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1. Node & Edge Destruction
2. Distributed Routing
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Today: Inter-Data Center WANSs
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Problem: Typical Network Utilization
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Problem: Typical Network Utilization
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Another Problem: Online Routing Decisions

flow arrival order: A, B, C
each link can carry at most one flow (in both directions)

MPLS-TE Better



Software Defined Networks (SDNs)




Dealing with Network Dynamics: The SWAN Project

[global optimization for high utilization]
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[Hong et al., SIGCOMM 2013]



Solution: Multicommodity Flow LP

Maximize throughput of flows f; maxz: fi
i

Flow less than demand d; 0<f, <d;

Flows less than capacity c(e) Yifi(e) < c(e)

Flow conservation on inner Z fi(u,v) = 2 fi(v,w)

nodes u w

Flow definition on source, vai(si, V) = Z fitw,ty) = f;
u

destination



Network Dynamics



Problem: Consistent Updates

target state

initial state




Capacity-Consistent Updates

e Not directly, but maybe through intermediate states?

e Solution: Leave a fraction s slack on each edge, less than 1/s steps

e Example: Slack = 1/3 of link capacity,

initial state target state



Example: Slack = 1/3 of link capacity
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Capacity-Consistent Updates

Alternatively: Try whether a solvable LP with k steps exist, fork = 1,2,3 ...
(Sum of flows in steps j and j + 1, together, must be less than capacity limit)

Only growing flows <
Flow less than capacity Z max (ﬁ-j(e),fijﬂ(e)) < c(e)
i
Flow conservation on inner
nodes z fl.J (u,v) = Z fl.J (v, w)
u w
Flow definition on source,
destination z f;:] (Si,v) — z fi] (u’ ti) — fij
v u

[Hong et al., SIGCOMM 2013]



Prototype Evaluation

optimal line

dips due to rate adaptation

Goodput
(normalized
& stacked)

Time [minutes]

Traffic: (VDC-pair) 125 TCP flows per class

High utilization Flexible sharing

SWAN' s goodput: Interactive protected;
98% of an optimal method background rate-adapted




Data-driven Evaluation of 40+ DCs
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Another Problem: Straggler Switches

O 5 10 15 20 25 30

CDF of 100 updates on a switch, in seconds

Dionysus: Make updates dynamic, i.e., work around straggling switches

[Jin et al., SIGCOMM 2014]



Yet Another Problem: Memory Limits at Switches

Surprisingly, with memory limits, updates are difficult (NP-complete).
Example: We want to swap all flows between two switches u and v.
Each switch has capacity ¢, and memory limit k.

17

[Jin et al., SIGCOMM 2014]



Updating Dynamic Networks:

A Bigger Picture?



Consistency Space

None Self Downstream | Downstream (Global
subset all
Eventual Always
+ guaranteed
consistency
Drop [mpossible Add before
freedom remove
Memory Impossible Remove before
limit add
Loop Impossible Rule dep. forest | Rule dep. tree
freedom
Packet Impossible Per-flow ver. (Global ver,
coherence numbers numbers
Bandwidth Impossible Staged partial
limit [oves

[Mahajan & W, HotNets 2013]
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Dependencies

Version Numbers

u v x y

u v x y

+ stronger packet coherence
— version number in packets
— switches need to store both versions

“Better” Solution

<
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Minimum SDN Updates?



Minimum Updates: Another Example




No node can improve
without hurting another
node

Minimum vs. Minimal



Minimal Dependency Forest
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Next: An algorithm to compute minimal dependency forest.



Algorithm for Minimal Dependency Forest

e Each node in one of three states: old, new, and limbo (both old and new)




Algorithm for Minimal Dependency Forest

e Each node in one of three states: old, new, and limbo (both old and new)
e Originally, destination node in new state, all other nodes in old state
e Invariant: No loop!




Algorithm for Minimal Dependency Forest

Initialization

Old node u: No loop™ when adding new pointer, move node to limbo!
e This node u will be a root in dependency forest

*Loop Detection: Simple procedure, see next slide



Loop Detection

new

e Will a new rule u.new =vinduce a loop? ue@
— We know that the graph so far has no loops
— Any new loop must contain the edge (u,v)

* |n other words, is node u now reachable from node v?

e Depth first search (DFS) at node v
— If we visit node u: the new rule induces a loop
— Else: no loop



Algorithm for Minimal Dependency Forest

e [imbo node u: Remove old pointer (move node to new)
e Consequence: Some old nodes v might move to limbo!
e Node v will be child of u in dependency forest!




Algorithm for Minimal Dependency Forest

Process terminates

e You can always move a node from limbo to new.

e Can you ever have old nodes but no limbo nodes? No, because...

...one can easily derive a contradiction!



For a given consistency property,
what is the minimal dependency possible?



Consistency Space

None Self Downstream | Downstream (Global
subset all
Eventual Always
+ guaranteed
consistency
Drop [mpossible Add before
freedom remove
Memory Impossible Remove before
limit add
Loop Impossible Rule dep. forest | Rule dep. tree
freedom
Packet Impossible Per-flow ver. (Global ver,
coherence numbers numbers
Bandwidth Impossible Staged partial
limit [oves

[Mahajan & W, HotNets 2013]




Multiple Destinations using Prefix-Based Routing

Vv V

U * W u —

e No new “default” rule can be introduced without causing loops
e Solution: Rule-Dependency Graphs!
e Deciding if simple update schedule exists is hard!



Breaking Cycles

Vv V

Insert at w:

Insert u=>w Remove u=>v Insert v2>u
dest v: w=2v

Remove at w:
dest v: w=>v

Remove w=u Insert w=>v Remove v=>w




Summary
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Thank You!

Questions & Comments?

S a o
R

www.disco.ethz.ch




