
ETH Zurich – Distributed Computing Group

Roger Wattenhofer

Managing Dynamic Networks:
Distributed or Centralized Control?



Paul Baran



“On Distributed Communications” (1964)



“On Distributed Communications” (1964)



“On Distributed Communications” (1964)

1. Node & Edge Destruction

2. Distributed Routing





people stopped worrying
about the bomb!



Today: Inter-Data Center WANs

Think: Google, Amazon, Microsoft



U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

> 50% 
peak reduction

mean

Problem: Typical Network Utilization



Background
traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

mean

Problem: Typical Network Utilization



Background traffic

Non-background traffic

U
ti

liz
at

io
n

Time [1 Day]

peak before rate adaptation

peak after rate adaptation

> 50% 
peak reduction

Problem: Typical Network Utilization



1 2 3

567

1 2 3

567

BetterMPLS-TE

Another Problem: Online Routing Decisions

flow arrival order: A, B, C

each link can carry at most one flow (in both directions)

4

4



Software Defined Networks (SDNs)



WAN
switches

rate
allocation

network
configuration

[rate limiting] [forwarding plane update]

SWAN controller

traffic 
demand

topology,
traffic

[global optimization for high utilization]

Hosts

Dealing with Network Dynamics: The SWAN Project

[Hong et al., SIGCOMM 2013]



Solution: Multicommodity Flow LP

max 
𝑖
𝑓𝑖

0 ≤ 𝑓𝑖 ≤ 𝑑𝑖

 𝑖 𝑓𝑖(𝑒) ≤ 𝑐 𝑒

 
𝑢
𝑓𝑖 𝑢, 𝑣 = 

𝑤
𝑓𝑖 𝑣,𝑤

 
𝑣
𝑓𝑖(𝑠𝑖 , 𝑣) = 

𝑢
𝑓𝑖(𝑢, 𝑡𝑖) = 𝑓𝑖

Maximize throughput of flows 𝑓𝑖

Flow less than demand 𝑑𝑖

Flows less than capacity 𝑐(𝑒)

Flow conservation on inner 
nodes

Flow definition on source, 
destination



Network Dynamics



Problem: Consistent Updates

target state

𝑓1
𝑓2

𝑓2

𝑓1

𝑓1

𝑓2✘
𝑓2

𝑓1 ✘



Capacity-Consistent Updates

• Not directly, but maybe through intermediate states?

• Solution: Leave a fraction 𝑠 slack on each edge, less than 1/𝑠 steps

• Example: Slack = 1/3 of link capacity, 

𝑓1
𝑓2

target state

𝑓2

𝑓1



Example: Slack = 1/3 of link capacity

𝑓1

𝑓2

target state

𝑓2

𝑓1

 𝑓2 2

𝑓1

 𝑓2 2

 𝑓2 2

 𝑓2 2

𝑓1



Capacity-Consistent Updates

Alternatively: Try whether a solvable LP with 𝑘 steps exist, for 𝑘 = 1, 2, 3…

(Sum of flows in steps 𝑗 and 𝑗 + 1, together, must be less than capacity limit)

𝑓𝑖
0 ≤ 𝑓𝑖

𝑘

 
𝑖
max 𝑓𝑖

𝑗
𝑒 , 𝑓𝑖
𝑗+1
𝑒 ≤ 𝑐 𝑒

 
𝑢
𝑓𝑖
𝑗
𝑢, 𝑣 = 

𝑤
𝑓𝑖
𝑗
𝑣,𝑤

 
𝑣
𝑓𝑖
𝑗
(𝑠𝑖 , 𝑣) = 

𝑢
𝑓𝑖
𝑗
(𝑢, 𝑡𝑖) = 𝑓𝑖

𝑗

Only growing flows

Flow less than capacity

Flow conservation on inner 
nodes

Flow definition on source, 
destination

[Hong et al., SIGCOMM 2013]



Prototype Evaluation

Time [minutes]

Goodput
(normalized 
& stacked) 

Traffic: (∀DC-pair) 125 TCP flows per class

High utilization 
SWAN’s goodput: 

98% of an optimal method

Flexible sharing 
Interactive protected;

background rate-adapted

optimal linedips due to rate adaptation



Data-driven Evaluation of 40+ DCs

U
ti

liz
at

io
n



Another Problem: Straggler Switches

CDF of 100 updates on a switch, in seconds

Dionysus: Make updates dynamic, i.e., work around straggling switches

[Jin et al., SIGCOMM 2014]



Yet Another Problem: Memory Limits at Switches

Surprisingly, with memory limits, updates are difficult (NP-complete). 

Example: We want to swap all flows between two switches 𝑢 and 𝑣. 

Each switch has capacity 𝑐, and memory limit 𝑘. 

[Jin et al., SIGCOMM 2014]

𝑢

𝑐/2

𝑣

𝑘 − 1 𝑘 − 1

17

11

25

3 Σ = 𝑐



Updating Dynamic Networks: 

A Bigger Picture?



Consistency Space

[Mahajan & W, HotNets 2013]



Example

SDN Controller



Example

SDN Controller

v1 v2

[Reitblatt et al., SIGCOMM 2012]



Dependencies

Version Numbers

+ stronger packet coherence

– version number in packets

– switches need to store both versions 

v1 “Better” Solution

𝑢 𝑣 𝑥 𝑦

𝑢 𝑣 𝑥 𝑦

𝑦

𝑥



Minimum SDN Updates?



Minimum Updates: Another Example

𝑤

𝑢

𝑤

𝑣

or



Minimum vs. Minimal

No node can improve 
without hurting another 

node



Minimal Dependency Forest

Next: An algorithm to compute minimal dependency forest.



Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

old

newnew

old



Algorithm for Minimal Dependency Forest

• Each node in one of three states: old, new, and limbo (both old and new)

• Originally, destination node in new state, all other nodes in old state

• Invariant: No loop!

𝑑



Algorithm for Minimal Dependency Forest

Initialization

• Old node 𝑢: No loop* when adding new pointer, move node to limbo!

• This node 𝑢 will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide

𝑑(no loop)



Loop Detection

• Will a new rule u.new = v induce a loop?

– We know that the graph so far has no loops

– Any new loop must contain the edge (u,v)

• In other words, is node u now reachable from node v?

• Depth first search (DFS) at node v

– If we visit node u: the new rule induces a loop

– Else: no loop

u v

u v

new

new



Algorithm for Minimal Dependency Forest

• Limbo node 𝑢: Remove old pointer (move node to new)

• Consequence: Some old nodes 𝑣 might move to limbo!

• Node 𝑣 will be child of 𝑢 in dependency forest! 

𝑑(remove old)

(now: no loop)



Algorithm for Minimal Dependency Forest

Process terminates

• You can always move a node from limbo to new.

• Can you ever have old nodes but no limbo nodes? No, because…

…one can easily derive a contradiction! 

new

𝑑
old

new!



For a given consistency property, 
what is the minimal dependency possible?



Consistency Space

[Mahajan & W, HotNets 2013]



Multiple Destinations using Prefix-Based Routing

• No new “default” rule can be introduced without causing loops

• Solution: Rule-Dependency Graphs!

• Deciding if simple update schedule exists is hard!



Breaking Cycles

Insert 𝑢𝑤 Remove 𝑢𝑣 Insert 𝑣𝑢

Insert 𝑤𝑣 Remove 𝑣𝑤Remove 𝑤𝑢

Insert at 𝑤:
dest 𝑣: 𝑤𝑣

Remove at 𝑤: 
dest 𝑣: 𝑤𝑣



Summary



Thank You!
Questions & Comments?

www.disco.ethz.ch


