
DISS. ETH NO. 20240

Coping with Selfishness in Distributed Systems:
Mechanism Design in Multi-Core and Peer-to-Peer Systems

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

RAPHAEL PAUL EIDENBENZ

MSc ETH INFK, ETH Zürich

born 13.09.1980

citizen of
Zürich (ZH)

accepted on the recommendation of

Prof. Roger Wattenhofer, examiner
Prof. Dov Monderer, co-examiner

Prof. Karl Aberer, co-examiner

2012

Abstract

Distributed systems with autonomous and self-interested participants often
exhibit deficiencies due to selfishness of its participants. Mechanism design is
the discipline that optimizes systems by taking selfish behavior into account.

In the first part of this thesis, we study how a mechanism designer can in-
fluence games by promising payments to the players. We first investigate the
cost of implementing a desirable behavior. Whereas a mechanism designer
can decide efficiently whether strategy profiles can be implemented at no cost
at all computing an optimal implementation is generally NP-hard. Second,
we introduce and analyze the concept of leverage in a game. The leverage
captures the benefits that a benevolent or a malicious mechanism designer
can achieve within economic reason, i.e., by taking the implementation cost
into account. Mechanism designers can often manipulate games and change
the social welfare by a larger extent than the amount of money invested.
Unfortunately, computing the leverage is generally intractable as well.

In the second part of this thesis, we study the incentives exhibited by
transactional memory systems. We find that with most current contention
managers, transactional memory systems do not incentivize good program-
ming practice, i.e, programmers are encouraged to make transactions coarse
rather than fine-grained. We show how Timestamp-like contention managers
can be modified so as to feature beneficial incentives. In general, however,
priority-based conflict resolution policies are prone to be exploited by self-
ish programmers. In contrast, a simple manager that resolves conflicts at
random is compatible with good-programming incentives.

In the third part of this thesis, we investigate the potential of barter
across swarms and along cycles of interest to boosting the market liquidity of
tit-for-tat based peer-to-peer file sharing systems. By means of simulations,
we find that the proposed measures shorten the median download comple-
tion time by more than one third. Furthermore, we study the problem of
guiding participants of an established system to using an improved system
in a smooth transition. As an entailed problem, we discuss how a conspiring
peer can safely determine a connected peer’s type, i.e., how can she learn
whether the connected peer is a conspirer or a regular peer without giving
away her conspiring identity in the latter case. Our solution is a stegano-
graphic handshake. Finally, we look at the problem of how a conspirer can
broadcast a message secretly to all fellow conspirers in a monitored environ-
ment. For several levels of monitoring, we propose distributed and efficient
algorithms that transmit hidden information by varying the block request
sequence meaningfully.

Zusammenfassung

Verteilte Systeme mit autonomen, eigennützigen Teilnehmern weisen oft
Mängel auf, die auf den Egoismus ihrer Teilnehmer zurückzuführen sind.
Mechanismus-Design ist die Disziplin, welche Systeme optimiert unter Ein-
bezug egoistischen Verhaltens.

Im ersten Teil dieser Dissertation gehen wir der Frage nach, wie ein
Mechanismus-Designer durch das Anbieten von Zahlungen Spiele beeinflus-
sen kann. Als Erstes untersuchen wir die Implementationskosten gewünschten
Verhaltens. Während ein Mechanismus-Designer effizient entscheiden kann,
ob Strategieprofile kostenlos implementiert werden können, ist das Berechnen
einer optimalen Implementation NP-hart. Als Zweites führen wir das Konzept
von Leverage (“Hebelwirkung”) in Spielen ein. Leverage beziffert den Nutzen,
den sich ein wohlwollender oder ein böswilliger Mechanismus-Designer unter
Einbezug der Implementationskosten erwirtschaften kann. Oft kann ein Spiel
so manipuliert werden, dass das resultierende Gemeinwohl grösser ist als das
investierte Geld. Leider ist auch die maximale Leverage schwer zu berechnen.

Im zweiten Teil dieser Dissertation untersuchen wir die Anreize in
Transactional-Memory-Systemen. Wir finden heraus, dass die meisten gängi-
gen Transactional-Memory-Systeme Anreize zu schlechter Programmierpra-
xis schaffen, d.h. Programmierer werden ermutigt Transaktionen lang statt
kurz zu machen. Wir zeigen wie man Timestamp-artige Contention-Manager
modifizieren muss, um Anreize für eine gute Programmierpraxis zu schaffen.
Im Allgemeinen sind prioritätsbasierte Contention-Manager jedoch anfällig
gegenüber egoistischem Verhalten.

Im dritten Teil dieser Dissertation untersuchen wir das Potenzial von
schwarmübergreifendem Tauschhandel entlang Interessenszyklen, um die Li-
quidität eines auf Tit-For-Tat basierten Peer-to-Peer Filesharingsystems zu
erhöhen. Mittels Simulationen finden wir heraus, dass die Einführung der-
artigen Tauschhandels die Dauer eines Downloads im Median um mehr als
einen Drittel verkürzt. Überdies zeigen wir, wie man Teilnehmer eines eta-
blierten Systems mittels einer glatten Übergangsphase dazu bringen kann,
ein verbessertes System zu benutzen. Als Folgeproblem betrachten wir die
Frage, wie ein konspirierender Peer gefahrlos den Typ eines verbundenen
Peers feststellen kann, d.h. wie er erfahren kann, ob der verbundene Peer
auch ein Verschwörer ist oder nicht, ohne dabei in letzterem Fall seinen eige-
nen Typ preiszugeben. Unsere Lösung ist ein steganographischer Handshake.
Schliesslich untersuchen wir, wie ein Verschwörer in einem überwachten Netz-
werk eine geheime Nachricht an alle Verschwörer übermitteln kann. Für ver-
schiedene Überwachungsstufen schlagen wir effiziente, verteilte Algorithmen
vor, welche Information in der Reihenfolge der Block-Requests verstecken.

Acknowledgements

During the four years of my Ph.D. at ETH Zurich I had the chance to
work with several inspiring researchers. Without their support, this thesis
would not have been possible.

First and foremost, I would like to thank my advisor, Prof. Roger Wat-
tenhofer, for his guidance and his ability, to point me to interesting problems.
I am also deeply indebted to my two co-examiners, Prof. Karl Aberer and
Prof. Dov Monderer, who served on my committee board and provided me
with illuminative remarks to improve the final version of this thesis. I am
especially grateful to Stefan Schmid and Yvonne-Anne Pignolet who shared
their interest in mechanism design with me in the course of several research
projects, including my master thesis. Furthermore, they unselfishly enabled
me to join them for ISAAC in Japan with a lasting effect. Their contagious
enthusiasm for research has been an inspiration. Another big thank you goes
out to Thomas Locher, who I had the pleasure to collaborate with in several
projects. His high standards of scientific writing were of great avail, and his
lessons in Chinese characters or NBA team names will remain unforgotten.

I would also like to thank all my co-workers at the Distributed Computing
Group that contributed to a great research environment: my office mate, Jo-
hannes Schneider, who shared my alpine heritage, and with whom I went on
adventures in Canada and Hawaii. My other two office mates, Christoph
Lenzen, who took care of Stefan’s plant, and Klaus-Tycho Förster, who
provided me with sweets on gray winter days. I thank Roland Flury and
Jasmin Smula for pumping lemmas together, Barbara Keller and Samuel
Welten for disseminating knowledge on distributed systems with me, Yu-
val Emek for educating me on spectral graph theory, Remo Meier for his
Java almightiness, Michael Kuhn for mapping music, Philipp Sommer for
co-organizing the Tuscany retreat, Nicolas Burri for sharing the passion for
coffee, Olga Goussevskaia and Pascal von Rickenbach for ever-interesting
chats, Tobias Langner for administering, Stephan Holzer for making adfocs
bearable, Jochen Seidel for his roll, Jara Uitto for making my Ph.D. defense
an even more memorable day, and Philipp Brandes for taking over the PODC
lecture. Furthermore, I would like to thank the friendly and competent ad-
ministrative staff at TIK: Roland Mathis, Tanja Lantz, Beat Futterknecht,
Thomas Steingruber, Damian Friedli; as well as my students: Yu Li, Chris-
tian Decker, David Stolz, Roger Odermatt, Mathias Karlsson, Michael König,
Pascal Studerus, Damiano Boppart, and Erwin Herrsche. Most of their en-
gaged work during their theses under my supervision has contributed to my
thesis in one way or another.

Finally, I am very grateful for the constant support of my friends and
my family, my sister Eva-Maria, my brother Stephan, his wife Seraina, their
lovely children, Tayra, Yaris, Lyas and Malin, my mother, Silvia, and espe-
cially my dad, Hans, who unfortunately could not see the day of my PhD
graduation. Their firm confidence in my abilities has always been reassur-
ing. I want to thank my wonderful girlfriend, Neli, for her love, which has
overcome 10’000 kilometers so easily. At last, I want to thank the members
of my two bands, Mills Embargo and Heizkörper, who have become a second
family to me.

Contents

1 Introduction 1
1.1 Mechanism Design with Payments 2
1.2 MD in Multicore & Peer-to-Peer Systems 3

I Harnessing Games with Payments 7

2 Game Theory and Mechanism Design 9
2.1 Al Capone and the Prisoners Dilemma 13
2.2 Model . 16

3 Implementation Cost & Complexity 19
3.1 Worst-Case Implementation Cost 21
3.2 Uniform Implementation Cost 28

4 Leverage 39
4.1 Worst-Case Leverage . 41
4.2 Uniform Leverage . 49

II Multi-Core Systems 55

5 The Multicore Revolution 57

6 Good Programming in TM 61
6.1 Model . 64
6.2 Good Programming Incentives 67
6.3 Priority-Based Contention Management 72
6.4 Non-Priority Based Contention Management 84
6.5 Simulations . 86

III Peer-To-Peer File Sharing Systems 93

7 History 95
7.1 History . 95
7.2 BitTorrent . 96
7.3 Is BitTorrent the Last Conclusion of Wisdom? 99

8 Cyclic Tit-for-Tat Trading 101
8.1 Model . 103
8.2 Algorithm . 105
8.3 Evaluation . 106
8.4 Distributed Implementation 118

9 How to Establish a Better Equilibrium 123
9.1 Steganographic Handshake 125
9.2 Implementation into BitThief 130

10 Hidden Broadcast 133
10.1 Model & Problem Definition 134
10.2 No Monitoring . 136
10.3 Individual Monitoring . 143
10.4 Complete Monitoring . 144
10.5 Stochastic Monitoring . 146

11 Related Work 149
11.1 Mechanism Design with Payments 149
11.2 Cyclic Inter-Swarm Trading 151
11.3 Hidden Communication in Peer-to-Peer Systems 153

12 Concluding Remarks 155

Chapter 1

Introduction

Most societies and distributed systems in which multiple agents interact to
achieve common or individual goals exhibit an intricate socio-economic com-
plexity. Understanding and formally describing the socio-economic interplays
between autonomous and rational (or selfish) participants of a distributed
system is the subject of game theory. The realm of game theory cuts across
a wide variety of fields such as biology, economics, politics, or computer sci-
ence. Its powerful tools allow for analyses of incentive structures present in
distributed systems. In many cases, such a game-theoretic analysis yields
the insight that the respective system suffers inefficiencies due to effects of
selfishness. To quantify the deficiency caused by selfishness, the performance
loss of a distributed system consisting of selfish participants is computed
with respect to the performance of an optimal reference system where all
participants collaborate perfectly. If this performance loss—often referred
to as price of anarchy—shows to be large this indicates that the protocol
should be extended by a mechanism that sets stronger incentives and thus
encourages the participants to cooperate.

If we define game theory with the words of Robert Aumann as a “sort of
umbrella or ‘unified field’ theory for the rational side of social science, where
‘social’ is interpreted broadly, to include human as well as non-human players
(computers, animals, plants)” then we should define mechanism design—
often referred to as inverted game theory, or applied game theory—as the
social engineering discipline that harnesses the rationality of human and non-
human players to achieve a desired design goal. In a society, the typical goal
of mechanism design is to optimize social welfare, e.g., taxation policies aim
at redistributing wealth so as to guarantee decent minimum standards of
living. In the realm of networked computer systems, where the players are
computers, programmed and used by humans, the typical goal is to optimize

2 CHAPTER 1. INTRODUCTION

the system performance.
Hence, mechanism design is essentially an optimization technique that

takes the behavior of the system participants into account. A natural first
step of such an optimization of an existing system is to analyze the present
incentive structure by the means of game theory. If the system indeed proves
to exhibit incentive-related deficiencies the system is enhanced with a mech-
anism in a second step to improve the incentives offered for cooperation, if
possible. In some cases, improving the incentives requires a rigorous mod-
ification of the existing system. As a consequence, the performance of the
entire system has to be re-evaluated and compared to the performance of the
precursor to assess the quality of the optimization.

Greatly motivated by the advent of large networked systems like the In-
ternet, game theory has been used to analyze the impact of selfishness for
the last few decades; in some cases, like with peer-to-peer file sharing, the
design of mechanisms has led to substantial performance improvements of
the respective systems.

This thesis consists of three parts that all investigate aspects of mecha-
nism design: in a theoretical first part, we examine a mechanism designer’s
possibilities of influencing games with payments; in the second and third
part, we analyze the incentives of transactional memory systems, evaluate a
mechanism for peer-to-peer file sharing, and give solutions to some entailed
practical problems.

1.1 Mechanism Design with Payments

In many distributed systems, a mechanism designer cannot change the rules
of interactions. However, she may be able to influence the players’ behavior
by offering payments for certain outcomes. On this account, we consider
a mechanism designer whose power is based on her monetary assets and
her creditability, i.e., the players trust her to pay the promised payments.
Thus, a certain subset of outcomes is implemented in a given game if the
additional non-negative payments make it rational for players to choose one
of the desired outcomes. A designer faces the following optimization problem:
How can the desired outcome be implemented at minimal cost? We tackle
this question by analyzing the complexity of this task. Surprisingly, it is
sometimes possible to improve (or worsen) the performance of a given system
merely by creditability, i.e., without any payments at all: promising payments
for other profiles can function as some sort of insurance upon which players
choose a better strategy, ending up in a profile where eventually no payments
are made.

Whether a mechanism designer is willing to invest the cost of implement-
ing a desired outcome often depends on how much better the implemented

1.2. MD IN MULTICORE & PEER-TO-PEER SYSTEMS 3

outcome is than the original outcome. If the social welfare gain does not
exceed the implementation cost the mechanism designer might decide not to
influence the game at all. In many games, however, manipulating the players’
utility is profitable.

Part I, covering mechanism design with payments, is based on work pub-
lished at the International Conference on Combinatorial Optimization and
Applications [34], the International Symposium on Algorithms and Compu-
tation [33], and the International Game Theory Review [35].

1.2 Mechanism Design in Multi-Core Systems and
Peer-to-Peer Systems

Transactional memory denotes a paradigm for multicore computing that was
promoted over the last few years by researchers and parts of the industry.
The basic idea is to let software developers wrap critical code sections, i.e.,
sections with accesses to shared data structures, into transactions, rather
than to have them declare explicit locks of certain memory objects. In the
light of the new computing era where clock rates of processors do not speed
up anymore, but the number of cores grows instead, transactional memory
systems promise to offer an easier handling of concurrency than the tra-
ditional techniques. Software engineers agree that it is crucial to ease the
process of developing concurrent code if the distributed computing power of
new processors is to be harnessed properly. Indeed, after Intel, IBM, and
Sun founded a drafting group for the development of a transactional mem-
ory specification in 2009, IBM presented the first commercial processor with
hardware support for transactional memory, named PowerPC A2, at the
Supercomputing conference in November 2011. Intel announced a Haswell
processor with hardware transactional memory to enter the markets in 2013.

The recent developments raise hope that the future will see unimagined
applications that utilize an ever growing computing power. However, no
research work, or practical work has investigated into the question of whether
the proposed systems exhibit the right incentives to programmers that write
code for such processors. We believe this is a severe neglect with potentially
fatal consequences: the different programs running on a multicore machine,
or the threads of one program each of which runs on a different core, compete
for shared resources, e.g. shared memory. Thus, also multicore systems are
susceptible to selfish behavior. We analyze the incentives exhibited by current
transactional memory systems in Part II of this thesis.

The peer-to-peer (p2p) paradigm denotes the architecture of networked
applications where all participants have equal privileges and equal duties. As
opposed to client-server architecture, where one or several designated servers
serve requests of clients, peers in a p2p system both consume services and

4 CHAPTER 1. INTRODUCTION

provide services. A major challenge of p2p computing is the coordination
of peers without a central infrastructure. The lack of a central authority
also makes it harder to enforce compliance with the protocol. Whereas in a
centralized system, the central authority can usually detect and punish non-
compliant participants, e.g., by excluding them from the system, it needs a
lot more effort and coordinated action to trace and punish non-compliant
behavior in decentralized systems as the work done by the central authority
has to be emulated by the peers. Moreover, the client users of a client-server
system usually have no incentive to deviate from the protocol, since they are
not supposed to offer the servers a return service in the first place.1 Selfish
participants of a p2p system, however, may try to profit from the service of
others without serving requests themselves.

The analysis of the incentives exhibited by early p2p file-sharing systems
disclosed that it was easy to cheat the protocol and download content without
uploading was feasible. More so, the lack of incentives to contribute led to
significant deficiencies and a degraded performance of systems like Kazaa.
The designers of a next generation p2p file-sharing system, BitTorrent, took
the selfishness of the users into account and implemented a mechanism with
the protocol that rewards a higher level of contribution with faster downloads.

With its high popularity—a share of up to 70% of the Internet traffic is ac-
counted to BitTorrent—BitTorrent is arguably the most prominent example
of successful mechanism design. Although BitTorrent sets beneficial incen-
tives to a certain extent, the selfish client BitTyrant [75] and the free-riding
client BitThief [60] prove that also BitTorrent may suffer an inefficiency due
to selfishness. This observation raises hope that further improvements of the
incentive structures encourage peers to contribute more, and thus increase
the effectiveness of p2p file-sharing systems. Barter is one obvious way to
impose rather strict incentives. A tit-for-tat trading of data parts forces
peers to upload approximately as much as they download. However, such
a strict trading regime entails further challenges as it requires peers to be
mutually interested in data parts of each other in order to trade. Put differ-
ently, whereas with traditional BitTorrent clients, peers often give out data
for free, introducing strict barter decreases the market liquidity of a system.
In Part III of this dissertation, we study to what extent this challenge can be
met by introducing barter along cycles of interest, and barter across swarms,
both measures that increase the market liquidity. We then discuss the prob-
lem of replacing an established file-sharing system with a newer, potentially
more effective protocol. As an example, we explain the solution taken in our

1An exception are services where clients are supposed to reimburse the server. Selfish
clients may try to get the service without paying. For example, a user of a paid video
streaming service might try to receive an unsubscribed video stream for free. Browser
plugins that filter out advertisements of websites are another example where the user
does not “pay” for viewing the site’s content in terms of exposure to the advertisements.

1.2. MD IN MULTICORE & PEER-TO-PEER SYSTEMS 5

BitThief project that includes a steganographic method to reveal a connected
peer’s type (BitThief client or other Bittorrent client) safely, i.e., without re-
vealing the type to non-BitThief clients. Finally, we consider the question
of how a conspiring subgroup of peers in a p2p network can find each other
and coordinate their action without provoking suspicion among other peers
or an authority that monitors the network.

Part II on multi-core systems presents work that has been published at
the International Symposium on Algorithms and Computation [33] and in
the Journal of Theoretical Computer Science [37]. Part III on peer-to-peer
systems is based on work published at the International Conference on Com-
puter Communications [32] and on work currently under submission [31].

Part I

Harnessing Games with Payments

Chapter 2

An Introduction to Game Theory
and Mechanism Design

Selfishness can be logical (. . .) or practical. The logical egoist considers it
unnecessary to verify his adjudgement with the intellect of others (. . .).

[The practical egoist] does not see any value in things other than those from
which he benefits.

Immanuel Kant, (1724 - 1804)

Game theory can be described as the attempt to mathematically capture
behavior in strategic situations (games), in which an individual’s success in
making choices depends on the choices of others. A classic example of a game
is the situation often referred to as Chicken: two cars are approaching an
intersection, when the drivers realize that if both continue their speed they
will crash into each other. Given that there is no rule which car has to yield
to the other, both drivers have two options available: either stop and yield
to the other car, or drive on and hope the other will yield. Concentrating
on these two options, we can describe this situation as a game played by the
drivers where each of them has to pick one of two options—usually called
strategies in game theory. Depending on which strategies the drivers pick,
the game can have four different outcomes: if Driver 1 yields and Driver 2
drives on Driver 1 has a low, or even a negative payoff, as she loses time and
gas, and Driver 2 has a high payoff. If Driver 1 drives on and Driver 2 stops
Driver 1 has a high payoff and Driver 2 has a low payoff. If both drivers try
yield to the other they both have a low payoff because they both stop the

10 CHAPTER 2. GAME THEORY AND MECHANISM DESIGN

stop go

stop 0
0

-1
+1

go +1
-1

-10
-10

Figure 2.1: Chicken. An anti-coordination 2-player game.

car. If both drivers do not throttle their speed they crash and incur a high
damage, i.e., a high negative payoff.

Such games with two players can be conveniently written as a bi-matrix,
a matrix where each entry consists of a pair of values. Chicken is depicted
in Figure 2.1. Each row of the bi-matrix refers to a strategy available to
Player 1, and each column refers to a strategy available to Player 2. The
first value of an entry i, j is the payoff for Player 1 given that Player 1 picks
strategy i and Player 2 picks strategy j. The second value of an entry is
the payoff for Player 2 if the game yields the corresponding outcome. Note
that for games with more than 3 players it is already more difficult to give
a concise representation as we need to describe multi-dimensional matrices
with multi-valued entries. For the sake of presentation, we will thus primarily
provide examples of two player games in this introduction.

Chicken is a so-called anti-coordination game since each player would pre-
fer to do the opposite of the option chosen by the other player: if Driver 2
knew that Driver 1 stops she could decide to drive on without any problem,
thus achieving the highest valued outcome for her. On the other hand, if
Driver 2 knew that Driver 1 does not stop she would probably rather stop
and prevent a crash, i.e., in terms of payoffs, she would rather incur cost of 1
instead of 10. Note that for the above argumentation we already assumed a
basic rationality of the two involved players. Even though it seems a strange
choice not to stop and to knowingly provoke a crash there might be real
life instances of the Chicken game where a player still prefers this choice to
yielding to the other driver. For the analyses of games in the following, we
assume that players behave rationally in the sense that they always try to
maximize their payoff, and selfishly in the sense that they do not care about
the payoffs, or costs eventually collected or incurred by others. Hence, we
do not consider any altruistic emotions that might lead people to opt for
a strategy that does not maximize their payoff, but increases the payoff of
others instead. We also disregard feelings of pride, or anger that might lead
players to deviate from the strategy with optimal payoff, as it might hap-
pen in the Chicken game, for instance.1 Indifference towards the payoff that

1An act of brinkmanship is to put up with an uncontrollable risk. Such uncontrollable

11

concert football

concert 10
3

1
1

football -10
-10

-5
10

Figure 2.2: Distorted Battle of the Sexes. The row player, Judy, dislikes
football to such an extent that she would rather attend the concert alone.

others receive does not prevent a player from taking the payoffs of others
into account. On the contrary, a rational player tries to predict the behav-
ior of others with all information about the game available, and chooses a
strategy based on these predictions. To illustrate the reasoning of a player,
consider the following distorted variant of the game known as Battle of the
Sexes (DBoS): a couple—let us call them Judy and Jim—makes plans for
an evening out. Consulting the event calendar, they learn that the only two
events that are scheduled that evening are a football match and a classical
concert. Jim prefers going to the football match, but he would still rather
attend the concert than spending the evening without Judy. Judy on the
other hand, dislikes football2 so much that she would rather go to the con-
cert alone than to join Jim for the football match. See Figure 2.2 for the
bi-matrix representation of the game. The reasoning for Judy is that no
matter what Jim opts for, she will be better off by attending the concert. As
Jim knows Judy’s preferences, he predicts that Judy will go to the concert,
thus, going to the concert is the better option also for him. Following this
rationale, we can predict that Judy and Jim will go to the concert together.

The discipline of game theory consists of two basic activities: modelling
situations as games, and modelling the behavior of the players so as to predict
the outcome of games. Thereby, the rationality and selfishness assumption
serves as a basis for modelling behavior. One assumption shared by most
game-theoretic work, if not all, is that a player never opts for a strategy that
is dominated by another strategy, i.e., a strategy for which there exists an-
other strategy that is always better regardless of the other players’ choices.
In DBoS, for instance, Judy’s option to attend the concert dominates the
option of going to the football match. Moreover, attending the concert is
called a dominant strategy as it dominates all other strategies available to
Judy. In games where every player has exactly one dominant strategy, this
assumption suffices to predict one unique outcome of the game, namely the

risk is taken by Corey Allen’s character in the famous “chickie run” scene from the film
Rebel Without a Cause, when he cannot escape from the car and dies in the crash.

2Pardon the gender stereotype.

12 CHAPTER 2. GAME THEORY AND MECHANISM DESIGN

outcome where all participants play their dominant strategy. Prediction ra-
tionales such as the one yielded by the assumption that players never choose
dominated strategies are called solution concepts. Note that the dominant
strategy solution concept predicts a unique solution only in games where all
participants have a dominant strategy. In other games, however, it only de-
creases the solution space to outcomes containing all dominant strategies. In
the DBoS game, for instance, it decreases the solution space to the outcomes
where Judy opts for the concert, but it does not make any prediction about
Jim’s choice of strategy. In the Chicken game, neither of the drivers has a
dominant strategy available.

There are several proposals of solution concepts that make additional
assumptions to further reduce the solution space. The most famous is prob-
ably the Nash equilibrium, named after John F. Nash who proposed it in
1950 [70]. A Nash Equilibrium (NE) is a strategy profile (a possible out-
come of the game) for which it holds that no player can improve her payoff
by unilaterally changing her strategy. The Nash equilibrium in the DBoS
game is the strategy profile where both Judy and Jim go to the concert. The
Chicken game, for instance, has two Nash equilibria: the two outcomes where
one driver stops and the other does not.

As a solution concept, the highly acclaimed Nash equilibrium is espe-
cially suited for games that are played more than once, or for games where
the participants are allowed to discuss their strategies before playing. In
systems where the same game is repeated over and over, Nash equilibrium
points are particularly important because they represent stable states of the
systems, i.e., a state where no participant has an incentive to unilaterally
change the current strategy. For games with more than one Nash equilib-
rium, the Nash equilibrium solution concept does not make any prediction
about which Nash equilibrium is most likely to be the outcome of the game.
Other solutions concepts, not considered in this dissertation, include corre-
lated equilibria [13], mixed Nash equilibria [71], and sequential elimination
of dominated strategies.

Although Nash equilibria and dominant strategy profiles are desirable
game outcomes in the sense that they are stable solutions, they do not nec-
essarily coincide with states that exhibit the largest “social value”. This fact
is prominently illustrated by the game called Prisoner’s Dilemma (cf. Fig-
ure 2.3): Two bank robbers are arrested by the police. The policemen have
insufficient evidence for convicting them of robbing a bank, but they could
charge them with a minor crime. Cleverly, the policemen interrogate each
suspect separately and offer both of them the same deal. If one testifies to
the fact that his accomplice has participated in the bank robbery, they do not
charge him for the minor crime. If one robber testifies and the other remains
silent, the former goes free and the latter receives a three-year sentence for

2.1. AL CAPONE AND THE PRISONERS DILEMMA 13

silent testify

silent 3
3

0
4

testify 4
0

1
1

Figure 2.3: Prisoner’s Dilemma. Each player can either remain silent or
testify to help convicting the other player. Payoffs are expressed in terms of
saved years in prison.

robbing the bank and a one-year sentence for committing the minor crime. If
both betray the other, each of them will get three years for the bank robbery.
If both remain silent, the police can convict them for the minor crime only
and they get one year each.

In the Prisoner’s Dilemma game, no matter which strategy the other
player chooses, a bank robber is better off by testifying, i.e., testifying is a
dominant strategy for both bank robbers. The strategy profile where both
players testify is a dominant outcome, and thus also a Nash equilibrium.
Hence, selfish and rational bank robbers will end up testifying against each
other, and go to jail for three years each. From the players’ point of view
this outcome is particularly tragic, because if both of them remained silent
they would spend only one year in prison, thus save two years each.

In the following, we will show that by offering payments to the players
that can depend on the strategy profile chosen by the players, an external
entity, a mechanism designer, can influence the outcome of the game. For
some games, this external mechanism designer can lead the players to choose
an outcome that yields much better payoffs at only minor incurring cost—
sometimes at no cost at all.

2.1 Al Capone and the Prisoners Dilemma

Consider the following extension to the Prisoner’s Dilemma game: Let us
add another well-available option to the strategy set of both bank robbers,
namely the option to completely confess to the bank robbery and thus supply
the police with evidence to convict both criminals for a four-year sentence.
The bi-matrix of the extended Prisoner’s Dilemma game G is depicted in
Figure 2.4. Note that payoffs are again expressed in terms of saved years
compared to the maximum of four years. A short game-theoretic analysis
shows that both player’s best strategy is still to testify. Thus, the prisoners
will betray each other and both get charged a three-year sentence.

Now, let the two bank robbers be members of the Al Capone gang. Thus,

14 CHAPTER 2. GAME THEORY AND MECHANISM DESIGN

3 0 0
3 4 0

4 1 0
0 1 0

0 0 0

0 0 0

1 2 4 2 0 0 3 0 0

1 0 4 4 0 5 3 4 5

0 4 1 0 0 4 1 0

2 2 1 0 2 0 1 2

0 0 0 5 2 5 2 0

0 0 0 0 0 0 0 0

t

G

V'

t t t

s

t

c

s

c

t

s

c

s

c

s

c

PoliceAl Capone

s t c s t c s t c s t c

G(V')

cs

V G(V)

Al Capone Police

Figure 2.4: Extended prisoners’ dilemma: G shows the prisoners’ initial
payoffs, where payoff values equal saved years. The first strategy is to remain
silent (s), the second to testify (t) and the third to confess (c). Nash equilibria
are colored gray, and non-dominated strategy profiles have a bold border.
The left bi-matrix V shows Mr. Capone’s offered payments which modify
G to the game G(V). By offering payments V ′, the police implements the
strategy profile (c, c). As V1(c, c) = V2(c, c) = 0, payments V ′ implement
(c, c) for free.

Mr. Capone, the gang leader, has an interest in the outcome of the game,
since he wants to dispense with the two gang members for a period as short as
possible. Furthermore, let Mr. Capone get a chance to take influence on his
employees’ decisions. Before they take their decision, Mr. Capone calls each
of them and promises that if they both remain silent, they will receive money
compensating for one year in jail—for this scenario, we presume that time
really is money. Furthermore, if one remains silent and the other betrays him,
Mr. Capone will pay the former money worth two years in prison (cf. V in
Figure 2.4). Thus, Mr. Capone creates a new situation for the two criminals
where remaining silent is the most rational behavior. We say, Mr. Capone
has implemented the outcome where both criminals stay silent. Thereby, he
has saved his gang an accumulated two years in jail.

Let us also consider a slightly different scenario where, after the police
officers have made their offer to the prisoners, their commander-in-chief de-

2.1. AL CAPONE AND THE PRISONERS DILEMMA 15

vises an even more promising plan. He offers each criminal to drop two years
of the four-year sentence if he confesses the bank robbery and his accomplice
betrays him. Moreover, if he confesses and the accomplice remains silent
they would let him go free and even reward his honesty with a share of the
booty (worth going to prison for one year). However, if both suspects confess
the robbery, they will spend four years in jail. In this new situation, it is
most rational for a prisoner to confess. Consequently, the commander-in-
chief implements the best outcome from his point of view without dropping
any sentence and he increases the accumulated years in prison by two.

From Mr. Capone’s point of view, implementing the outcome where both
prisoners keep quiet results in four saved years for the robbers. By subtract-
ing the implementation cost, the equivalent to two years in prison, from the
saved years, we see that this implementation yields a benefit of two years
for the Capone gang. We say that the leverage of the strategy profile where
both prisoners play s is two. For the police, the leverage of the strategy
profile where both prisoners play c is two, since the implementation costs
nothing and increases the years in prison by two. Since implementing c re-
duces the players’ gain, we say the strategy profile where both play c has
a malicious leverage of two. In the described scenario, Mr. Capone and
the commander-in-chief solve the optimization problem of finding the game’s
strategy profile(s) which bear the largest leverage, or malicious leverage re-
spectively, and therewith the problem of implementing the corresponding
outcome at optimal cost.

In the remainder of Part I of this dissertation, we study how a mechanism
designer can influence games by promising payments to the players depend-
ing on their mutual choice of strategies. In Chapter 3, we investigate the cost
of implementing a desirable behavior and present algorithms to compute this
cost. Whereas a mechanism designer can decide efficiently whether strategy
profiles can be implemented at no cost at all our complexity analysis indi-
cates that computing an optimal implementation is generally NP-hard. In
Chapter 4, we introduce and analyze the concept of leverage in a game. The
leverage captures the benefits that a benevolent or a malicious mechanism
designer can achieve by implementing a certain strategy profile region within
economic reason, i.e., by taking the implementation cost into account. Mech-
anism designers can often manipulate games and change the social welfare
by a larger extent than the amount of money invested. Unfortunately, com-
puting the leverage turns out to be intractable as well in the general case. In
the remainder of this chapter, we introduce our basic model of game theory
and implementation.

16 CHAPTER 2. GAME THEORY AND MECHANISM DESIGN

2.2 Model

2.2.1 Game Theory
A finite strategic game can be described by a tuple

G = (N,X,U),
where N = {1, 2, . . . , n} is the set of players and each player i ∈ N can
choose a strategy (action) from the set Xi. The product of all the individual
players’ strategies is denoted by

X := X1 ×X2 × . . .×Xn.
In the following, a particular outcome x ∈ X is called strategy profile and we
refer to the set of all other players’ strategies of a given player i by

X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn.
An element of Xi is denoted by xi, and similarly, x−i ∈ X−i; we may write
xi, x−i to denote strategy profile x ∈ X where player i plays xi and all other
players play according to x−i. Finally,

U = (U1, U2, . . . , Un)
is an n-tuple of payoff functions (utilities), where Ui : X → R determines
player i’s payoff arising from the game’s outcome. The social gain of a
game’s outcome is given by the sum of the individual players’ payoffs at the
corresponding strategy profile x, i.e.,

gain(x) :=
n∑
i=1

Ui(x).

Let xi, x′i ∈ Xi be two strategies available to Player i. We say that xi
dominates x′i iff Ui(xi, x−i) ≥ Ui(x′i, x−i) for every x−i ∈ X−i and there
exists at least one x−i for which a strict inequality holds. xi is the dominant
strategy for player i if it dominates every other strategy x′i ∈ Xi\{xi}. xi is
a non-dominated strategy if no other strategy dominates it. We denote the
set of non-dominated strategy profiles by

X∗ = X∗1 × . . .×X∗n,
where X∗i is the set of non-dominated strategies available to the individual
player i. A strategy profile set—also called strategy profile region—O ⊆ X of
G is a nonempty subset of all strategy profiles X, i.e., a region in the payoff
matrix consisting of one or multiple strategy profiles. Similarly to Xi and
X−i, we define

Oi := {xi | ∃ x−i ∈ X−i s.t. (xi, x−i) ∈ O} and
O−i := {x−i | ∃ xi ∈ Xi s.t. (xi, x−i) ∈ O}.

2.2. MODEL 17

2.2.2 Mechanism Design with Payments
Our model is based on the classic assumption that players are rational and
always choose a non-dominated strategy. Additionally, we assume that play-
ers do not collude. We examine the impact of payments to players offered
by a reliable mechanism designer (an interested third party) who seeks to
influence the outcome of a game. It is assumed that the mechanism designer
has complete knowledge of the players’ utilities. By reliable we mean that the
owed payments will always be acquitted. Note that this differs from standard
mechanism design where a designer (e.g., a government) defines an interac-
tion for self-motivated parties that will allow it to obtain some desired goal
(such as maximizing revenue or social welfare) taking the agents’ incentives
into account, see also the discussion in [66]. In many distributed systems,
unfortunately, interested parties cannot control the rules of interactions. A
network manager for example cannot simply change the communication pro-
tocols in a given distributed systems in order to lead to desired behaviors,
and a broker cannot change the rules in which goods are sold by an agency
auctioneer to the public.

The payments promised by the mechanism designer are described by a
tuple of non-negative payment functions

V = (V1, V2, . . . , Vn), where Vi : X → R+,

i.e., the payments for player i depend on the strategy Player i selects as well as
on the choices of all other players. Thereby, we assume that the players trust
the mechanism designer to finally pay the promised amount of money. The
original game G = (N,X,U) is modified to a game G(V) := (N,X, [U + V])
by the payments V , where

[U + V]i(x) = Ui(x) + Vi(x),

that is, each player i obtains the payments of Vi in addition to the payoffs
of Ui. The players’ choice of strategies changes accordingly: Each player
now selects a non-dominated strategy in G(V). Henceforth, the set of non-
dominated strategy profiles of G(V) is denoted by X∗(V), and V (x) denotes
the sum of all payments offered to the players when x is the game’s outcome,

V (x) =
n∑
i=1

Vi(x).

Observe that we have made two implicit assumptions: The mechanism de-
signer can observe the actions chosen by the players and the players can
determine the payoffs of all their strategies and compute the best strategy
among them.

Chapter 3

Implementation Cost & Complexity

The mechanism designer’s objective is to bring the players to choose a cer-
tain outcome of the game for as little payments as possible. Monderer and
Tennenholtz introduced the notion of k-implementations in [66] to denote
mechanisms that manipulate the players’ behavior with payments of total
value at most k. For the smallest implementable units of a game, singletons,
they derived a closed formula for the minimal costs k needed to implement it.
This formula builds on the fact that in order to implement a strategy profile
z ∈ X, for each player i, strategy zi must be the dominant strategy for i in
the game G(V) that combines the original payoffs with the offered payments.
To achieve dominance, Ui(z) + Vi(z) must be at least as large as any pay-
off Ui(xi, z−i) of any other strategy xi ∈ Xi, all other payments Vi(zi, x−i)
can be chosen high enough to yield Ui(zi, x−i) +Vi(zi, x−i) > Ui(xi, x−i) for
all xi 6= zi, x−i 6= z−i. In fact, this is exactly what Mr. Capone and the
commander-in-chief achieve with the payments v, and V ′ respectively in the
extended prisoner’s dilemma of Figure 2.4.

Theorem 3.1 ([66]). Let G = (N,X,U) be a game with at least two strategies
for every player. Every strategy profile z has an implementation V , and its
implementation cost amounts to

k(z) =
n∑
i=1

max
xi∈Xi

(Ui(xi, z−i)− Ui(zi, z−i)) .

Furthermore, observe that z constitutes a Nash equilibrium if and only
if it holds for every player i ∈ N , maxxi∈Xi (Ui(xi, z−i) − Ui(zi, z−i)) = 0.
As a corollary to Theorem 3.1 we get that a strategy profile z is a Nash
equilibrium if and only if z has a 0-implementation. This remarkable result

20 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

G =

20
0

11
9

15
15

15
15

11
9

20
0

15
15

15
15

19
10

10
19

9
11

0
20

10
19

19
10

0
20

9
11

V =

0
∞

0
∞

0
0

0
0

0
∞

0
∞

0
0

0
0

1
1

1
1
∞

0
∞

0
1

1
1

1
∞

0
∞

0

Figure 3.1: 2-player game where O ’s optimal implementation V yields a
region |X∗(V)| > 1.

by [66] implies that some outcomes can be implemented without spending
anything.1

Note that in general, there are strategy profile regions for which it is
cheaper to implement the entire region rather than a singleton within that
region. Consider the game G in Figure 3.1. In game G, each singleton o in the
region O consisting of the four bottom left profiles has cost k(o) = 11 whereas
V implements O at cost 2: in the game G(V) induced by payments V , the
first two strategies of both players are dominated by the third or the fourth
strategy respectively. Thus, the non-dominated strategy profiles X∗(V) in
game G(V) corresponds to O. No matter which of the profiles in O will
eventually be the outcome of the game, the mechanism designer incurs cost
of only 2. The game G can be generalized to an arbitrarily large difference in
the implementation cost between a singleton and a region in the worst case,
e.g., by increasing all payoffs inG that are larger than 15 by the same amount.
The example of Figure 3.1 shows that it can be worthwhile for a mechanism
designer not to be too restrictive in what should be implemented. If several
outcomes are acceptable, and not just a singleton, cheaper implementations
may exist. Lower implementation cost can be traded for the uncertainty
about which of the outcome in the region will be picked by the players.

In the following, we therefore investigate the implementations of strategy
profile regions. How difficult is it to find the optimal implementation for
a given region? How can a mechanism designer compute the payments?
And what are the optimal cost? We consider two scenarios leading to two
kinds of implementation cost: worst-case implementation cost and uniform
implementation cost.

1For a discussion of exact 0-implementations of profile sets, we refer the reader to [34].

3.1. WORST-CASE IMPLEMENTATION COST 21

3.1 Worst-Case Implementation Cost

In a first step, we study a perfect common knowledge scenario where all play-
ers know all strategy spaces X and payoff functions U , and the players are
aware that the other players know X and U . Moreover, the mechanism de-
signer calculates with the maximum possible payments for a desired outcome
(worst-case implementation cost). For a desired strategy profile set O, we say
that payments V implement O if ∅ (X∗(V) ⊆ O. V is called (worst-case)
k-implementation if, in addition

V (x) ≤ k, ∀ x ∈ X∗(V).

That is, the players’ non-dominated strategies are within the desired strat-
egy profile, and the payments do not exceed k for any possible outcome.
Moreover, V is an exact k-implementation of O if all strategies of O are
non-dominated in the resulting game, i.e.,

X∗(V) = O and V (x) ≤ k ∀x ∈ X∗(V).

The cost k(O) of implementing O is the greatest lower bound of all non-
negative numbers q for which there exists a q-implementation. Depending
on the game and the region O to implement, there either exists an imple-
mentation that reaches the cost exactly, or one that reaches k(O) up to an
arbitrarily small positive number. We refer to such implementations as op-
timal implementations. That is, V is an optimal implementation of O if V
implements O and maxx∈X∗(V) V (x) = k(O) for games and target regions
where such a V exists, or if V implements O and maxx∈X∗(V) V (x) = k(O)+ε
for arbitrarily small ε > 0 in the general case. The cost k∗(O) of implement-
ing O exactly is the greatest lower bound of all non-negative numbers q for
which there exists an exact q-implementation of O. V is an optimal exact
implementation of O if it implements O exactly and requires cost k∗(O),
or k∗(O) + ε for games and target regions where no exact implementation
reaches the lower bound. The set of all implementations of O will be denoted
by V(O), and the set of all exact implementations of O by V∗(O). Finally,
a strategy profile set O = {z} of cardinality one—consisting of only one
strategy profile—is called a singleton. Clearly, for singletons it holds that
non-exact and exact k-implementations are equivalent. For simplicity’s sake
we often write z instead of {z} . Observe that only subsets of X which are in
2X1 × 2X2 × . . .× 2Xn , i.e., the Cartesian product of subsets of the players’
strategies, can be implemented exactly. We call such a subset of X a rectan-
gular strategy profile set.2 In conclusion, for the worst-case implementation
cost, we have the following definitions.

2Note that within our model where payments are made to individual players in dif-
ferent profiles, non-dominated profile sets will always be rectangular.

22 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

1

1

ε

0

2
4

5
2

3
4

5
2

1
0

1
0

0
0

0
0

1+ε
0

0
0

0
0

0
3

G1 V G2 Vn Ve

Figure 3.2: ε-Payments. To implement the upper strategy profile in the one-
player game G1, the mechanism designer has to pay an arbitrarily small ε > 0
to make the first strategy dominate the second. In game G2, the region O
consisting of the upper two strategy profiles has (exact) implementation cost
k(O) = k∗(O) = 1. While the optimal exact implementation Ve needs ε-
payments, the optimal non-exact implementation Vn can do without.

Definition 3.2 (Worst-Case Cost and Exact Worst-Case Cost). The worst-
case implementation cost k(O) of a strategy profile set O is defined as

k(O) := inf
V ∈V(O)

{
max

z∈X∗(V)
V (z)

}
.

A strategy profile set O has exact worst-case implementation cost

k∗(O) := inf
V ∈V∗(O)

{
max

z∈X∗(V)
V (z)

}
.

Note that we need to define the implementation cost by an infimum over
all implementations of region O, as for some instances of games and tar-
get regions, ε-payments might be necessary to implement O. Figure 3.2
provides examples of such a problem instance. However, many instances al-
low an implementation that reaches the cost exactly. In particular, for a
player i, whenever O−i (X−i a mechanism designer can use high payments
for profiles (oi, ō−i) where ō−i ∈ X−i \ O−i to make it unnecessary to offer
payments Vi(oi, o−i) to player i so that [U + V]i(oi, o−i) exceeds the largest
payoff Ui(ōi, o−i), ōi ∈ Xi \Oi.

Theorem 3.3. For a game G and a rectangular target region O ∈ X, it holds
that if O−i (X−i for all i ∈ N then there exist payments V that implement
O with cost equal to k(O), and there exist payments V ′ that implement O
exactly with cost k∗(O).

Proof. Let V be an optimal implementation of O. It must hold for every
i ∈ N and every strategy oi ∈ Oi that the set of strategies ōi ∈ Xi \Oi that
are dominated by oi in G(V) is optimal, otherwise V would not be optimal.
For any pair of strategies (oi, ōi) where oi dominates ōi in G(V), it must hold

3.1. WORST-CASE IMPLEMENTATION COST 23

that [U+V]i(oi, x−i) ≥ [U+V]i(ōi, x−i) and strict inequality must hold for at
least one x−i ∈ X−i. ε-payments are only needed to break ties between ōi and
oi if it would hold otherwise that [U +V]i(oi, x−i) = [U +V]i(ōi, x−i) for all
x−i. Since adding an ε-payment to one strategy profile (oi, x−i) is sufficient
and there is at least one such profile outside O, there are no ε-payments
needed inside O. Hence, among the profiles in X∗(V) ⊆ O that exhibit cost
equal to maxz∈X∗(V) V (z) there is at least one for which V does not contain
any ε-payments. Otherwise the cost yielded by V could be improved by ε,
contradicting optimality. Therefore, k(O) = maxz∈X∗(V) V (z).

The same argument proves the claim for the cost of exact implementations
with the only difference that V be an optimal exact implementation of O,
and X∗(V) = O.

We would like to stress that Theorem 3.3 describes a one-sided implica-
tion: all problem instances with the described property have implementations
that reach the cost, or the exact cost, without ε-payments; there are, however,
games and target regionsO where there exist i ∈ N for whichO−i = X−i, and
an optimal implementation of O does still not need ε-payments (cf. game G2
in Figure 3.2 for instance).

We now begin with studying exact implementations where the mecha-
nism designer aims at implementing an entire strategy profile region. Exact
region implementations are computationally cheaper to find compared to
general region implementations, as calculating and comparing all the pos-
sible subregions is time-consuming. Subsequently, we examine general k-
implementations.

3.1.1 Exact Implementation
Recall that the matrix V is an exact k-implementation of a strategy region
O iff X∗(V) = O and

∑n

i=1 Vi(x) ≤ k ∀x ∈ X∗(V), i.e. each strategy Oi is
part of the set of player i’s non-dominated strategies for all Players i. We
present the first correct algorithm to find such implementations.3

Recall that in our model each player classifies the strategies available
to her as either dominated or non-dominated. Thereby, each dominated
strategy xi ∈ Xi\X∗i is dominated by at least one non-dominated strategy
x∗i ∈ X∗i . In other words, a game determines for each player i a relation MG

i

from dominated to non-dominated strategies,

MG
i ⊆ Xi\X∗i ×X∗i ,

where (xi, x∗i) ∈ MG
i states that xi ∈ Xi\X∗i is dominated by x∗i ∈ X∗i . See

Figure 3.3 for an example. When implementing a strategy profile region O
3Monderer and Tennenholtz present a polynomial algorithm in [66] that is not correct

(cf. [34]).

24 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

0 1 4

5 5 1

4 10 4

0 0 10

4 5 4

4 0 0a

b
d*a

c
e*b

d*
c f*

e*
X\X* X*

f*

Figure 3.3: Game from a single player’s point of view with the corresponding
relation of dominated (Xi\X∗i = {a, b, c}) to non-dominated strategies (X∗i =
{d∗, e∗, f∗}).

exactly, the mechanism designer creates a modified game G(V) with a new
relationMV

i ⊆ Xi\Oi×Oi such that all strategies outside Oi map to at least
one strategy in Oi. Therewith, the set of all newly non-dominated strategies
of player i must equal Oi. Every V ∈ V∗(O) determines a set of relations
MV := {MV

i : i ∈ N}. Vice versa, if we are given the relation set MV ′ of an
optimal exact implementation V ′ we can compute, not necessarily V ′, but
a similar implementation V with minimal payments and the same relation
MV = MV ′ , i.e., given an “optimal” relation set we can find an optimal exact
implementation. As an illustrating example, assume an optimal relation set
for G with (x∗i1, oi) ∈MG

i and (x∗i2, oi) ∈MG
i . Thus, we can compute V such

that oi must dominate x∗i1 and x∗i2 in G(V), namely, the condition

Ui(oi, o−i) + Vi(oi, o−i) ≥ max
s∈(x∗

i1,x
∗
i2)

(Ui (s, o−i) + Vi (s, o−i))

must hold for all o−i ∈ O−i. In an optimal implementation, Player i need
not be offered payments for strategy profiles of the form (ōi, x−i) where
ōi ∈ Xi\Oi, x−i ∈ X−i. Hence, the condition above implies that

Vi(oi, o−i) = max
{

0, max
s∈{x∗

i1,x
∗
i2}
Ui(s, o−i)− Ui(oi, o−i)

}
.

If V ′ ∈ V∗(O) is an optimal exact implementation then payments V consti-

3.1. WORST-CASE IMPLEMENTATION COST 25

tute an optimal exact implementation of O as well if it holds for any player i:

Vi(ōi, x−i) = 0,
Vi(oi, ō−i) = ∞,

Vi(oi, o−i) = max
{

0, max
s∈Si(oi)

Ui(s, o−i)− Ui(oi, o−i)
}
,

where Si(oi) := {s ∈ Xi \ Oi | (s, oi) ∈ MV ′
i } are the strategies of player i

that are dominated by oi in G(V ′). Therefore, the problem of finding an
optimal exact implementation V of O corresponds to the problem of finding
an optimal set of relations MV

i ⊆ Xi\Oi ×Oi.
Algorithm ALGexact (cf. Algorithm 3.1) exploits this fact and constructs

an implementation V for all possible relation sets, checks the cost that V
would entail, and returns the lowest cost. The computation is done by re-
cursively calling a subroutine ExactK(V, i). Subroutine ExactK(V, i) returns
the minimum cost incurred by any exact implementation V ′ ∈ V∗(O) that
only adds additional payments to V , i.e., V ′i (x) ≥ Vi(x) for all i ∈ N , x ∈ X.
Parameter i marks the current player in the recursion, i.e., payments V al-
ready yield the desired set of non-dominated strategies for the players in
{i+ 1, . . . , n}. Note that V has reference semantics in Algorithm 3.1.

Theorem 3.4. ALGexact computes a rectangular strategy profile region’s
optimal exact implementation cost in time

O
(
|X|2 max

i∈N
(|Oi|n|X

∗
i \Oi|−1) + n|O|max

i∈N
(|Oi|n|X

∗
i \Oi|)

)
.

Proof. ALGexact is correct as it checks all possible relations in the relation
set MV recursively by calling the subroutine ExactK in Line 7. Therefore,
it must find the relation set which corresponds to an implementation with
optimal cost. For each relation set, an implementation is computed that
guarantees that all strategies outside O are dominated, and whose cost are
optimal with respect to the relations (Line 5). The input requirement on the
target region O guarantees that for any i ∈ N , X−i \O−i is nonempty. Thus,
no strategy oi ∈ Oi can be dominated since the payoff for a profile (oi, ō−i)
with ō−i ∈ X−i \ O−i equals ∞ in the resulting game (Line 2). Hence, the
payments V are indeed an exact implementation of O, and optimal with
respect to the corresponding relation set when returning the incurred cost in
Line 19.

It remains to prove the algorithm’s runtime. Computing the non-
dominated region X∗ by checking for each strategy whether it is dominated
takes time

∑n

i=1

(|Xi|
2

)
|X−i| = O(n|X|2). The complexity of this computa-

tion asymptotically dominates the runtime required by Lines 1 and 2. We

26 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

Algorithm 3.1 Exact k-Implementation (ALGexact)
Input: Game G, rectangular region O with O−i (X−i∀ i
Output: k∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) :=∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗;
4: return ExactK(V , n);

ExactK(V , i):
Input: payments V , current player i
Output: k∗(O) for G(V)
1: if |X∗i (V)\Oi| > 0 then
2: s := any strategy in X∗i (V)\Oi; kbest :=∞;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max(0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i)));
6: end for
7: k := ExactK(V +W , i);
8: if k < kbest then
9: kbest := k;

10: end if
11: for all o−i ∈ O−i do
12: Wi(oi, o−i) := 0;
13: end for
14: end for
15: return kbest;
16: else if i > 1 then
17: return ExactK(V , i− 1);
18: else
19: return maxo∈O

∑
i
Vi(o);

20: end if

3.1. WORST-CASE IMPLEMENTATION COST 27

next examine the complexity of subroutine ExactK. Computing Line 1 costs
|X|2, the two for-loops in Lines 3 and 4 are executed |O| times, and ExactK is
called |Oi| times (Line 6). Hence, we derive the following (asymptotic) recur-
sive equations for the runtime Ti(`) for ExactK(V, i) if i has yet ` strategies
to dominate:

Ti(`) =

|X|2 + |O|+ |Oi|Ti(`− 1) if (0 < ` < |X∗i \Oi|) ∧ (i ∈ N)
Ti−1(|X∗i−1 \Oi−1|) if ` = 0 ∧ i ∈ N
n|O| if ` = 0 ∧ i = 0

For `i = |X∗i \Oi|, we obtain Ti(`i) = |Oi|`i−1|X|2 + |Oi|`iTi−1(`i−1) if i > 1.
Let ai = |Oi|`i−1|X|2, bi = |Oi|`i and a = maxi∈N ai, b = maxi∈N bi; hence

Ti(`i) = ai + biTi−1(`i−1)

= a

[
i∑

j=1

j−1∏
k=1

bk

]
+

[
i∏

k=1

bk

]
T1(0)

= a

i∑
j=1

bj−1 + bin|O|

= abi−1 + bin|O|

and the claim follows.

Note that ALGexact has a large time complexity. In fact, a faster al-
gorithm for this problem, called Optimal Perturbation, has been proposed
in [66]. However, the Optimal Perturbation algorithm does not always com-
pute the correct cost, as we have shown in [34]. In contrast, while analyz-
ing games for which the Optimal Perturbation Algorithm fails, we observed
that the problem is seemingly, inherently hard. We conjecture that deciding
whether a k-exact implementation exists is NP-hard. Although we did not
succeed in proving NP-hardness we have reason to believe so as we can show
the arguably easier, and closely related problem of finding the exact uniform
implementation cost of a strategy region to be NP-hard (Theorem 3.8).

Conjecture 3.5. Finding an optimal exact implementation of a strategy
region is NP-hard.

The study of exact implementation cost was introduced by Monderer and
Tennenholtz [66] primarily because it seems easier to compute the exact im-
plementation cost of a region O than its non-exact cost. Computing the
non-exact cost of O implicitly computes at least the optimal subregion’s ex-
act cost, potentially the exact cost of all subsets of O since the algorithm has

28 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

to discover that no other subregion has lower implementation cost. Unfortu-
nately, although we experienced that computing exact cost is computation-
ally easier than computing non-exact cost, it still seems infeasible to do so
in polynomial time.

3.1.2 Non-Exact Implementation
In contrast to exact implementations, where the complete set of strategy
profiles O must be non-dominated, the additional payments in non-exact
implementations only have to ensure that a subset of O is the newly non-
dominated region. Obviously, it matters which subset this is. Knowing that
a subset O′ ⊆ O bears optimal cost, we could find k(O) by computing k∗(O′).
As we conjectured that computing exact cost is in NP we get the following:

Conjecture 3.6. Finding an optimal implementation of a strategy region is
NP-hard.

Apart from the fact that finding an optimal implementation includes solv-
ing the—believed to be NP-hard—optimal exact implementation cost prob-
lem for at least one subregion of O, finding this subregion might also be
NP-hard even if the exact implementation cost problem shows to be in P
since there are exponentially many possible subregions. In fact, a reduc-
tion from the SAT problem is presented in [66]. The authors show how to
construct a 2-person game in polynomial time given a CNF formula such
that the game has a 2-implementation if and only if the formula has a sat-
isfying assignment. However, their proof is not correct: While there indeed
exists a 2-implementation for every satisfiable formula, it can be shown that
2-implementations also exist for non-satisfiable formulas. E.g., strategy pro-
files (xi, xi) ∈ O are always 1-implementable. Unfortunately, we were not
able to correct their proof. Moreover, we conjecture the problem to be NP-
hard, i.e., we believe that no algorithm can do much better than performing a
brute force computation of the exact implementation cost (cf. Algorithm 3.1)
of all possible subsets, unless NP = P. Note that we give a reduction from
SET COVER for the uniform implementation cost in the following section.

3.2 Uniform Implementation Cost

In the uniform model, we assume a scenario of imperfect knowledge, i.e.,
a player i is aware of all strategy spaces X, but the player only knows her
own utilities Ui rather than all players’ utilities U . Without having any
indication of what the others will play, we presume a player chooses one
of the non-dominated strategies uniformly at random. This is opposed to
a perfect knowledge scenario where a player could still take into account

3.2. UNIFORM IMPLEMENTATION COST 29

rational choices of the other players and thus eliminate also certain non-
dominated strategies. As we have seen in the DBoS example in Figure 2.2,
if Jim is certain that Judy will choose to go to the classical concert anyway,
it does not make sense for him to choose football even though football is a
non-dominated strategy. The worst-case model accounts for such rational,
secondary reasoning based on perfect knowledge by assuming the most costly
outcome. It thus provides a lower bound on the power of a mechanism
designer. With imperfect knowledge, reasoning based on the payoffs of others
is infeasible, and mixing among the non-dominated pure strategies uniformly
at random seems a natural strategy. As a consequence, the uniform behavior
yields a uniform probability distribution over the non-dominated strategy
profiles. All strategy profiles in the non-dominated region X∗(V) are played
with the same probability, and the mechanism designer can calculate an
expected implementation cost for payments V .

Note that the assumption of a uniform distribution can be modeled either
on the level of the players or on the level of the mechanism designer. We
either presume the players to adopt a certain behavior or we presume the
mechanism designer to make some assumptions on the players’ behavior.
The argument supporting the uniform assumption stated above reasons on
the level of the players’ behavior. To reason on the latter level we could
think of the mechanism designer as willing to take risks and presume her
to anticipate uniform rather than worst case costs regardless of the scope of
information available to the players.

We define the uniform cost of an implementation V as the average of all
strategy profiles’ possible cost in X∗(V).

Definition 3.7 (Uniform Cost and Exact Uniform Cost). A strategy profile
set O has uniform implementation cost

kUNI(O) := inf
V ∈V(O)

{
avg

z∈X∗(V)
V (z)

}
,

where avg is defined as avgx∈X f(x) := 1/ |X| ·
∑

x∈X f(x). A strategy profile
set O has exact uniform implementation cost

k∗UNI(O) := inf
V ∈V∗(O)

{
avg

z∈X∗(V)
V (z)

}
.

Similarly to the worst-case implementation cost, we have to define the
uniform cost by an infimum over all implementations of region O, as for
some instances of games and target regions, ε-payments might be necessary
to implement O. We thus again consider payments V an optimal implementa-
tion of O if avgz∈X∗(V) V (z) = kUNI(O) for games and target regions where
such a V exists or if avgz∈X∗(V) V (z) = kUNI(O) + ε for arbitrarily small

30 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

ε > 0 in the general case. Note that it also holds that if O−i (X−i ∀ i ∈ N
then there are optimal implementations that reach kUNI(O) exactly.

As promised, we show in the following that it is NP-hard to find im-
plementations that yield optimal cost. Moreover, it is NP-hard to compute
the uniform implementation cost for both the non-exact and the exact case.
We devise game configurations which reduce SET COVER to the problem
of finding an implementation of a strategy profile set with optimal uniform
cost.

Theorem 3.8. In games with at least two players, the problem of finding an
exact implementation of a strategy profile set yielding optimal uniform cost
is NP-hard.

Proof. For a given universe U of l elements {e1, e2, . . . , el} and m subsets
S = {S1, S2, . . . , Sm}, with Si ⊂ U , SET COVER is the problem of finding
the minimal collection of Si’s which contains each element ei ∈ U . We assume
without loss of generality that @(i 6= j) : Si ⊆ Sj , and that the SET COVER
problem has a solution. Given a SET COVER problem instance SC = (U ,S),
we can efficiently construct a game G = (N,X,U) with 2 players, N = {1, 2},
and strategy sets

X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, and
X2 = {e1, e2, . . . , el, d, r}.

Each strategy ej corresponds to an element ej ∈ U , and each strategy sj
corresponds to a set Sj . Player 1’s payoff function U1 is defined as follows:

U1(ei, ej) :=
{
m+ 1 if i = j,

0 otherwise,

U1(si, ej) :=
{
m+ 1 if ej ∈ Si,
0 otherwise,

U1(ei, d) := 1,
U1(si, d) := 0,
U1(x1, r) := 0 ∀ x1 ∈ X1.

Player 2 has a payoff of 0 when playing r and 1 otherwise. See Figure 3.4
for an example. In such games, strategies ej are not dominated for Player 1
because in column d, it holds that U1(ej , d) > U1(si, d) for all i ∈ {1, . . . ,m}.
The set O we would like to implement is

O = {(x1, x2) | x1 = si ∧ (x2 = ei ∨ x2 = d)}.

3.2. UNIFORM IMPLEMENTATION COST 31

0

0

5

0 0

5

0

00 5

0

0 0

0

0

0

5 1

5

5 0

1

00 1

0 1

0 10

0

50 0

5 5

0

5 0

0 0

0

0

0

0

0

0

0

0

5

0

0

00

0

000

5 5

0

5

5

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

055

Figure 3.4: Payoff matrix for Player 1 in a game which reduces the
SET COVER problem instance SC = (U ,S) where U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 =
{e1, e2, e3} to the problem of computing k∗UNI(O). The optimal exact im-
plementation V of O in this sample game adds a payment V1 of 1 to the
strategy profiles (s1, d) and (s3, d), implying that the two sets S1 and S3
cover U optimally.

We will now show that an optimal exact implementation V of region O has
positive payments inside O only in column d, and zero payments otherwise.

By setting V1(si, d) to 1 and V1(si, r) > 0 strategy si dominates all strate-
gies ei that correspond to an element in Si. Hence, since the SET COVER
instance is guaranteed to have a solution, a valid, potentially suboptimal ex-
act implementation can be found by setting V1(si, d) := 1 and V1(si, r) > 0
for all si: all strategies ej are dominated and V implements O exactly with
uniform cost avgo∈O V (o) = m/ |O|. No payments need to be offered to
Player 2 as her only dominated strategy is already r, as desired. If an im-
plementation had a positive payment for Player 1 for any strategy profile of
the form (si, ej), it would cost at least m + 1 to have an effect. However,
a positive payment greater than m yields a larger uniform cost. Thus, an
optimal V sets all payments V1(si, ej) to 0.

By setting V1(si, d) to 1, si dominates the strategies ej that correspond
to the elements in Si, due to our construction. For a strategy profile (si, d)
it only makes sense to offer a payment of 1 or 0: A larger payment would

32 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

increase the cost, a payment smaller than 1 has no effect. Thus, an optimal
implementation minimizes the number of 1s in column d while dominating
all Player 1-strategies ei. This can be achieved by selecting those rows si,
i.e., setting V1(si, d) := 1, that form a minimal covering set and as such all
strategies ei of player 1 are dominated at minimal cost.

Consequently, an optimal solution Q for the SET COVER problem can be
derived from an optimal exact implementation V of O in the corresponding
game by setting Q := {Si | V1(si, d) = 1}.

The shown reduction can be generalized for n > 2 by adding players with
only one strategy and zero payoffs in all strategy profiles.

Corollary 3.9. In games with at least two players, the problem of computing
the exact uniform implementation cost k∗UNI(O) of a strategy profile set O is
NP-hard.

Proof. We prove the corollary by giving a reduction from the SET COVER
decision problem: Given a universe U , sets S, and an integer k, decide
whether there is a set covering of size k or less. From any given SET COVER
instance, we construct a game as described in the proof of Theorem 3.8. If
we know k∗UNI(O) in that game we can also decide whether there is a set
covering, namely iff k ≥ k∗UNI(O) · (l + 1)m. Thus, if k∗UNI(O) could be
computed in polynomial time then SET COVER could also be decided in
polynomial time, which is a contradiction, unless P = NP.

Theorem 3.10. In games with at least three players, the problem of finding
a non-exact implementation of a strategy profile set yielding optimal uniform
cost is NP-hard.

Proof. We give a similar reduction of SET COVER to the problem of com-
puting kUNI(O) by extending the setup we used for proving the exact case.
We add a third player and show NP-hardness for n = 3 first and indicate how
the reduction can be adapted for games with n > 3. Given a SET COVER
problem instance SC = (U ,S), we can construct a game G = (N,X,U)
where N = {1, 2, 3}, and the strategies for the players are

X1 = {e1, e2, . . . , el, s1, s2, . . . , sm},
X2 = {e1, e2, . . . , el, s1, s2, . . . , sm, d, r}, and
X3 = {a, b}.

Again, each strategy ej corresponds to an element ej ∈ U , and each strategy
sj corresponds to a set Sj . In the following, we use ‘_’ in profile vectors as a

3.2. UNIFORM IMPLEMENTATION COST 33

placeholder for any possible strategy. Player 1’s payoff function U1 is defined
as follows:

U1(ei, ej ,_) :=
{

(m+ l)2 if i = j,

0 otherwise
U1(ei, sj ,_) := 0,

U1(si, ej ,_) :=
{

(m+ l)2 if ej ∈ Si,
0 otherwise,

U1(si, sj ,_) :=
{

0 if i = j,

(m+ l)2 otherwise
U1(ei, d,_) := 1
U1(si, d,_) := 0
U1(_, r,_) := 0

Player 2 has a payoff of (m+ l)2 for any strategy profile of the form (si, si,_)
and 0 for any other strategy profile. Player 3 has a payoff of m + l + 2 for
strategy profiles of the form (si, si, b), a payoff of 2 for profiles (si, ei, b) and
profiles (si, sj , b), i 6= j, and a payoff of 0 for any other profile. The set O we
would like to implement is

O := {(x1, x2, x3) | x1 = si ∧ (x2 = ei ∨ x2 = si ∨ x2 = d) ∧ (x3 = a)}.

See Figure 3.5 for an example. First, note the fact that any implementation
of O will have V3(o1, o2, a) ≥ U3(o1, o2, b), in order to leave player 3 no
advantage playing b instead of a. In fact, setting V3(o1, o2, a) = U3(o1, o2, b)
suffices. (Setting any V3(a, ō−3) > U3(b, ō−3) where ō−3 is outside O lets
Player 3 choose strategy a.) Also note that for Player 2, O2 can be made non-
dominated without offering any payments inside O, e.g., set V2(ei, ej ,_) := 1
and V2(ei, d,_) := 1.

Similar to the proof of the exact case, we claim that if and only if Q is
an optimal solution for a SET COVER problem then there exists an optimal
exact implementation V of O in the corresponding game: implementation V
selects a row si, i.e., V1(si, d, a) = 1, if Si ∈ Q and does not select si, i.e.,
V1(si, d, a) = 0, otherwise. All other payments V1 inside O are 0. Player 2’s
payments V2(o) are 0 for all o ∈ O and Player 3’s payments are set to
V3(o1, o2, a) = U3(o1, o2, b). A selected row si contributes

costsi = 3(l +m) + 1
l +m+ 1 .

A non-selected row sj contributes cost

costsj = 3(l +m)
l +m+ 1 < costsi .

34 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

1

1

1

1

1
rde

5
e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

81
0

s
1

s
2

s
3

s
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

11

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

s
1

s
2

s
3

s
4

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

0

0

0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

22 222222

2 1122222

2 1122222

2 222222

 2

 2

2

2

11

2 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1
rde

5
e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

81
0

s
1

s
2

s
3

s
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

11

rde
5

e
4

e
3

e
2

e
1

e
1

e
2

e
3

e
4

e
5

s
1

s
2

s
3

s
4

s
1

s
2

s
3

s
4

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

81
0

0

0

0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

22 222222

2 1122222

2 1122222

2 222222

 2

 2

2

2

11

2 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 3.5: Payoff matrix for Player 1 and Player 2 given Player 3 chooses
a and payoff matrix for Player 3 when she plays strategy b in a game that
reduces a SET COVER instance SC = (U ,S) where U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 =
{e1, e2, e3} to the problem of computing kUNI(O). Every implementation
V of O in this game needs to add any positive payment in the second
matrix to V3, i.e. V3(x1, x2, a) = U3(x1, x2, b), in order to convince player 3
of playing strategy a. An optimal implementation adds a payment V1 of 1
to the strategy profiles (s1, d, a) and (s3, d, a), implying that the two sets S1
and S3 cover U optimally in the corresponding SET COVER problem.

3.2. UNIFORM IMPLEMENTATION COST 35

Thus, including non-selected rows in X∗(V) can be profitable. Selecting all
rows si yields a correct implementation of O with uniform cost of

mavg
i=1

costsi = 3(l +m) + 1
l +m+ 1 < 3.

Hence, it must hold that k∗(O) < 3.
In fact, the game’s payoffs are chosen such that it is not worth implement-

ing any set smaller than O. We show for every proper rectangular subset Φ
of O that its exact uniform implementation cost is strictly larger than that
of O, i.e., k∗UNI(Φ) > k∗UNI(O). Assume for the sake of contradiction that
there exists such a set Φ (O yielding lower cost. Let α ≤ m be the number
of strategies in Φ to implement for Player 1, β ≤ l the number of strategies
ei and γ ≤ m the number of strategies sj to implement for Player 2. Note
that implementing Player 2’s strategy d is profitable if β + γ > 0, as it adds
α to the denominator and at most α to the numerator of the implementation
cost of sets without d. Consequently, there are three cases of Φ to consider:

(i) Φ with β > 0, γ = 0: The costs add up to

k∗UNI(Φ) =
∑
o∈O

V1(o) + V2(o) + V3(o)
|O|

≥ 1 + (m+ l)2 + 2αβ
α(β + 1)

> 3 > k∗(O),

where the last inequality holds since α ≤ m,β ≤ l.

(ii) Φ with β = 0, γ > 0: The aggregated cost is at least

k∗UNI(Φ) ≥ 1 + α(m+ l) + 2αγ
α(γ + 1) > 3 > k∗(O).

(iii) Φ with β > 0, γ > 0: Assume there are κ sets necessary to cover U .
Hence the sum of the payments in column d is at least κ. In this case,
the cost amounts to

k∗UNI(Φ) ≥ κ+ α(m+ l) + 2α(β + γ)
α(β + γ + 1)

= 2 + m+ l − 2 + κ/α

β + γ + 1 .

Note that if we fix all other parameters, the last term in the above
equation decreases as any of the parameters α, γ, or β increases. By

36 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

setting the parameters to α = γ = m and β = l, which is an invalid
assignment as at least one of them should be smaller to get a proper
subset of O, the term evaluates to k∗(O):

2 + m+ l − 2 + κ/α

β + γ + 1 = 2 + m+ l − 2 + κ/m

l +m+ 1

= 3(m+ l) + κ/m

l +m+ 1

= κ (3 (m+ l) + 1) + (m− κ) (3 (m+ l))
m(l +m+ 1)

= k∗(O).

Hence, for any valid assignment, the cost are higher than k∗(O). This
is a contradiction.

Therefore, an optimal implementation V implements O exactly, i.e.,
X∗(V) = O with the inalienable payments to Player 3 and a minimal number
of 1-payments to Player 1 for strategy profiles (si, d, a) such that every ej is
dominated by at least one si. The number of 1-payments is minimal if the
selected rows correspond to a minimal covering set, and the claim follows.

Note that a similar SET COVER reduction can be found for games with
more than three players. Simply add players to the described 3-player game
with only one strategy.

With the game construction from the above proof, it is now possible to
reduce the SET COVER decision problem to the problem of computing non-
exact uniform cost in the same way as for the exact case (Corollary 3.9).
Corollary 3.11. In games with at least three players, the problem of finding
a strategy profile set’s non-exact uniform implementation cost is NP-hard.

Due to the nature of the reduction, the inapproximability results of SET
COVER ([7, 40]) carry over to our problem.
Theorem 3.12. Unless P=NP, the best approximation ratio that a
polynomial-time algorithm can achieve is Ω (nmaxi{log |X∗i \Oi|}) for both
the exact and non-exact implementation cost.

Proof. Exact Case. In order to prove the claim, a reduction similar to the one
in the proof of Theorem 3.8 can be applied. Consider again a SET COVER
instance with a universe U of l elements {e1, e2, . . . , el} and m subsets S =
{S1, S2, . . . , Sm}, with Sj ⊂ U . We construct a game G = (N,X,U) with n
players N = {1, . . . , n}, where

Xi = {e1, e2, . . . , el, s1, s2, . . . , sm} ∀ i ∈ {1, . . . , n− 1},
Xn = {e1, e2, . . . , el, d, r}.

3.2. UNIFORM IMPLEMENTATION COST 37

Again, each strategy ej corresponds to an element ej ∈ U , and each strategy
sj corresponds to a set Sj . The payoff functions are defined as follows: Player
n has a payoff of 0 when playing r and 1 otherwise, independently of all other
players’ choices. For all other players i, i ∈ {1, . . . , n−1} the payoff function
Ui depends only on the strategies chosen by Player n and Player i herself.
Thus, in the following description of Ui we only use two parameters, the
strategy chosen by Player i and the strategy chosen by Player n, in this
order.

Ui(ej , ek) :=
{
m+ 1 if j = k

0 otherwise

Ui(sj , ek) :=
{
m+ 1 if ek ∈ Sj
0 otherwise

Ui(ej , d) := 1
Ui(sj , d) := 0

Ui(ej , r) = Ui(sj , r) := 0

We ask for an implementation of set O where Player i, for i ∈ {1, . . . , n− 1},
plays any strategy in {s1, . . . , sm}, and Player n plays any strategy in
{e1, . . . , el, d}.

Due to the independence of the players’ payoffs, the situation is similar to
the example in Figure 3.4, and a SET COVER instance has to be solved for
each player i ∈ {1, . . . , n−1}. According to the well-known inapproximability
results for SET COVER, no polynomial time algorithm exists which achieves
a better approximation ratio than Ω (log |X∗i \Oi|) for each player i, unless
P = NP, and the claim follows.

Non-Exact Case. We use the inapproximability results for SET COVER
again. Concretely, we assume a set of n = 3k players for an arbitrary constant
k ∈ N and make k groups of three players each. The payoffs of the three
players in each group are the same as described in the proof of Theorem 3.10
for the non-exact case, independently of all other players’ payoffs. Hence,
SET COVER has to be solved for n/3 players.

As a remark, let us reconsider the NP-hardness conjecture of the worst-
case cost in the first part of this chapter. The uniform implementation cost is
based on the assumption that players choose one of the non-dominated strate-
gies uniformly at random such that an equal probability mass is assigned to
each strategy profile in the non-dominated region. I.e., the implementation
cost depends on the aggregate cost over the entire profile set. This enables
us to construct a game corresponding to a set cover problem instance. In the
worst-case model however, individual strategy profiles need to be taken into

38 CHAPTER 3. IMPLEMENTATION COST & COMPLEXITY

Implementation Cost Complexity Properties

Uniform
NP-hard

NE 0-implementablesingleton O
(
n ·
∑

i
|Xi|

)
zero O

(
n|X|2

)
Worst-case

conjecture: NP-hard
NE 0-implementablesingleton O

(
n ·
∑

i
|Xi|

)
zero O

(
n|X|2

)
Figure 3.6: Complexity results for the computation of the implementation
cost. Unless stated otherwise, complexities refer to the problem of computing
any strategy profile’s implementation cost. singleton indicates the complex-
ity of computing a singleton’s implementation cost. zero indicates the com-
plexity of deciding for a strategy profile region whether it is 0-implementable.
The complexities of zero are results from our earlier work [34].

account and payment differences between strategy profiles matter. Put dif-
ferently, the worst-case model assumes less about the players’ behavior than
the uniform model. We believe that this renders the minimal implementation
cost problem only harder.

Chapter 4

Leverage

With rational players, mechanism designers can implement any desired out-
comes if they offer high enough payments. As we have seen in the example
with Al Capone and the two arrested bank robbers, an implementation can
be beneficial for the mechanism designer if she can influence the game to her
favor without spending too much. The natural question that arises from this
insight is for which games it actually makes sense to take influence at all,
and which behavior the mechanism designer should implement in order to
maximize her own utility.

To answer this question we need to model the mechanism designer herself,
and define the interests she has in the outcome of the game. In this chapter,
we examine two diametrically opposed models of an interested third party.
The first one is benevolent towards the participants of the game, and the
other one malicious. While the former is interested in increasing a game’s
social gain, the latter seeks to minimize the players’ welfare.1 We define a
measure that indicates whether the mechanism of implementation enables
them to modify a game in a favorable way such that their gain exceeds the
cost of the manipulation. We call these measures the leverage and mali-
cious leverage, respectively. In the following, we will often write “(malicious)
leverage” signifying both leverage and malicious leverage. As the concept
of leverage depends on the implementation cost, we examine the leverage of
games in both the worst-case and the uniform cost model.

The worst-case leverage constitutes a lower bound on the mechanism
designer’s influence: We assume that without the additional payments, the
players choose a non-dominated strategy profile in the original game where

1Note that our terminology assumes the perspective of the players, i.e., if a mechanism
designer acts contrary to their utilities, it is called “malicious”. Depending on the game,
a malicious mechanism designer’s goal to punish the players can be morally upright (cf.
the commander-in-chief in the extended prisoner’s dilemma example).

40 CHAPTER 4. LEVERAGE

the social gain is maximal, while in the modified game, they select a strategy
profile among the newly non-dominated profiles where the difference between
the social gain and the mechanism designer’s cost is minimized. The value of
the leverage is given by the net social gain achieved by this implementation
minus the amount of money the mechanism designer had to spend.

Definition 4.1 (Worst-Case Leverage). The leverage of a strategy profile
set O is LEV (O) := max{0, lev(O)}, where

lev(O) := sup
V ∈V(O)

{
min

z∈X∗(V)
{U(z)− V (z)}

}
− max
x∗∈X∗

U(x∗).

Here U(z) refers to the total utility of the players in profile z and V (z) is the
total amount of payments.

For malicious mechanism designers we have to invert signs, swap max
and min, and replace the supremum with an infimum. Moreover, the pay-
ments made by the mechanism designer have to be subtracted twice, because
for a malicious mechanism designer, the money received by the players are
considered a loss.

Definition 4.2 (Malicious Worst-Case Leverage). The malicious leverage of
a strategy profile set O is MLEV (O) := max{0,mlev(O)}, where

mlev(O) := min
x∗∈X∗

U(x∗)− inf
V ∈V(O)

{
max

z∈X∗(V)
{U(z) + 2V (z)}

}
.

Observe that according to our definitions, leverage values are always non-
negative, as a mechanism designer has no incentive to manipulate a game if
she will lose money. If the desired set consists only of one strategy profile
z, i.e., O = {z}, we will speak of the singleton leverage. Similarly to the
(worst-case) leverage, we define the uniform leverage.

Definition 4.3 (Uniform Leverage). The uniform leverage of a strategy pro-
file set O is defined as LEVUNI(O) := max{0, levUNI(O)}, where

levUNI(O) := sup
V ∈V(O)

{
avg

z∈X∗(V)
(U(z)− V (z))

}
− avg
x∗∈X∗

U(x∗).

Definition 4.4 (Malicious Uniform Leverage). The malicious uniform lever-
age of a strategy profile set O is MLEVUNI(O) := max{0,mlevUNI(O)},
where

mlevUNI(O) := avg
x∗∈X∗

U(x∗)− inf
V ∈V(O)

{
avg

z∈X∗(V)
{U(z) + 2V (z)}

}
.

4.1. WORST-CASE LEVERAGE 41

We define the exact (uniform) leverage LEV ∗(UNI)(O) and the exact (uni-
form) malicious leverage MLEV ∗(UNI)(O) by simply changing V(O) to V∗(O)
in the definition of LEV(UNI)(O) and in the definition of MLEV(UNI)(O).
Thus, the exact (uniform) (malicious) leverage measures a the leverage of
a set if the interested party may only promise payments which implement
O exactly. Finally, the (uniform) (malicious) leverages of an entire game
G = (N,X,U) are defined as the (uniform) (malicious) leverages of X, e.g.,
LEV (G) := LEV (X).

4.1 Worst-Case Leverage

We first study singleton implementations and then extend our investigations
to profile sets.

4.1.1 Singletons
As we know which outcome is yielded by an implementation of a singleton
z, namely z, the leverage of a singleton boils down to

LEV (z) = max
{

0, U(z)− k(z)− max
x∗∈X∗

U(x∗)
}
,

where cost k(z) of a singleton z can be computed efficiently by the formula
of Theorem 3.1. The malicious leverage of a singleton is given by

MLEV (z) = max
{

0, min
x∗∈X∗

U(x∗)− U(z)− 2k(z)
}
.

In the following, we propose an algorithm for a mechanism designer seek-
ing to implement a game’s best singleton, i.e., the strategy profile with the
highest singleton leverage. Dually, the algorithm finds the profile of the
largest malicious leverage for a malicious designer. Algorithm 4.1 computes
two arrays, LEV and MLEV , containing all singleton (malicious) leverage
values within a strategy profile set O. By setting O = X, the algorithm
computes all singleton (malicious) leverage values of a game.

Algorithm 4.1 initializes an array lev with the negative value of the origi-
nal game’s maximal social gain in the non-dominated set and an array mlev
with the original game’s minimal social gain. Next, it computes the set of
non-dominated strategy profiles X∗; in order to do so, it checks, for each
player and for each of her strategies, whether the strategy is dominated by
any other strategy. In the remainder, the algorithm adds up the players’
contributions to the (malicious) leverage values for each player and strategy
profile. In any field z of the leverage array lev, we add the amount that Player
i would contribute to the social gain if z was played and subtract the cost

42 CHAPTER 4. LEVERAGE

Algorithm 4.1 Singleton (Malicious) Leverage
Input: Game G, set O ⊆ X
Output: LEV and MLEV
1: compute X∗;
2: for all strategy profiles x ∈ O do
3: lev[x] := −maxx∗∈X∗ U(x∗);
4: mlev[x] := minx∗∈X∗ U(x∗);
5: end for
6: for all Players i ∈ N do
7: for all x−i ∈ O−i do
8: m := maxxi∈Xi Ui(xi, x−i);
9: for all strategies zi ∈ Oi do

10: lev[zi, x−i] += 2 · Ui(zi, x−i)−m;
11: mlev[zi, x−i] += Ui(zi, x−i)− 2m;
12: end for
13: end for
14: end for
15: ∀ o ∈ O: LEV [o] := max{0, lev[o]};
16: ∀ o ∈ O: MLEV [o] := max{0,mlev[o]};
17: return LEV, MLEV ;

we had to pay her, namely Ui(zi, x−i)− (m−Ui(zi, x−i)) = 2Ui(zi, z−i)−m.
For any entry z in the malicious leverage array mlev, we subtract player
i’s contribution to the social gain and also twice the amount the designer
would have to pay if z is played since she loses money and the players gain
it, −Ui(zi, x−i) − 2(m − Ui(zi, x−i)) = Ui(zi, x−i) − 2m. Finally, lev and
mlev will contain the leverage and malicious leverage values of all singletons
in O. By replacing the negative entries by zeros, the corresponding leverage
arrays LEV and MLEV are computed. The mechanism designer can then
look up the best non-negative singleton by searching the maximal entry in
the respective array.

Theorem 4.5. For a game where every player has at least two strategies,
Algorithm 4.1 computes the leverage and the malicious leverage values of all
singletons within a strategy profile set O in O

(
n|X|2

)
time.

Proof. The correctness of Algorithm 4.1 follows directly from the applica-
tion of the (malicious) singleton leverage formula. It remains to prove the
time complexity. Finding the non-dominated strategies in the original game
requires time

∑n

i=1

(|Xi|
2

)
|X−i| = O(n|X|2), and finding the maximal or min-

imal gain amongst the possible outcomes X∗ of the original game requires

4.1. WORST-CASE LEVERAGE 43

time O(n |X|). The time for all other computations can be neglected asymp-
totically, and the claim follows.

4.1.2 Strategy Profile Sets

For some strategy sets in games, implementing a contained singleton may
yield an optimal implementation of that set. In some other cases, however,
dominating all other strategy profiles in the set is expensive and unnecessary.
We can indeed construct games where the difference between the best (mali-
cious) set leverage and the best (malicious) singleton leverage gets arbitrarily
large. Figure 4.1 depicts such a game. Therefore, a mechanism designer is
bound to consider also larger sets, consisting of more than one strategy pro-
file, in order to find a subset of X yielding the maximum (malicious) leverage.

Although many factors influence the leverage and the malicious leverage
of a strategy profile set, there are some simple observations. First, if rational
players already choose strategies such that the strategy profile with the high-
est social gain is non-dominated, a designer will not be able to ameliorate
the outcome. Just as well, a malicious interested party will have nothing to
corrupt if a game already yields the lowest social gain possible.

Fact 4.6. If the social optimum xopt := arg maxx∈X U(x) of game G is in
X∗ then LEV (G) = 0.

Fact 4.7. If the social minimum xworst := arg minx∈X U(x) of game G is in
X∗ then MLEV (G) = 0.

As an example, a class of games where both properties of Facts 4.6 and
4.7 always hold are equal sum games, where every strategy profile yields the
same gain, U(x) = c ∀x ∈ X, c : constant. Zero sum games are a special case
of equal sum games where c = 0.

Fact 4.8 (Equal Sum Games). The leverage and the malicious leverage of
any equal sum game G is zero: LEV (G) = 0, MLEV (G) = 0.

A well-known example of a zero sum game is Matching Pennies (cf. Fig-
ure 4.2): Two players each secretly turn a penny to heads or tails. Then they
reveal their choices simultaneously. If both coins show the same face Player 2
gives his penny to Player 1; if the pennies do not match Player 2 gets the
pennies. Matching pennies features another interesting property: there is
no dominated strategy. Therefore an interested party could only implement
strategy profile sets O which are subsets of X∗. This raises the question
whether a set O ⊆ X∗ can ever have a (malicious) leverage. We find that
the answer is no, and moreover:

44 CHAPTER 4. LEVERAGE

G =

α
0

1
0

γ
0

γ
0

1
0

α
0

γ
0

γ
0

α− 1
0

0
α− 1

0
α

0
1

0
α− 1

α− 1
0

0
1

0
α

VO =

0
∞

0
∞

0
0

0
0

0
∞

0
∞

0
0

0
0

1
1

1
1
∞

0
∞

0
1

1
1

1
∞

0
∞

0

Vs =

0
∞

0
0

0
0

0
0

0
∞

0
0

0
0

0
0

0
α

0
0

0
0

0
0

α
1

0
α
∞

0
∞

0

Figure 4.1: Two-player game where the set O bears the largest leverage.
Implementation VO yields X∗(VO) = O and Vs yields one non-dominated
strategy profile. By offering payments VO, a mechanism designer has cost
2, no matter which o ∈ O will be played. However, she changes the social
welfare to α − 1. If γ < α − 3 then O has a leverage of α − 3 − γ and if
γ > α+ 3 then O has a malicious leverage of γ−α− 3. Any singleton o ∈ O
has an implementation cost of α + 1, yet the resulting leverage is 0 and the
malicious leverage is max{0, γ − 3α − 1}. This demonstrates that a profile
set O ’s (malicious) leverage can be arbitrarily large, even if all contained
singletons have a (malicious) leverage of zero.

4.1. WORST-CASE LEVERAGE 45

MP =

1
-1

-1
1

-1
1

1
-1

Figure 4.2: Game matrix G of Matching Pennies. It holds that LEV (G) =
MLEV (G) = 0.

Theorem 4.9. The leverage and the malicious leverage of a strategy profile
set O ⊆ X intersecting with the set of non-dominated strategy profiles X∗
equals 0.

Proof. Assume that |O ∩X∗| > 0 and let ẑ be a strategy profile in
the intersection of O and X∗. Let x∗max := arg maxx∗∈X∗ U(x∗) and
x∗min := arg minx∗∈X∗ U(x∗). Let VLEV be any implementation of O reaching
LEV (O)− ε and VMLEV any implementation of O reaching MLEV (O)− ε.
We get for the leverage

LEV (O) = max
{

0, min
z∈X∗(VLEV)

{U(z)− VLEV (z)} − U(x∗max) + ε

}
≤ max {0, U(ẑ)− VLEV (ẑ)− U(x∗max) + ε}
≤ max {0, U(x∗max)− VLEV (ẑ)− U(x∗max) + ε}

= max {0,−VLEV (ẑ) + ε} ε→0= 0,

and for the malicious leverage

MLEV (O) = max
{

0, U(x∗min)− max
z∈X∗(VMLEV)

(U(z) + 2VMLEV (z)) + ε

}
≤ max {0, U(x∗min)− U(ẑ)− 2VMLEV (ẑ) + ε}
≤ max {0, U(x∗min)− U(x∗min)− 2VMLEV (ẑ) + ε}

= max {0,−2VMLEV (ẑ) + ε} ε→0= 0.

In general, the problem of computing the (malicious) leverage of a strat-
egy profile set seems computationally hard. It is related to the problem
of computing a set’s implementation cost, which we conjectured to be NP-
hard in Section 3. Hence, we conjecture the problem of finding LEV (O)
or MLEV (O) to be NP-hard in general as well. In fact, we can show that
computing the (malicious) leverage has at least the same complexity as com-
puting a set’s cost.

46 CHAPTER 4. LEVERAGE

Theorem 4.10. If the computation of a set’s implementation cost is NP-
hard the computation of the (malicious) leverage of a strategy profile set is
also NP-hard.

Proof. We proceed by reducing the problem of computing k(O) to the prob-
lem of computing MLEV (O). The basic idea of the reduction is to modify
the game so that all profiles inside O yield an equal social gain while con-
serving the original structure of the optimal payments. This is achieved by
the following transformation of a problem instance (G,O) into a problem
instance (G′, O): add an additional Player n + 1 with one strategy a and a
payoff function Un+1(x) equal to γ − U(x) if x ∈ O and 0 otherwise. Thus,
a strategy profile x in G′ has social gain equal to γ if it is in O and equal
to U(x) in the original game if it is outside O. As Player n + 1 has only
one strategy available, G′ has the same number of strategy profiles as G and
furthermore, there will be no payments Vn+1 needed in order to implement
O. Player (n + 1)’s payoffs impact only the profile gains, and they have
no effect on how the other players decide their tactics. Theorem 4.9 allows
us to assume that O and X∗ do not intersect since O ∩ X∗ 6= ∅ implies
MLEV (O) = 0. Thus, the non-dominated set in G′ is the same as in G and
it does not intersect with O.

By definition, the cost of a strategy profile set are
infV ∈V(O){maxz∈X∗(V) V (z)} and from the malicious leverage’s defini-
tion, we have

inf
V ∈V(O)

{
max

z∈X∗(V)
{U(z) + 2V (z)}

}
= min
x∗∈X∗

U(x∗)−mlev(O). (4.1)

The left hand side of the latter equation almost matches the formula for
k(O) if not for the term U(z) and a factor of 2. If we modify the given game
as described and choose the additional players payoffs so that all strategy
profiles inside X∗(V) ⊆ O have a gain γ we can reduce O’s cost to

k(O) = inf
V ∈V(O)

{
max

z∈X∗(V)
V (z)

}
= 1

2

(
inf

V ∈V(O)

{
max

z∈X∗(V)
2V (z)

}
+ γ − γ

)
= 1

2

(
inf

V ∈V(O)

{
max

z∈X∗(V)
(γ + 2V (z))

}
− γ
)

(4.1)= 1
2

(
min
x∗∈X∗

U(x∗)−mlev(O)− γ
)
,

where the last equation holds because X∗ does not intersect with O, i.e., the
term minx∗∈X∗ U(x∗) is equal in G and G′.

4.1. WORST-CASE LEVERAGE 47

It remains to choose a good value for γ. Note that if we choose γ small
enough, then we can guarantee that mlev(O) ≥ 0 and thus MLEV (O) =
mlev(O), i.e., by adding small or large negative payoffs for the additional
player inside O, it is worthwhile for a malicious mechanism designer to im-
plement O. For instance, a feasible choice is

γ := −2n ·max
x∈X

{
max
i∈N

Ui(x)
}

+ min
x∗∈X∗

U(x∗),

which yields

k(O) = −1
2MLEV (O) + n ·max

x∈X

{
max
i∈N

Ui(x)
}
.

Reducing the problem of computing k(O) to lev(O) is achieved by using
the same game transformation with an additional player such that ∀o ∈ O :
U(o) = γ, where

γ := n ·max
x∈X

{
max
i∈N
{Ui(x)}

}
+ max
x∗∈X∗

{U(x∗)}.

We can then simplify the leverage formula to

lev(O) = γ − k(O)− max
x∗∈X∗

U(x∗)

= n ·max
x∈X

{
max
i∈N
{Ui(x)}

}
− k(O) + ε ≥ 0

and thus we find the cost k(O) by computing

k(O) = n ·max
x∈X

{
max
i∈N
{Ui(x)}

}
− LEV (O).

The task of finding the leverage of a strategy profile set is computation-
ally hard. Recall that we have to find an implementation V of O which
maximizes the term minz∈X∗(V){U(z) − V (z)}. Thus, there is at least one
implementation V ∈ V(O) bearing O’s leverage, or O’s leverage up to an
ε-term if the maximum does not exist. Since this V implements a subset of
O exactly, it is also valid to compute O’s leverage by searching among all
subsets O′ of O the one with the largest exact leverage LEV ∗(O′).

For the sake of completeness, we provide the (potentially slow) Algo-
rithm 4.2 that computes the exact leverage of a rectangular strategy profile.
The algorithm makes use of the fact that if X∗(V) has to be a subset of O,
each strategy ōi /∈ Oi must be dominated by at least one strategy oi in the
resulting game G(V)—a property that we observed and exploited before in

48 CHAPTER 4. LEVERAGE

Algorithm 4.2 Exact Leverage
Input: Game G, rectangular set O with O−i (X−i∀ i
Output: LEV ∗(O)
1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) :=∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗i ;
4: return max{0, ExactLev(V, n)−maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current player i
Output: lev∗(O) for G(V)
1: if |X∗i (V)\Oi| > 0 then
2: s := any strategy in X∗i (V)\Oi; levbest := 0;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)− (Ui(oi, o−i) + Vi(oi, o−i))};
6: end for
7: lev := ExactLev(V +W, i);
8: if lev > levbest then
9: levbest := lev;

10: end if
11: for all o−i ∈ O−i do
12: Wi(oi, o−i) := 0;
13: end for
14: end for
15: return levbest;
16: end if
17: if i > 1 return ExactLev(V , i− 1);
18: else return mino∈O{U(o)− V (o)};

4.2. UNIFORM LEVERAGE 49

the previous chapter to compute the exact cost of a set. In order to compute
LEV (O), we can apply Algorithm 4.2 for all rectangular subsets and return
the largest value found.2

Theorem 4.11. Algorithm 4.2 computes the exact leverage of a strategy
profile set in time

O
(
|X|2 ·max

i∈N
|Oi|n|X

∗
i \Oi|−1 + n|O| ·max

i∈N
|Oi|n|X

∗
i \Oi|

)
.

Proof. The algorithm is correct since it searches for all possibilities of a strat-
egy in Xi\Oi to be dominated by a strategy in Oi. The time complexity fol-
lows from solving the doubly recursive equation over the strategy set and the
number of players (compare to the analysis of Algorithm 3.1 in the previous
chapter).

4.2 Uniform Leverage

In the setting where a mechanism designer applies uniform implementations
the players have less information of the game and are assumed to play a
non-dominated strategy uniformly at random. This allows her to calculate
with the average cost and thus, the observation stating that the uniform
(malicious) leverage is always at least as large as the worst-case (malicious)
leverage does not surprise.

Theorem 4.12. The uniform leverage of a set is always larger than or equal
to its leverage. The uniform malicious leverage of a set is always larger than
or equal to its malicious leverage.

Proof.

levUNI(O) = sup
V ∈V(O)

{
avg

z∈X∗(V)
{U(z)− V (z)}

}
− avg
x∗∈X∗(V)

U(x∗)

≥ sup
V ∈V(O)

{
min

z∈X∗(V)
{U(z)− V (z)}

}
− max
x∗∈X∗(V)

U(x∗)

= lev(O), and

2Note that we do not provide algorithms for computing the malicious leverage but for
the benevolent leverage only. However, we are sure that a malicious mechanism designer
will figure out how to adapt our algorithms for the benevolent leverage for a nastier
purpose.

50 CHAPTER 4. LEVERAGE

mlevUNI(O) = avg
x∗∈X∗(V)

U(x∗)− inf
V ∈V(O)

{
avg

z∈X∗(V)
{U(z) + 2V (z)}

}
≥ min

x∗∈X∗(V)
U(x∗)− inf

V ∈V(O)

{
max

z∈X∗(V)
{U(z) + 2V (z)}

}
= mlev(O).

Another difference between uniform and worst-case leverage concerns tar-
get sets O that intersect with X∗, i.e., O ∩ X∗ 6= ∅: Unlike the worst-case
leverage (Theorem 4.9), the uniform leverage can exceed zero in these cases,
as can, e.g., be verified by calculating the leverage of O in Figure 3.4.

4.2.1 Complexity

Similar to the complexity of the worst-case leverage, we can give a polynomial
reduction from the uniform implementation cost to the uniform leverage.
Thus, the complexity of computing the leverage follows from the NP-hardness
of finding the optimal implementation cost, and we can state the following
two theorems.

Theorem 4.13. For games with at least two players, the problem of com-
puting the exact uniform leverage of a strategy profile set, and the problem of
computing the exact malicious uniform leverage of a strategy profile set are
both NP-hard.

Proof. The claim follows from the observation that if (M)LEV ∗UNI(O) is
found, we can immediately compute k∗UNI(O) which is NP-hard (Corol-
lary 3.9). Due to the fact that any z ∈ O is also in X∗(V) for any V ∈ V∗(O),
we know that

lev∗UNI(O) = sup
V ∈V∗(O)

{
avg

z∈X∗(V)
{U(z)− V (z)}

}
− avg
z∈X∗

U(x∗)

= sup
V ∈V∗(O)

{
avg
z∈O

U(z)− avg
z∈O

V (z)
}
− avg
x∗∈X∗

U(x∗)

= avg
z∈O

U(z)− inf
V ∈V∗(O)

{
avg
z∈O

V (z)
}
− avg
x∗∈X∗

U(x∗)

= avg
z∈O

U(z)− k∗UNI(O)− avg
x∗∈X∗

U(x∗), and

4.2. UNIFORM LEVERAGE 51

mlev∗UNI(O) = avg
x∗∈X∗

U(x∗)− inf
V ∈V∗(O)

{
avg

z∈X∗(V)
{U(z) + 2V (z)}

}
= avg

x∗∈X∗
U(x∗)− avg

z∈O
U(z)− 2 inf

V ∈V∗(O)

{
avg
z∈O

V (z)
}

= avg
x∗∈X∗

U(x∗)− avg
z∈O

U(z)− 2k∗UNI(O).

Observe that avgx∗∈X∗ U(x∗) and avgz∈O U(z) can be computed easily.
Moreover, as illustrated in the proof of Theorem 4.10, we can efficiently
construct a problem instance (G′, O) from any (G,O) with the same cost,
such that for G′: (m)lev(UNI) = (M)LEV(UNI).

Theorem 4.14. For games with at least three players, the problem of com-
puting the non-exact uniform leverage of a strategy profile set, and the prob-
lem of computing the non-exact malicious uniform leverage of a strategy pro-
file set are both NP-hard.

Proof. The claim can be proved by reducing the NP-hard problem of com-
puting kUNI(O) to the problem of computing (M)LEVUNI(O). For this
reduction we slightly modify the utilities of Player 3 in the respective game
used to prove Theorem 3.8. Thereby, we can ensure that for all z ∈ O it
holds that

U(z) = −4(m+ l)2 − 2m2 +m(l +m) =: γ.
To achieve so we modify Player 3’s utilities as follows:
∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}:

U3(si, ej , a) = γ − U1(si, ej , a)− U2(si, ej , a),
U3(si, ej , b) = γ + 2− U1(si, ej , a)− U2(si, ej , a),

∀ i 6= j:

U3(si, sj , a) = γ − U1(si, sj , a)− U2(si, sj , a),
U3(si, sj , b) = γ + 2− U1(si, sj , a)− U2(si, sj , a),

and ∀ i:

U3(si, si, a) = γ − U1(si, si, a)− U2(si, si, a),
U3(si, si, b) = γ + (m+ l + 2)− U1(si, si, a)− U2(si, si, a).

Since in this 3-player game, mlevUNI(O) > 0, we can give a formula for
kUNI(O) depending only on O’s (malicious) leverage and the average social
gain, namely

kUNI(O) = 1
2

(
avg

x∗∈X∗
U(x∗)−MLEVUNI(O)

)
.

52 CHAPTER 4. LEVERAGE

Thus, onceMLEVUNI(O) is known, kUNI(O) can be computed immediately,
and therefore finding the uniform malicious leverage is NP-hard as well. We
can adapt this procedure for LEVUNI(O) as well.

Again, the inapproximability results for SET COVER carry over to the
problem of computing the leverage. The following approximation lower
bounds are derived by modifying the games constructed from the SET
COVER problem in Theorem 3.8, and by using a lower bound for the ap-
proximation quality of the SET COVER problem. If no polynomial time
algorithm can approximate the size of a set cover within a certain factor,
we get an arbitrarily small approximated leverage LEV approxUNI ≤ ε while the
actual leverage is large. Hence the approximation ratio converges to infinity
and, unless P=NP, there exists no polynomial time algorithm approximating
the leverage of a game within any function of the input length.

Theorem 4.15. The exact and the non-exact uniform leverage of a strategy
profile set cannot be approximated in polynomial time within any function of
the input length for games with at least two players, or three players respec-
tively, unless P=NP.

Proof. Exact Case. The game constructed from the SET COVER problem
in Theorem 3.8 for the exact case is modified as follows: The utilities of
Player 1 remain the same. The utilities of Player 2 are all zero except for

U2(e1, r) = (l +m)(
m∑
i=1

|Si|
m+ 1
ml +m

− k · LB − ε),

where k is the minimal number of sets needed to solve the corresponding SET
COVER instance, ε > 0, and LB denotes a lower bound for the approximation
quality of the SET COVER problem. Observe thatX∗ consists of all strategy
profiles of column r. The target set we want to implement exactly is given
by O1 = {s1, ..., sm} and O2 = {e1, ..., el, d}. We compute

levoptUNI = avg
o∈O

U(o)− k

ml +m
− avg
x∈X∗

U(x)

=
m∑
i=1

|Si|
m+ 1
ml +m

− k

ml +m
−

m∑
i=1

|Si|
m+ 1
ml +m

− (−k · LB − ε)

= k · (LB − 1
ml +m

) + ε.

As no polynomial time algorithm can approximate k within a factor LB,
LEV approxUNI ≤ ε. Since limε→0 LEV

opt
UNI/LEV

approx
UNI = ∞ the claim follows

for a benevolent mechanism designer.

4.2. UNIFORM LEVERAGE 53

For malicious mechanism designers, we modify the utilities of the game
from the proof of Theorem 3.12 for Player 2 as follows:

U2(e1, r) := (l +m)

(
2k · LB + ε+

m∑
i=1

|Si|
m+ 1
ml +m

)
,

and U2(_,_) := 0 for all other profiles. It is easy to see that by a similar
analysis as performed above, the theorem also follows in this case.

Non-Exact Case. We modify the game construction of the proof of The-
orem 3.10 by setting

U2(e1, r, b) := (m+l)
(∑m

i=1 |Si|(m+ l)2 +m2(m+ l)2 + 3m(m+ l)
m2 +ml +m

− kLB − ε
)
,

where k is the minimal number of sets needed to solve the corresponding SET
COVER instance, ε > 0, and LB denotes a lower bound for the approximation
quality of the SET COVER problem and zero otherwise. Observe that X∗ =
{x | x ∈ X,x = (_, r, b)}, O has not changed, and payments outside O
do not contribute to the implementation cost; therefore, implementing O
exactly is still the cheapest solution. By a similar analysis as in the proof of
Theorem 3.10 the desired result is attained.

For malicious mechanism designers, set

U2(e1, r, b) := (m+l)
(∑m

i=1 |Si|(m+ l)2 +m2(m+ l)2 + 3m(m+ l)
m2 +ml +m

+ 2kLB + ε

)
and proceed as above.

4.2.2 Algorithms
To find algorithms that compute the uniform leverage we can adapt the
algorithms for the worst-case leverage from Section 4.1. Recall Algorithm 4.1
that computes the leverage of singletons of a desired strategy profile set. We
can adapt Line 3 and 4 to accommodate the definition of the uniform leverage,
i.e., set mlev[x] := avgx∗∈X∗ U(x∗) and mlev[x] := −mlev[x]. The resulting
algorithm helps finding an optimal singleton.

A benevolent mechanism designer can adapt Algorithm 4.2 in order to
compute the exact uniform leverage LEV ∗UNI(O): She only has to change
Line 4 to max{0, ExactLev(V, n) − avgx∗∈X∗ U(x∗)} and ‘min’ in Line 13
to ‘avg’. Invoking this algorithm for any O′ ⊆ O yields the subset O with
maximal leverage LEVUNI(O).

As seen in Theorem 4.15, there is no polynomial time algorithm giving
a non-trivial approximation of a uniform leverage. The simplest method to
find a lower bound for LEVUNI(O) is to search the singleton in O with the
largest uniform leverage. Unfortunately, there are games (cf. Figure 3.1)

54 CHAPTER 4. LEVERAGE

Leverage Complexity Properties

Uniform NP-hard
MLEVUNI ≥MLEV

singleton O
(
n ·
∑

i
|Xi|
)

Worst-case as hard as implementation cost
O ∩X∗ 6= ∅ ⇒ (M)LEV = 0

social opt/worst ∈ X∗
⇒ (M)LEV = 0

singleton O
(
n ·
∑

i
|Xi|
)

Equal-sum games
⇒ (M)LEV = 0

Figure 4.3: Complexity results for the computation of the leverage. sin-
gleton indicates the complexity of computing a singleton’s leverage.

where this lower bound is arbitrarily bad, analogously to the lower bound for
the worst-case leverage.

The results of this chapter are summarized in Figure 4.3. This concludes
the purely theoretical part of this thesis. The next part will present an
analysis of the incentives in multicore systems.

Part II

Multi-Core Systems

Chapter 5

The Multicore Revolution

In the year 1965, Gordon E. Moore, co-founder of Intel, stated that the
number of transistors on an integrated circuit will double about every year,
a projection that was later to be called Moore’s Law. In retrospect the
growth of the number of transistors in processor chips was rather in the
order of doubling every two years. Indeed, Moore’s law probably became a
self-fulfilling prophecy, as it served as a goal for an entire industry, driving
both marketing and engineering of semiconductor manufacturers to obey the
law, because it was presumed that the competitors would do so as well.
While Moore’s law seems to hold also in the 21st century,1 the processor
clock rates have stabilized around 2-3 GHz since the year 2005. The physical
limitations have been reached. Clock speeds can no longer be effectively
increased. For power efficiency, the clock rates have even slightly decreased
since 2005. Figure 5.1 plots the clock speeds and the number of transistors in
processor chips since 1970. The reason for the fact that the transistor count
still grows is that hardware designers have turned to multicore architectures,
in which multiple processing cores are included on each chip. Between 2005
and 2010, two or four cores per chip became standard. In 2011, also six-,
eight-, or 16-core machines are commercially successful. In compliance with
Moore’s law, the number of cores per machine will continue to double every
few years.

This switch to multicore architectures promises increased parallelism, but
not increased single-thread performance. Thus, traditional single-threaded
software, or software that makes use of only a few threads cannot capital-
ize on the increasing computation power at hand. Hence, software that is

1The International Technology Roadmap for Semiconductors projected in 2010 that
the growth of the transistor count continues until 2013, and then slows down to a rate
of a doubling every three years.

58 CHAPTER 5. THE MULTICORE REVOLUTION

Figure 5.1: Moore’s Law. The y-axis shows the clock speeds in MHz as
well as the number of transistors (scaled down by a factor of 1000). The
x-axis shows the time a chip was released. The number of transistors in
processors continues to double roughly every two years, while the clock speed
has stabilized around 2-3 GHz. (Data source: Wikipedia)

59

to utilize the multicore machines at a proper level of their capabilities must
be parallelized as much as possible. Unfortunately, developing parallel soft-
ware with the tools of today is a notoriously difficult job and constitutes a
major challenge for software developers. To use multiple cores concurrently
programmers must identify independent tasks, or task parts, that can be ex-
ecuted in parallel. Moreover, they must coordinate their execution, manage
communication and synchronization.

Traditionally, the means of dealing with parallelism are locks; however,
there seems to be a general consensus in the computer science research com-
munity that locks are not the optimal programming paradigm to deal with
concurrency and synchronization (see for instance [56]). It needs outstanding
programmers with a high degree of ingenuity to build large parallel systems
depending on locks.

There have been several proposals to ease the parallel programmers’ task.
Note that there is a natural trade-off between the degree of automation in-
volved in the software development, and the complexity of the programmer’s
job. On the one extremal point, there is a scenario where single-threaded
software is parallelized and turned into multi-threaded code by a fully auto-
mated compiling process. On the other extremal point, there is the scenario
of programmers being exclusively in charge of parallelization without any
automated support. Today’s common practice of developing software with
explicit locks is probably close to the latter scenario.

As with most trade-offs, the best solutions are likely to be found in be-
tween the extremal points: a system that automates parallelization to a
certain extent, and thus eases the task on the programmer, but also leaves
enough freedom to the programmer to exploit semantics unavailable to auto-
mated processing. One such solution are transactional memory systems. The
paradigm of Transactional Memory, introduced by Lomet [62] in the 1970s
and implemented by Herlihy and Moss [47] in the 1990s, has emerged as a
promising approach to keep the challenge of writing concurrent code manage-
able. The basic idea is that, similarly to the database world, the programmer
can encapsulate sequences of instructions within an atomic memory trans-
action. Either the entire transaction is executed, or nothing at all. Other
threads will see a transaction as one indivisible operation. Internally, the sys-
tem takes care of concurrency control by a contention manager that evaluates
and resolves conflicts between transactions.

Independent of the way it handles concurrency, a multicore system typi-
cally employs shared memory for the communication among threads, to let
the threads work together. This communication includes for instance the
transmission of the information, whether a thread is allowed to modify an
entity or not. Moreover, as soon as multiple threads access a shared data
structure the threads compete for the right of accessing or modifying the data

60 CHAPTER 5. THE MULTICORE REVOLUTION

structure. If the threads are all designed with the goal to serve the overall
performance of all software accessing the common data structure then the
threads should behave well and only acquire access right to data if neces-
sary. However, if the threads are not coordinated in such a well-behaved
manner, or in particular, if the threads are designed by different software de-
velopers, multicore systems are susceptible to selfish behavior. Since there is
competition in many projects, especially within the same company, we must
reckon that programmers write threads so as to optimize the performance of
their piece of code. Just think of the next evaluation! As a consequence, a
multicore system should account for selfish threads, i.e., threads that try to
optimize their performance regardless of their impact on the overall system
performance.

We see the issue of selfish programmers as one important aspect of con-
current computing that has to be considered in the design of next generation
multicore systems. If we are unable to provide easier ways of utilizing the
growing parallel computing power of processor chips after the age of clock
rate speedup, computer science is endangered to degenerate into washing ma-
chine science2, i.e., a science that has yielded one useful technology (building
washing machines, or building 3 GHz computers respectively), thereafter, it
does not spawn any new technology; it does not support the creation of new
products useful for mankind; and it is not part of human progress anymore.

2This term is due to Maurice Herlihy of Brown University. See [45] for his call on the
computer science community to attend to the issues of multicore computing.

Chapter 6

Good Programming in
Transactional Memory

A Transactional Memory (TM) system provides the possibility for program-
mers to wrap critical code that performs operations on shared memory into
transactions. The system then guarantees an exclusive code execution such
that no other code being currently processed interferes with the critical op-
erations. To achieve this, TM systems employ a contention management
policy. In optimistic contention management, transactional code is executed
right away and modifications on shared resources take effect immediately.
If another thread, however, wants to access the same resource a mechanism
called contention manager (CM) resolves the conflict, i.e., it decides which
transaction may continue and which must wait or abort. In the case of an
abort, all modifications done so far are undone. The aborted transaction will
be restarted by the system until it is executed successfully. Thus, in mul-
ticore systems, the quality of a program must not only be judged in terms
of space and (contention-free) time requirements, but also in terms of the
amount of conflicts it provokes due to concurrent memory accesses.

Consider the example of a shared ring data structure. Let a ring consist
of s nodes and let each node have a counter field as well as a pointer to the
next node in the ring. Suppose a programmer wants to update each node in
the ring. For the sake of simplicity we assume that she wants to increase each
node’s counter by one. Given a start node, her program accesses the current
node, updates it and jumps to the next node until it ends up at the start
node again. Since the ring is a shared data structure, node accesses must be
wrapped into a transaction. We presume the programming language offers
an atomic keyword for this purpose.

The first method in Figure 6.1 (incRingCounters) is one way of imple-

62 CHAPTER 6. GOOD PROGRAMMING IN TM

incRingCounters(Node start){
var cur = start;
atomic{

repeat{
c = cur.count;
cur.count = c + 1;
cur = cur.next; }

until(cur==start)
}}

incRingCountersGP(Node start){
var cur = start;
repeat{

atomic{
c = cur.count;
cur.count = c + 1;

}
cur = cur.next; }

until(cur==start) }}

Figure 6.1: Two variants of updating each node in a ring.

menting this task. It will have the desired effect. However, wrapping the
entire while-loop into one transaction is not a very good solution, because by
doing so, the update method keeps many nodes blocked, although the update
on these nodes is already done and the lock1 is not needed anymore. A more
desirable solution is to wrap each update in a separate transaction. This is
achieved by a placement of the atomic block as in incRingCountersGP on
the right in Figure 6.1.

When there is no contention, i.e., no other transactions request access to
any of the locked ring nodes, both incRingCounters and incRingCountersGP
run equally fast, this is, if we disregard locking overhead (cf. Figure 6.2). If
there are interfering jobs, however, the affected transactions must compete
for the resources whenever a conflict occurs. The defeated transaction then
waits or aborts and hence system performance is lost. In our example, using
incRingCounters instead of incRingCountersGP leads to many unnecessarily
blocked resources, and thereby increases the risk of conflicts with other pro-
gram parts. In addition, if there is a conflict, and the CM decides that the
programmer’s transaction must abort, then with incRingCountersGP only
one modification needs to be undone, namely the update to the current node
in the ring, whereas with incRingCounters all modifications from to the start
node must be rolled back. In brief, employing incRingCounters causes an
avoidable performance loss.

One might think that it is in the programmer’s interest to choose the
placement of atomic blocks as beneficial to the TM system as possible. The
reasoning would be that by doing so she does not merely improve the system
performance, but the efficiency of her own piece of code as well. Unfortu-
nately, in current TM systems, it is not necessarily true that if a thread is

1An optimistic, direct-update TM system “locks” a resource as soon as the transac-
tion reads or writes it and releases it when committing or aborting. This is not to be
confused with an explicit lock by the programmer. In TM, explicit locks are typically
not supported.

63

t1

R1
R2
R3

tend
t

Rs

R1
R2
R3

Rs
t2 t3 ts t1 tend

t
t2 t3 ts

(a) (b)

Figure 6.2: Transactional allocation of ring nodes R1, . . . , Rs by
incRingCounters (a) and by incRingCountersGP (b) on the timeline. Or-
ange colored bar segments signify the locking periods of the corresponding
resource.

well designed—meaning that it avoids unnecessary accesses to shared data—
it will also be executed faster. On the contrary, we will show that most CMs
proposed so far privilege threads that incorporate long transactions rather
than short ones. This is not a severe problem if there is no competition
for the shared resources among the threads. Although in minor software
projects all interfering threads might be programmed by the same developer,
this is not the case in large software projects, where there are typically many
developers involved, and code of different programmers will interfere with
each other. Furthermore, we must not assume that all conflicting parties
are primarily interested in keeping the contention low on the shared objects,
especially if doing so slows down their own thread. A selfish developer will
push the performance of his threads at the expense of other threads or even
at the expense of the entire system’s performance if the system does not
prevent this option. If a multicore system is to avoid this loss of efficiency,
it should ensure that the goal of achieving an optimal system performance
is compatible with an individual programmer’s goal of executing her code as
fast as possible. In the following, we will see that most CMs proposed in
the literature so far lack such an incentive compatibility, and we identify two
design principles that are fit to yield the desired incentive structure.

As a motivational remark we would like to point out that, although TM is
most often associated with multithreading, its realm of application is actually
much broader. It can for instance also be used in inter-process communica-
tion where multiple threads in one or more processes exchange data. Or it
can be used to manage concurrent access to system resources. Basically, the
idea of TM can be employed to manage any situation where several tasks may
concurrently access resources representable in memory. If TM is to be em-
ployed in domains such as inter-process communication or managing access
to system wide resources (DB, files, system variables), beneficial incentive
structures are also indispensable.

64 CHAPTER 6. GOOD PROGRAMMING IN TM

6.1 Model

We use a model of a transactional memory system with optimistic contention
management, immediate conflict detection, and direct update. As we do not
want to restrict TM to the domain of multithreading, we will use the notion
of jobs instead of threads to denote a set of transactions belonging together.
In inter-process communication, e.g., a job is rather a process than a thread.

6.1.1 Transactional Memory Model
The environment E is a set of n tuples of a job and the time it enters the
system, i.e.,

E = {(J0, t0), (J1, t1), . . . , (Jn, tn)}.

We assume that there are m ≥ n machines, and each job is executed ex-
clusively on one machine. The execution environment of a job Ji is given
by

E−i = E \ {(Ji, ti)}.

Each job Ji consists of a sequence of transactions Ti1, Ti2, . . . , Ti|Ji|, where
|Ji| is the number of transactions contained in Ji. Transactions may access
any subset of the shared resources R. For the sake of simplicity, we consider
all accesses as exclusive,2 thus, if two transactions both try to access resource
R ∈ R at the same time, or if one has already locked R and the other
desires access to R as well they are in conflict. When a conflict occurs
a mechanism decides which transaction gains (or keeps) access of Ri, and
has the other competing transaction wait or abort. Such a mechanism is
called contention manager (CM). We assume that once a transaction has
accessed a resource it keeps the exclusive access right until it either commits
or aborts. We further assume that the time needed to detect a conflict,
to decide which transaction wins, and the time used to commit or start a
transaction are negligible. We neither restrict the number of jobs running
concurrently, nor do we impose any restrictions on the structure and length of
transactions. As a consequence, we do not address the problem of recognizing
dead transactions and ignore heuristics included in CMs for this purpose. We
say a job Ji is running if its first transaction Ti1 has started and the last Ti|Ji|
has not committed yet. Notice that in optimistic contention management,
the starting time ti of a job Ji is not influenced by the CM, since it only
reacts once a conflict occurs. We assume that any transaction Tij contained
in job Ji accesses the same subset of resources Rij ⊆ R in each of its runs
independently of Ji’s starting time ti, and for any resource the time of its

2Invisible reads that would allow a concurrent access without conflicts are not con-
sidered.

6.1. MODEL 65

first access after a (re)start of Tij remains the same in each run.3 This allows
one to describe a contained transaction by a 3-tuple

Tij = (Rij , τij , dij)
whereRij ⊆ R are the resources accessed by Tij , τij : Rij 7→ R+ is a function
that maps a resource to its relative access time, and dij is the contention-free
duration of Tij , i.e., the time needed from start to commit provided that Tij
encounters no conflicts.

For instance Tij = ({R1, R4}, {R1 7→ 3, R4 7→ 0}, 4) describes a trans-
action that tries to gain immediate access of R4, access of R1 after 3 time
units, and commits after 4 time units unless it was aborted before. Note that
dij > τij(R) for any resource R ∈ Rij . Let di denote the contention-free du-
ration of job Ji, i.e. the time needed from ti to the commit time of Ti|Ji| in
an empty execution environment.

If the CM M used in a TM system is deterministic we assume that the
state of the system at a certain time is determined by E andM. IfM takes
randomized decisions then E and M determine a system state probability
distribution at any given time. Thus, givenM and E , the execution of E is
thoroughly described. In the following definitions, we presumeM to be de-
terministic. Corresponding definitions for randomizedM are straightforward
by incorporating probability distributions, and we omit explicit definitions
for randomized CMs.

By dM,E we denote the function that maps jobs and transactions in E to
their execution time, i.e., dM,E(Tij) is the time from the first start of transac-
tion Tij to its eventual commit in an execution of E by a TM system managed
byM, and similarly, dM,E(Ji) is the time the same TM system takes execut-
ing job Ji where (Ji, ti) ∈ E , i.e., the time between ti and the commit time
of the last transaction in Ji. The makespan dM,E of an environment E in a
system managed by M is the time from mini ti until maxi{ti + dM,E(Ti)}.
Let tM,E denote the function that maps transactions in E to their start time,
i.e., tM,E(Tij) is the time when Tij is started in the execution of E by a
TM system with CMM. We denote by LM,E(t) the set of locked resources
at time t in a TM system managed by M when executing environment E .
Similar to Rij , we denote by Ri the set of resources accessed by job Ji, i.e.,

Ri =
|Ji|⋃
j=1

Rij .

3Note that this is a major simplification of a real shared memory system, where
data structures change dynamically. However, as we assume code developers to consider
worst-case environments, only the starting time relative to competing jobs, but not the
absolute starting time ti is relevant. All other jobs could just be shifted accordingly.
Thus our assumption relaxes to the assumption that resource accesses remain constant
after a restart.

66 CHAPTER 6. GOOD PROGRAMMING IN TM

We define the concatenation Tij‖ij+1 of two consecutive transactions Tij and
Tij+1 as

Tij‖ij+1 =
(
Rij ∪Rij+1, τij‖ij+1, dij + dij+1

)
,

where τij‖ij+1 is the function that maps a resource R ∈ Rij∪Rij+1 to τij(R)
if R ∈ Rij , and to dij + τij+1(R) otherwise. For a job Ji, and an integer
k ∈ [1, |Ji| − 1] we define Combine(Ji, k) to be the job that results when the
two transactions Tik, and Tik+1 contained in Ji are concatenated to Tik‖ik+1,
i.e.,

Combine(Ji, k) = Ti1, . . . , Tik−1, Tik‖ik+1, Tik+2, . . . , Ti|Ji|.

In our discussions, we sometimes compare a job Ji to a similar job J ′i . In
such comparisons, we add a dash to notations associated with jobs to indicate
the corresponding properties of J ′i rather than that of Ji. For example, R′i
denotes the resources accessed by J ′i .

6.1.2 Programmer Model
We assume that the program code of each job is written by a different selfish
developer and that there is competition among those developers. Selfish in
this context means that the programmer only cares about how fast her job
terminates. This is, the author of job Ji tries to minimize the expected
execution time of Ji. We presume programmers have no information on the
runtime execution environment E−i, and are thus generally uncertain about
the performance of their job. As to deal with this uncertainty, we assume
developers act risk-averse in the sense that they expect E−i to be such that
Ji’s execution time is maximal among all possible finite executions, i.e., the
expected running time d̃M(Ji) of job Ji in a TM system managed by M is
given by

d̃M(Ji) = max
{E−i|d

M,E−i∪{(Ji,ti)}(Ji) is finite}
dM,E−i∪{(Ji,ti)}(Ji).

Note that with many CMs the “true” worst-case execution time of Ji is in-
finite even for finite environments E−i. If, however, a risk-averse developer
would expect her job to run forever she could just as well twirl her thumbs in-
stead of writing a piece of code. Hence, the assumption that a job eventually
terminates is an inevitable feature of our programmer model. Furthermore,
we say a job Ji dominates J ′i under M if and only if it holds for any E−i that

dM,E−i∪{(Ji,ti)}(Ji) ≤ dM,E−i∪{(J′i,ti)}(Ji)

and there exists an environment E−i for which strict inequality holds. When
implementing a task, a programmer can typically choose among a variety
of jobs that all implement the desired logic. We assume that out of these

6.2. GOOD PROGRAMMING INCENTIVES 67

available choices the programmer opts for any non-dominated job Ji that
has minimal expected running time d̃M(Ji) = minJ′

i
d̃M(J ′i). We call these

minimal jobs the solution set.
Note that the assumed solution concept is idealized in the sense that it

is probably infeasible for many tasks to find a job with minimal expected
running time. We therefore typically derive statements that preclude certain
types of jobs from the solution set rather than statements about what jobs
are in the solution set. For instance, we will show in Lemma 6.10 that jobs
that contain artificial delays are not in the solution set if a certain type of
contention manager is used.

6.2 Good Programming Incentives

A first step towards incentive compatible transactional memory is to deter-
mine what programmer behavior is desirable for a TM system. For that
matter we investigate how a programmer should structure her code, or in
particular, how she should place atomic blocks in order to optimize the over-
all efficiency of a TM system.

When a job accesses shared data structures it puts a load on the system.
The insight gained by studying the example of ring counters in Figures 6.1
and 6.2 is that the more resources a job locks and the longer it keeps those
locks, the more potential conflicts it provokes. If the program logic does not
require these locks the load thereby put on the system is unnecessary.
Fact 6.1. Unnecessary locking of resources provokes a potential performance
loss in a TM system.

However, the question remains of whether partitioning a transaction into
smaller transactions—even if doing so does not reduce the resource accesses—
results in a better system performance. Consider an example where the
program logic of a job J1 requires exclusive access of resource R1 for a period
of 8 time units. One strategy for the programmer is to wrap all operations
on R1 into one transaction

T ′11 = ({R1}, {R1 7→ 0}, 8).

However, let the semantics also allow an execution of the code in two subse-
quent transactions T11 and T12 where

T11 = T12 = ({R1}, {R1 7→ 0}, 4)

without losing consistency. Figure 6.3 shows the optimal execution of both
strategic variants in an environment E = {(J1, 0), (J2, 0)} with J2 = T21, T22
and

T21 = T22 = ({R1, R2} , {R1 7→ 4 + ε, R2 7→ 0}, 5) ,

68 CHAPTER 6. GOOD PROGRAMMING IN TM

R1
R2

t

T'11

T21

T21

t

T11

T21

T21

4 98 14

10940

0

(b)

(a)

R1
R2

T21 T22

T22

T12 T22

T22

5

Figure 6.3: Partitioning example. The picture depicts the optimal alloca-
tion of two resources R1 and R2 over time in two situations (a) and (b).
In (a), the programmer of job J1 does not partition T ′11. In (b), she parti-
tions T ′11 into T11 and T12. The makespan is shorter in (b), the individual
execution time of J1 is faster in (a).

where ε ∈ R+ is arbitrarily small, i.e. one clock cycle.
In situation (a), the programmer does not partition T ′11. Both jobs J1 and

J2 start at time t = 0, after 4 time units there is a conflict since transaction
T21 tries to gain access of resource R1 that is locked by T ′11. To achieve an
optimal allocation the contention manager M aborts T21. T21 is restarted.
No more conflicts occur, and a makespan of dM,E = 14 is achieved. Convince
yourself that this is minimal for E . In situation (b), the programmer uses the
partitioned version of J1. Both jobs start at t = 0. T11 commits after 4 time
units. In the period (4, 5], T12 and T21 continuously compete for resource
R1. An optimal contention manager lets T21 run to commit. Transactions
T12 and T22 both start at t = 5+ε, and run to commit without conflicts. This
yields a makespan of 10. Thus, in the example of Figure 6.3, partitioning
T ′11 allows the system to execute J1 and J2 four time units faster.

Furthermore, partitioning is generally beneficial to a TM system in that
it provides more flexibility to the allocation schedule. To make this fact
clear we consider a TM system that is managed by an optimal offline CM
M∗. In contrast to the CMs in a TM system, M∗ is assumed to know the
entire environment, including the jobs that arrive in the future, and can thus
precompute what runtime decisions lead to a minimal makespan. Hence,M∗
always makes the right decision when resolving a conflict, furthermore, we
allow it to postpone the beginning of a transaction Tij to any optimal time
t given that t ≥ ti and all Tik with k < j have committed.

Theorem 6.2. A finer transaction granularity speeds up a transactional
memory system managed by an optimal CM M∗, i.e., for any two jobs Ji
and J ′i where there exists a k ∈ {1, . . . , |Ji|−1} such that J ′i = Combine(Ji, k)

6.2. GOOD PROGRAMMING INCENTIVES 69

it holds for any execution environment E−i that

dM
∗,E−i∪{(Ji,ti)} ≤ dM

∗,E−i∪{(J′i,ti)},

and there exists an E−i for which inequality holds.

Proof. First notice that we may assume without loss of generality that under
M∗ there are no conflicts: any transaction Tij will finally run from start to
commit in an optimal execution of an environment E . Let tM,E

ij denote the
time when transaction Tij is started for its successful run in the execution of E
under CMM. If a CMM manages E optimally then the CMM∗ that works
likeM except that it postpones the start of each transaction Tij until tM,E

ij ,
manages E optimally as well. Moreover, since M∗ starts any transaction
only when it will run until commit the produced allocation schedule has no
conflicts.4

Let Ji and J ′i be as described in the theorem. We proceed by showing the
existence of a CM B that achieves dB,E−i∪{(Ji,ti)} = dM

∗,E−i∪{(J′i,ti)} for any
given E−i. For convenience, let E := E−i∪{(Ji, ti)}, and E′ := E−i∪{(J ′i , ti)}.
B sets

tB,E(Tik) := tM
∗,E′(T ′ik)

where t′ik = Tik‖ik+1. B starts Tik+1 immediately after Tik commits, i.e.,

tB,E(Tik+1) := tB,E(Tik) + dB,E(Tik).

At any time t, tB,E(Tik) ≤ t ≤ tB,E(Tik) + dB,E(Tik), Ji accesses the same
resources as J ′i , i.e.,

LB,E(t) = LM
∗,E′(t).

Since the time needed for committing and starting is negligibly small, Tik+1
accesses the same resources as T ′ik at the same time. Furthermore, when
Tik+1 starts it has no resources locked. Hence the resources locked by Tik+1
are always a subset of the resources accessed by T ′ik, i.e.,

LB,E(t) ⊆ LM
∗,E′(t)

where tB,E(Tik+1) ≤ t ≤ tB,E(Tik+1)+dB,E(Tik+1). Note that Tij might have
some resources locked from earlier accesses at time tB,E(Tik+1). As J ′i does
not provoke a conflict Ji neither does so, and Tik+1 will commit at the same
time as T ′ik. B executes any other transaction Tij with j /∈ {k, k + 1} just
likeM∗, and the claim about B’s performance follows. SinceM∗ is optimal
we have that

dM
∗,E ≤ dB,E = dM

∗,E′ .

4This reflects the fact that an offline CM is able to “look into the future”, and thus,
it can avoid mistakes.

70 CHAPTER 6. GOOD PROGRAMMING IN TM

It remains to describe an execution environment E−i with the property
that dM∗,E−i∪{(Ji,ti)} < dM

∗,E−i∪{(J′i,ti)}. Let E−i be an execution environ-
ment as follows:

E−i := {(Jv, tv)} with Jv = Tv1, Tv2 and tv = ti,

Tv1 :=

 {Rv, R},{
Rv 7→ 0, R 7→ tM

∗,{(Ji,0)}(Tik+1)
}
,

tM
∗,{(Ji,0)}(Tik+1) + dik+1

 ,

Tv2 := ({Rv}, {Rv 7→ 0}, di − tM
∗,{(Ji,0)}(Tik+1)− dik+1 + δ),

where Rv /∈ Ri, R is any resource in Rik, and δ is the amount of time that R
is locked in a successful run of Tik+1. M∗ achieves an optimal execution of
E−i ∪ {(Ji, ti)} by starting both jobs Ji and Jv at ti, and delaying the start
of Tik+1 by δ after Tik commits. Thus, all transactions run conflict-free to
commit yielding a makespan of

dM
∗,E−i∪{(Ji,ti)} = ti + di + δ.

Note that δ may equal 0, namely if R /∈ Rik+1.
If the developer uses J ′i instead of Ji, in order not to provoke a conflict on

resource R thenM∗ has to either postpone Tv1 by dik+1, or postpone T ′ik by
dik+1 + δ′ where δ′ > 0 is the period of time that R is locked in a successful
run of Tik. The former yields a makespan of

dM
∗,E′ = ti + dv + dik+1 = ti + di + δ + dik+1 > dM

∗,E ,

the latter yields

dM
∗,E′ = ti + dv + δ′ = ti + di + δ + δ′ > dM

∗,E .

For both inequalities we used the fact that dv = di + δ, which holds due to
the construction of E−i.

Theorem 6.2 proves partitioning to be beneficial to a system with an
optimal CM. Of course, this does not hold for all CMs. As partitioning gives
more freedom to the CM, though, it is highly probable that by incentivizing
partitioning, a system achieves a better performance in a selfish environment
even with the additional overhead needed for incentive compatibility.

Our investigations show that both, avoiding unnecessary locks, and par-
titioning transactions whenever possible, are behavioral patterns that are
beneficial to a TM system. In the following, we define the properties of a
CM that incentivize code developers to adopt this behavior. We say a CM
rewards partitioning iff it is rational for a programmer to always partition

6.2. GOOD PROGRAMMING INCENTIVES 71

a transaction when the program logic allows her to do so, and it punishes
unnecessary locking iff it is rational for a programmer to never lock resources
unnecessarily.

Definition 6.3 (Reward Partitioning). A CM M rewards partitioning iff
for any two jobs Ji and J ′i where there exists a k ∈ {1, . . . , |Ji|− 1} such that
J ′i = Combine(Ji, k) it is rational for a programmer to opt for Ji rather than
J ′i given that both jobs implement the desired task.

Definition 6.4 (Punish Unnecessary Locking). Let Ji and J ′i be any
two jobs with the property that for any point in time t it holds that
LM,{(Ji,0)}(t) ⊆ LM,{(J′i,0)}(t), and for at least one t it holds that
LM,{(Ji,0)}(t) ⊂ LM,{(J′i,0)}(t).
A CM M punishes unnecessary locking iff for any such pair Ji, J ′i , it is
rational for a programmer to opt for Ji rather than J ′i given that both jobs
implement the desired task.

Definition 6.5 (GPI Compatible). A CM is good programming incentive
(GPI) compatible iff it rewards partitioning and punishes unnecessary lock-
ing.

Note that by our definitions we achieve that if a job J ′i can be further
improved in a TM system managed by a GPI compatible CM, i.e., if it can
be further partitioned or shortened in terms of locks, a programmer has an
incentive to choose an improved job Ji. Note that if Ji itself can be further
improved then it will not be chosen by the programmer either, but the im-
provement to Ji, and so forth. Consequently, GPI compatibility incentivizes
programmers to choose job implementations that cannot be further parti-
tioned, or shortened in terms of locks (without losing consistency). However,
there might still be faster jobs that implement the same task in a way that
substantially differs from Ji or its improvements. For instance, mere GPI
compatibility does not indicate whether it is faster to sort a shared list by
employing a merge sort, or a bubble sort algorithm. Generally, we cannot
expect any CM to be able to tell whether a job implements the task desired
by the programmer, nor whether the algorithm implemented solves a given
task elegantly, nor whether the code makes sense at all. Therefore, in order
to be GPI compatible a CM must typically make all Ji perform better than
J ′i for any job pairs defined as in Definitions 6.3 and 6.4 regardless of the
semantics. In that sense, GPI compatibility describes a monotonicity prop-
erty, namely that a job Ji that is lighter, or finer grained than a job J ′i is
guaranteed to perform at least as well as J ′i .

Let us reconsider the example from Figure 6.3 to illustrate that GPI com-
patibility is not a naturally given property. We have seen that partitioning
T ′11 into T11 and T12 results in a smaller makespan. But what about the

72 CHAPTER 6. GOOD PROGRAMMING IN TM

individual execution time of job J1? In the unpartitioned execution, where
J1 only consists of T ′11, J1 terminates at time t = 8. In the partitioned case,
however, J1 terminates at time t = 9. This means that partitioning a trans-
action speeds up the overall performance of a concurrent system managed
by an optimal CM, but it possibly slows down an individual job. Thus, a
selfish programmer has no natural incentive to take the effort of finding a
transaction granularity as fine as possible.

Consequently, we can expect that from a certain level of selfishness among
developers a CM that incentivizes good programming performs better than
the best incentive incompatible CM. In the remainder we are mainly con-
cerned with the question of which contention management policies fulfill GPI
compatibility.

As a remark we would like to point out that the “optimal” offline CM
M∗ does not reward partitioning, and hence is not GPI compatible. This is
shown by the example from Figure 6.3. Note that the optimality ofM∗ refers
to the scheduling of a given transaction set. If we assume that developers
act selfishly then also a system managed by M∗ suffers a performance loss
and a different CM that offers incentives for good programming might be
more efficient thanM∗. There is, however, an inherent loss due to the lack
of collaboration. In game theory, this loss is called price of anarchy (cf.
[6, 24, 83]).

6.3 Priority-Based Contention Management

One key observation when analyzing the contention managers proposed in
[85, 86, 43, 12] is that most of them incorporate a mechanism that accu-
mulates some sort of priority for a transaction. In the event of a conflict,
the transaction with higher priority wins against the one with lower priority.
Most often, priority is supposed to measure, in one way or another, the work
already done by a transaction. Timestamp [85] and Greedy [12, 43] mea-
sure the priority by the time a transaction is already running. Karma [85]
takes the number of accessed objects as priority measure. Kindergarten [85]
gives priority to transactions that already backed off against the competing
transaction. The intuition behind a priority-based approach is that aborting
old transactions discards more work already done and thus hurts the system
efficiency more than discarding newer transactions. The proposed contention
managers base priority on a transaction’s time in the system, the number of
conflicts won, the number of aborts, or the number of resources accessed.
Definition 6.6 introduces a framework that comprises priority-based CMs.
It allows us to classify priority-based CMs and to make generic statements
about GPI compatibility of certain CM classes. See Table 6.1 for some ex-
amples of how our framework can be used to describe CMs.

6.3. PRIORITY-BASED CONTENTION MANAGEMENT 73

Timestamp, Greedy Karma, Polka
T ; ωi = ωi + c

C ; ωi = 0
R ; ωi = ωi + c

C ; ωi = 0

Eruption Polite
R ; ωi = ωi + c

W against Tj ; ωi = ωi + ωj

C ; ωi = 0

R ; ~ωi(R) = 1
A ; ~ωi(R) = 0 ∀R ∈ Ri
C ; ~ωi(R) = 0 ∀R ∈ Ri

Table 6.1: Description of various popular priority-based CMs in terms of
the framework introduced in Definition 6.6. Timestamp, Karma, Eruption,
and Polite were proposed by Scherrer and Scott in [85], as well as Polka in
[86]. Greedy was proposed by Gerraoui et al. in [43]. ‘X ; f ’ indicates that
the described CM reacts to an event X with the modifications f . The value c
is typically a small constant increment. Note that only Polite needs resource
specific priorities, the other five CMs use scalar priority values.

Definition 6.6 (Priority-Based). A priority-based contention manager M
associates with each job Ji a dynamic priority function

~ωi : Ri 7→ R

that may change over time. For a resource R ∈ Ri, ~ωi(R) is Ji’s priority
on resource R. M resolves conflicts between two transactions Tij ∈ Ji and
Tqr ∈ Jq over a resource R ∈ Ri ∩Rq by aborting the transaction with lower
priority on R, i.e., if ~ωi(R) ≥ ~ωq(R) then Tij wins otherwise Tij is aborted.

In many CMs, the job priorities are not resource specific, i.e., ~ωi(R) = c
for all resources R ∈ Ri where c ∈ R. In this case we can replace ~ωi by a
scalar priority value ωi ∈ R. We call such a CM scalar-priority-based. In the
remainder we often use ωi instead of ~ωi for the sake of simplicity, even if we
are not talking about scalar-priority-based CMs only. Mostly, for a correct
valuation of a job’s competitiveness, absolute priority values are not relevant,
but the relative value to other job priorities.

Definition 6.7 (Relative Priority). A job Ji’s relative priority function ω̃i :
Ri 7→ R is defined by

ω̃i(R) := ~ωi(R)− min
j:R∈Rj

~ωj(R).

If the CM uses scalar priorities, Ji’s relative priority ω̃i ∈ R is obtained
by subtracting minj=1...n ωj from the absolute priority ωi.

74 CHAPTER 6. GOOD PROGRAMMING IN TM

Since optimistic CMs feature a reactive nature it is best to consider the
priority-building mechanism as event-driven. On each event, the CM may
update the priority functions. We find that the following events may occur
for a transaction Tij ∈ Ji in a transactional memory system:
T : A time step. This event occurs in every time step.

W: Tij wins a conflict. Event W occurs when the contention manager has
resolved a conflict in favor of Tij .

A: Tij loses a conflict and is aborted. Event A occurs when the CM has
resolved a conflict in favor of one of Tij ’s competitors.

R: Tij successfully allocates a resource. Event R occurs when Tij gains
access of a resource.

C: Tij commits. Event C occurs when a transaction Tij commits.
As an example, a Timestamp CM MT , as defined in [85], is modelled

by means of events of type T and C, i.e., in a time step dt after Tij ∈ Ji
entered the system, ωi is increased by dω = αdt, α ∈ R+ until C occurs,
then it is reset to 0. The scalar priority of Ji at a time t, tMT ,E(Tij) < t ≤
tMT ,E(Tij) + dMT ,E(Tij) is given by

ωi(t) =
∫ t

tMT ,E (Tij)
αdt = α(t− tMT ,E(Tij)).

Note that events of type R happen regardless of whether the allocated
resource was freely available, or whether Tij had to win in a conflict against
other transactions to lock it. If Tij wants to acquire a resource R that
is currently locked by another transaction, the contention manager decides
which transaction has to abort. If Tij has to abort there occurs an A-event
for Tij . If Tij may continue, there occurs both a W-event as well as an
R-event. Further note that priorities are associated with jobs rather than
transactions. Thus, a C-event does not necessarily result in ωi being reset to
0.

When assessing the contention management policies in the literature with
the proposed framework, we could observe that most of them are of one of
the following two subtypes of priority-based CMs.
Definition 6.8 (Priority-Accumulating). A priority-based contention man-
ager is priority-accumulating iff no event decreases a job’s priority and there
is at least one type of event which causes the priority to increase.
Definition 6.9 (Quasi-Priority-Accumulating). A contention manager is
called quasi-priority-accumulating iff a CM is priority-accumulating with re-
spect to events of type T , W, A and R, and it only resets Ji’s priority on a
C-event.

6.3. PRIORITY-BASED CONTENTION MANAGEMENT 75

Timestamp is an example of a quasi-priority-accumulating contention
manager as it only decreases priority on a commit event.

6.3.1 Waiting Lemma
We argue in this section that delaying the execution of a job is not a ra-
tional strategy with priority-based CMs, i.e., jobs with artificial delays are
not in the solution set if programmers use the solution concept defined in
Section 6.1. Note that a programmer can make a job wait by introducing
unnecessary code that does not allocate shared resources. We consider cases
where Ji waits before (re)starting a transaction Tij as well as cases where Tij
is already running, has locked some resources and then waits before resuming
(cf. Figure 6.4). For our proof to work, we require two restrictions on the
contention manager’s priority modification mechanism:

I. The extent to which ωi is increased (or decreased) on a certain event
never depends on ωi’s current value.

II. In a period where no events occur except for time steps, all priorities
ωi increase by ∆ω ≥ 0.

Restriction I implies that rules such as “if ωi is larger than 10 add 100”, or
“ωi = 2ωi” are prohibited. A rule like “ωi = ωi+2” on the other hand is per-
mitted. Intuitively, it seems that a rule that, e.g., doubles the current priority
on certain types of events does not seem too far-fetched. Nevertheless, we
are not aware of any contention manager in the literature that employs such
an update rule. Thus, Restriction I is probably not a substantial reduction
to the CM design space. Restriction II basically excludes CMs that decrease
priorities on T -events, and CMs in which T -events do not affect all jobs in
the same manner. Again, we do not know of any contention manager that in-
corporates rules of this kind. As most proofs that follow Lemma 6.10 rely on
these restrictions, investigating CMs that do not comply with Restrictions I
and II might still be an interesting subject for future work.
Lemma 6.10. It is irrational to add artificial delays to a job, given that
the TM system is managed by a priority-based CM M that is restricted by
(I.–II.).

Proof. We show the claim by comparing a job J ′i that incorporates artificial
delays with a wait-free job Ji that results when omitting all delays in J ′i . In
particular we prove that the programmers expect a shorter execution time
for Ji than for J ′i , i.e. d̃M(Ji) < d̃M(J ′i). Let ωi(t) be ωi at time t. Let
Ji, or J ′i respectively enter the system at time ti. Let E−i be an execution
environment for which

dM,E−i∪{(Ji,ti)}(Ji) = d̃M(Ji).

76 CHAPTER 6. GOOD PROGRAMMING IN TM

We can construct an execution environment E ′−i for which it holds that

d̃M(Ji) < dM,E′−i∪{(J
′
i,ti)}(J ′i) ≤ d̃M(J ′i)

from E−i as follows: let us assume that J ′i incorporates only one artificial
delay in the interval [t0, t0 + ∆]. For any run of J ′i , E ′−i lets all other jobs
Jj , j 6= i delay their transactions as well during the interval [t0, t0 +∆]. Thus
we establish a situation for J ′i that is at least as bad at time t0 + ∆ as the
situation at t0. Because of Restriction II, we have

ω̃′j(t0 + ∆) = ω̃′j(t0)

for any j = 1 . . . n, i.e., the relative priorities are conserved. Since the conflict-
resolving mechanism ofM does not depend on the priorities’ absolute values,
but only on their order, and further, modifications of priorities never depend
on the priorities’ absolute values, by resuming all work at t0 +∆ and delaying
all jobs in E−i with starting time > t0 by ∆, we get that

dM,E′−i∪{(J
′
i,ti)}(J ′i) = d̃M(Ji) + ∆.

If J ′i has more than one artificial delay, we can do the same for each delay
interval.

We have proven that if Ji and J ′i are either both non-dominated, or both
dominated, J ′i cannot be in the solution set. However, if J ′i would be non-
dominated and Ji dominated we could not make this conclusion, and it would
be unclear which job is to be preferred. Luckily this case cannot occur. We
prove this by showing that if Ji is dominated then J ′i must be dominated
as well. Let Ĵi be a job that dominates Ji. We construct a job Ĵi

′ from Ĵi
that basically waits whenever J ′i waits. Similar arguments as before, namely
that relative priorities are preserved, imply that J ′i is dominated by Ĵi

′. This
concludes the proof.

Note that the claim of Lemma 6.10 is intimately linked to the solution
concept stated in the model section. Although it seems intuitive we can only
establish it since we model the programmers to be unaware of any runtime
conditions, and risk-averse in that they assume a “worst-case” execution envi-
ronment in which their jobs still eventually finish. In practice, a programmer
often has some information about the environment in which her job will be
deployed. Hence it might make sense to presume some structure of E−i. For
example, she could assume that lengths of locks follow a certain distribution,
or that each resource has a given probability of being locked. In such cases
waiting might not be irrational. In the following, we will sometimes argue
that a CM is GPI compatible by comparing two jobs Ji and J ′i where both
are equal except for J ′i either locks a resource unnecessarily, or it does not

6.3. PRIORITY-BASED CONTENTION MANAGEMENT 77

R1

t

Ti1

t0 Ti2 waits Δ ti2 Ti2 waits Δti1

R3
R2

Ti1 Ti2

Ti2

Ti2Ti1

Figure 6.4: Job Ji = Ti1, Ti2 waits at time t0 for a period of ∆. In this
period, Ji keeps locking the already locked resources R1 and R2. After Ti1
commits, the system would let Ti2 start immediately, but the programmer of
Ji decided to let Ti2 wait ∆ before it accesses the first resource.

partition a transaction that is partitioned in Ji. We will show that in any
given execution environment E−i, job Ji

• either performs at least as fast as J ′i , or

• if it is slower than J ′i this is because Ji does not wait at a certain point
in the execution.

Since we could achieve the same performance as J ′i in the latter case by intro-
ducing artificial delays to Ji, which we showed to be irrational, we conclude
that a developer prefers Ji even if it does not dominate J ′i . All that remains
to show is that there is at least one E−i in which Ji outperforms J ′i . We
will use analogous reasoning to argue that a CM is not GPI compatible. In
particular we will show that there exists an execution environment E−i in
which J ′i is faster than Ji, and in which Ji could not achieve the performance
of J ′i by introducing delays.

6.3.2 Quasi-Priority-Accumulating Contention Management
Quasi-priority-accumulating CMs increase a transaction’s priority over time.
Again, the intuition behind this approach is that, on the one hand, aborting
old transactions discards more work already done, and thus hurts the system
efficiency more than discarding newer transactions, and, on the other hand,
any transaction will eventually have a priority high enough to win against
all other competitors. This approach is legitimate. Although the former
presupposes some structure of E and the latter is not automatically fulfilled,
examples of quasi-priority-accumulating CMs showed to be useful in practice
(cf. [86]). However, quasi-priority-accumulating CMs bear harmful potential.
They incentivize programmers to not partition transactions, and in some
cases even to lock resources unnecessarily. Consider the case where a job has
accumulated high priority on a resource R. It might be advisable for the job
to keep locking R in order to maintain high priority. Although it does not

78 CHAPTER 6. GOOD PROGRAMMING IN TM

need an exclusive access for the moment, maybe later on, the high priority
will prevent an abort, and thus save time. In fact, we can show that the
entire class of quasi-priority-accumulating CMs is not GPI compatible.

Theorem 6.11. Quasi-priority-accumulating CMs restricted by (I.–II.) are
not GPI compatible.

Proof. Let Ji, J ′i , and k be such that J ′i = Combine(Ji, k). Let both jobs
Ji and J ′i enter the system at time ti for comparison. We show the claim
by constructing an environment E−i in which J ′i executes faster than Ji and
in which it is impossible to achieve the performance of J ′i by introducing
delays to Ji. For ease of notation, let E := E−i ∪ {(Ji, ti)}, and E′ :=
E−i ∪ {(J ′i , ti)}. Furthermore, we denote by ωi(t) the priority ωi at time t.
Let E−i be such that T ′ik is not aborted until commit. Hence, Tik is not
aborted until commit at time tM,E(Tik) + dik either. Furthermore, let E−i
be such that there is at least one event that increases ωi in the time interval
(tM,E(Tik), tM,E(Tik) + dik). Thus

ω′i(tM,E(Tik) + dik) = ωi(tM,E(Tik) + dik) > ωi(tM,E(Tik)) ≥ 0.

When Tik commits, ωi is reset to 0 and

ω′i(tM,E(Tik+1)) > ωi(tM,E(Tik+1)).

Since Tik+1 is started immediately, it will provoke the exact same conflicts as
T ′ik at times t ≥ tM,E(Tik+1). Let the first event on Tik+1 (except for time
steps) be a conflict against a transaction Tv /∈ Ji whose priority is lower than
the priority of J ′i , but higher than the priority of Ji, i.e., ω′i > ωv > ωi at
the time this conflict occurs. Thus, Tik+1 is aborted and must be restarted,
whereas T ′ik wins the conflict and runs to commit. Let all future transactions
of J ′i run without conflicts. Thus, we get that dM,E′(J ′i) < dM,E(Ji), i.e., J ′i
executes faster than Ji. Moreover, as all transactions T ′ij with j ≥ k run to
commit in the first attempt it is impossible to introduce any delay into Tik
or Tik+1 without exceeding the execution time of J ′i .

Theorem 6.11 reflects the intuition that if committing decreases an ad-
vantage in priority then there are cases where it is rational for a programmer
not to commit and start a new transaction, but to continue instead with the
same transaction. Obviously, the opposite case is possible as well, namely
that by not committing the developer causes a conflict with a high priority
transaction on a resource, which could have been released if the transaction
would have committed earlier, and thus is aborted. As in our model of a
risk-averse programmer she does not suppose any structure on E−i, she does
not know which case is more likely to happen either, and therefore has no

6.3. PRIORITY-BASED CONTENTION MANAGEMENT 79

preference among the two cases. She would probably just choose the strategy
which is easier to implement. If we assumed, e.g., that a resource R is locked
at time t with probability p by a transaction with priority x where both, p
and x follow a certain probability distribution, then there would be a clear
trade-off between executing a long transaction and therewith risking more
conflicts and partitioning a transaction, and thus losing priority.

Note that due to the nature of its proof, Theorem 6.11 extends easily
to the claim that no priority-based CM rewards partitioning unless it pre-
vents the case where, after a commit of transaction Tij ∈ Ji, the subsequent
transaction Tij+1 ∈ Ji starts with a lower priority than Tij had just be-
fore committing. In fact, we can show that all priority-accumulating CMs
proposed by [12, 43, 85, 86] are not GPI compatible. For a detailed descrip-
tion of the mentioned contention managers, please refer to the original work
[12, 43, 85, 86], or to the technical report of [37].5 There you can also find a
discussion on the following corollary.
Corollary 6.12. Polite, Greedy, Karma, Eruption, Kindergarten, Times-
tamp and Polka are not GPI compatible.

6.3.3 Priority-Accumulating Contention Management
The inherent problem of quasi-priority-accumulating mechanisms is not the
fact that they accumulate priority over time, but the fact that these priorities
are reset when a transaction commits. Thus, by committing early, a job loses
its priority when starting a new transaction. One possibility to overcome this
problem is to not reset ωi when a transaction of Ji commits. With this trick,
neither partitioning transactions nor letting resources go whenever they are
not needed anymore causes a reset of the accumulated priority. We further
need to ensure that a succeeding transaction is started immediately after its
predecessor commits, because otherwise partitioning would result in a longer
execution even in a contention-free environment. We denote this property of
a CM as gapless transaction scheduling.

Note that in the assumed model of optimistic contention management,
gapless transaction scheduling is naturally given. This is due to the fact that
in optimistic CM resource modifications are visible immediately, and commit
operations are very lightweight, i.e., negligible in our model. The following
theorems, Theorems 6.13 and 6.14, only hold for CMs that schedule trans-
actions gapless. As gapless transaction scheduling is part of our optimistic
contention management model we do not repeat it in the statements. How-
ever, we need to define the following before stating the theorems: if a CMM
only modifies priorities on a certain event type X , we say that M is based
only on X -events.

5available at www.dcg.ethz.ch/publications/isaac09_EWtik.pdf

80 CHAPTER 6. GOOD PROGRAMMING IN TM

Theorem 6.13. Any priority-accumulating CM M that is based only on
time (T -events) punishes unnecessary locking.

Proof. Since the priorities grow monotonous over time, and T -events happen
for all jobs at the same time, there is an implicit total order among all jobs
in the system. In particular, a job Jj always has a higher priority than any
job that entered the system after Jj , tj > tk implies ωj > ω6. From a job
Ji’s perspective, this order divides the competing jobs in the system into two
sets, Li = {Jj | ωj < ωi} and Hi = {Jj | ωj > ωi}. By transitivity it follows
that a job in Li cannot influence a job in Hi, neither directly nor indirectly
by influencing other jobs in Li. A job in Hi will win any conflicts against
any job in Li anyway. Thus, all jobs in Li are irrelevant for the performance
of the jobs in Hi, and therewith for the execution of Ji either. Let Ji and J ′i
be two jobs that are completely equal in all transactions except for one, Tik,
or T ′ik respectively, where T ′ik ∈ J ′i contains an unnecessary lock. Thus, for
any point in time t it holds that

LM,{(Ji\Tik,0)}(t) = LM,{(J′i\T
′
ik
,0)}(t).

Consider the case where dik = d′ik first. Comparing Tik with T ′ik in an
empty environment, there is an interval (a, b) for which it holds that for any
t ∈ (a, b),

LM,{(Tik,0)}(t) = LM,{(T ′
ik
,0)}(t) \ {R}.

This is, T ′ik locks resource R unnecessarily in the interval (a, b). Given an
execution environment E−i, the unnecessary lock of R either does not provoke
a conflict, or it does. If it provokes no conflicts, or only conflicts with jobs in
Li then choosing Ji or J ′i results in the same execution time. If it provokes
a conflict against a job in Hi, however, T ′ik is aborted whereas Tik continues.
If all transactions after Tik run conflict-free Ji is strictly faster than J ′i .
Otherwise, let tlast be the time when T ′ik is restarted for the last time before
commit, i.e., T ′ik commits at time tlast+dik. In case J ′i executes faster than Ji
the programmer could delay Tik until tlast and thus reach the same execution
time as with J ′i . This is because the resources allocated by Tik would always
be a subset of the resources allocated by T ′ik in the interval [tlast, tlast + dik].
In order to do so, however, the programmer would introduce an artificial delay
to Ji. As M is time-based, Lemma 6.10 applies and implies that choosing
J ′i over Ji is irrational.

It remains to show that if dik < d′ik then Tik is still preferable. This case
occurs when T ′ik contains an unnecessary lock that additionally delays all
future resource accesses compared to Tik. Let δ = d′ik − dik be the delay. In

6If M always resolves ties consistently, e.g. in favor of the job with lower id then a
strict order is guaranteed also if we allow concurrent starting times.

6.3. PRIORITY-BASED CONTENTION MANAGEMENT 81

terms of resource allocation this means that there is a point in time a such
that

∀ t ≤ a : LM,{(T ′
ik
,0)}(t) = LM,{(Tik,0)}(t), and

∀ t, a < t ≤ a+ δ : LM,{(T ′
ik
,0)}(t) = LM,{(T ′

ik
,0)}(a) ∪ {R}, and

∀ t > a+ δ : LM,{(T ′
ik
,0)}(t) = LM,{(Tik,δ)}(t).

For this case, the empty environment E−i = ∅ can serve as positive in-
stance where

dM,{E−i∪(Ji,ti)}(Ji) < dM,{E−i∪(J′i,ti)}(J ′i).

For an environment E−i in which T ′ik is in none of its runs aborted during
the interval (a, a+ δ) (relative to the run’s start time), a programmer could
achieve the same performance by introducing a delay of δ to Tik at time a. If
E−i is such that T ′ik is aborted due to the unnecessary lock in (a, a+δ) then Ji
achieves the same performance as J ′i by delaying Tik until tlast+δ, where tlast
is defined as before. We thus proved that whenever J ′i executes faster than Ji,
the programmer could achieve the same execution time by introducing delays
to Ji. From Lemma 6.10 it follows that unnecessary locking is irrational.

Theorem 6.14. Any priority-accumulating CM M that is based only on
time (T -events) rewards partitioning.

Proof. Let Ji, J ′i , and k be such that J ′i = Combine(Ji, k). If we compare
the strategy of using Ji to the strategy of using J ′i then we can make the
following observations. Since Tik starts at the same time as T ′ik, Tik will lock
the exact same resources and thus provoke the same conflicts as T ′ik. Tik+1
locks less or equally many resources as Tik, i.e., at any time t it holds that

LM,{(Tik+1,dik+1)}(t) ⊆ LM,{(T ′
ik
,0)}(t).

Let tc be the time when Tik runs to commit in E−i. Until tc both Ji and J ′i
behave exactly the same in any E−i. SinceM schedules transactions gapless,
if Tik+1 provokes a conflict at time t ∈ [tc, tc + dik+1] then T ′ik provokes the
same conflict at time t. After tc, Tik+1 is started immediately. Depending
on E−i there are two scenarios:

(a) the unfinished run of T ′ik provokes only conflicts with jobs in Li, or no
conflicts at all, and

(b) T ′ik provokes a conflict with a job in Hi, where Li and Hi are defined
as in the proof of Theorem 6.13.

82 CHAPTER 6. GOOD PROGRAMMING IN TM

In case (a), Ji provokes a subset of the conflicts that J ′i provokes. Ji
and J ′i have the same start time, and thus always the same priority. Tik+1
wins all conflicts, and runs until commit. Tik+1 and T ′ik commit at the same
time. As all succeeding transactions are equivalent, J ′i ’s runtime equals Ji’s
runtime.

In case (b), T ′ik is aborted and restarted. We have a positive instance of
an environment E−i if the resource, responsible for the abort of T ′ik, is not
locked by Tik+1 at the time of the conflict, and all succeeding transactions of
Ji run until commit in the first run. Then Ji performs strictly better than
J ′i . We also have a positive instance if Tik+1 is aborted at the same time, and
runs conflict-free afterwards. This is because Tik has already committed and
Ji does not need to redo the work done in Tik. For all other instances that
create scenario (b) the programmer of Ji could achieve the same performance
as with J ′i by delaying Tik+1 until tlast + dik, where tlast is the time when
T ′ik is started for its final run. Lemma 6.10 implies that Ji is preferable to
J ′i . Partitioning is rewarded.

By the definition of GPI compatibility, Theorems 6.13 and 6.14 immedi-
ately imply that priority-accumulating CMs that are based on time only are
GPI compatible.
Corollary 6.15. Any priority-accumulating CM M that is based only on
time (T -events) is GPI compatible.

This promising result for priority-accumulating CMs shows that it is pos-
sible to design priority-based contention managers which are GPI compatible.
As an example, by simply not resetting a job Ji’s priority when a contained
transaction Tij ∈ Ji commits, we can make a Timestamp contention man-
ager GPI compatible. Nevertheless, contention managers based on priority
are generally dangerous in the sense that they bear a potential for selfish
programmers to cheat, i.e., to find ways of boosting their job’s priority such
that their code is executed faster (at the expense of the overall system per-
formance). For example, consider a CM like Karma [85], where priority
depends on the number of resources accessed. One way to gain high priority
for a job would be to quickly access an unnecessarily large number of objects
and thus become overly competitive. Or if priority is based on the number of
aborts, or the number of conflicts, a very smart programmer might use some
dummy jobs that compete with the main job in such a way that they boost
its priority. In fact, we can show that a large class of priority-accumulating
contention managers is not GPI compatible.
Theorem 6.16. A priority-accumulating CM M is not GPI compatible if
one of the following holds:

(i) M increases a job’s relative priority on W-events.

6.3. PRIORITY-BASED CONTENTION MANAGEMENT 83

(ii) M increases relative priority on R-events.
(iii) M schedules transactions gapless and increases relative priorities on

C-events.
(iv) M restarts aborted transactions immediately and increases relative pri-

orities on A-events.

Proof. Throughout the proof, we suppose without loss of generality that
in a CM M each job Ji has exactly one priority ωi ∈ R associated to it.
Let ωi(t) denote Ji’s priority at time t. For parts (i), (ii) and (iv), let T ′ij
be a transaction that locks resource R ∈ R unnecessarily during the interval
[tu−ε, tu+ε). Let Tij be exactly the same transaction as Tij except it does not
lock R during [tu− ε, tu + ε). We are going to show the claims by comparing
the performance of job Ji when containing Tij with its performance when
containing T ′ij instead of Tij .

(i). Let T ′ij provoke an unnecessary conflict on R with another transaction
Tk at time tu, and ωi(tu) > ωk(tu). T ′ij wins the competition for R, andM
increases ωi by δ. Furthermore, let T ′ij provoke a conflict on a resource Q ∈ R
with a transaction Tl at time tu+ε, and ωl(tu+ε) < ωi(tu+ε) < ωl(tu+ε)+δ.
If Ji would use Tij instead of T ′ij then ωl(tu + ε) > ωi(tu + ε) for an ε
small enough. Tij would abort, and, given there are no more conflicts, thus
prolongate the execution time of Ji. Since there is no way to introduce delays
to Tij without making its execution take longer than T ′ij it follows that M
does not punish unnecessary locking.

(ii). Let T ′ij be so that it does not access R at all, or only after the
unnecessary lock at tu + ε. Let there be no conflicting transaction on R
during [tu − ε, tu + ε), and let the contribution of having acquired R to the
priority increase be δ. Further assume that at time tu + ε, T ′ij has a conflict
with Tl and ωl(tu + ε) < ωi(tu + ε) < ωl(tu + ε) + δ. If Ji would use Tij
instead of T ′ij then ωl(tu + ε) > ωi(tu + ε), Tij would abort and prolongate
the execution time of Ji. There is no way delays could make Tij perform as
good as T ′ij . ThusM does not punish unnecessary locking.

(iii). Let J ′i consist of the transactions Ti1, Ti2 and Ti3. Let Ji consist
of Ti1 and Ti3. Let Ti2 be a simple transaction which unnecessarily locks
R ∈ R for a period of ε, and then commits. Let Ti3 be a transaction which
only accesses R. Assume the following scenario: M executes Ti1 and commits
at time t0. Ti2 starts immediately, locks R for a period of ε and commits.
M increases ωi by δ, and immediately starts Ti3. Ti3 runs conflict-free for a
time period d and then provokes a conflict with Tl at time t3 = t0 + ε + d,
where it holds that ωl(t3) < ωi(t3) < ωl(t3) + δ. We can further assume that
if the programmer would use Ji instead of J ′i then Ti3 would also run from
time t0 to t3 provoking the same conflict with Tl. However, Ji would lack
the additional priority δ that was granted J ′i for committing Ti2, i.e., for an ε

84 CHAPTER 6. GOOD PROGRAMMING IN TM

small enough, it holds that ωl(t3) > ωi(t3). Ti3 would abort and prolongate
the execution time of Ji. Since introducing artificial delays to Ji could not
make it perform as fast as J ′i it follows thatM does not punish unnecessary
locking.

(iv). For simplicity we assume here that the time needed for rolling back
an aborted transaction is negligibly small. The proof extends easily to the
general case. Let T ′ij start at tu − ε, and provoke a conflict with Tk at time
tu, and ωi(t) < ωk(t). M aborts T ′ij and increases ωi by δ. M immediately
restarts T ′ij . Assume that at time tu + ε, T ′ij provokes a conflict on with Tl
and ωl(tu + ε) < ωi(tu + ε) < ωl(tu + ε) + δ, after tu + ε, T ′ij runs conflict-free
until commit. If the programmer of Ji would use Tij instead of T ′ij then Tij
would not abort at time tu and ωl(tu+ε) > ωi(tu+ε). Tij would thus abort at
time tu + ε and prolongate the execution time of Ji. There is no way delays
could make Tij perform as good as T ′ij . M does not punish unnecessary
locking.

6.4 Non-Priority Based Contention Management

One example of a CM that is not priority-based is Randomized (cf. [85]).
To resolve conflicts, Randomized simply flips a coin in order to decide which
competing transaction to abort. The advantage of this simple approach is
that it bases decisions neither on information about a transaction’s history
nor on predictions about the future. This leaves programmers little possibil-
ity to boost their competitiveness.

Theorem 6.17. Randomized is GPI compatible.

Proof. We compare a Ji with J ′i under all possible environments E−i. Let E−i
include the CM’s randomized decisions, i.e., if J ′i and Ji provoke a conflict at
the same time with the same competing jobs then we compare the execution
times of J ′i and Ji for both coin flips separately. For ease of notation let
again E := E−i ∪ {(Ji, ti)}, and E′ = E−i ∪ {(J ′i , ti)}.

Partitioning. In a first step, we show that Randomized, denoted by M,
rewards partitioning. Let Ji, J ′i , and k be such that J ′i = Combine(Ji, k).
We distinguish three cases of the execution of T ′ik.

(A) T ′ik runs until commit.

(B) T ′ik is aborted before tM,E′(T ′ik) + dik.

(C) T ′ik is aborted in the period[
tM,E′(T ′ik) + dik, tM,E′(T ′ik) + dM,E′(T ′ik)

]
.

6.4. NON-PRIORITY BASED CONTENTION MANAGEMENT 85

Case (A). Since we assume the time needed for committing is negligible, Ji
always locks a subset of the resources locked by J ′i . Thus, Ji provokes a subset
of the conflicts provoked by J ′i . AsM always decides in favor of J ′i , so it does
for Ji. Tik and Tik+1 both run to commit in the first attempt. We have that
dM,E(Tik) + dM,E(Tik+1) = dM,E′(T ′ik), and hence dM,E(Ji) = dM,E′(J ′i).

Case (B). Tik has the same conflicts as T ′ik and both are aborted at the
same time. They are both restarted at the same time, and we can apply the
argument recursively until case (A) or (C) occur.

Case (C). Tik runs until commit, Tik+1 is started immediately and is
aborted in the same conflict as T ′ik. T ′ik and Tik+1 are restarted. Let ta be
the time when T ′ik, or Tik+1 respectively are aborted. Let t′ik+1 be the time
when J ′i has successfully completed all operations corresponding to Tik after
the restart. Employing J ′i instead of Ji coincides with delaying T ′ik from
ta until t′ik+1. In order to show that Randomized rewards partitioning we
can use the same argument from Lemma 6.10, namely that starting imme-
diately is the better strategy than waiting, although Randomized is not a
priority-accumulating CM. To show this for Randomized is much easier. An
adversary can provoke the same conflicts for a transaction, if it is started
immediately, or if it is delayed for some time ∆. Since in any conflict, the
probability of winning is the same, the expected runtime increases by ∆ when
the transaction is delayed.

Unnecessary Locking. In a second step, we show thatM punishes unnec-
essary locking. Let Ji and J ′i be two jobs that are exactly the same except
for one contained transaction Tij , or T ′ij respectively. Let T ′ij have an unnec-
essary lock of resource R ∈ R compared to Tij , and dij = d′ij . If E−i is such
that the unnecessary lock provokes no conflict both jobs achieve the same
execution time. If the unnecessary lock provokes a conflict and M decides
in favor of T ′ij then the lock does not change the course of Tij ’s execution
either. IfM, however, decides against T ′ij it is aborted and Tij continues. T ′ij
is restarted. If Tij runs until commit, playing Tij yields a better execution
time. Otherwise, let tlast be the time when T ′ij is restarted for the last time,
i.e., T ′ij commits at time tlast + d′ij . Tij could also be delayed until tlast, and
reach a commit time at least as good as T ′ij . This is since Ji would provoke
a subset of the conflicts provoked by J ′i . As delaying is irrational, employing
T ′ij instead of Tij is irrational.

It remains to show that if dij < d′ij then Ji is still preferable to J ′i . Let
T ′ij be exactly like Tij except for one unneeded resource access during an
interval [tu− ε, tu+ ε] which prolongates d′ij by δ = d′ij−dij . If the execution
environment is empty, E−i = ∅, we get that

dM,E(Ji) = dM,E′(J ′i)− δ < dM,E′(J ′i).

If E−i is such that the unnecessary lock provokes a conflict in which M

86 CHAPTER 6. GOOD PROGRAMMING IN TM

decides for Tij , the same effect would be achieved by introducing a delay to
Tij in the interval corresponding to [tu − ε, tu + ε]. If T ′ij is aborted, though,
and Tij runs until commit in the first attempt, choosing Ji yields a better
execution time. If Tij does not run until commit in its first execution, let tlast
be the time when T ′ij is restarted for the last time. By introducing a delay
in the interval corresponding to [tu − ε, tu + ε], and additionally postponing
the start of Tij until tlast the programmer of Ji could reach a commit time
at least as good as T ′ij . This is again because Tij would provoke a subset of
the conflicts that T ′ij provokes, and sinceM would make the same decisions
Tij would also win all conflicts. As introducing artificial delays is irrational
the claim follows.

Note that in order for the proof to work, the Randomized CM must sched-
ule consequent transactions gapless. Thus, Theorem 6.17 holds for optimistic
contention management. If a non-optimistic contention manager would en-
tail a non-negligible gap between two consecutive transactions, however, then
partitioning would not be rewarded. This is easy to see since in an empty
environment, a fine grained job would yield a longer execution time than a
version that combines some contained transactions.

Unfortunately, in terms of practicability, it is not a good solution to em-
ploy such a simple Randomized CM, although it rewards good programming.
The probability psuccess that a transaction runs until commit decreases ex-
ponentially with the number of conflicts, i.e., psuccess ∼ p|C| where p is
the probability of winning an individual conflict and C the set of conflicts.
However, we see great potential for further development of CMs based on
randomization.

6.5 Simulations

To verify our theoretical insights, we implemented selfish threads in
DSTM2 [46], a software transactional memory system in Java, and let them
compete with the threads originally provided by the authors of the included
benchmark under several different contention managers. DSTM2 is an ex-
perimental framework that provides some basic CMs, and allows one to im-
plement custom CMs easily.

6.5.1 Setup
In particular, we added a subclass TestThreadFree to the benchmark class
dstm2.benchmark.IntSetBenchmark that uses coarse transaction granulari-
ties, i.e., instead of just updating one resource a selfish thread updates several
resources per transaction at once.

6.5. SIMULATIONS 87

while (true) {
thread.doIt(new Callable<void>() {

@Override
public void call()

// access dummy resource <priority> times
Factory<INode> factory = Thread.makeFactory(INode.class);
INode nd = factory.create();
for(int k=0; k < priority; k++){

nd.setValue(k);<

// access shared resource <granularity> times
Random random = new Random(System.currentTimeMillis());
for(int i=0; i < granularity; i++){

intSet.update(random.nextInt(TRANSACTION_RANGE))
}

}
});

}

Figure 6.5: Selfish thread. The call() method is executed as a transaction
by the STM.

See Figure 6.5 for the code executed by the selfish threads and Figure 6.6
for the collaborative threads’ code. The latter is what we call “good code”,
as it only performs one action per transaction and thus avoids unnecessary
locking. We added a mechanism to the selfish threads that attempts to build
up priority before accessing the shared resource. To this end, it simply creates
a dummy resource and updates it a number of times. When the system is
managed by Timestamp- or Karma-like contention managers this could be
an advantage: priority is built up in a conflict-safe environment and once the
thread accesses the truly shared resources, it has higher priority than most
of its competitors. Hence a selfish programmer can vary two parameters,
the transaction granularity γ and the priority π it tries to build up before
actually starting its work.

We tested and compared the performance of selfish threads with collab-
orative threads in two benchmarks. In both, there is a total number of 16
threads which start using a shared data structure for 10 seconds before they
are all stopped. In the first benchmark, the threads all work on one shared
ordered list data structure, in the second, they work on a red–black tree
data structure. All operations are update operations, i.e., a thread either
adds or removes an element. We ran various configurations of the scenario in
both benchmarks managed by the Polite, Karma, Polka, Timestamp or the

88 CHAPTER 6. GOOD PROGRAMMING IN TM

while (true) {
value = random.nextInt(TRANSACTION_RANGE);
thread.doIt(new Callable<void>() {

@Override
public void call() {

intSet.update(value);
}

});
}

Figure 6.6: “Good” thread. The call() method consists of only one update
call.

Randomized contention manager. The variable parameters were

• the number of selfish threads, 0, 1, 8, or 16 among the 16 threads,

• their transaction granularity γ ∈ {1, 20, 50, 100, 500, 1k, 5k, 10k, 50k,
100k, 500k, 1M}, and

• the number of initial dummy accesses π ∈ {0, 200, 500, 2000} performed
by the selfish threads.

The benchmarks were executed on a machine with 16 cores, namely 4 Quad-
Core Opteron 8350 processors running at a speed of 2 GHz. The DSTM2.1
Java library was compiled with Sun’s Java 1.6 HotSpot JVM. To get accurate
results every benchmark was run five times with the same configuration. The
presented results are averaged across the five runs.

6.5.2 Results
The results confirm the theoretical predictions that a selfish programmer can
outperform and sometimes almost entirely deprive the collaborative threads
of access to the shared resources if the TM system is managed by the Polite,
Karma, Polka, or the Timestamp CM. With the Randomized manager on
the other hand, the collaborative threads are much better off than the selfish
threads (cf. Figure 6.7). In all of our tests, if the system was managed by
Polite the selfish threads were always better off. Under Karma, they were
better off in 92% of all cases, and if they used granularities γ of at least
20 operations per transaction they always performed better. With Polka,
the selfish threads’ success rate was 70% over all runs and 100% for γ ∈
{20, 50, 100}. Of all tests run with the Timestamp manager, selfish behavior
paid off in 92% of the cases and in 100% if the granularity γ was at least 20.

6.5. SIMULATIONS 89

Figure 6.7: Plot of all cases with either one or 8 selfish threads out of 16
threads simulated under a Karma, a Randomized, a Polka and a Timestamp
CM. If a point is above the diagonal line this indicates that in the correspond-
ing test run, the selfish thread had a larger throughput than the good thread
that only employs transactions of granularity 1. The cases where γ = 1 are
omitted.

90 CHAPTER 6. GOOD PROGRAMMING IN TM

Figure 6.8: Average throughput of a selfish and a collaborative thread in the
red–black tree benchmark with 15 collaborators and one selfish thread. The
selfish thread does not employ a priority boosting mechanism (π = 0). In
addition to the collaborators’ and the selfish thread’s throughput, the average
throughput of all 16 concurrent threads is depicted. Except for Randomized,
we added 1 to the actual throughput and used a logarithmic scale.

Under Randomized, selfish threads had a larger throughput in only 7% of all
cases.

Further, our simulations suggest that the mechanism included to boost
priority π before actually accessing the shared data does not influence the
selfish thread’s relative performance significantly. The transaction granular-
ity however has a huge impact. Figure 6.8 shows the average throughput
of both a selfish and a collaborative thread. In our experiments, a selfish
thread’s throughput was practically always higher than the collaborators’
under the Karma, Polka and the Timestamp manager if it used a granularity
of at least twenty update operations per transaction. This may in part be
because a coarser transaction needs less overhead than a transaction with
granularity γ = 1, however, with the Randomized contention manager, we
see that even a transaction with a granularity of only twenty updates is un-

6.5. SIMULATIONS 91

likely to succeed. To a larger extent, this higher performance of the selfish
threads derives from the fact that—except for the first update—they have
higher priority than the collaborative threads. At first it might be surprising
that the average throughput, i.e., the system efficiency, does not decrease
when introducing more selfish programmers. However, with large granulari-
ties, there will usually be one transaction with very high priority. The latter
is not endangered of being aborted by any other transaction, and hence runs
to commit untouched. It seems that in our setting with high contention, one
fast selfish thread locking the entire data structure is still quite “efficient”.
More so, caching mechanisms probably speed up the system when basically
only one thread is working. With the appropriate level of contention, the
effect of degradation in system efficiency would possibly show. Regardless
of this inability to show the system degradation explicitly, it is obviously
not desirable for a multithreaded program to basically have only one thread
running.

Note also the break in the throughput increase between γ = 1000 and
γ = 5000 with the Polka manager. This is probably caused by the mecha-
nism included in Polka which allows a transaction trying to access a locked
resource to abort the competitor after a certain number of unsuccessful access
attempts. This seems to happen much more often if the selfish programmers
use granularities higher than 1000.

Part III

Peer-To-Peer File Sharing Systems

Chapter 7

P2P File Sharing – A History of
Successful Mechanism Design

Peer-to-peer (p2p) file sharing protocols have enjoyed a great popularity
among Internet users ever since their introduction in the late 1990s. They
allow network users with limited upload capacity to make content available
to a large community. Nowadays, providers of digital TV and Internet-based
global social networks like Facebook and Twitter use the p2p file sharing
technologies for internal content distribution.

7.1 History

Napster can be considered the first p2p file sharing system. It was founded
in 1999 and primarily meant for sharing MP3 audio files. Although it was a
p2p system in the sense that peers downloaded files directly from other peers,
Napster relied on a central component, namely on central servers that stored
the information about which peers offer which files. A user could connect
with the server, search for files, and then download desired content directly
from an offerer. After the operators of Napster were convicted of abetment
of copyright infringement by their users in the historic law suit against the
music industry, the service was shut down in 2001.

Second generation systems like Gnutella and Kazaa can be considered
proper p2p systems as they implemented also the file lookup mechanism
in a decentralized fashion. Thereby, they could also largely avoid the le-
gal difficulties. The first version of the Gnutella protocol implemented the
search for content with a simple flooding echo approach in the network of
all participants. Since such an approach scales badly, a second version of
Gnutella released in 2002 employed a more hierarchical look up mechanism,

96 CHAPTER 7. HISTORY

and replaced TCP with UDP.1 Gnutella’s design presupposes that queries
are forwarded by the peers, although an intermediate peer does not profit
from helping the query initiator finding a peer that has the desired content.
Moreover, Gnutella did not offer any incentives to actually share files with
others. Adar and Huberman find in their 2001 paper [3] that about 70%
of Gnutella users do not provide any files, and that many queries are not
properly forwarded. The FastTrack protocol used by Kazaa took a similar
approach like Gnutella and organized the peers in one large network. To
(partially) solve scalability issues they introduced supernodes to basically re-
duce the diameter of the network. Kazaa tried to establish a mechanism to
incentivize contribution through differentiation of quality of service: when
requesting content peers announce their “participation level”; remote peers
offer a prioritized service to participants that claim high contribution lev-
els. However, the participation level is not attested in any way. Thus, the
system could be easily cheated by announcing a wrong participation level.
Moreover, peers had no incentive to become supernodes, i.e., to relay queries
of other nodes. Other second generation p2p file sharing systems employed
mechanisms where peers can earn credits for their contributions. Credits can
in turn be reimbursed for higher quality of service. eMule, a p2p application
that connects to the eDonkey and the Kad networks, implements a light-
weight, pair-wise credit system. There are also systems with more complex
payment-based incentive mechanisms such as the Karma system [97] or the
now defunct MojoNation. However, these solutions typically require either a
central administration or a distributed storage for the credits, which is prone
to cheating and attacks (e.g., Sybil attacks, whitewashing, etc., see also [54]).

The third generation of p2p networks was heralded with the now predom-
inant p2p file sharing system: BitTorrent.

7.2 BitTorrent

BitTorrent is a peer-to-peer file sharing protocol developed by Bram Cohen in
2001. The novelty of BitTorrent was to organize peers who are downloading
the same content into swarms of peers. Inside a swarm, peers can trade parts
of the content among each other, and thus, peers can upload and download
from each other simultaneously. Moreover, by a differentiation in quality of
service depending on the download rate experienced from a certain trading
partner, BitTorrent establishes a mild incentive for peers to contribute.

1The issue of scalability was properly solved by several systems in 2001: P-Grid [1],
Chord [92], Can [79], Tapestry, Pastry [84] are essentially all implementations of dis-
tributed hash tables that promise a logarithmic complexity for all basic operations;
search, insert, and delete. Plaxton et al. [76] proposed similar techniques already in
1999.

7.2. BITTORRENT 97

The BitTorrent protocol has become increasingly popular during the first
decade of the new millennium. Numerous BitTorrent clients have been im-
plemented, and the protocol has been enhanced with several extensions. The
user base of the BitTorrent protocol was estimated at 100 million users in
the beginning of 2011,2 and measurements indicate that the share of Inter-
net traffic due to BitTorrent reached between 43% and 70% in 2009.3 Latest
measurements by the Canadian broadband management company Sandvine
observe that the internet traffic due to peer-to-peer file sharing has dropped
slightly in Northern America and Asia as the popularity of so-called real-
time entertainment services like Netflix or Youtube increases.4 BitTorrent
still accounts for about 50% of all upstream traffic, and for about 15% of the
daily aggregate and peak aggregate traffic.

7.2.1 The BitTorrent Protocol

The first step to distribute content with the BitTorrent proptocol is to cre-
ate a torrent metafile, i.e., a file that contains information about the shared
content including file names, and hashes of the file parts for integrity ver-
ification. The data shared in a torrent can consist of one or several files.
The entire content is split into pieces of constant size between 64 kB and
4 MB, depending on the total amount of data. Additionally, the publishing
peer adds the URL of one or several trackers to the metafile. A tracker is a
server that tracks swarms, i.e., it stores the addresses of all peers currently
in the swarm. Upon request, a tracker provides a peer with a subset of the
addresses. In a next step, the distributing peer starts seeding the torrent. A
peer is called seeder in a swarm if it possesses the entire content, and leecher
otherwise. The seeder now announces itself to the trackers specified in the
metafile. Moreover, she publishes the torrent metafile for other BitTorrent
users to find and download. Metafiles are mainly published at so-called tor-
rent discovery websites, but they can be distributed in any way. Peers who
are interested in the content download the torrent metafile and start the
download by requesting a list of peer addresses in the respective swarm from
the trackers announced in the metafile. The peer thus learns about potential
trading partners, and it can contact the peers directly thereafter.

Typical BitTorrent clients build up TCP connections to up to 50 peers
per swarm, however, they actively trade on only a subset of peers simultane-
ously. The size of this so-called active set is usually limited to about 10 slots.
A peer splits all available upload bandwidth equally among the connections

2BitTorrent turns ten, by Matt Hartley, financialpost.com.
3This is according to Ipoque’s Internet Study 2008/2009. Sandvine presents consid-

erably lower numbers at around 20% to 40%.
4See Sandvine’s Global Internet Phenomena Report of Fall 2011.

98 CHAPTER 7. HISTORY

in the active set and serves all valid requests for desired file blocks on these
connections. Most BitTorrent clients use a rarest-fist policy when requesting
parts of the file, i.e., by aggregating the frequency of each file block over all
connected peers it determines the rarest missing parts that can be provided
by the respective peer. Connected peers keep each other informed about
their download progress by exchanging their bitfields at first contact; a bit-
field is a bitmap indicating which file parts the peer has already received
and which she has not; after the first contact, peers send have messages
containing the indices of newly received blocks. The peers in the active set
are assessed periodically in terms of the download rate received. The peers
that have contributed the least are choked, i.e., removed from the active set,
and replaced with other peers chosen randomly from the choked connections.
This randomized replacement is referred to as optimistic unchoking, and it
serves the purpose of exploring the swarm, and thus finding the best trading
partners. Technically, to tell a peer that it may make requests for data, an
unchoke message is sent. When a peer stops serving requests to a previously
unchoked peer, it sends a choke message.

When a peer has downloaded all the desired pieces it is supposed to
switch from leecher mode to seeder mode and to continue providing free data
to leechers. Obviously, when a client is in seeder mode it does not make the
same assessment when deciding which peers to unchoke. Rather than by the
download rate, a seeder rates the peers in its active set by the experienced
upload rate. Alternative implementations use a round-robin algorithm to
decide which leecher to unchoke next.

7.2.2 BitTorrent’s Incentives
A major reason—if not the predominant reason—for BitTorrent’s remarkable
popularity compared to earlier p2p file sharing protocols is arguably the
newly imposed incentive structure: BitTorrent considerably increases the
incentives for peers to upload a significant share of the data downloaded
from other peers. Hence, the more contributors the system has the better
it performs, and the better is the user experience, which again amplifies the
popularity.

BitTorrent achieves its beneficial incentive structure by two measures:

• it brings peers together that are mutually interested in the content of
each other, and

• it introduces service differentiation based on the peers’ contribution.

The combination of keeping only a set of active trading partners and choking
slow peers leads to a situation where peers trade actively with peers that
have similar upload rates in the long run. Notice that a peer does not only

7.3. IS BITTORRENT THE LAST CONCLUSION OF WISDOM? 99

choke the slowest peers in its active set, but it is choked itself by peers that
can keep up active trades with faster peers. For further analyses see e.g., [50],
which relates BitTorrent’s trading mechanism to Iterated Prisoner’s Dilemma
tournaments, or [57], which proposes to model it rather as an iterated auction.
BitTorrent’s trading mechanism among leechers is sometimes considered a
Tit-for-Tat mechanism in the broader sense. Tit-for-Tat denotes the trading
behavior to cooperate in a first exchange, and to always do what the trading
partner does afterwards (cooperate or defect). A system implements a Tit-
for-Tat mechanism if it is the dominant strategy to behave in a Tit-for-Tat
manner in that system. Note that the incentives to contribute are only intact
for leechers trading with leechers. Seeders, however, provide data completely
without receiving a service in return. Seeding is completely altruistic, unless
the seeder has an interest in distributing the content.

7.3 Is BitTorrent the Last Conclusion of Wisdom?

Apart from the fact that it is purely altruistic to remain in a swarm as seeder
after the download of the desired content has completed, BitTorrent’s incen-
tive structure has some other weaknesses. The selfish client BitTyrant [75]
illustrates that a peer can obtain considerably more than he contributes also
when dealing with leechers only. It exploits the fact that the service differ-
entiation mechanism knows only two qualities of service, i.e., a peer is either
choked or unchoked. For each peer, there is a threshold value of upload
bandwidth that is needed to get the higher quality of service. In particular,
a peer must upload just enough data in order not to be the slowest peer in
the remote peer’s active set. From a selfish point of view, any bandwidth pro-
vided above the threshold value is in vain. BitTyrant thus adapts the upload
bandwidth so as to approximate the threshold value. Piatek et al. [75] as well
as Levin et al. [57] conclude that a tit-for-tat mechanism, or the strategy to
provide a connected peer with roughly the same upload rate as the download
rate respectively, would discourage selfish peers from cheating.

The free riding client BitThief [60] proves that it is even feasible to down-
load without uploading at all: by connecting with as many peers as possible,
and by always claiming it has no file blocks yet, BitThief is optimistically
unchoked often enough to receive download rates comparable to the rates of
normal BitTorrent clients. The authors of BitThief also propose resorting to
a tit-for-tat mechanism [61], however, they project that, by introducing such
a strict policy into BitTorrent as is, the system’s market liquidity might de-
crease considerably. If peers never give out data without immediately receiv-
ing data in return, starvation is bound to occur more often, i.e., situations
where a peer does not find a trading opportunity are more frequent. The
bootstrap problem denotes one such starvation issue that is hardly avoidable

100 CHAPTER 7. HISTORY

in a strict tit-for-tat system: A peer has no data initially. Thus it cannot
start trading. Approaches to solving starvation problems typically increase
the number of trading opportunities. Locher et al. [61], e.g., amend the liq-
uidity of a system based on tit-for-tat trading by source coding techniques.
Thus, the diversity of file blocks is increased drastically, with the effect that
two leechers in a swarm are usually highly likely to have an interest in the
blocks of each other. Furthermore, they mitigate the problem of bootstrap-
ping by assigning a consistent set of free bootstrapping blocks to a peer by
means of a hash function based on the receiver’s IP address. Their protocol
is implemented in the BitThief client, and used among the BitThief clients
in addition to the protocol that downloads content from normal BitTorrent
clients.

Orthogonal to the approach of increasing trading opportunities by coding
techniques, the next chapter investigates the potential of introducing trades
across swarms, and moreover, introducing trades along cycles of interest to
increase a tit-for-tat system’s market liquidity. If the liquidity, and thus
the efficiency of such a file sharing system, can be boosted considerably, we
believe that the stronger incentive structure could cause a thus enhanced
barter system to outperform BitTorrent.

Chapter 8

Cyclic Tit-for-Tat Trading

A restricting factor of BitTorrent-like file sharing systems is that they employ
an intra-swarm trading policy, i.e., blocks are only traded within the same
swarm: consider a situation where two peers p1 and p2 are in the same two
swarms, S1 and S2. Let p1 have completed the download of the content
shared in S1, and let p2 have completed the download of the content in S2.
With intra-swarm trading, p1 and p2 have no file blocks to trade with each
other. However, if the system allows them to trade blocks of one swarm for
blocks of another swarm, i.e., if they can employ inter-swarm trading, peer
p1 can provide p2 with blocks from S1 while p2 can provide p1 with blocks
from S2 in return. Given that there are no other peers to get the content
from the described situation leads to complete starvation in an intra-swarm
system, whereas the peers can download the desired content completely in
an inter-swarm system. Obviously, this example is rather extreme, but there
is the potential that allowing inter-swarm exchanges increases the number of
trading opportunities in many situations, and thus boosts performance. This
is, unless the peers in the considered file sharing system are typically only part
of one swarm simultaneously. Fortunately, this is not the case: measurements
of the BitTorrent system [98] show that about half of the peers in BitTorrent
are active in multiple swarms at the same time, as illustrated in Figure 8.1.
Hence, inter-swarm trading may result in a higher system throughput.

In addition to direct inter-swarm trading, further trading opportunities
can arise when peers may trade along cycles of interest, inside and across
swarms. Three peers p1, p2, and p3 form a cycle of interest if p1 is interested
in data from p2, p2 is interested in data from p3, and p3 is interested in
data from p1. In such a cycle, fair trading is feasible since p1 can provide p3
with data, p3 can provide for p2, and p2 can provide for p1 (cf. Figure 8.2).
Our measurements in live BitTorrent swarms reveal that even on a subset

102 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

10

100

1000

10000

100000
52.2%

18.0%

9.2%
5.4% 3.5%

6.9%
3.0% 1.8%

1 2 3 4 5 6-10 11-20 >20

p

e
e

rs
 in

 %

downloads

Figure 8.1: Distribution of the number of downloads per peer in BitTorrent.

of the BitTorrent system, the number of cross-swarm trading cycles is large.
Moreover, the number of cycles grows fast with increasing cycle length: each
additional hop increases the number of cycles by 3-4 orders of magnitude,
as shown in Figure 8.3. In the remainder, we will refer to a trading cycle
consisting of k peers as a k-cycle. Figure 8.4 further illustrates the potential
of trading on cycles as it shows that a random peer is part of a large number of
inter-swarm cycles with a probability of roughly 1/3 even if we only consider
a subset of 1000 swarms.

In the following, we study to what extent we can boost the market liquid-
ity of a peer-to-peer system by allowing multi-lateral, cyclic trading across
swarms, without compromising the basic tit-for-tat incentive mechanism.
While it is clear that in the best case, the relative throughput increase can be
unbounded (in particular when there are no intra-trading opportunities), we
focus on the throughput gain in practical scenarios. Based on data collected
from real swarms, we conduct simulations to study the achievable throughput
under different trading strategies and in different scenarios.

The results indicate that the throughput of a peer-to-peer system can in-
deed benefit from trading on cycles. Interestingly, these benefits are obtained
already for fairly short cycles, involving up to three nodes. Longer cycles do
not lead to a substantially larger performance but incur a large communica-
tion and computational overhead. For our evaluation, we also derive a model
for the peers’ download preferences combining preferential-attachment and
co-occurrence principles. Moreover, we identify certain pitfalls, such as the
problem of redundant downloads, and we propose techniques that consider-
ably mitigate this problem. Methods to reduce the communication overhead

8.1. MODEL 103

𝑆2

𝑆1

𝑝1

𝑆3

𝑝3 𝑝2

𝑝4

𝑝5 𝑝6

Figure 8.2: Possible trading situation for a peer p1 participating in two
overlapping swarms S1 and S2: in addition to the direct bilateral trades
within a swarm (e.g., with peer p6 in S2), p1 can exchange data along intra-
swarm cycles (e.g., (p1, p2, p3, p1) in S1). Moreover, it can trade pieces with
one or more peers in different swarms (e.g., along the cycle (p1, p5, p4, p1)).

are also discussed. Finally, we outline a distributed implementation of our
techniques.

8.1 Model

We consider a peer-to-peer system where peers interested in the same content
are organized into swarms, i.e, in every swarm specific content is shared. This
content is divided into multiple data blocks, and a block is the basic unit of
trade. In practice, a peer typically joins a swarm by contacting a so-called
tracker, a system entity whose main objective is to keep track of the peers
in the swarm. Once a new peer informs the tracker that it wants to join,
the tracker stores this peer’s address and returns a list of addresses of other
peers in the swarm. Instead of periodically querying the tracker, the peers
can discover additional peers by exchanging addresses amongst themselves.
In the first part of our evaluation, we make the simplifying assumption that
peers are fully connected inside a swarm. The effect of trading with only a
small subset of all possible peers is discussed in Section 8.3.4.

Formally, we are given a set P of peers and a set S of swarms. Each
peer p ∈ P joins a subset Sp ⊆ S of swarms over time, where Sp is the set
of swarms whose content peer p is interested in. We assume that a peer
has a certain upload and download bandwidth available. While a peer p has
incomplete downloads it tries to acquire file blocks by direct or indirect trades

104 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

2-cycles 3-cycles 4-cycles

av
e

ra
ge

 #
 c

yc
le

s
p

e
r

p
e

e
r KAT

BTJ
TPB

Figure 8.3: Average number of inter-swarm k-cycles (cycles of length k)
per peer for k = 2, 3, 4 for data sets of the top 1000 video torrents of the
three torrent discovery sites with the highest Alexa rank, ThePirateBay.org
(TBP), BTJunkie.org (BTJ), and kat.ph (KAT). The number of 4-cycles is
approximated within an error margin of 1%. Note the logarithmic scale.

with peers that have interesting blocks to offer. A snapshot of the current
peer interests can be modeled using a (dynamic) directed graph, which we
call the demand graph: The node set is P, and there is a directed edge from
peer p1 to peer p2 if p1 is interested in at least one block offered by peer
p2 in some swarm. Each peer can obtain a local approximate view of the
demand graph by communicating with other peers and thus trade blocks
along interest cycles of various length (see Section 8.2).

While a peer is in the process of downloading a certain content, it is
called leecher, whereas a peer that has already obtained all blocks is called
seeder in the respective swarm. Naturally, a peer participating in multiple
swarms can be a seeder in some swarms and a leecher in others at the same
time. Once a peer p has acquired the content of all swarms in Sp, it leaves
the system. Note that before leaving the system, it is in the peer’s interest
to stay in a swarm even after it has downloaded the corresponding content
because there might still be opportunities to provide blocks from this swarm
in exchange for blocks traded in other swarms. Thus, in a game-theoretic
sense, seeding is a rational behavior. Compared to the standard intra-swarm
trading, this incentive for peers to stay connected after they become seeders
is a remarkable advantage of trading along cycles.

8.2. ALGORITHM 105

0

0.2

0.4

0.6

0.8

1

1E+0 1E+3 1E+6 1E+9 1E+12

C
D

F

cycles a peer is in

KAT 2-cycles

KAT 3-cycles

KAT 4-cycles

Figure 8.4: Cumulative density function of inter-swarm cycles a peer be-
longs to; for all peers found in the top 1000 video torrents of KAT, with
respect to cycles within these torrents.

8.2 Algorithm

In this section, we introduce the core algorithmic aspects, that is, we discuss
how a local approximation of the demand graph is computed and particu-
larly how cycles are selected for trading. As it is too costly to maintain an
approximation of the entire demand graph, each peer p only keeps track of its
k-neighborhood for some constant k ≥ 1, which is the set of peers that can be
reached from p with at most k hops in the demand graph. This is achieved
by regularly exchanging peer lists and information about locally available
blocks with all peers in the k-neighborhood and the trackers. Naturally, the
peers only know their immediate neighbors in the beginning, but they quickly
get to know their k-neighborhood by communicating with the peers in their
neighbors’ peer lists. Given the k-neighborhood, a peer computes possible
trading cycles by exploring the demand graph. Since we only consider cycles
of short length, a brute-force approach is feasible to find cycles in the de-
mand graph; however, heuristics may be used to prune the search space. The
process of computing trading cycles is explained in more detail in Section 8.4.

The trading policy defines which cycles are used to share data blocks and
how the upload capacity is allocated. The main policy that we investigate
is the following.

106 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

Cycle(k): The peer participates in any trading cycle that is of length at
most k. The bandwidth is allocated equally among all active cycles. If the
data flow on a cycle is diminished due to constraints by other peers, the
unused bandwidth is allocated evenly among the remaining cycles.

Blocks are traded in a tit-for-tat-like manner on each cycle by having
each peer p in the cycle send one block after the other to the peer that
is interested in p’s blocks, i.e., the blocks move opposite to the direction
of the edges in the corresponding demand graph. In order to ensure fair
trading, each peer maintains a balance between the number of uploaded and
downloaded blocks for each active cycle. If the number of uploaded blocks
is some constant τ larger than the number of downloaded blocks, the peer
waits until the imbalance becomes smaller before sending out the next block.
In our simulation, we set τ := 1, which is the most restrictive choice. Once
a peer loses interest in its trading partner in a cycle, the corresponding edge
in the demand graph vanishes and trading on this cycle ceases. Whenever
a peer wants to upload a certain block, the block is put into a FIFO queue,
i.e., the blocks are sent sequentially, and the actual upload time depends on
the available bandwidth at the peer. All peers use a uniform block selection
strategy, i.e., when requesting a block from a neighbor a peer selects a random
block out of the interesting blocks that are requestable and non-pending. If
no such block is available the peer re-requests a random pending block, i.e.
a block that has been requested but not yet received. The impact of this
trading strategy on the system performance is evaluated in the following
section.

8.3 Evaluation

The main objective is to evaluate the influence of the parameter k on the mar-
ket liquidity, i.e., the goal is to quantify the impact on the overall throughput.
Naturally, a larger k yields more potential trading cycles; on the other hand,
the message complexity and the computational complexity grows rapidly
with increasing k. Therefore, it is of paramount importance to choose the
right value for k, taking the overhead into account. Apart from studying the
influence of k, we also compare Cycle(k) to the Intra-swarm policy where
only bilateral, intra-swarm exchanges are allowed, and the bandwidth is also
allocated equally among all active trades. This comparison reveals the po-
tential gain of trading on cycles. Furthermore, as the overhead of Cycle(k)
may become quite large, simply because all cycles are considered, we propose
refinements that significantly increase the efficiency.

8.3. EVALUATION 107

8.3.1 Simulation

For our evaluation, we implemented an event-driven simulator that allows us
to create multiple swarms, where peers can join and leave over time. The
simulator models the execution on packet level, and both the size of the file
shared in a swarm as well as the block size are parameterized. By default,
we use 512 MB files divided blocks of size 512 kB.

For simplicity, we do not consider any bounds on the download bandwidth
in our evaluation. However, we limit the upload bandwidth of each peer to
500 kB/s. In order to inject data into the system, we assume the presence
of a designated seeder in each swarm that provides any leecher with free file
blocks at a constant rate of 10 kB/s.1 These publishers do not engage in any
trading otherwise.

In order to model practical systems as accurately as possible, we use a
snapshot of the BitTorrent economy gathered by Zhang et al. [98] to de-
termine the cardinality Dp = |Sp| for each peer p in our evaluation. In
particular, we have computed the number of downloads for all peers in the
data set and store these values in a data set D. The total number of peers
and swarms is determined using the same BitTorrent snapshot: Since there
are 3.65 times more peers than swarms in the data set, we simulate 365 peers
and 100 swarms in the first part of the evaluation.

A single run of the simulation proceeds as follows. The simulations start
at time t = 0 with n = 100 swarms each containing only one designated
publishing seeder. Each peer p ∈ P is assigned the total number Dp of
downloads it will start during the simulation by randomly choosing a value
from the set D. The Dp swarms for each peer p are chosen uniformly at
random from all swarms S. Since a peer typically joins its swarms over
time, we model the time when a peer p joins the next swarm in Sp using
a Poisson process with parameter λ = 10−1min−1 until it has joined all
Dp swarms, i.e., we assume that the intervals between join events follow an
exponential distribution. Whenever a new download starts, a peer joins the
corresponding swarm as a leecher. Recall that a peer never leaves a swarm
until all its downloads are completed.

We conducted several simulations where all peers use the Intra-swarm
policy, Cycle(2), Cycle(3), or Cycle(4). Note that although both
Intra-swarm and Cycle(2) restrict the peers to bilateral exchanges, they
differ in that the latter allows for inter-swarm exchanges. Each scenario is
executed with ten different sample sets and the results are averaged unless
noted otherwise.

1Existing systems typically rely on peers willing to provide blocks for free in order
to solve the bootstrap problem. While some of these providers might have altruistic
motives, others might have an interest in the actual dissemination of the content.

108 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

0

20000

40000

60000

80000

100000

0 1 2 3 4

to
ta

l t
h

ro
u

gh
p

u
t

 (
K

B
/s

)

time (h)

Intra-swarm

Cycle(2)

Cycle(3)

Cycle(4)

Figure 8.5: Total throughput over time for 365 peers in 100 swarms.

8.3.2 First Results
We start by analyzing the total throughput of all peers over time. Figure 8.5
depicts the throughputs for the four different trading policies. The results
confirm our expectation that Intra-swarm achieves the lowest throughput be-
cause it is the most restrictive trading policy, and the throughput increases
when larger trading cycles are used. Interestingly, using Cycle(2) already
results in a significant improvement: The peak download rate increases by
roughly 12%. The policy Cycle(3) achieves even better results (24%); how-
ever, Cycle(4) only slightly outperforms Cycle(3) (26%).

The distribution of the download rates is even more insightful. Figure 8.6
shows the average download rates per download on a logarithmic scale sorted
in descending order. For each download, we computed the average download
rate by dividing the file size by the duration of the respective download, i.e.,
the download completion time. It is clearly visible that the average rates
improve substantially when inter-swarm trading is allowed. The download
rates are

• 56.6 kB/s (median) and 55.2 kB/s (average) for Intra-swarm,
• 78.7 kB/s (median) and 216.9 kB/s (average) for Cycle(2),
• 89.9 kB/s (median) and 306.0 kB/s (average) for Cycle(3), and
• 92.4 kB/s (median) and 326.2 kB/s (average) for Cycle(4).

8.3. EVALUATION 109

10

100

1000

av
e

ra
ge

 s
p

e
e

d
 (

K
B

/s
) Intra-swarm

Cycle(2)

Cycle(3)

Cycle(4)

Figure 8.6: Distribution of average speeds per download. Note the loga-
rithmic scale.

Thus, the average download rates are improved by a factor of 4 when allowing
trades on 2-cycles, and by a factor of 5.5 when additionally using 3-cycles.
The improvement in terms of the median download rate is 39% for Cycle(2)
and 59% for Cycle(3). Again, the difference between Cycle(3) and Cycle(4)
is negligible. We also recorded the download rates of all downloads in each
individual simulation run: Compared to Intra-swarm, 84.4% of all downloads
finish faster with Cycle(2), and the median improvement is 8.2%. When
Cycle(3) is used, 96.9% of all downloads have a smaller completion time,
and the median improvement is 14.7%. The same numbers for Cycle(4) are
97.4% and 16.1%, i.e., the numbers for Cycle(3) and Cycle(4) are again quite
similar.

The investigation of download rates shows that while cyclic trading does
not increase the peak throughput of the system tremendously (12% for 2-
cycles and 24% for 3-cycles), the average download speeds, and therefore
also the average download completion times, are improved significantly. One
of the reasons is that cyclic trading especially helps at the beginning of a
download when the peers do not need to get initial blocks from seeders only,
as well as towards the end of a download when the final missing blocks
are collected more efficiently thanks to inter-swarm trades. Additionally,
Figure 8.6 shows that more downloads have an average rate close to the
median rate when trading on cycles, i.e., the resource allocation is more
balanced. Note that this also indicates a higher degree of fairness when
trading on cycles.

110 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

d

u
p

lic
at

e
s

0

500

1000

1500

2000

d

u
p

lic
at

e
s

Intra-swarm
Cycle(2)
Cycle(3)
Cycle(4)

Figure 8.7: Distribution of duplicates per download for each trading policy
in descending order.

8.3.3 Avoiding Redundancy
From our first experiments we can conclude that the increased liquidity due
to additional trading opportunities along cycles indeed leads to an increase
of the overall performance. However, there is an issue that needs to be ad-
dressed: The same blocks can be requested in different cycles, which results
in redundant downloads. The reason is that, as defined in Section 8.2, a
peer requests a pending block if there is no available block that has not been
requested already. This behavior is reasonable to some extent as pending re-
quests might remain unanswered due to network failures, or slow connections
might be worth replacing with faster connections. Moreover, it guarantees
that all members of a cycle are always willing to trade on the cycle as long as
the cycle exists in the demand graph. Unfortunately, such a nonrestrictive
policy on re-requests leads to an intolerable number of redundant blocks as
soon as the peers trade on cycles longer than 2. Figure 8.7 shows that peers
download up to 1500 redundant blocks for a download consisting of 1024
blocks when using Cycle(3), and up to 2000 blocks when using Cycle(4).

The redundancy problem arises because the number of trading cycles that
a neighboring peer p appears in is often larger than the number of interesting
blocks that p has to offer. As a countermeasure, we propose the following
two modifications to the trading policy Cycle(k).

1. Selecting Cycles: Limit the number of active cycles per neighbor
proportionally to the number of blocks it can provide.

2. Probabilistic Re-Request: Re-request pending blocks only with a
certain probability ρ.

8.3. EVALUATION 111

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

re-request probability

duplicates

average speed (KB/s)

Figure 8.8: Tradeoff between average number of duplicates and the average
download rate with varying re-request probabilities for Cycle(3).

Figure 8.8 depicts the trade-off between probabilistic re-requests and the
throughput: While the number of duplicates depends linearly on the re-
request probability, the throughput grows quickly as long as ρ is fairly small.
Thus, a smart re-request strategy can significantly reduce the number of
duplicates without severely impacting the performance of the system.

Figure 8.9 shows the effect of the two countermeasures on the number
of duplicates for Cycle(3). It is evident that probabilistic re-requests reduce
the number of duplicates much more than limiting the selection of cycles.
However, since the lowest number of duplicates is achieved when combining
these two measures, we use both techniques in the following. In particular,
we use a re-request probability of ρ = 0.5 for Intra-swarm and Cycle(2),
and ρ = 0.1 for Cycle(3) and Cycle(4). According to our simulations, these
values for ρ decrease the number of duplicates drastically without degrading
the performance much. Another natural strategy to mitigate the redundancy
problem would be to sort the cycles according to their “capacity”, which we
define as the number of blocks that could be traded along the cycle before the
first peer loses interest and the cycle breaks. However, in our experiments,
the performance gains were almost negligible and therefore not worth the
additional algorithmic complexity.

In the following, we reassess the throughput benefits of our general block
trading algorithms with our two anti-redundancy mechanisms in place. Re-
garding redundancy, probabilistic re-requesting and limiting the number of

112 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

0

100

200

300

400

500

600

700

800

d

u
p

lic
at

e
s

Cycle(3)
Selection
Prob. Re-request
Both

Figure 8.9: Effect of selecting cycles and probabilistic re-requesting on the
number of duplicates for Cycle(3).

active cycles ensures that the median number of duplicates per download
is 30 (i.e., an overhead of 2.9%) or less for all policies simulated; the 99th
percentile is below 90 (8.8%), and the maximum number of duplicates is
over 90 only for the Cycle(2) policy. Regarding performance, the adapted
simulations yield median and average download rates of

• 36.6 kB/s (median) and 44.1 kB/s (average) for Intra-swarm,
• 74.7 kB/s (median) and 194.2 kB/s (average) for Cycle(2),
• 86.1 kB/s (median) and 214.5 kB/s (average) for Cycle(3), and
• 88.3 kB/s (median) and 191.7 kB/s (average) for Cycle(4).

Qualitatively, the results are very similar to the results without anti-
redundancy measures in terms of average download rate: Cycle(2) and
Cycle(3) perform 4.4 and 4.8 times better than Intra-swarm, respectively.
The improvement in terms of the median rate is even higher, i.e., 104% for
Cycle(2) and 135% for Cycle(3). Compared to the simulations without any
redundancy-reducing measures, the loss in performance is small, e.g., the me-
dian download rate is reduced by less than 5% for all cyclic trading policies.

Finally, we would like to point out the interesting issue of coordination
that occurs as soon as peers are willing to trade only on a subset of all the
cycles they are part of. If a peer decides to trade on only a few of potentially
thousands of cycles present, it can happen that there is at least one peer
unwilling to trade on every cycle. Thus, the performance degrades simply
because the peers do not agree on which cycles to trade. This phenomenon

8.3. EVALUATION 113

is naturally more prevalent the more cycles there are to chose from, i.e., for
larger k. The lack of coordination is also the reason for the fact that the
overall average download rate is lower for Cycle(4) than for Cycle(3). For-
tunately, this issue does not affect performance significantly if the peers use
only cycles up to length 3 since still more than two thirds of all negotiations
succeed.

8.3.4 Active Set Trading Policy

So far, we have assumed that the peers in a swarm are all connected to each
other. While this is possible to a certain extent, the cost of interacting with
too many neighbors can be large (especially if TCP connections are used).
In the BitTorrent protocol, peers only trade actively with a small subset of
neighbors, the so-called active set. A similar extension is also possible in our
scenario. We have conducted experiments where peers trade with a small
number of neighbors, in particular, we allow each peer to connect to only 10
peers per swarm. As a result, a peer can learn only about a subgraph of the
demand graph, and trade only on cycles involving neighbors in the active
set. Interesting peers are always added to the active set if the set is not full.
Each peer periodically assesses the active peers in terms of the amount of
data received since the last assessment and replaces the worst peer by another
random peer in the swarm. Moreover, peers are replaced immediately when
they become uninteresting.

Figure 8.10 depicts the net download rates (excluding duplicates) for dif-
ferent policies and their counterparts using the redundancy-reducing mea-
sures and active sets. In our simulations, active sets containing at most 10
peers lead to a throughput decrease of at most 5%, and combining active sets
with redundancy-reducing measures results in a total loss of at most 10%.
Since this performance decrease is modest, the refined Cycle(k) policies still
greatly outperform the basic Intra-swarm policy.

Introducing active sets does not increase the number of duplicates down-
loaded: all policies exhibit a median redundancy of less than 3%, i.e., the
median number of redundantly downloaded blocks over all downloads is 30,
and the maximum redundancy is less than 10%. Furthermore, the overhead
of building up the local view of the demand graph is small as only little data
needs to be transferred. In our simulations, we start a breadth first search
along the edges up to k hops in the demand graph whenever a new edge
appears. We account for the communication overhead incurred by a peer p
by aggregating the number of times an outgoing edge of p was traversed in all
search processes, and multiply it by the number of bits needed to represent
a respective search message.

In all simulation runs, the maximum overhead per peer was below 0.8% of

114 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

0

50

100

150

200

IS ISas* C2 C2as* C3 C3as* C4 C4as*

av
e

ra
ge

 s
p

e
e

d
 (

K
B

/s
)

Figure 8.10: Comparison of the net download rates distributions of the
Intra-swarm (IS) policy and the Cycle(k) policies for k = 2, 3, 4 (C2, C3, C4)
and their versions with active sets of size 10 as well as redundancy-reducing
measures in place (ISas*, C2as*, C3as*, C4as*). The three horizontal lines
of each box in a box plot depict the lower quartile, the median, and the
upper quartile, and the end of the two whiskers represent the 5th and the
95th percentile.

the content size downloaded by the peer, except for the scenario where peers
employ Cycle(4). The overhead for Cycle(4) without redundancy-reducing
measures is slightly larger at up to 2%, with active sets and redundancy-
reducing measures, it grows to an intolerable level of 22%.

As a conclusion of our simulations with |P| = 365 and |S| = 100 we
propose to use Cycle(3) with active sets, probabilistic re-request, and the
cycle selection measure to achieve an improvement of more than 50% in
terms of median download rate, and the average download rate increases by
a factor larger than 3.7. This is compared to Intra-swarm, which exhibits
5% redundancy on average, whereas the proposed method exhibits only 2.6%.
Moreover, using this method shortens the completion time of more than 93%
of all downloads.

As a simpler alternative, one might also use Cycle(2) with the respective
extensions to achieve an improvement of the average download rate of 32%
(median) and 232% (average) with even less overhead and redundancy.

Finally, let us examine the relationship of uploaded and downloaded data
volumes. Due to the tit-for-tat trading, the ratio of uploaded data against
downloaded data should be close to one for most peers. Figure 8.11 shows

8.3. EVALUATION 115

0

1

u
p

lo
ad

/d
o

w
n

lo
ad

Intra-swarm AS*

Cycle(2) AS*

Cycle(3) AS*

Cycle(4) AS*

Figure 8.11: Upload-download ratio per peer in descending order.

that for all policies, most peers have a similar upload-download ratio indeed.
Most peers have a ratio between 0.8 and 0.95. Note that these numbers do not
include the ratios for the designated publishing seeders, as they only upload
anyway. The designated seeders are also the reason why most ratios are below
1, i.e., the peers download more than they upload. Note also that there are
some peers that have a very low ratio. Those peers are typically peers that
enter a swarm at a late stage of the simulation,2 when they have only one
active download and the peers in the swarm are all in (selfish) seeding mode.
They thus do not find any trading partners and end up receiving the entire
content from the publisher at 10 kB/s.

8.3.5 Modeling Preferences

In this section, we propose and evaluate a more sophisticated and arguably
more realistic model for the peer preferences. So far, we have assumed a uni-
form model of peer preferences: peers choose the swarms they join uniformly
at random from the swarm set S. This simple model ignores the fact that the
users of file sharing systems typically have specific interests, which implies
more clustered mappings between peers and swarms. We study the clustering
coefficient distribution in the undirected graph consisting of the node set P
and edges between peers that appear in at least one common swarm. The
clustering coefficient of a peer is the number of edges between neighboring
peers in this graph divided by the maximum number of such edges.

2There are some outliers in the produced schedule due to the exponential distribution
of the Poisson process.

116 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

0

0.2

0.4

0.6

0.8

1

cl
u

st
e

ri
n

g
co

ef
fi

ci
e

n
t

BitTorrent
36 x 10
365 x 100
3650 x 1000
36500 x 10000

Figure 8.12: Distribution of clustering coefficients among peers with uni-
form preferences for different scales |P| × |S|.

The uniform choice of swarms produces a demand graph whose clustering
coefficients are too low if the number of peers and swarms is sufficiently large.
In order to demonstrate this, we compare the clustering coefficients produced
by our simulator with uniform preferences to the clustering coefficients we
computed from the BitTorrent snapshot. As Figure 8.12 illustrates, if we
keep the ratio of n = |P| and |S| constant at 3.65 the clustering coefficients
decrease with growing n. For n = 36 almost all clustering coefficients are
too high, whereas for n = 3650 the clustering coefficient of most peers with
more than one download is significantly too low. The peers with clustering
coefficients of 1 are mostly peers with only one download. The explanation is
that with more swarms available the probability that two peers in one swarm
also appear together in another swarm decreases although the average swarm
size remains constant.

Consequently, to reflect user preferences and thus the true correlation
between peers and swarms more precisely, we propose a preference model that
combines the concepts of preferential attachment: a popular swarm is likely
to become more popular in the future, and co-occurrence: if a peer already
shares many other interests with the peers in a given swarm S, it is more
likely to join S as well (for a motivation see, e.g., [59]). Whenever a peer p
starts a new download it joins swarm S with a probability proportional to the
number of p’s neighbors in S (co-occurrence) and the size of S (preferential
attachment), i.e.,

Pr[p enters S] ≈ (|Np ∩ S|+ 1)α + (|S|+ 1)β∑
X∈S (|Np ∩X|+ 1)α + (|X|+ 1)β

8.3. EVALUATION 117

0

0.2

0.4

0.6

0.8

1

cl
u

st
e

ri
n

g
co

ef
fi

ci
e

n
t

BitTorrent
b = 0

b = 1

b = 1.42

b = 2.0

b = 3.0

Figure 8.13: Clustering coefficient distributions for |P| = |S| = 100, α = 1
and varying β. The error is minimized for β ≈ 1.42.

where Np denotes the set of p’s neighbors. The parameters α and β allow
us to model arbitrary combinations of the two concepts. For α = 0, our
preference model is a pure preferential attachment model, and for β = 0 it is
a pure co-occurrence model. For α = β = 0, we get a uniform distribution.

Given the proposed model, we can set up simulations that approximate
both the clustering coefficient distribution and the swarm size distribution
well by using a peer-swarm ratio of 3.65 and fit the clustering coefficient dis-
tribution by adapting α and β. However, as larger α and β values lead to
larger clustering coefficients, we must consider a scenario where the uniform
distribution results in clustering coefficients that are too low. As Figure 8.12
illustrates, this is the case for large peer and swarm sets when keeping the
peer-swarm ratio constant. Since the computational complexity of the simu-
lation increases quickly with the number of peers and swarms—and we also
want to be able to fit the parameters for small networks—, the best option
is to abandon the requirement to keep the peer-ratio set to 3.65. We found
that by using |P| = |S| = 100 the swarms contain fewer peers on average
than in the BitTorrent data; however, the clustering coefficients with uniform
preferences are well below the BitTorrent clustering coefficients. Figure 8.13
depicts the clustering coefficient distribution observed in BitTorrent, and the
clustering coefficient distributions produced by our simulator for various β.

We fitted the parameters α and β of the co-occurrence preference model
using the method of least squares, i.e., α and β are set to values that minimize
the error 1

n

∑n

i=1(ci− ĉi)2, where ĉi is the i-th lowest clustering coefficient in
the simulation, and ci is the clustering coefficient at the corresponding posi-
tion in the measured clustering coefficient distribution. Our study indicates

118 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

100
Ti

tl
e

Intra-swarm AS*

Intra-swarm

Cycle(2) AS*

Cycle(3) AS*

Cycle(4) AS*

10

100

av
e

ra
ge

 s
p

e
e

d
 (

K
B

/s
)

Intra-swarm

Intra-swarm AS*

Cycle(2) AS*

Cycle(3) AS*

Cycle(4) AS*

Figure 8.14: Distribution of average speeds per download for |P| = |S| =
100, α = 1, and β = 1.42. Note the logarithmic scale.

that the choice of β has a large impact on the clustering coefficient distribu-
tion (cf. Figure 8.13), whereas the choice of α does not impact the clustering
coefficients much for the relatively small numbers of peers and swarms used
in our setup. The parameter α has a slight effect on the steepness of the
curve.3 As the error is similar for any α < 5 by selecting the best value for
β, we chose α = 1 for simplicity. The respective optimal choice for β is 1.42,
yielding an error smaller than 10−3.

Figure 8.14 shows the download rates for the scenario with 100 peers and
100 swarms using α = 1 and β = 1.42. The results are similar to those in
our earlier experiments, and we can draw the same conclusions: Cycle(k)
clearly outperforms Intra-swarm for any k = 2, 3, 4. Again, the figure shows
that while the throughput rises with increasing k, the difference between
Cycle(3) and Cycle(4) is marginal. We conjecture that the results also hold
for a larger number of peers and swarms.

8.4 Distributed Implementation

After having evaluated the potential of cyclic trading by simulations, we now
present a distributed protocol, CycT4T, that fills in the blanks in the high-
level description of the algorithm in Section 8.2. In particular, CycT4T
enables peers to find cycles and to negotiate on which cycles to trade in an
efficient manner without revealing more private information than with an
intra-swarm protocol.

3We believe the effect of co-occurrence will have a greater impact in larger systems.

8.4. DISTRIBUTED IMPLEMENTATION 119

CycT4T uses the usual mechanisms like tracker polling, peer exchange
(PEX), or distributed hash tables (DHT) to discover peers. Initially, two
peers exchange information about their locally available blocks. After that,
the peers only notify each other when new blocks become available.

In order to keep a local view of the demand graph, each peer p maintains
two tables. The outTable, which contains all (known) interesting peers (out-
neighbors), i.e., the peers possessing blocks that p is interested in, and the
inTable whose purpose is to keep track of all peers from which there is a
directed path of length at most k− 1 in the demand graph ending at peer p.
In particular, for each direct in-neighbor r, inTable stores the information
which peers can reach p on paths P , |P | < k, where r is the last intermediate
hop. The entries in the inTable consist of three values: source, which is the
identifier of the peer at the beginning of the path, via, the identifier of the
last peer on the path before p itself, and distance, the minimum length of
all such paths. When p computes an update message for its out-neighbors
the distance information is used to determine which inTable-entries are ir-
relevant. Peers also store direct in-neighbors r in the inTable as an entry
(r, r, 1). Note that if a peer q is in p’s outTable and its inTable contains the
entry (q, r, d − 1) then there exists at least one cycle p → q → . . . → r → p
of length d for peers p, q, and r. Thus, the inTable and the outTable to-
gether allow p to decide whether it is in a cycle of length at most k with r
as predecessor and q as successor for two given peers r,q.

Naturally, these tables must be built up initially and updated when there
is a change in the vicinity. For this purpose, each peer informs the peers in
its outTable about changes in its tables as follows. If peer p learns about
an interesting peer q, it adds q to its outTable and sends q an update list
of all relevant (source,distance)-pairs extracted from its own inTable (cf.
Table 8.1). Upon receiving an update list from a peer r, peer p increases
all distances by 1, since one hop is added to the paths, and updates the
corresponding entries with via = r in its inTable. Afterwards, it recursively
computes relevant (source,distance)-pairs and forwards them to the peers
in its outTable. The tables must also be updated if an edge from a peer
r to peer p disappears. In this case, p removes all entries where via = r
from its inTable and sends a remove list containing the removed entries to
the peers in its outTable. If a peer receives such a remove list, it updates
its inTable accordingly and computes an update message. For the sake of
brevity, we omit the details of these computations and the precise contents
of the update message. Basically, an update message must announce all
changes to the minimum shortest path distance over all in-neighbors. Thus,
modifications to an entry in the inTable concerning source q where via = r
must be announced to the peers in the outTable only if this modification
changed the minimum distance from q via any in-neighbor.

120 CHAPTER 8. CYCLIC TIT-FOR-TAT TRADING

UPD: SELECT DISTINCT source, distance
FROM inTable
WHERE distance < k − 1 AND via 6= q;

CID: SELECT source
FROM outTable INNER JOIN inTable
ON outTable.id = inTable.source
WHERE via = r;

Table 8.1: SQL queries for a full update message to q (UPD), and for finding
all out-neighbors on cycles with in-neighbor r (CID).

Whenever peer p1 adds an interesting peer p2 to its outTable, it checks
whether there is a cycle containing edge (p1, p2). As described earlier, p1 can
only determine whether there are such cycles, but not how many there are
and not which peers they contain in particular (except for cycles of length
smaller equal 3). In order to find all cycles with edge (p1, p2), peer p1 sends
a cycle ID (CID) message containing hp1(p1||p2) to p2, where hp1 is a hash
function private to p1 and || denotes the concatenation operator. The hash
functions hp are required to produce hash values of publicly known constant
length. Peer p2 in turn determines the set X of out-neighbors that are
part of a cycle to p1 (cf. Table 8.1), and it forwards the received CID with
its private hash value hp2(p2||x) appended to each peer x ∈ X. The peers
receiving a CID message execute the same steps unless the list contains k hash
values already, in which case they do not forward the CID any further. Peer
p1 will finally get a CID message hp1(p1||p2)||hp2(p2||p3)|| . . . ||hp` (p`||p1),
where ` ≤ k, for each cycle. Although peer p1 cannot decrypt the CID
message, it can compute the cycle’s length and recognize the head hp1(p1||p2).
Furthermore, a unique cycle ID is computed by XORing all contained hash
values, hp1(p1||p2), hp2(p2||p3), . . . , hp` (p`||p1). The cycle ID is appended to
each future data message, indicating that this transfer is a contribution to
the trade on this particular cycle. Note that the cycle ID is constructed
such that each cycle is identified with its unique ID by every involved peer
regardless of the order of the hash values. This prevents potential problems
that could arise when a particular cycle is found by more than one search
process. This can happen due to inconsistent approximations of the demand
graph.

Since it is unknown in advance which and how many cycles will be dis-
covered, a second phase is required to select cycles for trading. For each
potential cycle, peer p1 initiates the negotiation by sending the hashes in
the received CID message together with a negotiation bit, set to 1, to its
out-neighbor in the cycle. Each peer in the cycle may set the negotiation

8.4. DISTRIBUTED IMPLEMENTATION 121

bit to 0, indicating that it does not want to trade on this cycle, before it
forwards the message. If the bit is still set to 1 when p1 receives the mes-
sage, this cycle is accepted for trading, otherwise it is discarded. In order
to inform the other peers about the final decision, the result is sent around
the cycle. Each peer starts trading as described in Section 8.2 as soon as
it learns that the negotiation was successful, i.e., it requests a desired block
from the successor in the cycle. Of course, the peers do not start uploading
a block at exactly the same time. However, this is not a critical issue as the
tit-for-tat trading on cycles proposed in Section 8.2 automatically mitigates
temporal fluctuations and also differences of edge bandwidths: a peer with
large upload bandwidth waits for the rest of the cycle to catch up as soon as
the threshold on the local upload-download balance is reached for this cycle.
Moreover, the bandwidth on a cycle adapts to the bandwidth of the slowest
edge if the threshold is not too large.

Summing up, we may conclude from our study that barter-based peer-to-
peer systems can benefit from inter-swarm trading and trading on cycles in
the sense that the majority of peers obtains the desired content faster. Es-
pecially for short cycles, the throughput benefits are high and the overhead
is low. We find that the best tradeoff is achieved using a Cycle(3) trading
policy with active sets and probabilistic re-request, yielding a download rate
increase of over 50% in the median and 270% on average. Hence, the down-
load durations are shortened by more than one third in the median, and by
73% on average. Also Cycle(2) can be very attractive due to its simplicity
and low overhead, yielding a download rate increase of 32% in the median
and 232% on average.

Our study gives rise to the hope that by boosting the market liquidity of a
tit-for-tat based peer-to-peer system by cyclic, inter-swarm trading—possibly
in combination with other beneficial enhancements like coding techniques—
we have a fourth generation of file sharing systems at hand that outperforms
BitTorrent since it harnesses the selfishness of its users more effectively. How-
ever, the question remains of how such a novel system can be introduced when
the current system is still the de facto standard and predominantly used by
most file sharers. This question is the subject of the next chapter.

Chapter 9

How to Establish a Better
Equilibrium

Peer-to-Peer systems or social systems often exhibit the property that the
more people participate the more attractive or useful is the systems to its
users. File sharing is a typical case of such an application: The more people
participate, the larger is the selection of content, and usually, the higher are
the download rates.

As a simplification, let us model the utility that a user of a peer-to-
peer file sharing systems experiences as a strictly monotonously increasing
function U : N 7→ R+ of the number of participants. Let U be equal for all
peers, let U(1) = 0, and let U approach a constant value as the number of
participants goes to infinity. Now, let us consider two file sharing systems,
S1 and S2 with corresponding utility functions U1 and U2. Given that n
people are willing to join a file sharing system, the situation describes a
so-called anonymous game where each player can opt either for S1 or for
S2. For a large enough n, the described game has two Nash equilibria,
namely the configuration where all players either participate in S1 or the
configuration where they all participate in S2. If the players choose their
strategy asynchronously, a user deciding for one of the systems at time t
will decide for S1 if U1(nt1 + 1) > U2(nt2 + 1), where nti is the number of
participants of Si at time t, and for S2 if U1(nt1 + 1) < U2(nt2 + 1). If
U1(nt1 + 1) = U2(nt2 + 1) the user may opt for any of the two systems. Thus,
when a selfish user joins one of the systems she increases the attractiveness
of that system, and all users afterwards will join the same system. Note that
the decision is independent of the utility reached once all players have joined
a system. Which of the two utilities U1(n) and U2(n) is higher does not
influence the outcome, and the players may end up in a strategy profile that

124 CHAPTER 9. HOW TO ESTABLISH A BETTER EQUILIBRIUM

gives them much lower payoffs, essentially because of the lack of coordination.
Steering players to the Nash equilibrium that yields the highest social

welfare is a natural objective of mechanism design. We have seen in Part I
of this thesis that by offering payments, any desired Nash equilibrium can
be implemented in one-shot, simultaneous-move games. However, the same
mechanism does not work practically if the players do not move simultane-
ously. Moreover, it is infeasible to offer payments to a peer willing to join a
file sharing system, mainly because future users are unknown until they enter
a system. Also, encouraging all participants of a file sharing system to move
to the other system would necessitate the mechanism designer to offer pay-
ments to all users at the same time. Another problem is that the users must
consider the mechanism designer credible, i.e., they need to be persuaded
that the mechanism designer will make the payments he offers, which poses
another problem if n is large (several million in the case of BitTorrent).

Mechanism design with payments is clearly an infeasible approach for
tackling the problem of guiding participants of a file sharing system to joining
a (better) system instead. In the following, we present an approach that
we took with our peer-to-peer file sharing client, BitThief: While BitThief
continues to support downloads from BitTorrent clients, it shares files with
other BitThief clients using the novel protocol that implements tit-for-tat
trading with source coding and cyclic inter-swarm trading.1 As the BitThief
clients free-ride with respect to the BitTorrent clients, using BitThief instead
of other clients is a dominant strategy. Moreover, the more users of normal
BitTorrent clients switch to BitThief, the more the performance of BitTorrent
degrades. This is not only because the number of BitTorrent users decreases,
but also because the share of free-riders in BitTorrent swarms increases.
At the same time, the number of clients supporting the tit-for-tat protocol
increases. Given that all file sharers are selfish and aware of the option
to choose BitThief, all BitTorrent users will switch to BitThief eventually.2
Thus, we could achieve a smooth transition to the equilibrium where all
participants use the enhanced tit-for-tat protocol.

Unfortunately, the above discussion abstracts away from reality in that it
does not take into account that other clients might not like BitThief enticing
all users away from them. From other clients’ perspective, the BitThief clients
only degrade their performance. Thus, we have to assume that they try to
ban a BitThief client if they can identify it. Consequently, in order to ensure
the capability of downloading data from other BitTorrent clients, instances
of BitThief must not be identified as such by other clients, however, in order

1In the current version of BitThief, cyclic inter-swarm trading is not included yet.
2Obviously, we do not necessarily expect this course of action to be the future of

peer-to-peer file sharing. Apart from mere performance, there are many other features
to a BitTorrent client that may attract users like usability, graphical design, or image.
Moreover, BitThief is often considered “evil” by file sharing enthusiasts.

9.1. STEGANOGRAPHIC HANDSHAKE 125

to share data among each other they must identify each other. Note that
the BitThief clients enter standard BitTorrent swarms and share the same
content among each other, only by means of the tit-for-tat protocol.

The problem that the BitThief instances have to solve is reminiscent of the
archetypal espionage scene where an agent meets a contact person for the first
time. In order to make sure that the agent got the right person, and not some
innocent bystander, or an enemy spy, they exchange previously agreed-upon
pass phrases.3 For reasons of this association, we will refer to the BitThief
instances as “spies” or conspirers in the following, and to other BitTorrent
client instances as regular peers. We thus strive to solve the problem we
denote as REVEALTYPE : How can a conspirer safely determine a connected
peer’s type, i.e., learning whether the connected peer is a conspirer or a
regular peer without giving away its conspiring identity in the latter case.

Our approach is that the conspirers implement a steganographic hand-
shake4: when a conspirer p connects to a peer it should encrypt information
that reveals its type into the imposed protocol in such a way that the infor-
mation is decodable by a fellow conspirer, but not by a regular peer. Fur-
thermore, regular peers must not even be able to realize that p is initializing
a handshake. For the purpose of the steganographic handshake, we assume
in the following that conspirers know an exclusive secret K of length |K| that
is unknown to regular peers. Furthermore, let the conspirers know the total
number n of peers in the swarm. Our techniques can be easily adapted to
the case where the conspirers only have an approximate value of n available.

9.1 Steganographic Handshake

The extent to which conspirers are able to communicate secretly among each
other depends on the freedom that the imposed p2p protocol offers. If the
peers are given more leeway in their actions, more information can be hid-
den. For instance, if the protocol does not specify the order in which a peer
requests blocks from a neighboring peer the conspirers can introduce a logic
to the order of request sequences and thereby communicate without violating
the given protocol. We call such exploitable, variable parameters of the p2p
protocol steganographic channels. In the following, we will primarily make
use of the request order channel that we have just described.

3Indeed, such spy rendezvous protocols are not an invention of literature or film. For
example, it is said that atomic spy Klaus Fuchs hooked up with his contact person in
New York by carrying a tennis ball, using the pass phrase “Can you tell me the way to
Grand Central Station?”

4Steganography is the art of hiding information in a message, such that only intended
recipients are able to decipher the hidden information, and all other viewers of the mes-
sage do not even suspect the existence of hidden information.

126 CHAPTER 9. HOW TO ESTABLISH A BETTER EQUILIBRIUM

Note that also regular peers send bits on this channel simply by using
the file sharing protocol, however without an intended logic. Thus, based
on the common secret K, a conspirer can send a specific bit string on the
steganographic channel that can only be verified by fellow conspirers. One
danger remains, though, namely that a regular peer accidentally acts like a
conspirer and sends the specific bit string on the steganographic channel that
makes a connected conspirer think it is a conspirer. Assuming for the moment
that we have a mechanism to transmit bits over request order channel, the
question to be solved is thus: How many bits have to be exchanged in order
to ensure that the communication partner is indeed a conspirer?

The peer with the smaller id, say u, may send, e.g., the first half of the
secret key K to v. If v is a conspirer, it knows that a conspirer tries to
send the secret over the request order channel, and checks whether the bits
produced by the received request sequence correspond to the first half of K.
If this check is positive v knows that u ∈ C and sends the second half of
K back to u in plain text. Thus, u is ensured v is a conspirer, too. On
the other hand, if v is a regular peer it does not notice any irregularity while
communicating with u since any request order is allowed by the p2p protocol.
Moreover, even if v was aware of the request order channel and could decode
the sent bits correctly, it would not be able to detect the irregularity since it
does not know K. Peer v cannot distinguish u from a regular peer unless it
knows K.

The problem of false positives could arise if a regular peer inadvertently
sends the right |K/2| bits over the steganographic channel, and a receiving
conspirer would send a plain text message back to u, which is an illegal action.
However, by choosing a key that is large enough and uniformly at random,
the conspirers can keep the probability of this false positive fairly low: The
probability of an individual false positive is 2−|K/2|. Hence, if the conspirers
choose a key K of length at least 6 logn,5 then there are no false positive over
any of the at most

(
n
2

)
communication links with high probability (w.h.p.).6

The fact that a regular peer can have several neighboring conspirers poses
a certain threat: A regular peer could perfom a replay attack, i.e., it could
request blocks in the same order as other peers requested them, and thus
provoke a false positive with significant probability. The conspirers can avoid
such an attack by using keys that are connection-specific. In particular, a
conspirer u could useH(idu‖idv‖K, logn) as a key when communicating with
v, where ‘‖’ is the concatenation operator and H(x, b) is a hash function

5The base of the logarithm is always 2 unless we write ln, in which case the base is e.
6If an event occurs with probability at least 1−O(1/n), we say that it occurs ”with

high probability“. A stronger definition demands that the probability is at least 1 −
1/nΩ(1), which can frequently by achieved by linearly increasing the constants involved
(the constant in the exponent depends on the linear increase). For the sake of simplicity,
we use the weaker definition in this thesis.

9.1. STEGANOGRAPHIC HANDSHAKE 127

Algorithm 9.1 ENCorder

Input: block sequence B, message M ≤ |B|!
Output: permuted block sequence Π

1: Sequence Π := ∅;
2: for i := |B| − 1 to 0 do
3: l := M div i!;
4: Π.append(Bl)) ;
5: B.remove(l) ;
6: M := M − l · i! ;
7: end for
8: return Π;

mapping a bit string x ∈ {0, 1}∗ to a bitstring of length b with the property
that if the input value x has an entropy of at least b then the hash value
H(x, b) can be guessed successfully with probability at most 2−b. Given that
K is chosen uniformly at random, the input chosen by a conspirer has an
entropy of |K| bits. Hence, if |K| ≥ logn then H(idu‖idv‖K, logn) can be
guessed by a regular peer with probability at most 1/n. Again, in order to
ensure that we get this probability over all comunication channels, the length
of K should be increased to 6 logn bits. Note that both the key as well as
the resulting hash value must have this length.

9.1.1 Using the Block Request Order Channel
We will now discuss how the block request order can be used to exchange
information. Once a conspirer u has determined which blocks it wants to
request from a connected peer v it can permute the order of this request se-
quence as shown in Algorithm 9.1 to transmit log(|B|!) bits, where input B is
the sequence of blocks to request ordered according to its canonical order. For
example, the blocks shared in BitTorrent have an index that represents their
position in the shared file. Algorithm 9.1 interprets messageM as a number,
converts it to its representation in the factorial number system, denoted by
M!, and computes a permutation Π by interpreting M! as the Lehmer code
of Π. In the factorial number system representation, x!, of a number x ∈ N,
the i-th digit has a place value of i!. As an example, the decimal number 17,
which represents the binary message 100012, has a factorial number repre-
sentation of 2210!, because 0 · 0! + 1 · 1! + 2 · 2! + 2 · 3! = 17. The Lehmer
code of a permutation counts the number of swaps of neighboring elements
that have to be executed in the originally ordered list for each element in the
target permutation to be moved to its right position, starting from the first.
The permutation (3, 4, 2, 1), e.g., has a Lehmer code of 2210 as, starting from

128 CHAPTER 9. HOW TO ESTABLISH A BETTER EQUILIBRIUM

Algorithm 9.2 DECorder

Input: permutation Π
Output: message M ∈ {0, 1}log(|Π|!)

1: Sequence S := (1, 2, . . . , |Π|);
2: M := 0 ;
3: for i := 0 to |Π| − 1 do
4: l := S.indexOf(Πi) ;
5: S.remove(l) ;
6: M := M + l · (|Π| − i− 1)! ;
7: end for
8: return M ;

the original sequence (1, 2, 3, 4), element 3 needs two swaps to get to the left
most position, then element 4 needs two swaps to get to the second position,
element 2 can be moved to the third position with one swap, and element 1
is already at position four. To get a permutation from a given Lehmer code
one simply reverses this procedure. For the Algorithms 9.1 and 9.2, we as-
sume the data structure used to represent block sequences offers the methods
append, remove and indexOf. S.append(x) appends element x to sequence S,
S.remove(x) removes element x from sequence S, and S.indexOf(x) returns
the index of the first occurence of element x in sequence S. While Algo-
rithm 9.1 permutes a block sequence in order to get an encoding of message
M , Algorithm 9.2 decodes a message from a given permutation by inverting
the encoding technique used in Algorithm 9.1.

Theorem 9.1. The algorithm pair (ENCorder, DECorder) transmits an op-
timal blog s!c bits over the request order channel, where s is the number of
blocks requestable by the transmitting peer.

Proof. The transmission is correct since ENCorder implements a bijective
function from the message domain {0, 1}log(|B|!) to the domain of per-
mutations of B. DECorder implements the inverse bijection. The pair
(ENCorder, DECorder) is optimal because there are |B|! many permutations
of length |B|. Any algorithm pair can encode at most log(|B|!) bits in the
order of the block sequence.

9.1.2 Additional Steganographic Channels

Apart from the request order channel there are additional steganographic
channels that could be exploited for hidden communication.

9.1. STEGANOGRAPHIC HANDSHAKE 129

Subset Selection

Instead of only using the order of requests to hide information, additional
information can be hidden in the concrete choice of blocks that are selected
for requesting. Let Bu,v be the set of blocks that conspirer u can request
from v; instead of requesting, e.g., a permutation of the s requestable blocks
with lowest index, u can transmit an additional unused log

(|Bu,v|
s

)
bits to

v by selecting the subset of s blocks to be requested according to a shared
secret.

Timing

The protocol allows to introduce some variation in the timing of the protocol
messages, as peers are not expected to request blocks or to answer requests
immediately. Hence, conspirers can hide information by delaying protocol
messages. One possibility is, e.g., to encode information in the time between
the reception of a block request and the corresponding transmission. Note
that such steganographic channels are only feasible if the connection between
the peers is stable, i.e. the message delays are within a reasonable range. In
realistic networks, conspirers would most likely have to use error-correcting
codes. Generally, the capacity of such time-coded channels depends on the
accuracy of the measurements, the predictability of delays, and on the extent
to which a conspirer may delay the protocol without evoking suspicion.

Bandwidth

A conspirer might vary the rate at which it sends file blocks, or network
packets in general. One possible protocol would be to encode bits in the
transitions from one rate to another. With each transmission, a peer either
goes from a low to a high bitrate to send a 1, or from a high to a low
bitrate to send a 0. Note again that in practice one would probably need
error-correcting codes to account for unstable connections.

Ports

Another channel is the choice of the communication port. Unfortunately, this
channel is not scalable since the port for the communication is only chosen
once per connection, and its capacity is rather small. More importantly,
many peers are typically not able to use this channel since they are behind
a NAT router that allows no explicit control of the ports.

130 CHAPTER 9. HOW TO ESTABLISH A BETTER EQUILIBRIUM

9.2 Implementation into BitThief

The steganographic handshake described in the previous section is the tool
we need to ensure that instances of our BitThief client are not identified
and thus risk being banned by other clients, while revealing their identity to
fellow BitThief instances. BitThief solves REVEALTYPE by impersonating
standard BitTorrent clients and performing a steganographic handshake.

Unfortunately, we could not solve REVEALTYPE exactly as discussed
in Section 9.1, since our practical solution has to satisfy the additional con-
straint that BitThief never uploads a file block to a client that is not another
BitThief instance. Note that a free riding client must not announce having
file blocks that a connected peer v is interested in as v may request such
a block. Upon receiving a valid request from v, a free rider would have to
upload data, and violate the no-upload constraint, or ignore the request and
risk revealing its identity. Moreover, many clients wait until they receive a
requested block before they send out more blocks, i.e., a free rider would not
receive any blocks from this peer anymore for free until the request is served.
Consequently, when two potential BitThief clients meet, they both announce
that they have no file blocks yet, and none of them can make a block request.

Our solution to REVEALTYPE in this setting is to abuse an extension
of the BitTorrent protocol called “peer exchange” (PEX). This extension al-
lows peers to learn about other peers from known peers without inquiring
a tracker. Basically, a PEX message contains a list of some of the peers to
which the sender is connected, and optionally also a list of dropped peers,
i.e., peers that cannot be reached (anymore). We use the order of this peer
list as a steganographic channel. In particular, if an instance u of BitThief
wants to determine whether another peer v is also an instance of our client,
it sends a PEX message where the peer list is permuted with respect to its
natural order according to a hash H(idu‖idv‖F‖K) of u and v’s identifiers7,
hashed meta data F of the file that is exchanged, and a secret K that is
shared by all BitThief clients. The permutation is constructed along the
lines of Algorithm 9.1. Upon receiving a PEX message from v, u checks
whether the peer list is ordered according to H(idv‖idu‖F‖K). If the check
is successful v sends back a PEX message to u with a list ordered accord-
ing to H(idu‖idv‖F‖K), unless it has already sent a PEX message with a
hidden key to v before. After successfully checking a received PEX message
for the hidden key, BitThief switches to the tit-for-tat protocol, and starts
trading with the connected BitThief instance. As with the request order in
Section 9.1, the PEX protocol does not impose a specific peer list order, and
other clients do not interpret it in any way. Hence, a BitThief client does not
evoke suspicion when sending such a modified PEX message to other clients.

7In BitTorrent 20-bit peer identifiers are used.

9.2. IMPLEMENTATION INTO BITTHIEF 131

Note that there may be a problem if the swarm is small and consequently
the length of the list in a PEX message is short. In this case, the probability
that another client sends a list ordered correctly according to the hashing
algorithm “by accident” is high. Therefore, our client resorts to the following
fallback strategy when it knows less than 17 peers: it creates a bogus entry
in the list (of active neighbors) by again hashing F , K, the recipient’s and
its own identifier, and then constructing an IP address and a port out of
this hash. The recipient can compute the same fake entry and easily check
whether this entry is in the received list. Since there are roughly 248 possible
fake addresses consisting of a (32-bit) IP address and a (16-bit) port,8 the
probability of false positives is sufficiently small. Note that we chose 17 as
the threshold for the fallback strategy because log(17!) = 48.34 > 48, and
thus permuting a list of at least 17 entries can hide more information than
one fake IP address and port.

Suppose that in future versions of the PEX protocol the order of entries
will be predetermined: while permutations could no longer be used to es-
tablish a hidden handshake, one could still add bogus clients to the list to
solve this problem. It is unlikely that a regular peer identifies a faked entry
in the PEX message, even if it realizes that the corresponding peer is not
available, as it is plausible that some peer may be connected to a peer u, but
another peer cannot contact u, e.g., because it is behind a NAT router and
port-forwarding is not enabled, or because this peer left the swarm in the
meantime. Thus, if a peer does not get a response from some peers in the
list, it cannot conclude that the sender of the list sent invalid information.

Extensive tests in live BitTorrent swarms have shown that the hybrid
steganographic handshake works well, i.e., the BitThief clients successfully
find each other and switch to their private tit-for-tat protocol without being
detected. The steganographic handshake is implemented as described in the
current version of BitThief.9

In this chapter, we have argued that a smooth transition is essential for
guiding the participants of an established system to switching to another
system. Moreover, we showed what practical problem the requirement of a
smooth transition can entail, and how to solve it in the realm of peer-to-peer
file sharing. Next, we will see how the steganographic handshake can be
used as a primitive to coordinate the action of the conspirers in a monitored
environment.

8Some ranges of IP addresses and some ports cannot be used, which slightly reduces
the address space.

9BitThief is available at bitthief.ethz.ch.

Chapter 10

Hidden Broadcast in Peer-to-Peer
Systems

In this chapter, we look at a more general communication primitive that can
be used by a conspiring subset of peers to find each other, exchange secret
messages, and thus to coordinate their actions without revealing the secret
communication to an authority that may monitor the communication links.

Such a protocol can be useful in different contexts. In p2p networks, e.g.,
conspiring peers may prioritize each other in terms of quality of service. In
overlay networks, conspiring peers may try to position themselves at strategi-
cally favorable spots to manipulate the overlay. Conspiring peers may also be
machines controlled by law enforcement in order to bring down a malicious
botnet. From a game-theoretic perspective, hidden communication among
a subset of the participants of a network can constitute the prerequisite for
collusion, where a subset of the players wants to coordinate their strategies
to affect the game’s outcome in a favorable way.

As can be seen from these examples, conspiring peers may be considered
useful or harmful, depending on the point of view. In the remainder, for
the sake of a lucid presentation, we describe the situation from the point of
view of the conspiring peers. In particular, we show how a conspiring peer
can implement a hidden broadcast, i.e., send a secret message to all other
conspirers, either directly or indirectly, without getting caught by the regular
peers or the monitoring authority. For clarity, we proceed with presenting
the used model in more detail.

134 CHAPTER 10. HIDDEN BROADCAST

10.1 Model & Problem Definition

We are given a p2p network, which consists of a set P of |P | = n peers. Each
peer u ∈ P can communicate directly with any other peer v if u has previously
learnt the address of v. It is assumed that a peer does not know any other
peers initially, i.e., upon joining the network a peer is not connected to any
other peers. In order to establish connections to other peers, we assume that
there is a publicly known server that is aware of all peers currently in the
network. Upon request this server delivers a list of k peer addresses, which
are chosen uniformly at random from all peers. If two peers are connected,
we say that they are neighbors. Another common technique in popular p2p
networks is to inquire known peers about other peers in the network. Since
this approach still depends on some kind of bootstrapping mechanism, we
assume for the sake of simplicity that peer addresses are only provided by the
dedicated server. Furthermore, all communication is assumed to be reliable,
i.e., message loss and corruption can be handled in a canonical way using
redundancy and/or checksums. However, message delivery times are subject
to a potentially variable delay.

In general, a p2p network may be used to exchange any number of files.
We assume that there is only one file f that is shared in the network, i.e., our
definition of a network is akin to the concept of a BitTorrent swarm in which
all peers share a single file or a specific collection of files. Efficient dissemina-
tion of the file f is achieved by splitting it into m data blocks b1, b2, . . . , bm,
and trading locally available blocks for missing blocks with other peers. Both
the number of blocks m and the number of peers n are assumed to be fairly
large and in the same order of magnitude so that m� logn and n� logm.
We assume that the file blocks are fairly well distributed among all peers
and at least one peer holds all m blocks at any time. Thus, it is always
possible to acquire the entire file f by connecting to a reasonable number of
peers. Furthermore, we make the assumption that any two connected peers
regularly exchange information about the locally available blocks, i.e., a peer
reports regularly on the blocks it has to each neighbor. Over each link, a
peer can send one request for a block bi at a time to a certain peer, wait until
bi has been transmitted completely, and then send the next request to the
same peer.1 Unless a block is already being transmitted, a request is always
served and the requesting peer receives the block at the latest after a certain
bounded delay.

We distinguish between two classes of peers: A peer u is either a regular
peer or a conspirer. A regular peer is a peer whose sole purpose is to acquire
and share file f with other peers. The conspirers, on the other hand, have
a secret agenda. In particular, the conspirers strive to secretly communicate

1Note that it is possible to send different requests to different peers simultaneously.

10.1. MODEL & PROBLEM DEFINITION 135

among each other. The set of conspirers is denoted by C, and its cardinality
is |C| = c. Another distinction between regular peers and conspirers is that
the conspirers share an exclusive secret K of length |K|, which they acquired
over a secure channel before joining the p2p network. What is more, the
conspirers know both the number c of conspirers and, for ease of presentation,
the number n of peers in the network.2

In order to ensure that the p2p network is used only for the intended
purpose of sharing file f and to prevent fraudulent behavior by conspiring
peers, there is an authority that monitors the network. If the authority ever
learns that a peer u does not abide by the rules of the imposed protocol and
exchanges other information with certain peers, then u is punished, e.g., by
adding u to a globally available (signed) blacklist or, if the authority has
the power, by expelling u directly from the network. The authority can
detect conspirers in two ways, either it observes suspicious communication
directly, or regular peers denunciate them, i.e., we assume that there is an
incentive for regular peers to report any observed departure from the file
sharing protocol. Of course, it is also possible for conspirers to report regular
peers but we assume that it is not worthwhile for conspirers to do so for the
following reasons. First, the authority may suspect both the defendant and
the accuser, which may be detrimental to the conspirer as well. Second,
assuming that n is considerably larger than c, other regular peers may vouch
for the accused (regular) peer and thereby revealing the disingenuous nature
of the conspirers. In other words, cmay not be large enough for the conspirers
to campaign against a regular peer. Finally, the authority may have recorded
the communication. In this case, it can determine that the regular peer
always adhered to the protocol contrary to the accusation.

As mentioned before, the primary goal of the conspirers is to communicate
with each other, while the authority tries to detect as many conspirers as
possible. The main problem that we consider is called BROADCAST(M),
which is defined as follows.
BROADCAST(M): There is a conspirer u ∈ C that wants to send a message
M , directly or indirectly, to all other conspirers without raising suspicion
among the regular peers and without being caught by the authority.

The quality of a solution to this problem can be measured in several
ways. An important measure is certainly the probability of success. The
second optimization criterion is efficiency: The objective is to achieve a low
communication complexity, i.e., the number of messages that must be ex-
changed ought to be small. Moreover, the space complexity, the number of

2As (BitTorrent) trackers usually provide only an estimate of n, we will argue in a later
section that our techniques can easily be adapted to the scenario where the conspirers
merely have an estimate of n and c.

136 CHAPTER 10. HIDDEN BROADCAST

bits that each conspirer has to store, should be low as well.3 In order to
solve BROADCAST(M), we may make use of the steganographic handshake
described in the previous chapter, which lets a conspirer reveal the type of a
connected peer.

In our model, the order in which a peer requests blocks from a neighboring
peer is not specified. Hence, the conspirers can use the request order channel
once more, i.e., they can introduce a logic to the order of request sequences
and thereby communicate without violating the given protocol.

Obviously, a conspirer may also communicate freely with a neighboring
conspirer if the network connection between them is not monitored; however,
as the conspirers initially do not know the other conspirers’ identities, they
first have to determine their neighbors’ types by means of a steganographic
handshake (Section 9.1). The conspirers’ capabilities to communicate depend
on the freedom they have in varying the imposed protocol. This freedom, in
turn, is derived directly from the power of the authority monitoring the p2p
network. In the subsequent sections, the goal is to determine how (much) in-
formation can be secretly broadcast given a certain authority. The discussion
is structured according to increasing monitoring capabilities.

10.2 No Monitoring

A weakest authority is one that does not have the capacity to monitor con-
nections at all. The only way such a limited authority can learn about illegal
actions in the network is through reports of regular peers. As stated in the
model section, we assume that if a conspirer u reveals its type to a regular
peer v, then v will report u to the authority, and u will be punished. Thus, a
conspirer u must not communicate using plain text with a neighboring peer
v unless it has verified that v is also a conspirer. If the verification is success-
ful, u may send all subsequent messages to v in the clear. Hence, in order
to solve BROADCAST(M) it suffices to establish a connected graph among
the conspirers where there is an edge between two conspirers u, v ∈ C if they
are neighbors and both of them know each other’s type, i.e., both know that
u, v ∈ C. Once connected, the message holder can send the message M in
plain text to all of its neighboring conspirers, each of which will propagate it
to its respective neighboring conspirers.

One straightforward approach to achieve this is to have the message
holder u ∈ C connect to every peer in P , determining every peer’s type and
then send the message M to the fellow conspirers, which are all directly con-
nected to u. Although this simple approach solves BROADCAST (M), the
conspirers are well advised not to use it because of its lack of efficiency, both

3Apart from the downloaded blocks, a peer must also store, e.g., the addresses of its
neighbors.

10.2. NO MONITORING 137

in terms of space and communication complexity. Since the message holder
basically connects to the entire network it needs Ω(n) memory. Furthermore,
the straightforward approach requires extensive polling of the public server
that keeps track of all peers, and would cost Ω(n/k) messages as only k
addresses are returned for each request. As k is typically a constant, this
amounts to a communication complexity linear in n. Another major draw-
back of this scheme is that the server receives an exceedingly large number
of requests, which basically gives away the identity of the message holder.

In contrast to this brute-force approach, we present a scheme that solves
BROADCAST(M) much more efficiently in the following. Depending on
the number of conspirers c, considerably less than n connections have to be
established to ensure that all c conspirers induce a connected subnetwork:

Theorem 10.1. If each conspirer randomly acquires 8n
c

ln(nc) neighbors,
then the subnetwork induced by the c conspirers is connected w.h.p.

Proof. First, we show that each conspirer u has a sufficiently large number
of conspiring neighbors. Let N c

u denote the set of neighbors of u that are
conspirers. Since each neighbor v is chosen uniformly at random and the
probability that v ∈ C is c/n, we immediately have that E[|N c

u|] = 8 ln(nc).
Using a standard Chernoff bound, we get that

P[|N c
u| < 4 ln(nc)] = P

[
|N c

u| <
E[|N c

u|]
2

]
≤ e−

E[|Nc
u|]

22·2 = 1
nc
.

Hence, the probability that any conspirer has less than 4 ln(nc) neighbors
that are conspirers is upper bounded by 1/n.

We now need to prove that this number of connections suffices to guar-
antee that all conspirers are connected with high probability. For this
purpose, we use the following theorem about Erdős-Rényi random graphs
G(c, pe) [38, 39]. G(c, pe) is a graph consisting of c nodes in which each of
the

(
c
2

)
edges is added to the graph independently with probability pe.

Theorem 10.2 ([96]). If pe = ln c+t
c

, then G(c, pe) is connected with proba-
bility (1 + o(1))e−e−t

.

This theorem implies that if each edge is chosen with probability ln(nc)/c,
then the resulting graph is connected with probability at least

e−e
− ln n

= e−1/n ≥ 1− 1
n
.

If pe = ln(nc)/c, the expected number of neighbors of each node is ln(nc).
Let Lu be the random variable that counts the number of u’s neighbors in a

138 CHAPTER 10. HIDDEN BROADCAST

graph G(c, pe). Again using a Chernoff bound, it follows that

P[Lu > 4 ln(nc)] = P[Lu > (1 + 3)E[Lu]] ≤ e−
32
4 E[Lv] <

1
nc
.

The probability that any node has more than 4 ln(nc) neighbors in a graph
of c nodes, where each edge is chosen with probability ln(nc)/c, is upper
bounded by 1/n. This means that we also get a connected graph, with high
probability, if each node chooses 4 ln(nc) neighbors uniformly at random in
a graph of size c. We already established that by connecting to 8n

c
ln(nc)

random neighbors, each conspirer connects to at least 4 ln(nc) conspirers
with high probability, i.e., each conspirer implicitly chooses at least 4 ln(nc)
random neighbors in the conspirer subgraph. Therefore, the subnetwork is
connected with high probability.

Theorem 10.1 states that if c ∈ Θ(n), acquiring a logarithmic number of
neighbors is sufficient for the conspirers to end up in a connected component.
Note that the constant 8 can probably be reduced using more elaborate
arguments. However, it is clear that the asymptotic behavior is correct for
any c ∈ Θ(n) as the graph G(n, pe) is not connected if pe = ((1− ε) lnn) /n
for any ε > 0 asymptotically almost surely [39].4

Putting all the building blocks together, we are able to give an algorithm
that solves BROADCAST(M). Algorithm 10.1 is executed at each conspirer
u ∈ C: each conspirer first polls the public server until it has enough neigh-
bors to ensure that all conspirers are in a connected component. In a second
phase, each conspirer u gathers enough blocks in order to make sure that any
two conspirers have enough trading blocks to determine each other’s type. If
another peer connects to u in this phase, u reports that it does not have any
blocks yet in order to avoid trading blocks with other conspirers prematurely.
Subsequently, each conspirer starts requesting blocks from all its neighbors
and thereby reveals its type by transmitting a secret key over the request or-
der channel. Since the number of required blocks is relatively small, i.e., we
assume that 6 logn � m, each peer can accumulate this number of blocks
quickly. Once the message holder knows all its neighbors’ types, it sends
message M in plain text to its neighboring conspirers. All other conspirers
wait forM and pass it to their neighboring conspirers as soon as they receive
it.

For the subroutine REVEALTYPE, which implements the steganographic
handshake, we assume that another thread run by u listens to neighbor v,
and whenever it receives a block request bx from v, appends bx to a list Rv,
and starts transmitting block bx to v. Moreover, we denote by Bu,v the set

4“Asymptotically almost surely” means that the probability that the claimed bound
holds tends to 1 as n→∞.

10.2. NO MONITORING 139

Algorithm 10.1 BROADCAST(M)
1: repeat
2: Add k random peers to neighbor set N ;
3: until |N | ≥ 8n

c
ln(nc)

4: Get 6 logn random blocks in total from connected peers;
5: C := ∅;
6: for each v ∈ N in parallel do
7: if REVEALTYPE(v)= conspirer then
8: C := C ∪ {v};
9: end if

10: end for
11: if message holder then
12: send M to all v ∈ C;
13: else
14: wait until message M received;
15: send M to all v ∈ C;
16: end if

Subroutine REVEALTYPE(v)
17: wait until (|Bu,v| ≥ 3 logn) ∧ (|Bv,u| ≥ 3 logn);
18: B := d3 logne blocks of Bu,v with lowest indices;
19: B′ := d3 logne blocks of Bv,u with lowest indices;
20: Sort B,B′;
21: Π := ENCorder (B,H(idu||idv||K, d3 logne));
22: Π′ := ENCorder (B′,H(idv||idu||K, d3 logne));
23: for i := 0 to |Π| − 1 do
24: for j := 0 to |Rv| − 1 do
25: if Rv,j 6= Π′j then return regular;
26: end for
27: if (|Rv| < i) ∨ (|Rv| > i+ 1) then
28: return regular;
29: else
30: request Πi;
31: wait until Πi received;
32: end if
33: end for
34: return conspirer;

140 CHAPTER 10. HIDDEN BROADCAST

of blocks that u can request from v, i.e., the set of blocks that v claims to
possess and u does not. The following theorem states the communication
and the space complexity of this broadcast algorithm.
Theorem 10.3. If c ∈ [18 lnn, n/3] and m ≥ (24e+6) logn, Algorithm 10.1
secretly broadcasts a message M of arbitrary length in an unmonitored net-
work w.h.p. The space complexity is in the order of

O(n
c

logn+ |M |)

and the communication complexity is in

O
(
n

c
logn+ log2 n+ |M | logn

)
w.h.p.

Proof. We start by showing that each conspirer has to collect only

12(1 + o(1))n
c

ln(nc) ∈ O(n
c

logn)

peer addresses in order to get 8n
c

ln(nc) distinct random neighbors, i.e., it
has to inquire the server only O(n

c·k logn) times. Let the random variable
Ni indicate the number of random peers that have to be collected to get the
ith distinct neighbor after having collected i− 1 distinct neighbors. It holds
that

E[Ni] = n

n− i+ 1 .

Let Tj =
∑j

i=1 Ni be the random variable that indicates how many random
neighbors have to be collected until j distinct peers have been discovered.

Since c ≥ 18 lnn > 9 ln(nc), and given that we need j = 8n
c

ln(nc) distinct
neighbors, it holds that n− j > n/9 ∈ Ω(n). Hence, we have that

E[Tj] =
j∑
i=1

E[Ni]

= n

(
1
n

+ 1
n− 1 + . . .+ 1

n− j + 1

)
= n(Hn −Hn−j)
≤ n(ln(n)− ln(n− j))

= −n ln
(

1− j

n

)
= − ln

(
1− j

n

)n
≤ − ln

(
e−j
)

+ o(1)
= j + o(1),

10.2. NO MONITORING 141

where Hn is the nth harmonic number. We can again use a Chernoff bound
to see that

P[Tj > (1 + 1/2)E[Tj]] < e−
1
16E[Tj]

= e−
1
2 (8 n

c
ln(nc)+o(1))

≤ e−3/2 ln(nc)

<
1
nc
,

where the second last inequality holds since c is at most n/3. Thus, each
conspirer has to acquire less than 12·(1+o(1))n

c
ln(nc) random peer addresses

with high probability. Since each node further has to store the message M ,
the bound on the space complexity follows.

Next, we argue that a conspirer can acquire 6 logn blocks quickly (cf.
Line 4). Recall that N c

u denotes the neighboring conspirers of u, and that
E[|N c

u|] = 8 ln(nc). By means of a Chernoff bound we can see that

P [|N c
u| > 2E[|N c

u|] ≤ e−
E[|Nc

u|]
4 = 1

(nc)2 ,

i.e, any conspirer has less than 16 ln(nc) conspiring neighbors and hence more
than 8n

c
ln(nc)− 16 ln(nc) > 6 logn regular neighbors with high probability.

This implies that less than one block has to be acquired on average per
regular neighbor, which can be accomplished swiftly.

We proceed by proving that 6 logn blocks suffice to ensure that each con-
spirer has 3 logn blocks to trade with each neighboring conspirer with high
probability, which is the number of requestable blocks required for the sub-
routine REVEALTYPE to work (cf. Line 14–16). Note that we can transmit
log((3 logn)!) ≥ 3 logn bits over the request order channel by using 3 logn
blocks. As argued in the last chapter, exchanging 3 logn bits with a conspirer
is enough to safely verify its type. Thus, we have to show that the probability
that two conspirers have more than 3 logn blocks in common is negligible.
The probability that the ith block is also in the set of blocks that another
conspirer acquires is at most (6 logn)/(m − i) ≤ (6 logn)/(m − 6 logn) be-
cause at most all i − 1 previous blocks are not in the other conspirer’s set.
Let the random variable X denote the number of such colliding blocks and
let p := (6 logn)/(m − 6 logn). We can upper bound the probability that
X ≥ 3 logn as follows. Let Xu,v be the set of colliding blocks, i.e., the blocks

142 CHAPTER 10. HIDDEN BROADCAST

acquired by both u and v.

P[X ≥ 3 logn] =
6 logn∑
i=3 logn

P[|Xu,v| = i]

≤
6 logn∑
i=3 logn

(
6 logn
i

)
pi(1− p)6 logn−i

≤
(

6 logn
3 logn

)
p3 logn

≤ (2e)3 lognp3 logn

=
(

12e logn
m− 6 logn

)3 logn

.

Since m ≥ (24e + 6) logn, we have that P[X ≥ 3 logn] ≤ 1/n3 and thus
every conspirer has enough blocks to request from all other conspirers with
high probability. This proves that each conspirer can identify the conspirers
among its neighbors.

The question remains how many messages a conspirer u has to send in the
REVEALTYPE phase. As u requests one block and then waits for the next
request of the other party, u can identify regular peers quickly: u identifies a
regular peer v as soon as v requests the “wrong” block. Since the probability
that v requests the correct first block is 1/(6 logn) and the probability that
each subsequent block is also “guessed” correctly is smaller than 1/2 (until
only two blocks are left), the expected number of blocks that need to be
exchanged is less than 2. In total, the number of messages exchanged with
regular peers is thus O((n/c) logn). It is easy to see that this bound also
holds with high probability (again using a standard Chernoff-type argument).
As for any conspirer u, |N c

u| ≤ 16 ln(nc) with high probability, all conspirers
exchange at most 3 logn · 16 ln(nc) ∈ O(log2 n) blocks with other conspirers
with high probability. Each conspirer must further send the message M to
the other conspirers in its neighborhood, which costs at most |M |·16 ln(nc) ∈
O(|M | logn) messages. If we combine the bound on the number of messages
required to gather enough neighbors, identify the conspirers, and broadcast
M , we get the claimed bound on the message complexity.

Note that for a small c, i.e., c ∈ O(logn), each conspirer has to connect
to Ω(n) random peers to establish a connected conspirer component. In par-
ticular, if c < 8 lnn, each conspirer connects to all n peers for large n with
Algorithm 10.1. In this case, the conspirers can resort to the aforementioned
brute-force approach, especially when considering that in any broadcast algo-
rithm, a peer must connect to at least Ω(n/c) peers to find another conspirer.

10.3. INDIVIDUAL MONITORING 143

Note also that if the conspirers only have an estimate of n and c, they can
increase the number of neighbors and the length of the exchanged key (con-
tinuously) by an appropriate factor to ensure that the presented algorithms
still succeed w.h.p.

10.3 Individual Monitoring

Let us now consider an authority that is able to monitor connections indi-
vidually. By individually we mean in this context that the authority can
monitor any communication link between any two peers; however, it is not
capable of correlating the data gathered at different connections. As we will
see, the adversary in this model is stronger in that the size of the message
M that can be transmitted depends on the total number of blocks m. In
other respects this model is quite similar to the setting in the previous sec-
tion where the authority acted only as a punitive deterrent. In particular, as
long as a conspirer u does not know a neighboring peer’s type, it does not
make a difference whether or not the link to that peer is monitored as the
hidden channel must be used to communicate.

The reason why the size of the message M is limited is that after a
conspirer has successfully revealed another conspirer’s type, it cannot com-
municate freely over this link since the monitoring authority could detect
this illegal communication. Hence, hidden communication must also be used
to transfer the message M . Furthermore, a conspirer v must not request the
same file block twice from the same neighbor since the monitoring authority
would realize that v is requesting a block it has already received. We can
conclude that the maximum size of the message M depends on the number
m of blocks as there is no need for additional communication between any
two peers once m blocks have been sent in both directions. Consequently,
this setting forces the conspirers to use as little blocks as possible for each in-
dividual communication link. On a particular link (u, v), however, conspirer
u can still underreport on the blocks that it has received from peers other
than u, and it can re-request blocks that it has already received from other
peers.

In the following, we will outline how to adapt Algorithm 10.1 for this
setting. Since each conspirer can still determine its neighbors’ types using the
REVEALTYPE mechanism, the first part of the algorithm (more precisely,
Line 1–8) remain unchanged. Instead of immediately sending message M in
plain text, a conspirer u downloads more blocks from its regular neighbors
until it has Θ(m) blocks, preferably all m blocks. In the next step, it reports
to each connected conspirer v half of the file blocks that it has gathered in the
previous phase. In order to maximize the number of tradable blocks, u and
v should report (mostly) disjoint block sets. This can easily be accomplished

144 CHAPTER 10. HIDDEN BROADCAST

by hashing the node identifiers and the secret key to get a sequence of blocks
that, e.g., the node with the smaller identifier offers. The other peer performs
the same computation and simply offers the blocks not in the sequence. If the
two sets are completely disjoint, this may also raise suspicion. Therefore, it
may make sense to enlarge the set of offered blocks. This way, each conspirer
can exchange Θ(m) blocks with its conspiring neighbors. Note that for this
method to work, each conspirer must remember which blocks it has traded
with each of its neighbors in the REVEALTYPE phase in order to avoid re-
requesting blocks on individual links. We call this adaptation of the broadcast
method ALGindividual, for which we can show the following.

Theorem 10.4. If c ∈ [18 lnn, n/3] and m ≥ (24e+ 6) logn, ALGindividual
secretly broadcasts a message of Θ(m logm) bits in an individually monitored
network w.h.p.

Proof. Any conspirer u is able to use (m − |Xu,v| − R)/2 blocks for trans-
mitting message M to neighbor v, where Xu,v is the set of colliding blocks
between u and v in the REVEALTYPE phase, and R is the number of blocks
used by REVEALTYPE. From the proof of Theorem 10.3 we know that
|Xu,v|+R is at most 6 logn with high probability. Hence, conspirer u can use
at least (m/2)− 3 logn ∈ Θ(m) blocks to transmit Θ(log(m!)) = Θ(m logm)
bits to neighbor v over the request order channel.

10.4 Complete Monitoring

If the complete network is monitored, i.e., the authority monitors all com-
munication links and may also correlate data gathered at different links, it
gets considerably harder to exchange secret messages. The main difference
to individually monitored communication is that a conspirer can no longer
underreport, or request a block that it has already received from another
peer. In general, the more blocks a peer possesses, the more constrained it
is in its actions. Consequently, we have to impose tighter restrictions on the
number of conspirers and on the number of blocks in order to enable the
conspirers to receive the secret message. Note that the specific restrictions
we impose are used for ease of presentation and stronger bounds are again
possible by means of a more complicated analysis. Given these conditions,
we can still transmit a fairly long message without modifying ALGindividual
substantially: The only modification to Algorithm 10.1 is that every con-
spirer acquires 8

√
n ln(nc) random blocks instead of only 6 logn. We call

this adaptation of the algorithm ALGcomplete, for which we get the following
result.

10.4. COMPLETE MONITORING 145

Theorem 10.5. If c ≥
√
n ≥ 6 and 2060

√
n ln2(nc) ≤ m ∈ Θ(n), algo-

rithm ALGcomplete secretly broadcasts a message of Θ(
√
m log2 m) bits in a

completely monitored network w.h.p.

Proof. Each conspirer should not only be able to give its identity to all neigh-
boring conspirers, but also forward the message |M | to each of them. This
is only possible if it can request a sufficiently large number of blocks from
each neighboring conspirer. Thus, we have to estimate the number of blocks
that a certain neighbor u possesses that no other neighbor has. For this
purpose, we need to upper bound the number of blocks that each other
neighbor acquires during the course of the second phase, where the type
of each of their respective neighbors is determined. As we have shown be-
fore, the number of neighboring conspirers is at most 16 ln(nc) with high
probability. A conspirer requests at most 16 ln(nc) · 3 logn blocks to re-
veal its own identity. We have also shown that less than 2 messages on
average are exchanged with regular peers in expectation, and thus less
than 4 with high probability. If each of those messages is used to request
a block, then the total number of acquired blocks is upper bounded by
4
(
8
√
n ln(nc)− 16 ln(nc)

)
+ 16 ln(nc) · 3 logn < 64

√
n ln(nc) because n ≥ 36

by assumption. Since a conspirer has at most 16 ln(nc) neighboring conspir-
ers, the goal is now to show that u has enough blocks so that sufficiently many
do not occur among the neighbors’ 64

√
n ln(nc) · 16 ln(nc) = 1024

√
n ln2(nc)

blocks. We know that u has at least 8
√
n ln(nc) blocks. The probability that

a certain block does not occur in the neighboring conspirers’ sets is at least

1− 1024
√
n ln2(nc)

m− 64
√
n ln(nc)

≥ 1− 1024 ln(nc)
(2060 ln(nc)− 64)

> 1− 1024 ln(nc)
2048 ln(nc) = 1

2 ,

where we used that m ≥ 2060
√
n ln2(nc) and c ≥

√
n ≥ 6. Thus, it holds

that E[U] > 4
√
n ln(nc), where the random variable U denotes the number

of such unique blocks. The probability that a conspirer u has only half as
many blocks as E[U] is upper bounded by

P
[
U <

1
2E[U]

]
< e
− 4
√

n ln(nc)
2·22 ≤ e−3 ln(nc) = 1

(nc)3 .

Thus, conspirer u has at least 2
√
n ln(nc) random blocks that no conspir-

ing neighbor has. By means of a union bound, we see that each neigh-
bor in the conspirer subnetwork has that many random blocks to offer with
high probability. Moreover, each conspirer can request at least 2

√
n ln(nc)

blocks from each neighboring conspirer with high probability. Since 3 logn

146 CHAPTER 10. HIDDEN BROADCAST

blocks are used to verify the identity of each conspirer, there are at least
2
√
n ln(nc) − 3 logn > (3/2)

√
n ln(nc) blocks left to transmit the mes-

sage. This means that indeed log
(
(3/2
√
n ln(nc))!

)
∈ Θ(

√
n log2 n) =

Θ(
√
m log2 m) bits can be exchanged secretly, which concludes the proof.

10.5 Stochastic Monitoring

In the previous sections, we assumed that permuting the request sequence
order does not arouse suspicion. In reality, there may be certain policies that
restrict such behavior, e.g., it may be common practice to request the least
frequently advertised block first (rarest-first) in order to keep all blocks avail-
able as long as possible. Streaming applications may demand even stricter
policies; the most extreme restriction would be to acquire all blocks in ascend-
ing order, which would prohibit using the request order channel completely.
However, as requesting blocks in ascending order is not an efficient dissemi-
nation scheme, peers typically have the freedom to (randomly) request any
block in a certain window. Moreover, if the rarest-first policy is used, the
decision which block to request next is made locally, which means that it
is not easily possible for a peer to verify that a block that a neighbor has
requested is indeed the rarest according to this neighbor’s local view. Non-
theless, there may be certain request patterns that raise suspicion. If the
authority is aware of all legal strategies, it has additional power to expose
conspirers. In reference to related work in the field of steganography, e.g.
[48], we assume in this section that regular peers choose their request order
permutation according to a distribution C, and that all peers as well as the
authority know C.5 As a consequence, a monitoring authority can assign
to each request order permutation Π a probability p(Π) that Π was gener-
ated according to C. If the permutations by a peer u deviate with statistical
significance from C, i.e., if p(Π) is below a certain threshold ε, then the au-
thority might classify u as a conspirer. Choosing a reasonable ε, however, is
a delicate task. A careful authority may want to prevent false positives in
any case, and thus choose ε = 0. This implies that the conspirers have to
avoid all permutations with probability mass 0 and, if there are such permu-
tations, the capacity of the request order channel is reduced. If a non-zero
ε is chosen and there are permutations Π with 0 < p(Π) < ε, the authority
reduces the request order channel’s capacity even more. On the other hand,
the authority risks punishing regular peers by increasing ε. One approach for
the conspirers to adapt to such stochastic monitoring is to come up with an

5As noted in [48], the assumption that such a distribution is known or that there is
at least an oracle available that generates permutations according to C is often critical.
In a p2p context, however, it is reasonable to a certain extent as there is only a finite
number of clients that implement a certain protocol.

10.5. STOCHASTIC MONITORING 147

Algorithm 10.2 ENCstochastic

1: i := 0;
2: repeat
3: Π := ENCorder(M ⊕K(i)||i);
4: i++;
5: until p(Π) > ε
6: return Π;

adapted mapping of messages to the set of valid permutations, i.e., permu-
tations Π with p(Π) > ε, or, as this is rather cumbersome, they might use a
generic approach such as Algorithm 10.2.

Algorithm 10.2 repeatedly XORs the original messageM with a bitstring
produced by a pseudo-random generator K and maps this string to a per-
mutation until a valid permutation is generated. Note that K is determinis-
tic, and therefore a receiving conspirer can revert ENCstochastic by applying
DECorder, extracting i, and XORing the result with K(i). In order to extract
i, the conspirers have to either fix the number of bits used for i or introduce a
preamble marking its beginning. The running time of ENCstochastic depends
on the distribution C and the threshold ε, and is in the order of the ratio of
invalid to valid permutations. The advantage of such a generic approach is
that it can even be applied in a completely monitored network, where the
validity of a request order permutation generally depends on the requests
already sent to other neighbors.

For the special case of C being the uniform distribution, a standard OAEP
scheme [19, 21] would also be sufficient to make the permutations look un-
suspicious. As OAEP includes random bits, it would furthermore have the
property that when a message is sent over the same link several times the
produced request permutation will always look different (unless the same
random bits accidentally occur multiple times).

Chapter 11

Related Work

The presented thesis is embedded in a context of various related work. We
have pointed out the historical context of our work in both, transactional
memory systems, and peer-to-peer file sharing systems. In the following
we discuss work that is related to mechanism design with payments, cyclic
and inter-swarm trading as well as hidden communication that has not been
mentioned so far. As we are the first researchers to attend to the issues of
incentives in transactional memory systems, we cannot discuss further related
work in that area.

11.1 Mechanism Design with Payments

Game theory (see e.g., [74]), mechanism design (e.g., [72, 55]), and implemen-
tation theory (e.g., [63, 64]) have been a flourishing research field for many
decades. In 2007, three pioneers in implementation theory, Leonid Hurwicz,
Eric Maskin, and Roger Myerson, were awarded the Nobel prize. With the
advent of the Internet and its numerous applications such as e-commerce
(e.g., [41, 81]), peer-to-peer systems (e.g., [29]), or social networks, algorith-
mic mechanism design and game theory are extensively studied by computer
scientists as well. For instance, game theory is used to shed light onto so-
ciological and economic phenomena in decentralized networks consisting of
different interacting stake-holders, and mechanism design is needed to ensure
efficiency in online auctions like eBay. For a thorough overview of the field,
we refer the reader to the book Algorithmic Game Theory [73].

Popular problems in computer science studied from a game theoretic
point of view include routing [83], inter-domain routing [42, 93], virus prop-
agation [11], congestion [25], wireless spectrum auctions [99], among many
others. Poor performance of selfish networks requires research for counter-

150 CHAPTER 11. RELATED WORK

measures (cf. [29, 64]). Cole et al. [27, 28] have studied how incentive mech-
anisms can influence selfish behavior in a routing system where the latency
experienced by the network traffic on an edge of the network is a function
of the edge congestion, and where the network users are assumed to selfishly
route traffic on minimum-latency paths. They show that by pricing network
edges the inefficiency of selfish routing can always be eradicated, even for
heterogeneous traffic in single-commodity networks.

Monderer and Tennenholtz [66] study mechanism design with payments
in a minimal rationality model (players choose non-dominated strategies).
Among other interesting results, they prove that any pure Nash equilibrium
has a 0-implementation (see also [30, 89, 91]), i.e., it can be transformed into
a dominant strategy profile at zero cost. In settings where mechanism design
with payments is applicable the price of stability (see e.g., [80]) can thus be
achieved for free. Similar results hold for any given ex-post equilibrium of a
frugal VCG mechanism. Moreover, the paper addresses the question of the
hardness of computing the minimal implementation cost. The same authors
study the implementation of strong equilibria in [67], and the implementation
in games with incomplete information together with Ashlagi in [10].

Part I of this thesis extends [66] in various respects. In [66], Monderer
and Tennenholtz make no assumptions other than that a player picks a non-
dominated strategy, and they analyze the mechanism designers possibilities
from a worst-case perspective. In addition to their model, we consider uni-
form behavior. While we prove mechanism design with payments to be gen-
erally hard in the uniform model, we couldn’t repair the errors in their dis-
cussion of the worst-case model. Moreover, we define the concept of leverage
in games and investigate its computational complexity.

In Chapter 4, we discuss the leverage in games from a benevolent and from
a malicious mechanism designer’s perspective, where the malicious mecha-
nism designer’s payoff increases proportionally to the degradation of the so-
cial welfare. Other types of maliciousness have been studied before in various
contexts, especially in cryptography, and it is impossible to provide a com-
plete overview of this literature. Recently, the concept of BAR games [5]
has been introduced which aims at understanding the impact of altruistic
and malicious behavior in game theory. Moscibroda et al. [69] extend the
virus inoculation game from [11] to comprise both selfish and malicious play-
ers. A similar model has recently been studied in the context of congestion
games [16].

Our work is also related to Stackelberg theory [82] where a fraction of the
entire population is orchestrated by a global leader. In contrast to our model,
the leader is not bound to offer any incentives to follow her objectives. In
the recent research thread of combinatorial agencies [14, 15, 36], a setting
is studied where a mechanism designer seeks to influence the outcome of a

11.2. CYCLIC INTER-SWARM TRADING 151

game by contracting the players individually; however, as she is not able to
observe the players’ actions, the contracts can only depend on the overall
outcome.

Our work has also connections to fault-tolerant mechanism design: In [77],
Porter et al. extend the field of mechanism design to account for execution
uncertainty, where the costs of a player depends on the probabilities of fail-
ure. Apart from incentive-compatible mechanisms, they also give impossi-
bility results. Moreover there are intriguing touching points with correlated
equilibria and mediated mechanisms, where a mechanism designer can com-
municate with the players and suggest (without money) certain subset of
the outcomes (see, e.g., [67]); indeed, in [66] it is shown that all correlated
equilibria can be 0-implemented. Bradonjic et al. [22] also introduced the
study of a malicious interested party in the mediator setting.

As a follow-up to our work, Moscibroda and Schmid [68] study an appli-
cation of the theories devised in Part I to the domain of throughput maxi-
mization.

11.2 Cyclic Inter-Swarm Trading

Without a central authority that keeps track of the peers’ contributions, and
attests to them, it is difficult to manage trust in a fully distributed setting.

The tit-for-tat approach copes with this difficulties in that peers base
their decision whether to trust each other, and thus exchange file blocks,
only on the balance of uploaded and downloaded data with respect to the
requesting peer. It can thus be considered a reputation system in which a
peer bases the reputation of another peer only on the history of transactions
that have occurred between them. Moreover, a peer can track the state of
the history by only keeping one value, the upload-download balance. As such
it is simple and easy to implement.

A large body of work studies reputation systems that try to provide a
more complete view of a peer’s reputation, i.e., the local view of a peer’s
reputation should account for all transactions that have occurred among all
peers in history, or give a good approximation thereof. The advantage of
such a more involved system is that a peer can also judge the trustworthi-
ness of peers with which she never had contact. This property is crucial in
applications where peers rarely deal with each other more than once. For a
p2p file sharing system, however, where peers usually trade many file blocks
with the same peer, the inflicted overhead outweighs the benefits. Moreover,
designing distributed reputation systems is an inherently hard task: a peer
can typically only assess the trustworthiness of a potential trading partner
without complete information about all the transactions carried out in the
p2p system. And even if a peer receives reports on transactions between two

152 CHAPTER 11. RELATED WORK

other peers, she has no immediate means of verifying the correctness of such
reports. Despite these inherent difficulties, there have been several proposals
of reputation systems for p2p networks, see e.g., [2], [52], or [78]. However, the
successful implementation of the desired incentive structures usually requires
an assumption on the participants. Aberer and Despotovic [2], for instance,
require that “the probability of cheating within a society is comparably low”.

With our approach to boost the performance of a tit-for-tat file sharing
system by inter-swarm, cyclic trading, we suggest a protocol to extend direct
reciprocity with almost simultaneous indirect reciprocity. Menasché et al. [65]
have compared the different types of reciprocity. The authors prove that un-
der certain circumstances, direct reciprocity can emulate indirect reciprocity
without much performance loss.

We mentioned coding schemes as an alternative approach to increasing
the market liquidity of peer-to-peer systems: linear combinations of blocks
are computed and distributed in place of the original blocks, yielding a higher
block diversity and hence more trading opportunities. It is worth noting that
coding schemes can easily be combined with inter-swarm and cyclic trading.
The drawback of coding approaches, however, is their high computational
complexity. See for instance [61] for a source coding scheme, or [4] for a
network coding scheme.

Guo et al. [44] argue that inter-swarm collaboration in BitTorrent is more
effective than, e.g., directly stimulating seeders to stay in the network. They
initiate the discussion of a multi-torrent system featuring a tracker site over-
lay and exchange-based trades along cycles. Aperjis et al. [9] adopt a more
theoretical perspective and prove that bilateral equilibrium allocations are
not Pareto-efficient in general, in contrast to multilateral allocations. Their
work is related to a graph-theoretic generalization of classical Arrow-Debreu
economics where edges in the graph indicate which entities can engage in
direct trades [51]. The authors also provide quantitative insights (using Bit-
Torrent data) into strategies where bilateral exchanges may perform quite
well.

Anagnostakis and Greenwald [8] discuss multi-lateral tit-for-tat trading
from an incentive-compatibility perspective. Using simulations, the authors
show that their proposed algorithm provides real incentives in the sense that
free riders experience a poor service. In contrast, we focus on the effect of
inter-swarm trading on the throughput in real peer-to-peer networks, and
provide simulations based on BitTorrent data. Moreover, we address prac-
tically relevant issues and present a distributed implementation that solves
the problem of redundant downloads, coordination, and scalability, and also
preserves user privacy in the sense that only the peers that engage in active
trades with a specific peer learn about this peer’s interests.

11.3. HIDDEN COMMUNICATION IN PEER-TO-PEER SYSTEMS 153

11.3 Hidden Communication in Peer-to-Peer Systems

There are many use cases for steganography, and several related areas.1 A
well known recent case of steganography are modern color laser printers that
add tiny yellow dots to each page to encode the printer’s serial number, as
well as date and time information [88].

The known history of steganography dates back to Ancient Greece; the
link to computing probably dates back to 1983 when Simmons [90] formu-
lated the prisoner’s problem where two prisoners should hatch an escape plan
while being monitored by the warden. Hopper studies steganography from
a cryptographic perspective in [48]. Chapter 3 on symmetric-key steganog-
raphy investigates the setting where two parties that share a secret would
like to exchange hidden messages over a monitored public channel. This set-
ting differs from our work in that both parties are mutually aware of each
other’s type, and that the communication is not limited. Cachin [23] pro-
poses an information-theoretic model, and provides a universal information
hiding scheme for the symmetric-key setting. Contrary to our work, public-
key steganography [17, 48] studies the setting where the sender and receiver
do not share a secret key. Another branch of steganography studies informa-
tion hiding in media files such as images or movies. Media files are especially
suited for hiding information since they are large and since human perception
easily fails to detect minor modifications (see [53] for a high level overview).
Steganography is also used in digital rights management (DRM) and digital
watermarking.

Closely related research on secret handshakes was conducted by Balfanz
et al. in [18] and followed, among others, by Tsudik and Xu [95], and Jarecki
and Liu [49]. Secret handshakes are protocols that allow the participants to
establish a secure and anonymous communication channel only if they are all
members of the same group. In contrast to the settings studied in [18, 95, 49],
where the secret handshake is interwoven with an ordinary handshake, a
conspirer in our setting cannot initiate a secret handshake by tweaking the
ordinary handshake, or by sending an additional message over the standard
communication channel, because this would be an illegal, observable devi-
ation from the imposed protocol. We overcome this problem by means of
steganographic channels. In that sense, our steganographic handshake can
be viewed as a secret handshake conducted on steganographic channels.

Research on anonymity in networks relates to our work in that anonymity
also facilitates committing illegal actions without being punished by an au-
thority. However, whereas anonymity and privacy have been classic design

1A shibboleth, e.g., can be seen as the other side of the medal of a steganographic
handshake, in the sense that the sender unintentionally reveals his identity to everybody,
for instance by pronouncing a word in a peculiar way.

154 CHAPTER 11. RELATED WORK

goals of many p2p systems (e.g., Freenet [26]), there has been little research
on steganography in the context of p2p networks. Most existing work essen-
tially uses steganography to hide information in (large) files. In particular,
Tsolis et al. [94] propose to use watermarking for copyright protection in p2p
systems, and Li et al. [58] propose to hide information in torrent meta files.

Arguably the most closely related work is due to Bickson [20] who shows
how to hide content in Gnutella queries to broadcast a message that can
only be decrypted by peers that share the sender’s secret. In contrast to
his work, we do not hide information in media or torrent files, nor in query
messages, but exploit the protocol itself. Furthermore, our approach also
works in (BitTorrent-like) overlay networks where no lookup mechanism ex-
ists. Finally, we also study the feasibility of steganographic handshakes and
broadcasts under several monitoring levels.

Chapter 12

Concluding Remarks

The first part of this thesis shows that it is hard for a mechanism designer to
compute an optimal implementation of a strategy profile region in a normal
form game with payments, at least in a uniform model. The leverage of a
game measures the extent to which the game can be harnessed by either a
benevolent or a malicious mechanism designer. Unfortunately, computing
the leverage is hard in general as well.

Concerning the implications of our findings, we would like to stress that
the payments offered by a mechanism designer need not be money. All our
results are applicable if the mechanism designer can offer a kind of reward
that adds the desired value to a respective game outcome. This may be
an increased quality of service, or the provision of another good. Al Capone
could, e.g., offer the prisoners in the extended Prisoner’s Dilemma to advance
in the hierarchy of his gang if they both remain silent. A natural extension of
our theory of implementation could be to incorporate negative payments, i.e.,
punishments, that can also be used by a mechanism designer to manipulate
games in her favor.

The second part of this thesis indicates that the inalienable convenience
promised by transactional memory in concurrent environments comes with
the danger that selfishness degrades the performance of multicore systems:
the analysis of contention managers discloses that most TM systems offer
wrong incentives to programmers, and encourage them to make transactions
large rather than fine grained. Priority-based CMs are prone to be corrupted
unless they are based on time only. CMs not based on priority seem to fea-
ture incentive compatibility more naturally. We therefore conjecture that by
combining randomized conflict resolving with a time-based priority mecha-
nism, chances of finding an efficient, GPI compatible CM are high. Recent
work by Schneider et al. [87] can be seen as a successful step in this direction.

156 CHAPTER 12. CONCLUDING REMARKS

Their contention management policy RandomizedRounds assigns a random
priority to a transaction when it is started or re-started. While this policy
proves to give good guarantees on the makespan of a set of transactions, a
programmer cannot boost a transaction’s priority by making it longer.

An alternative look at GPI compatibility is that contention managers with
this property allow a programmer to draw conclusions from a single thread’s
performance to that of the entire application. Thus, in GPI compatible
systems, threads can be tuned individually by a try-and-evaluate approach,
whereas without this property, an application must be re-evaluated as a whole
to decide whether a modification was beneficial or not. We consider this a
huge advantage of GPI compatible systems for software optimization.

Apart from concurrency control for multiple threads within the same
process, we see several other domains where transactional memory could
also play an important role in the future. Transactional memory might be
used for managing access to system wide resources (files, system variables,
DBs) or also inter-process communication beyond the boundaries of a single
computer. In such settings, incentive compatibility is crucial in order to
achieve a maximal system performance.

As transactional memory is still in the fledgling states—the first commer-
cial processors with transactional memory support in hardware have been
released at the end of 2011—almost no large scale applications based on
transactional memory have been built so far. Thus, the problems of incen-
tives have not cropped up in real applications yet, or at least, they have not
been accounted to the lack of beneficial incentives. The next years of con-
current computing will show how severely the incentive deficiencies impact
the performance of real systems. The analysis of large TM applications will
provide insights into what the actual efficiency loss due to GPI incompatibil-
ity is in existing systems, and how accurate the model of selfish, independent
programmers is.

In the third part of this thesis, we argue that peer-to-peer file sharing is a
prime example of a popular system where taking the participants’ selfishness
into account is crucial for the success of the protocol. Inter-swarm cyclic
trading can boost the market liquidity of a tit-for-tat based file sharing sys-
tem substantially. Such a system constitutes a feasible incentive-compatible
candidate for a next generation file sharing system after BitTorrent.

The generalization of the basic tit-for-tat concept to trading on cycles has
interesting game-theoretic implications. For example, it becomes rational for
a peer to stay in a swarm after the download is complete, as the acquired
content can still be used in cross-swarm trades. This is in stark contrast to bi-
lateral intra-swarm barter, where peers do not have an incentive to offer such
content. Thus, the introduction of inter-swarm trades could motivate users
to stay in swarms longer, and thereby increase the availability of content.

157

More work is needed to fully understand such economical aspects of trad-
ing on cycles: New forms of strategic behavior may hurt the system perfor-
mance, e.g., a selfish peer may prefer shorter trading cycles because shorter
cycles are easier to find, require less management overhead, and may be more
stable. Moreover, while we discussed multiple optimizations and refinements
of the basic trading policy, there are aspects of the protocol that might still
be improved in future work, e.g., the bandwidth allocation to the different
cycles. This can result in additional performance gains.

In most economic systems, goods are exchanged for money. The main
reason is that money helps to overcome problems of liquidity: money provides
flexibility as any service offered can be redeemed with any other person who
accepts money. Money provides temporal freedom in that a surplus from
imbalanced bartering can be stored and redeemed in future transactions.
However, barter continues to exist in different forms, e.g., corporate barter,
neighborhood barter markets,1 or organ donation barter.2 Moreover, the
advent of the Internet has opened new possibilities and it has revived barter
markets. The Internet serves as a catalyst and platform for various forms of
barter-based trading like home exchange, a website that allows its users to
swap their home for a few weeks. Cyclic trading could enhance any of the
mentioned barter system, also beyond the realm of file sharing.

A next-generation file sharing protocol, like the proposed cyclic tit-for-
tat protocol, can supersede BitTorrent in a smooth and incentive-compatible
transition by means of a steganographic handshake. Moreover, a subset of
peers can use a hidden broadcast primitive to coordinate their actions in
secrecy.

While we disclosed several steganographic channels in p2p protocols
and successfully exploited them to achieve a steganographic handshake and
broadcast in BitTorrent-like p2p systems, most of the channels that we dis-
cussed can be encountered not only in p2p protocols, but in many network
protocols in general. Permuting packet sequences and introducing artificial
delays are potential mechanisms for hidden communication in any network
protocol. The techniques that we used can be naturally adapted, or extended
to secretly communicate in a variety of network protocols.

As a last remark, we would like to point out that one of the most dif-
ficult aspects of game theory and mechanism design is the modelling part.
When applying game theory one has to be aware of the limitations of the
used models and the derived results: in many real situations the parties in-
volved cannot be determined completely, let alone the exact utility of each

1See for instance http://www.huffingtonpost.com/kirsten-dirksen/barter-markets-
can-tradin_b_255545.html for a report on barter markets in Barcelona.

2Since monetary trade with human organs is prohibited by law, economists have de-
veloped organ donation markets that rely on direct—or even multi-lateral—trades (see,
e.g., the 2007 Nobel Memorial Prize in Economics).

158 CHAPTER 12. CONCLUDING REMARKS

participant for each outcome. Without this knowledge however, neither our
benevolent nor our malicious mechanism designer from Part I, for instance,
is able to compute an optimal payment distribution of its available incen-
tives. Moreover, a situation might change unexpectedly resulting in adapted
utilities of the players and the carefully calculated payments will not lead to
the desired outcome. Behavioral assumptions on the nature of the players
are usually stark simplifications of human decision makers. For example, ex-
periments show that people regularly refrain from maximizing their expected
utility, e.g., people prefer a sure gain to a higher expected gain if the latter
includes the risk of winning nothing (certainty effect). Moreover, in most
real-life game situations, the participants have rarely full knowledge of all
strategies and outcomes. Further, finding the optimal strategy of a game
requires an investment that people are often not prepared to make, if the
alternative is to settle for a decent outcome without much effort. For exam-
ple, most people do not immediately cancel their phone or Internet service
subscription and apply for a new subscription at the end of a subscription
period, although they could profit from doing so. A model can only try to
capture some of the fundamental characteristics and aspects of a system,
hoping to allow for a rigorous analysis and best possible solutions.

Despite the obvious problems, we are optimistic that game theory pro-
vides useful tools especially for the design of distributed systems, since players
are not actually human beings but rather computers that are programmed
and controlled by humans. Thus, the strategy space is more predictable and
smaller than in a general game theoretic setting. As the positive example
of p2p file sharing illustrates, game theoretic analyses and mechanism de-
sign can provide crucial intuition and guidance in the design of distributed
systems.

Bibliography

[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Infor-
mation Systems. In Proc. 9th Conference on Cooperative Information
Systems (CoopIS), pages 179–194, 2001.

[2] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Infor-
mation System. In Proc. 10th ACM Conference on Information and
Knowledge Management (CIKM), pages 310–317, 2001.

[3] E. Adar and B. A. Huberman. Free Riding on Gnutella. Xerox, 2001.

[4] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung. Network Information Flow.
IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[5] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR Fault Tolerance for Cooperative Services. In Proc.
20th ACM Symposium on Operating Systems Principles (SOSP), pages
45–58, 2005.

[6] S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann.
Exact Price of Anarchy for Polynomial Congestion Games. In Proc.
23rd Symposium on Theoretical Aspects of Computer Science (STACS),
pages 218–229, 2006.

[7] N. Alon, D. Moshkovitz, and M. Safra. Algorithmic Construction of Sets
for k-Restrictions. ACM Transactions on Algorithms (TALG), pages
153–177, 2006.

[8] K. Anagnostakis and M. Greenwald. Exchange-based Incentive Mech-
anisms for Peer-to-Peer File Sharing. In Proc. 24th International Con-
ference on Distributed Computing Systems (ICDCS), 2004.

[9] C. Aperjis, M. Freedman, and R. Johari. A Comparison of Bilateral and
Multilateral Exchanges for Peer-Assisted Content Distribution. In Proc.

159

160 BIBLIOGRAPHY

Workshop on Network Control and Optimization (NetCOOP), pages 1–
8, 2008.

[10] I. Ashlagi, D. Monderer, and M. Tennenholtz. Mediators in Position
Auctions. Games and Economic Behavior, 67(1):2–21, 2009.

[11] J. Aspnes, K. Chang, and A. Yampolskiy. Inoculation Strategies for
Victims of Viruses and the Sum-Of-Squares Partition Problem. In Proc.
16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 43–52, 2005.

[12] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional Con-
tention Management as a Non-Clairvoyant Scheduling Problem. In Proc.
25th ACM Symposium on Principles of Distributed Computing (PODC),
pages 308–315, 2006.

[13] R. J. Aumann. Subjectivity and Correlation in Randomized Strategies.
Journal of Mathematical Economics, 1(1):67–96, 1974.

[14] M. Babaioff, M. Feldman, and N. Nisan. Combinatorial Agency. In
Proc. 7th ACM Conference on Electronic Commerce (EC), pages 18–28,
2006.

[15] M. Babaioff, M. Feldman, and N. Nisan. Mixed strategies in combi-
natorial agency. In Proc. 2nd International Workshop on Internet and
Network Economics (WINE), pages 353–364, 2006.

[16] M. Babaioff, R. Kleinberg, and C. H. Papadimitriou. Congestion Games
with Malicious Players. In Proc. 8th ACM Conference on Electronic
Commerce (EC), pages 103–112, 2007.

[17] M. Backes and C. Cachin. Public-Key Steganography with Active At-
tacks. In Proc. 2nd Theory of Cryptography Conference (TCC), pages
210–226, 2005.

[18] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H.-C.
Wong. Secret Handshakes from Pairing-Based Key Agreements. In Proc.
IEEE Symposium on Security and Privacy (SP), pages 180–196, 2003.

[19] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In Ad-
vances in Cryptology (EUROCRYPT), 1994.

[20] D. Bickson. Steganographic Communications Using the Gnutella Net-
work. Master’s thesis, Hebrew University of Jerusalem, 2003.

BIBLIOGRAPHY 161

[21] V. Boyko. On the Security Properties of OAEP as an All-or-Nothing
Transform. In Advances in Cryptology (CRYPTO), pages 503–518, 1999.

[22] M. Bradonjic, G. Ercal-Ozkaya, A. Meyerson, and A. Roytman. On the
Price of Mediation. In Proc. ACM Conference on Electronic Commerce
(EC), pages 315–324, 2009.

[23] C. Cachin. An Information-theoretic Model for Steganography. Infor-
mation and Computation, 192(1):41–56, 2004.

[24] G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite
Congestion Games. In Proc. 37th ACM Symposium on Theory of com-
puting (STOC), pages 67–73, 2005.

[25] G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite
Congestion Games. In Proc. 37th Annual ACM Symposium on Theory
of Computing (STOC), pages 67–73, 2005.

[26] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System. In
International Workshop on Designing Privacy Enhancing Technologies,
pages 46–66, 2001.

[27] R. Cole, Y. Dodis, and T. Roughgarden. How Much Can Taxes Help
Selfish Routing? In Proc. 4th ACM Conference on Electronic Commerce
(EC), pages 98–107, 2003.

[28] R. Cole, Y. Dodis, and T. Roughgarden. Pricing Network Edges for
Heterogeneous Selfish Users. In Proc. 35th Annual ACM Symposium on
Theory of Computing (STOC), pages 521–530, 2003.

[29] R. K. Dash, N. R. Jennings, and D. C. Parkes. Computational-
Mechanism Design: A Call to Arms. IEEE Intelligent Systems, pages
40–47, November 2003.

[30] P. Dybvig and C. Spatt. Adoption Externalities as Public Goods. Jour-
nal of Public Economics, 20:231–247, 1983.

[31] R. Eidenbenz, T. Locher, S. Schmid, and R. Wattenhofer. Boosting Mar-
ket Liquidity of Peer-to-Peer Systems Through Cyclic Trading. Under
submission, 2012.

[32] R. Eidenbenz, T. Locher, and R. Wattenhofer. Hidden Communica-
tion in P2P Networks: Steganographic Handshake and Broadcast. In
Proc. 30th IEEE International Conference on Computer Communica-
tions (INFOCOM), 2011.

162 BIBLIOGRAPHY

[33] R. Eidenbenz, Y. A. Oswald, S. Schmid, and R. Wattenhofer. Manipu-
lation in Games. In Proc. 18th International Symposium on Algorithms
and Computation (ISAAC), 2007.

[34] R. Eidenbenz, Y. A. Oswald, S. Schmid, and R. Wattenhofer. Mecha-
nism Design by Creditability. In Proc. 1st International Conference on
Combinatorial Optimization and Applications (COCOA), 2007.

[35] R. Eidenbenz, Y. A. Pignolet, S. Schmid, and R. Wattenhofer. Cost and
Complexity of Harnessing Games with Payments. International Game
Theory Review (IGTR), 13(1), 2011.

[36] R. Eidenbenz and S. Schmid. Combinatorial Agency with Audits. In
Proc. IEEE International Conference on Game Theory for Networks
(GameNets), 2009.

[37] R. Eidenbenz and R. Wattenhofer. Good Programming in Transactional
Memory: Game Theory Meets Multicore Architecture. Theoretical Com-
puter Science, 412(32):4136–4150, 2011.

[38] P. Erdős and A. Rényi. On Random Graphs. Publicationes Mathemati-
cae, 6:290–297, 1959.

[39] P. Erdős and A. Rényi. On the Evolution of Random Graphs. Publica-
tion of the Mathematical Institute of the Hungarian Academy of Science,
5:17–61, 1960.

[40] U. Feige. A Threshold of logn for Approximating Set Cover. Journal of
the ACM, pages 634–652, 1998.

[41] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions. In Proc. 6th International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, pages 1–13, 2002.

[42] L. Gao and J. Rexford. Stable Internet Routing Without Global Coor-
dination. IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

[43] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Transac-
tional Contention Managers. In Proc. 24th ACM Symposium on Princi-
ples of Distributed Computing (PODC), pages 258–264, 2005.

[44] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements,
Analysis, and Modeling of BitTorrent-like Systems. In Proc. 5th ACM
SIGCOMM Conference on Internet Measurement (IMC), 2005.

BIBLIOGRAPHY 163

[45] M. Herlihy. The Multicore Revolution: the Challenges for Theory. In
Proc. 27th International Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), pages 1–8, 2007.

[46] M. Herlihy, V. Luchangco, and M. Moir. A Flexible Framework for
Implementing Software Transactional Memory. SIGPLAN Notifications,
41(10):253–262, 2006.

[47] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. SIGARCH Computer Architec-
ture News, 21(2):289–300, 1993.

[48] N. J. Hopper. Toward a Theory of Steganography. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2004.

[49] S. Jarecki and X. Liu. Private Mutual Authentication and Conditional
Oblivious Transfer. In Advances in Cryptology (CRYPTO), pages 90–
107, 2009.

[50] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding. In
Proc. ACM SIGCOMM Workshop on Economics of Peer-to-Peer Sys-
tems (P2PECON), pages 116–121, 2005.

[51] S. M. Kakade, M. Kearns, and L. E. Ortiz. Graphical Economics. In
Proc. 17th Annual Conference on Learning Theory (COLT), pages 17–
32, 2004.

[52] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
Algorithm for Reputation Management in P2P Networks. In Proc. 12th
International Conference on World Wide Web (WWW), pages 640–651,
2003.

[53] G. C. Kessler. An Overview of Steganography for the Computer Foren-
sics Examiner. 6(3), 2004.

[54] R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio. A Sybil-
proof Indirect Reciprocity Mechanism for Peer-to-Peer Networks. In
Proc. 28th IEEE International Conference on Computer Communica-
tions (INFOCOM), 2009.

[55] R. Lavi and C. Swamy. Truthful and Near-optimal Mechanism Design
via Linear Programming. In Proc. 46th IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 595–604, 2005.

[56] E. Lee. The Problem with Threads. Computer, 39(5):33–42, 2006.

164 BIBLIOGRAPHY

[57] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. Bittorrent is
an Auction: Analyzing and Improving BitTorrent’s Incentives. In Proc.
ACM Conference on Data Communication (SIGCOMM), pages 243–254,
2008.

[58] Z. Li, X. Sun, B. Wang, and X. Wang. A Steganography Scheme in P2P
Network. In Proc. 4th International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing (IIH-MSP), pages 20–24,
2008.

[59] G. Linden, B. Smith, and J. York. Amazon.com Recommenda-
tions: Item-to-Item Collaborative Filtering. Internet Computing, IEEE,
7(1):76 – 80, 2003.

[60] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in
BitTorrent is Cheap. In Proc. 5th Workshop on Hot Topics in Networks
(HotNets), 2006.

[61] T. Locher, S. Schmid, and R. Wattenhofer. Rescuing Tit-for-Tat with
Source Coding. In 7th IEEE International Conference on Peer-to-Peer
Computing (P2P), Galway, Ireland, 2007.

[62] D. B. Lomet. Process Structuring, Synchronization, and Recovery Using
Atomic Actions. SIGOPS Operating Systems Review, 11(2):128–137,
1977.

[63] E. Maskin. Review of Economic Studies. Nash Equilibrium and Welfare
Optimality, pages 23–38, 1999.

[64] E. Maskin and T. Sjöström. Handbook of Social Choice Theory and
Welfare (Implementation Theory). North-Holland, Amsterdam, 2002.

[65] D. Menasché, L. Massoulié, and D. Towsley. Reciprocity and Barter in
Peer-to-Peer Systems. In Proc. 19th IEEE International Conference on
Computer Communications (INFOCOM), 2010.

[66] D. Monderer and M. Tennenholtz. k-Implementation. Journal of Arti-
ficial Intelligence Research (JAIR), 21:37–62, 2004.

[67] D. Monderer and M. Tennenholtz. Strong Mediated Equilibrium. Arti-
ficial Intelligence, 173(1):180–195, 2009.

[68] T. Moscibroda and S. Schmid. On Mechanism Design Without Pay-
ments for Throughput Maximization. In Proc. 18th IEEE International
Conference on Computer Communication (INFOCOM), 2009.

BIBLIOGRAPHY 165

[69] T. Moscibroda, S. Schmid, and R. Wattenhofer. When Selfish meets
Evil: Byzantine Players in a Virus Inoculation Game. In Proc. 25th an-
nual ACM symposium on Principles of distributed computing (PODC),
pages 35–44, 2006.

[70] J. F. Nash. Equilibrium Points in n-Person Games. Proc. National
Academy of Sciences of the United States of America, 36(1):48–49, 1950.

[71] J. F. Nash. Non-Cooperative Games. The Annals of Mathematics,
54(2):286–295, 1951.

[72] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc.
31st ACM Symposium on Theory of Computing (STOC), pages 129–
140, 1999.

[73] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic
Game Theory. Cambridge, 2007.

[74] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, 1994.

[75] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani. Do Incentives Build Robustness in BitTorrent? In Proc. 4th
USENIX Symposium on Networked Systems Design & Implementation
(NSDI), 2007.

[76] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. Theory of
Computing Systems, 32(3):241–280, 1999.

[77] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz. Fault Tolerant
Mechanism Design. Artif. Intell., 172(15):1783–1799, 2008.

[78] A. Rahbar and O. Yang. PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing. IEEE Transactions on
Parallel and Distributed Systems, 18(4):460–473, 2007.

[79] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proc. ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 161–172, 2001.

[80] E. Resnick, Y. Bachrach, R. Meir, and J. S. Rosenschein. The Cost of
Stability in Network Flow Games. In Proc. Mathematical Foundations
of Computer Science (MFCS), pages 636–650, 2009.

166 BIBLIOGRAPHY

[81] J. S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994.

[82] T. Roughgarden. Stackelberg Scheduling Strategies. In Proc. ACM
Symposium on Theory of Computing (STOC), pages 104–113, 2001.

[83] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press,
2005.

[84] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Lo-
cation and Routing for Large-scale Peer-to-Peer Systems. In IFIP/ACM
Conference on Distributed Systems Platforms (Middleware), pages 329–
350, 2001.

[85] W. N. Scherer III and M. L. Scott. Contention Management in Dynamic
Software Transactional Memory. In PODC Workshop on Concurrency
and Synchronization in Java Programs (CSJP), 2004.

[86] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In Proc. 24th ACM Sym-
posium on Principles of Distributed Computing (PODC), pages 240–248,
2005.

[87] J. Schneider and R. Wattenhofer. Bounds On Contention Management
Algorithms. In Proc. 20th International Symposium on Algorithms and
Computation (ISAAC), pages 441–451, 2009.

[88] D. Schoen. Investigating Machine Identification Code Technology in
Color Laser Printers. The Electronic Frontier Foundation, www.eff.org,
2005.

[89] I. Segal. Contracting with Externalities. The Quarterly Journal of Eco-
nomics, 2:337–388, 1999.

[90] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel.
In Advances in Cryptology (CRYPTO), pages 51–67, 1983.

[91] R. Spiegler. Extracting Intercation-Created Surplus. Games and Eco-
nomic Behavior, 30:142–162, 2000.

[92] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. In Proc. ACM conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), pages
149–160, 2001.

BIBLIOGRAPHY 167

[93] M. Suchara, A. Fabrikant, and J. Rexford. BGP Safety with Spurious
Updates. In Proc. 30th IEEE International Conference on Computer
Communications (INFOCOM), pages 2966–2974, 2011.

[94] D. Tsolis, S. Sioutas, and T. Papatheodorou. Digital Watermarking
in Peer to Peer Networks. In Proc. 16th International Conference on
Digital Signal Processing (DSP), pages 1086–1090, 2009.

[95] G. Tsudik and S. Xu. A Flexible Framework for Secret Handshakes. In
Proc. 6th Workshop on Privacy Enhancing Technologies (PET), pages
295–315, 2006.

[96] R. van der Hofstad. Random Graphs and Complex Networks. Unpub-
lished manuscript, 2007.

[97] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A Se-
cure Economic Framework for Peer-to-Peer Resource Sharing. In Proc.
Workshop on Economics of Peer-to-Peer Systems, 2003.

[98] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross. Unraveling the BitTor-
rent Ecosystem. IEEE Transactions on Parallel and Distributed Sys-
tems, 22(7), 2010.

[99] X. Zhou, S. Gandhi, S. Suri, and H. Zheng. eBay in the Sky: Strategy-
Proof Wireless Spectrum Auctions. In Proc. 14th ACM International
Conference on Mobile Computing and Networking (MOBICOM), pages
2–13, 2008.

Curriculum Vitae

September 13, 1980 Born in Davos, Switzerland

1987–2000 Primary, secondary, and high schools in Davos
Platz/GR, Switzerland

2001 Drumming certificate, Drummer’s Collective,
New York, USA

2001–2007 Studies in computer science and political sci-
ence, ETH Zurich, Switzerland

March 2007 M.Sc. in computer science, ETH Zurich,
Switzerland

2004–2007 Software engineering, Triboni AG, Switzer-
land

2008–2012 Ph.D. student, research and teaching assis-
tant, Distributed Computing Group, Prof.
Roger Wattenhofer, ETH Zurich, Switzerland

