, if the
time allows for it, on an NLP problem.

Figure 1: General architecture. In a first step, the data is used to generate a graph. In a
second step, a graph is used as an input to a graph neural network.

Project description

Most nearest neighbor search algorithms [5]–[9] rely on a tree to split the samples into differ-
ent areas and then reduce the computation time by only computing the distances between the
points on the same leaf. This technique reduces the computational complexity from O

(
d2
)

to O (d log(d))). Inspired by this idea, the main goal of this task is to build a differentiable
tree structure (similar to [10]) that allows us to dynamically build a sparse support for the



graph edges. Practically, two parts need to be learned: an embedding function that projects
the nodes into a discriminative space (often low-dimensional) and a tree splitting this space.

Similar ideas have been explored to scale attention, which is also O
(
n2

)
, in language

models [11], [12]. Closer to our setup, [13] sort the vertices by an attention coefficient and
then perform a 1-dimensional convolution. Thus, they performed computations on non-local
edges efficiently. Instead of the sorting, we plan to learn a differentiable tree to group the
samples that should be related.

Datasets We will start with a synthetic n-body dataset. The goal of the project will
be to predict the gravitational displacement of n particles. Figure 1 illustrates the general
architecture we will use. As a second task, we will work with a weather dataset and predict
temperature and humidity. Eventually, if the time allows for it, we might attempt to scale
the attention mechanism in an NLP problem.

Additional information

• Difficulty of the project: Very challenging!

• What will you learn? Graph neural networks, deep learning, optimization, doing
research, PyTorch.

• Requirements: Strong motivation, machine Learning fundamentals, linear algebra,
good Python knowledge, experience with git.

• Weekly meetings will be held to address questions, discuss progress and think about
future ideas.

Contact

• Nathanaël Perraudin: nathanael.perraudin@sdsc.ethz.ch, SDSC

• Karolis Martinkus: martinkus@ethz.ch, ETZ G95
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