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Figure 1: Overview of the AEye interface. Images are positioned according to their location in the CLIP embedding space and
arranged in layers that the user can navigate by zooming. Top left: Dataset selector, Top middle: Search bar for semantic text
and image search. Top right: Show information about the application. Bottom right: Minimap of the embedding space.

ABSTRACT

Image datasets serve as the foundation for machine learning mod-
els in computer vision, significantly influencing model capabil-
ities, performance, and biases alongside architectural considera-
tions. Therefore, understanding the composition and distribution
of these datasets has become increasingly crucial. To address
the need for intuitive exploration of these datasets, we propose
AEye, an extensible and scalable visualization tool tailored to im-
age datasets. AEye utilizes a contrastively trained model to embed
images into semantically meaningful high-dimensional represen-
tations, facilitating data clustering and organization. To visualize
the high-dimensional representations, we project them onto a two-
dimensional plane and arrange images in layers so users can seam-
lessly navigate and explore them interactively. AEye facilitates se-
mantic search functionalities for both text and image queries, en-
abling users to search for content. We open-source the codebase
for AEye, and provide a simple configuration to add datasets.

Index Terms: Image embeddings, image visualization, contrastive
learning, semantic search.

1 INTRODUCTION

In today’s data-driven landscape, the role of data in shaping the
performance of artificial intelligence (AI) applications cannot be

overstated. The quality, quantity, and complexity of the data signif-
icantly affect the performance and reliability of machine learning
models across various domains. As datasets continue to grow in
size, researchers and practitioners face challenges in understanding
and extracting meaningful insights, such as identifying patterns or
outliers in the datasets. Traditional methods of data analysis often
fall short when analyzing large-scale image datasets, highlighting
the need for novel approaches to data exploration and visualization.

Effectively visualizing large-scale image datasets requires ap-
proaches that can distill visual information into semantically mean-
ingful representations, enabling users to uncover patterns, trends,
and anomalies within the data. In response to these challenges, we
introduce AEye — a novel approach to visualizing image datasets.
AEye leverages recent advancements in Al, specifically contrastive
learning techniques, to embed semantic information into high-
dimensional image representations. By projecting these representa-
tions onto a two-dimensional plane, AEye facilitates the visualiza-
tion of image datasets in a manner that aligns with human percep-
tion and intuition.

We present the design and implementation of AEye and demon-
strate its effectiveness in visualizing large image datasets. Through
a series of demonstrative use cases, we illustrate how AEye en-
ables researchers and practitioners to gain deeper insights into im-
age data, uncover hidden patterns, and facilitate informed decision-
making. By providing Al-guided visualization, AEye offers a prac-
tical solution for visualizing large-scale image datasets and lets re-
searchers and laymen extract insights from their data.

AEye is available at aeye.ethz.ch.
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Figure 2: Architecture overview of AEye. Images are embedded with CLIP, stored in a vector database, and projected to a two-dimensional space
with a UMAP projection (Section 3.1). The resulting positions are used for the visualization and a tiling and clustering module that computes
representatives for each layer (Section 3.2). The semantic search takes text or image queries and uses CLIP to encode them. The vector
database is used to find the nearest neighbor in the embedding space (Section 3.3).

2 RELATED WORK

Large-scale data visualization is often facilitated by clustered and
hierarchical representations [13, 12, 5]. Dimensionality reduction
techniques such as Principal Component Analysis (PCA) [19], t-
Distributed Stochastic Neighbor Embedding (t-SNE) [15] or Uni-
form Manifold Approximation and Projection (UMAP) [8] have
previously been applied for data visualization [11, 1]. These
techniques map high-dimensional data points to lower dimensions
while clustering the data and making inherent patterns in the data
more apparent. In our work, we choose UMAP for dimensionality
reduction as it is more scalable than PCA and t-SNE while preserv-
ing local and global structures. Our work also touches upon the
intuitive search for biases and imbalances in image datasets, which
have previously been observed, and techniques were proposed to
uncover and combat them [16, 4, 18].

To obtain high-dimensional image embeddings, we use Con-
trastive Language-Image Pretraining (CLIP) [9], which learns to
understand images and text simultaneously by embedding them in
a shared latent space. CLIP is trained on a diverse range of image-
text pairs from the internet, enabling it to learn robust and gener-
alized representations that capture the semantic content of images
across a wide spectrum of concepts and categories. CLIP embed-
dings capture rich semantic information for images and text, en-
abling a wide range of tasks such as image classification, image
retrieval, and text-to-image generation [10, 3] without task-specific
supervision. We use the pretrained OpenAl CLIP model to embed
all images. CLIP and other contrastive learning-based approaches
have been used for image visualization before [2, 20], mostly as
point cloud visualizations.

The visualization technique most closely aligned to ours is the
Embedding Projector [14], which also visualizes embeddings gen-
erated by ML models with projected positions and offers a similar
navigation technique consisting of zooming and panning. While it
can also display images at the projected positions, it does not offer
the layered visualization approach we provide.

AEye builds on these previous works and adds novel methods to
show only a representative selection of images with a layered visu-
alization style. Using contrastive learning methods, we can ensure
that embeddings maintain semantic information and facilitate addi-
tional search features. Lastly, our approach scales to larger datasets
in terms of the visualization itself, which always remains compre-
hensible with not too many images on screen, and computational
resources, which directly benefit from the former.

3 AEYE APPLICATION

AEye is a web-based application designed to facilitate the explo-
ration and comprehension of large-scale image datasets. At its core,
AEye leverages the CLIP (Contrastive Language-Image Pretrain-
ing) [9] embedding space to organize and visualize images in a
two-dimensional plane. The positions of images within this embed-
ding space are determined by their semantic similarity, allowing for
intuitive navigation and exploration.

An overview of the AEye processing steps can be seen in Fig-
ure 2. In a data preprocessing stage, we compute CLIP embed-
dings for all images in the dataset, which are then stored in a vec-
tor database for fast nearest-neighbor lookups, which the semantic
search relies on. The high-dimensional CLIP embeddings are then
projected to two dimensions using the UMAP algorithm [8] to find
spatial positions for all images. To accommodate the limited screen
space and the large number of images in the dataset, AEye employs
a layered visualization approach. Multiple layers are created that
the user can navigate through. The last layer contains all images of
the dataset at their projected positions, while the other layers only
contain a selection of representatives. As the user zooms in, the
view transitions from layer to layer while zooming in on a continu-
ously smaller area of the layers, which lets us populate them more
and more densely while limiting the number of images on screen at
any time. The representatives are chosen as the centers of a cluster-
ing we achieve with a modified k-means clustering algorithm [7].
This ensures that each layer provides a condensed yet informative
dataset view. The process is outlined in more detail in Section 3.2.
Lastly, we can compute Al-generated captions with LLaVA [6] for
all generated images in the preprocessing stage.

The visualization starts with a view of the first layer, which dis-
plays representative images from each cluster in the embedding
space. As the user interacts with the visualization, they have the
ability to zoom in on specific regions of interest, progressively re-
vealing more detailed subsets of images from deeper layers. This
interactive exploration enables users to uncover hidden patterns,
clusters, and relationships within the dataset, empowering them to
gain insights into the underlying structure of the data.

3.1 CLIP Embeddings and UMap Projection

While CLIP embeddings effectively preserve the semantic mean-
ing of images by encoding rich semantic information learned dur-
ing pretraining [10], their high dimensionality, typically 512 dimen-
sions, poses challenges for direct visualization. The sheer number
of dimensions hinders intuitive interpretation and exploration of the
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Figure 3: Visualization of the tiling hierarchy. Representatives for
level O (blue dots) are obtained by clustering all points with k-means.
Only the points closest to the centroids (crosses) are retained. In the
next level, a k-means clustering is computed on every sub-tile, with
the restriction of fixed centroids for the positions of representatives
from the previous layers. Again, the closest points to the centroids
are retained. This process finishes when all points can be kept for
one level. Pseudocode can be found in Algorithm 1.

embedding space. Therefore, we employ dimensionality reduction
techniques to project them onto a two-dimensional plane to facil-
itate the visualization based on CLIP embeddings. This transfor-
mation enables us to represent the complex semantic relationships
encoded in the embeddings in a more compact format. Among var-
ious dimensionality reduction techniques, we select UMAP due to
its ability to preserve the data’s local and global structure. Unlike
traditional methods like PCA, which primarily focus on preserving
variance, UMAP aims to capture the underlying manifold struc-
ture of the data, ensuring that nearby points in the high-dimensional
space remain close together in the low-dimensional projection. An
example of the projected embedding spaces can be seen on the
minimap on the bottom right of Figure 1, the right side of Fig-
ure 2, as well as the bottom right of Figure 4. Projections like these
are a common technique for the visualization of high-dimensional
data [15, 14] as the resulting point clouds usually exhibit a nicely
clustered view of the embedding space. We use the projected em-
beddings as image positions throughout the application. As we can-
not always show all images on screen, we further develop meth-
ods to select which images to show on the current layer through a
clustering-based approach.

3.2 Choosing Representative Images

Large-scale image datasets contain an overwhelming number of
images, necessitating a strategic approach to presenting a subset
of images to users. We adopt a hierarchical strategy comprising
multiple layers to address this challenge. In the initial layer, users
encounter a limited set of representative images. By zooming in,
users can traverse through these layers, progressively revealing ad-
ditional images until the final layer displays all images. This hi-
erarchical approach effectively manages the number of images on
screen, resulting in a comprehensible visualization. The selection
of representative images is guided by several criteria: they should
provide a coarse-grained overview of the embedding space, main-
tain sufficient spacing between each other to avoid too many over-
lapping images, and reflect the characteristics of images within their
respective area. Moreover, continuity in representation across lay-

Algorithm 1 Computation of Representatives

Require: Image Dataset /, threshold k
E(i) < CLIP(i) Yiel
pos : i — R? <~ UMAP(E)
d < number of layers such that tiles on the last layer contain at most k images.
for/ < 0tod—1do
for tile 7 in 7; do > T; ~ all tiles in layer /
Rprev «— {r€Ry | ' €Ty,I' <land r € A(t)} > A(t) ~ area covered by tile ¢
centersgyed < {pos(r) | 7 € Rprev }
I <~ {iel|pos(i) €A(r)}
centers < k-mean(I;, centersixed, k)
R < {argmin,;, (dist(pos(i),c)) | c € centers}
end for
end for

> images in current tile
> k-mean with fixed centers

ers is ensured by maintaining representatives from previous layers
for all following ones. By doing so, images presented to the user in
a previous layer do not disappear when zooming in but instead stay
in place. We achieve these objectives through a clustering-based
approach and tiling of the projected embedding space.

Figure 3 shows an overview of the proposed approach. Each
layer consists of a regular grid of tiles, with the side length halv-
ing from one layer to the next. Within each tile, a fixed predefined
number k of images serves as representatives, approximately cor-
responding to the number of images visible on screen at any time.
Selecting representatives is done by traversing layers from top to
bottom and applying a k-means clustering algorithm with k cen-
ters to each tile. Representatives are then chosen as the images
closest to the cluster centers to ensure that they reflect the under-
lying structure of the embedding space. To maintain consistency
in representatives across layers, we modify the k-mean algorithm
by retaining the positions of representatives from previous layers
as fixed centroids throughout the algorithm’s execution. A detailed
algorithm description in pseudocode is presented in Algorithm 1.
When transitioning from layer to layer, the viewport’s size is scaled
proportionally with the size of the tiles, meaning that the viewport
approximately covers the same number of tiles in every layer. As
we limit the number of representative images per tile by &, the num-
ber of images on screen at the same time does not get too large.

This approach yields meaningful representatives, maintains scal-
ability, and improves performance in the web application. While
the computation of the k-mean algorithm poses a significant com-
putational burden, especially in the first layer, subsequent layers
benefit from its application to smaller subsets, albeit more numer-
ous. These computations can be efficiently parallelized, and the
number of required layers grows insignificantly with larger dataset
sizes. Our demonstration webpage accommodates image datasets
exceeding 100k images, where the preprocessing for the tiling and
clustering took about as long as the generation of CLIP embed-
dings. This was on commodity hardware and took only few hours,
even on the biggest datasets. As the number of layers is expected
to scale logarithmically with the number of images, there will never
be a need to transition through too many zoom layers. Additionally,
the generated tiling facilitates efficient data loading for the front
end. As users navigate through layers, each tile consistently occu-
pies a proportional screen space when in focus. These tiles serve
as subdivisions, simplifying the selective loading of necessary data
for visualization. The front end can request data for specific tiles,
optimizing resource utilization and enhancing user experience.

3.3 Semantic Search and Al Captions

Beyond exploring visualized data through spatial navigation, AEye
features semantic search functionality for text queries and images.
Semantic search leverages the rich semantic representations en-
coded by the CLIP model for text and images, enabling users to
retrieve relevant content easily, for example, with natural language.
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Figure 4: AEye view of the MNIST dataset. We observe that numbers
are clearly separated by the projected CLIP embeddings, resulting
in a meaningful clustering of the dataset. Similarly, the CelebA-HQ
dataset shows a clear distinction between men and women.

For text queries, the semantic search first embeds the user-provided
text query using the CLIP text encoder. Similarly, the CLIP im-
age encoder embeds the user-provided image for image queries. To
search for the nearest neighbor (with regard to cosine similarity),
we store all image embeddings that we generate in the preprocess-
ing stage in a vector database, more specifically, milvus [17]. Vec-
tor databases are specifically designed to handle high-dimensional
vector data and offer fast and scalable search capabilities. There-
fore, when querying the database, we can use existing datastruc-
tures created in the preprocessing stage and reply quickly with the
nearest neighbors sorted by similarity.

In addition to semantic search, AEye can also provide Al-
generated image captions by running a captioning model on all im-
ages in the preprocessing phase. We use LLaVA [6] for this pur-
pose, as it resulted in the most accurate and descriptive captions
in our testing, but other models can easily be integrated and used.
The captions provide valuable context and insights into the content
of the images, enriching the user experience and providing feed-
back on how the Al model “sees” an image. Further, the captioning
model is interchangeable, and the user can inspect the quality of
captions for the used model.

3.4 Interface Design

The user is initially presented with a few of the top layer of the
embedding space and a search bar for the semantic text and im-
age search in the center. If the user decides to submit a search
query, the view zooms in to the closest match in the embedding
space and shows the view depicted in Figure 5, with an example for
the MNIST dataset in Figure 4. For MNIST, we can clearly observe
a semantic clustering of numbers in the projected embedding space,
which lets us infer emerging patterns from the overview.

Users can further navigate the layered embedding space by
zooming and moving the viewport around. Blurred previews are
shown in the background to give a sense of the images in the next
layer. Clicking on an image results in the same view as provided
by the search, with more information provided by the dataset and
an Al-generated caption of the image, as well as the closest neigh-
bors in the CLIP embedding space. To stay oriented, a minimap
with an overview of the whole embedding space is provided in the
bottom right, as visible in Figure 1. Datasets can be selected on the
top left, and an information button on the top right shows a small
explanation for the application.

Figure 5: View of the application when searching for “a dog with
a horse.” The nearest neighbors in the embedding space are pre-
sented below the search result. In addition to metadata provided by
the dataset, an Al-generated caption of the image is shown.

3.5 Case Study

To demonstrate a possible use case for AEye, we consider a hypo-
thetical machine-learning practitioner working with the Common
Objects in Context (COCO) 2017 dataset. The practitioner aims
to improve their object detection model by first understanding the
data. The COCO 2017 dataset contains 163,000 images, making it
impractical to visualize all images at once or manually sift through
them. This highlights the need for a comprehensive tool. The prac-
titioner uses AEye to facilitate this process.

After the preprocessing, AEye produces its interactive visualiza-
tion of the dataset on a 2D plane, clustering similar images together.
This allows the practitioner to observe distinct clusters correspond-
ing to different object categories, such as “person,” “vehicle,” and
“animal,” revealing the distribution of categories and identifying
under- or overrepresented ones. Several outliers were also detected,
which, upon further examination, revealed labeling errors and un-
usual object combinations that could impact model performance.
The insights gained from AEye’s visualization enable the practi-
tioner to make informed decisions about the dataset. They identify
underrepresented categories needing augmentation and corrected
labeling anomalies, leading to a more balanced and accurate dataset
for training their object detection model.

4 CONCLUSION

AEye offers a comprehensive solution for visualizing large-scale
image datasets, leveraging contrastively trained embedding mod-
els for semantically rich representations. By incorporating hier-
archical tiling, clustered subspaces, and semantic search features
alongside Al-generated captions, AEye facilitates intuitive naviga-
tion and exploration of diverse image collections. The scalability
and extensibility of AEye enable researchers and other users to ex-
plore various datasets, from machine learning to general art col-
lections. With AEye, unlocking insights and uncovering patterns
within large-scale image datasets becomes both accessible and in-
sightful. A demonstration website with a selection of datasets, ! as
well as the source code, can be found online. 2

laeye.ethz.ch
Zhttps://github.com/ETH-DISCO/acye
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