
Transactional Memory: How to Perform Load Adaption in a Simple And
Distributed Manner

David Hasenfratz, Johannes Schneider, Roger Wattenhofer
Computer Engineering and Networks Laboratory,

ETH Zurich, 8092 Zurich, Switzerland,
hdavid@ee.ethz.ch,{jschneid, wattenhofer}@tik.ee.ethz.ch

ABSTRACT

We analyze and present different strategies to adapt the
load in transactional memory systems based on contention.
Our experimental results show a substantial overall im-
provement for our best performing strategies QuickAdapter
and AbortBackoff on the throughput compared to the
best existing contention management policies (without load
adaption). Opposed to prior work our load adapting
schemes are simple and fully distributed, while maintaining
the same throughput rate. Our theoretical analysis gives
insights into the usefulness of load adaption schemes. We
show a constant expected speed-up compared to systems
without load adaption in several important scenarios, but
also illustrate that the worst-case behavior can result in an
exponential increase in the running time.

KEYWORDS: algorithms, scheduling, transactions,

transactional memory, concurrency control, contention

management

1. INTRODUCTION

The era of computers with a single central processing unit
(CPU) seems to end. Practically any new notebook or desk-
top computer is equipped at least with a dual-core pro-
cessor. Quad-core chips are widely available and oct-core
chips are already being tested. The hardware development
is likely to continue at this pace. In contrast, a large frac-
tion of the available software today is not designed to make
full use out of these mighty processors. To be able to fully
utilize them, software development must focus more on is-

sues related to parallel programming. Programming with
multiple threads is demanding; It is considered difficult
and time-consuming to write efficient and correct parallel
code. Major defects such as deadlocks or race conditions
arise from locking shared resources (such as data objects)
wrongly.

Transactional memory promises to make parallel program-
ming easier. Instead of specifying exactly when to lock
and unlock each shared resource, a programmer only has
to define a section of code as transaction. The transac-
tional memory system should guarantee correctness and ef-
ficiency. Despite intensive research the success of transac-
tional memory has yet to come. One of the main issues is
performance. A key influence factor on the throughput of
a transactional memory system is the behavior when con-
flicts arise. A conflict occurs when a transaction demands
a resource that is in use by another transaction. The system
can resolve the conflict by aborting the transaction hold-
ing (or demanding) the resource or by delaying the transac-
tion requesting the resource. Wrong decisions have a dra-
matic influence on the overall performance, i.e. the system
might abort a long running transaction just a split second
before it commits, thereby wasting its entire work. The
system might also delay a short transaction for a long time
which itself uses a lot of resources and thereby blocks other
transactions. Almost all transactional memory systems as-
sign the task of resolving conflicts to a specific module
called contention manager. In the past a number of policies
have been proposed and evaluated, however, none of them
has performed really well for all tested applications. The
ones that do perform somewhat well, often lack progress
guarantees and thus might suffer from starvation or live-
lock. Furthermore, often non-trivial tuning of the system
and benchmark specific parameters are required to achieve
good performance. A general idea to improve performance

for many kinds of systems is to adapt the load of the sys-
tems, since frequently throughput peaks at a specific load.
Thus, it might be better to leave some of the resources,
such as network bandwidth or processor cores unused, to
reduce the coordination effort and prevent harmful interac-
tion, i.e. packet collisions and conflicts of transactions, re-
spectively. The approach of load control based on the con-
tention level has been investigated for transactional mem-
ory systems in prior work. However, as we shall see in the
related work section, the attempts so far are complex and
non-distributed. Any system relying on a central scheduler
will eventually face scalability issues. In particular, com-
plexity becomes an issue, if an actual implementation is to
be carried out in hardware. Our QuickAdapter and Abort-
Backoff algorithms are simple and fully distributed. Both
improve on the throughput (the number of completed trans-
actions per time) of existing policies without load adaption
and can keep up with more complex implementations for
load regulation.

Apart from our experimental evaluation we also com-
pare different strategies through analysis. In principle
any strategy chooses a subset of all available transactions
to run, postponing the others. Clearly, a good strategy
guesses/predicts a large set of non-conflicting transactions
and ideally, only delays those that would face a conflict
anyway. Thus, a strategy might assume conflicts among
transactions it has not observed. In general the effective-
ness of a strategy depends on the topology of the so called
conflict graph, which has transactions as nodes and edges
between nodes, where a conflict might occur. We look at
conflict graphs of typical benchmarks such as linked lists
and analyze the throughput of several strategies. If the load
adapting strategy correctly guesses the conflicts (or equiv-
alently the topology of the graph), the expected speed-up
can be a constant. However, if, for instance, a dense con-
flict graph is assumed, but the true conflict graph is sparse,
the worst-case behavior can be exponentially slower com-
pared to a scheme without load adaption.

2. RELATED WORK

Transactional memory came up about 20 years ago[11, 7].
It was extended to dynamic data structures and the use
of a contention manager as an independent module was
suggested [6]. Since then, many systems have been pro-
posed and large advances have been made, e.g. DSTM2
[5]. A variety of contention managers have been proposed
[9, 8, 10, 3] and and evaluated theoretically [10] and ex-
perimentally in [9]. From a theoretical point of view pick-
ing random priorities seems valuable to prevent chains of
waiting (or aborting) transactions. In practical systems, no
single contention manager outperformed all the others, but
a policy termed Polka yielded good overall results on many

benchmarks. However, it did not do that well in our evalu-
ation and also in [1]. Timestamping managers (e.g. [3, 9])
seem more robust and yield good results in a number of
scenarios. The idea of mixing contention managers has
been implemented in [4]. The evaluation was limited to red
black trees and the reported results were good for high con-
tention. However, for low contention the introduced over-
head might slow down the system considerably. In [12]
the idea of load balancing based on contention has been in-
vestigated. A thread approximates the current contention
based on the number of previous commits and aborts of
transactions it has executed. Recent aborts and commits
have a larger influence. When a transaction starts, it checks
whether its contention approximation is beyond a threshold
and resorts to a central scheduler that maintains a queue of
transactions. The first element in the queue can execute un-
til commit and is then removed. The evaluation was done
using an HTM and an STM system on similar benchmarks
as in this paper, e.g. RBTree, LinkedList, LFUCache. With
the load adaption scheme in [12] as well as with our sys-
tem the throughput is kept high, though (still) with some
decrease with increasing threads.1 Though the system of
[12] was designed to be simple, our system is simpler, en-
tirely decentral and does not rely heavily on setting param-
eters correctly. In the spirit of [12], in [2] a system was
proposed that also serializes transactions. Initially, a cen-
tral dispatcher assigns a transaction to a core. Each core
contains a queue of transactions. Suppose a transaction A
running on core 1 is aborted due to a transaction running
on core 2. In this case transaction A is appended to the
queue of 1 and the next transaction in the queue of core 1
is executed. Unfortunately, the results cannot be directly
related to our system and [12], since the evaluation was
done using a different benchmark. However, not surpris-
ingly their implementation also outperforms the compared
non-load adapting system. Still, a central instance sooner
or later becomes a bottleneck.

3. DISTRIBUTED LOAD ADAPTING POLI-
CIES

A requirement for our approach is to maintain scalability.
Thus, for instance, any kind of central scheduler or dis-
patcher is not acceptable. However, a thread may collect
information about its (executed) transactions and further-
more, if two transactions of two different threads conflict,
i.e. share data, then also the aggregated information of each
thread might be shared (until one of the transactions com-
mits). We investigate two different schemes from both a
practical and theoretical perspective. The first scheme uses
an exponential backoff based on the number of aborts, i.e.

1In [12], the benchmarks were only performed on a 2-way (dual core)
SMP machine, whereas we tested on a 16 core machine.

before a restart a transaction must wait a timespan exponen-
tial in the number of its aborts. In the second scheme, load
adaption is performed through delaying a transaction until
some other (conflicting) transaction(s) have committed.

4. THEORETICAL INVESTIGATION

4.1. Model

A set of transactions ST := {T1, ..., Tn} are executed on
n processors (or cores) P1, ..., Pn. Transaction Ti executes
on processor Pi until it committed. The duration of trans-
action T is assumed to be fixed and is denoted by tT .2 It
refers to the time T executes until commit without facing
a conflict (or equivalently, without interruption). In one
time unit one instruction of a transaction is executed. An
instruction can be a read or write or some arbitrary compu-
tation. A value written by a transaction T takes effect for
other transactions only after T commits. A transaction ei-
ther successfully finishes with a commit of unsuccessfully
with an abort anytime. A transaction commits after exe-
cuting all instructions and acquiring all modified (written)
resources exclusively. A read of transaction A of resource
R is visible, if another transaction B accessing R is able to
detect that A has already read R. If a transaction A writes
to resource R it conflicts with any other transaction read-
ing or writing R. Furthermore, if a transaction A reads a
resource R it conflicts with any other transaction writing
R. A resource can be read in parallel by arbitrarily many
transactions. A contention manager decides how to resolve
the conflict. It can make a transaction wait or abort or assist
the other transaction.3 If a transaction gets aborted due to
a conflict, it restores the values of all modified resources,
frees its resources, might wait for a while and restarts from
scratch with its first operation. Usually conflicts are han-
dled in a lazy or eager way, i.e., a transaction notices a
conflict once it actually occurs or once it tries to commit.
Due to the limit of space we only consider eager conflict
handling and visible reads.

2If an adversary can modify the duration of a transaction arbitrarily
during the execution of the algorithm, the competitive ratio of any online
algorithm is unbounded: Assume two transactions T0 and T1 face a con-
flict and an algorithm decides to let T0 wait (or abort). The adversary
could make the opposite decision and let T0 proceed such that it commits
at time t0. Then it sets the execution time T0 to infinity, i.e., tT0 = ∞
after t0. Since in the schedule produced by the online algorithm, transac-
tion T0 commits after t0 its execution time is unbounded. Therefore we
assume that tT is fixed for all transactions T . In case the running time
depends on the state of the resources and therefore the duration varied by
a factor of c, the guarantees for our algorithms would worsen only by the
same factor c.

3We do not explicitly consider the third option, since it is not used in
state-of-the art systems.

4.2. Load Adapting Approaches

The first approach uses an exponential backoff scheme
named AbortBackoff. A transaction maintains an abort
counter, which is 0 initially and is incremented after ev-
ery abort. The counter is used as a transaction’s priority.
For any conflict one transaction is aborted (i.e. no wait-
ing). In case two transactions with the same priority con-
flict, an arbitrary one proceeds. If a transaction is aborted,
it increments its waiting exponent i and waits for a random
time interval in [0,2i]. The second approach deals with dif-
ferent variants of (deterministically) serializing conflicting
transactions. If two transactions are serialized, then at no
future point in time they will run in parallel. A transac-
tion keeps track of a set of (possibly) conflicting transac-
tions. The set contains all transactions with which it has
ever faced a conflict or with which it assumes to have a
conflict. After an abort, a transaction is only allowed to
restart if none of its conflicting transactions is executing.
If a transaction C, having blocked two transactions A with
conflict set {B,C} and B with set {A,C}, then either A
or B might restart. We choose each with probability 1

2 . In
general, if C has blocked x transactions, one of the waiting
transactions restarts. Each has a chance of 1

x to be selected.
In our first conservative policy SerializeFacedConflicts a
transaction only assumes to conflict with a job it actually
had a conflict with. In our second policy SerializeAllHop-
Conflicts, a transaction A having faced a conflict with B
assumes that it also conflicts with all transactions in the
conflict set of B. The set of conflicting transactions is al-
ways kept up to date, if transactionA conflicted withB and
later B with C, then C will also be in A’s set of conflicting
transactions.

We consider the above strategies as well as the naive strat-
egy where a transaction restarts without delay. For the anal-
ysis it is crucial what type of contention management strat-
egy is used. We employ two contention management strate-
gies covering a wide set of available managers. In the first
strategy, each transaction has a random priority in [1, n]
such that no transactions get the same priority. A transac-
tion keeps the same priority until commit. In the second
strategy, a transaction’s priority equals the net-executing
time of a transaction. The first scheme covers all contention
managers, where the priority calculation is done in a way
that is not (or weakly) related to the actual work performed
by a transaction. The second scheme is a representative of
a contention manager estimating a transaction’s work.

Unfortunately, the conflict graph is dynamic and depends
on many factors such as what resources are needed by a
transaction and from what time on the resources are needed
etc. Due to these difficulties we focus on extreme cases of
conflict graphs. In the first scenario all transactions want

the same resource, i.e. the conflict graph is a clique. We
model a shared counter, where we assume that a transac-
tion is very short and all transactions attempt to access the
resource concurrently. We also consider a linked list and
look at the expected length of the schedule. In the sec-
ond scenario, all transactions want distinct resources, i.e
the conflict graph is a tree and thus sparse.

4.3. Moderate Parallelism – Conflict on Start-up

Assume that all n transactions start at the same time and
want to write to the same memory cell directly after their
start. Thus the conflict graph is a clique. Such a situa-
tion occurs, for instance, if multiple transactions want to
concurrently increment a shared counter. Our primary con-
cern is the expected delay due to transactions with low
priority holding resources also wanted by transactions of
higher priority. This happens since all transactions access
the resource concurrently and have the same chance to ac-
quire it – independent of their priority. The transactions
of higher priority are delayed since they must abort the re-
source holding transaction. We assume that it takes 1 time
unit to abort a transaction and to acquire its resource. Fur-
thermore, if multiple transactions try to get a resource con-
currently, a random one gets it.

Proposition 1. For immediate restart the expected time
span until all transactions committed is n·tT +Ω(n·log n).

Proof. Assume that the resource is available (i.e. not ac-
cessed) and x transactions try to access it, then a random
transaction T gets it. Once T got the resource, all trans-
actions face a conflict with T . If T does not have high-
est priority, it gets aborted by some (random) transaction
U with higher priority. Again transaction U is aborted, if
its priority is not highest. The expected delay until the re-
source with highest priority obtained the resource can be
computed through a recursive formula. The expected de-
lay for one transaction is 0. The expected delay for two
transactions is 1

2 , since we assumed that an unsuccessful
try to acquire a resource delays a transaction by 1 time unit
and the probability that the transaction with smaller prior-
ity gets the resource is 1

2 . Given x transactions the expected
delay until the transaction with largest priority has the re-
source can be computed through the following recursion:

E[x] = (1− 1

x
) +

1

x− 1

x−1∑
i=1

E[i]

The first term 1 − 1
x denotes the chance that a transaction

not having highest priority gets the resource given x trans-
actions try. The second term states that any of the x − 1
remaining transactions (of higher priority) has the same

chance to be chosen. Assume E[x] ≥ lnx.

E[x] = (1− 1

x
)+

1

x− 1

x−1∑
i=1

ln i = (1− 1

x
)+

1

x− 1
ln((x−1)!)

Using Stirling’s Formula we get (for large x):

E[x] = (1− 1

x
) +

1

x− 1
ln((x− 1)!)

= (1− 1

x
) +

1

x− 1
ln((

x− 1

e
)x−1 · c0 ·

√
x− 1)

= 1− 1

x
+ ln

x− 1

e
+

ln(c0 ·
√
x− 1)

x− 1
− 1

x

= ln(x− 1) +
ln(x− 1)

4 · (x− 1)
≥ lnx

The last step can be seen as follows. We have that ln(x−1)
4·(x−1)−

1
x > 1

x for large x and also since lnx is concave, it is
bounded by a tangent at an arbitrary position. In particular,
lnx ≤ ln(x − 1) + d(ln(x))

dx · 1 = ln(x − 1) + 1
x . Assume

E[x] ≥ 2 · lnx. The derivation is analog to the previous
case.

E[x] = (1− 1

x
) +

1

x− 1

x−1∑
i=1

2 · ln i

= 1− 1

x
+ 2 · ln x− 1

e
+ 2 · ln(c0 ·

√
x− 1)

x− 1
− 1

x

= 2 · ln(x− 1)− 1 +
ln(x− 1)

2 · (x− 1)
− 1

x
≤ 2 · lnx

The last step can be seen as follows. We have that ln(x−1)
2·(x−1)−

1
x < 1. Thus we have lnx ≤ E[x] ≤ 2 · lnx. Initially,
n transactions try to access the resource. After the first
commit there are n − 1 left a.s.o. Therefore the total time
until all transactions committed is bounded by

∑n
i=1 ln i.

Using Stirling’s Formula (for large n) as before, we have∑n
i=1 ln i = lnn! = O(n · log n).

Proposition 2. For AbortBackoff the expected time span
until all transactions committed is n · tT · 2O(

√
logn).

Proof. Assume we have n jobs left in the system and all
have priority (at least) log(8n · tT), i.e. each job aborted at
least log(8n · tT) times. This must be the case after time
8ntT , since a transaction with priority i waits at most time
2i before it restarts and the priority i corresponds to the
number of aborts, thus the total time for log(8n · tT) aborts
is given by

∑log(8n·tT)−1
i=0 2i ≤ 8ntT .

If a transaction does not face a conflict, it commits. A
single transaction A takes time tT and if another transac-
tion B starts either while A is running or tT − ε (for some
ε > 0) before A then A and B face a conflict. Thus, if

each transaction runs once in an interval of duration 4ntT ,
n − 1 transactions together occupy at most an interval of
length 2(n − 1) · tT . In other words a transaction has a
chance of less than 1/2 to face a conflict, if it starts at an
arbitrary point in time during this interval. If instead of all
n − 1 transactions only a fraction a of all n transactions
is active, the probability for a transaction to face a conflict
becomes a2n · tT /(4n · tT) = a/2. More generally, af-
ter log(8n · tT) + x aborts, i.e. for a waiting interval of
length 4n · tT · 2x and a fraction a of active nodes, the
chance to abort becomes a/2/2x < a/2x. Assume that for
x = 0, i.e. up to log(8n · tT) aborts all nodes are in the
system, i.e. a(0) = 1. Then, using the above relation a/2x

for an interval [8nt2x−1, 8nt2x] we have a(1) = a(0)/2,
a(2) = a(1)/22, a.s.o. remain in the system in expecta-
tion. More generally, a(x + 1) ≤ a(x)/2x+1. As long as
a(x) ≥ c0 · log n/n for arbitrary constant c0, using a Cher-
noff bound the probability that a(x+ 1) ≤ a(x) · (3/4)x+1

is at least 1 − 1/nc1 for some constant c1(c0). Thus,
a(x+1) ≤ (3/4)

∑x
i=1 i = 1/2O(x2). With x = O(

√
log n)

we have that a(x) < c0 log n/n less than c0 log n transac-
tions are active, i.e. all others committed. For the remain-
ing transactions the chance to abort within a time interval
[2x−18nt, 2x8nt] with x ∈ 2O(

√
logn) is logn·tT

n·tT ·2O(
√

log n) ≤
1/2O(

√
logn). Thus when looking at O(

√
log n) additional

intervals the chance becomes (1/2O(
√
logn))O(

√
logn) <

1/nc2 for some arbitrary constant c2.

Proposition 3. For the SerializeAllHopConflicts policy the
expected time span until all transactions committed is n ·
tT + 1.

Proof. Initially, all n transactions try to access the avail-
able resource and a random transaction T gets it. All trans-
actions conflict with T and also assume that they conflict
with each other. Therefore from then onwards, no conflicts
occur.

Proposition 4. For SerializeFacedConflicts the expected
time span until all transactions committed is n · tT +Θ(n).

Proof. Initially, all n transactions try to access the (avail-
able) resource and a random transaction T gets it. All trans-
actions conflict with T and add T to their sets of conflict-
ing transactions. If T runs again it does not face a conflict.
Therefore after n aborts all jobs have all others in their con-
flict set and the delay is O(n). Given n transactions try to
access a resource we expect log n aborts to happen before
the transaction having highest priority (and thus running
until commit) obtains the resource (see proof of Proposi-
tion 5). Thus, after n

c aborts for some constant c, we ex-
pect (still) only n

logn·c commits and the expected delay is
Ω(n).

4.4. Moderate Parallelism – Conflict at Arbitrary
Time

Consider a typical benchmark such as a linked list where
transactions either insert, delete or find a value in a list or
traverse the list to compute some (aggregate) value. Each
transaction keeps the entire read set until it committed, i.e.
a transaction A considers a (long) traversed object O as
read and conflicts with any transaction B modifying O. In
some cases non-written objects might be releasable before
commit, but this depends on the semantics of the transac-
tion and, generally, has to be specified by the programmer.
Therefore, it would make life for complex for the software
engineer and we do not consider it. We focus on operations
like inserts and deletes, i.e. after an arbitrary number of
read operations an object is modified. Thus, the dense con-
flict graph is dense, since all transactions potentially con-
flict with each other. Still, a potential conflict might not
necessarily occur. For example, consider two transactions
A and B, both performing some write operation towards
the end of the list. If A has started way ahead of B, then
at the time A is committing, B will still be traversing the
list and will not have accessed the element modified by A.
Thus, A and B will not conflict. Furthermore, opposed
to the shared counter example, in such a scenario a trans-
action does not necessarily face the conflict directly after
start-up due to the first accessed resource (i.e. the head
of the list) but more likely, at some later point in time. For
simplicity, let us assume that all transactions conflict within
time [tTc0 ,

(c0−1)·tT
c0

]. This is not much of a restriction, since
clearly the vast majority of transactions (more precisely a
fraction 1 − 1

c0
) is expected to face a conflict within time

[tTc0 ,
(c0−1)·tT

c0
]. We assume that all transactions start ran-

domly within time [0, tT].

Proposition 5. For immediate restart the expected time
span until all transactions committed is Θ(n · tT).

Proof. After time tT all transactions have started and
within time 2tT at least one transaction – say A – has com-
mitted. The time until the transaction B with highest prob-
ability commits is at least tT

c0
. The same holds for the trans-

action C of third highest overall probability. Thus, the time
until all n transactions committed adds up to Θ(n ·tT).

For AbortBackoff the expected time span until all transac-
tions committed is O(n · tT · 2O(

√
logn)) using an analo-

gous analysis as in the proof of Proposition 2. For the poli-
cies SerializeFacedConflicts and SerializeAllHopConflicts
the expected time span until all transactions committed is
Θ(n · tT), since all transactions execute sequentially.

4.5. Substantial Parallelism

It is not surprising that the serialization policy SerializeAll-
HopConflicts works well, when we consider a clique, since
the policy assumes the graph to be a clique. Given that
an adversary, maximizing the running time of the policy,
can choose transactions priorities and their starting time,
it is not hard to construct an example, where immediately
restarting is exponentially faster than SerializeAllHopCon-
flicts. Therefore, from a worst case perspective, serializa-
tion might be very bad. Due to the randomization the back-
off scheme is more robust in such cases.

Proposition 6. For the SerializeAllHopConflicts policy
the expected time span until all transactions committed is
O(n·tT) for d-ary tree conflict graphs of logarithmic height
and O(log n · tT) for immediate restart and SerializeFaced-
Conflicts.

Proof. For immediate restart consider an arbitrary node v0
and look at all paths SP with P = (v0, v1, ..., vx) ∈ SP

of nodes of increasing priority in the conflict graphs. Look
at an arbitrary longest path P ∈ SP . For any such path
P = (v0, v1, ..., vx) ∈ S holds that the transaction vx has
maximum priority among all its neighbors and thus com-
mits within time tT . Thus any longest path reduces by 1 in
length within time tT . Since the graph is a tree of height
logd n, i.e. for the number of nodes holds dlogd n = n,
the length x of any path is bounded by O(log n) and the
claim follows. For SerializeFacedConflicts we have that for
a transaction v0 itself or a neighbor is executing. Therefore,
overall at least a fraction 1/d of transactions is running and
within time tT they either commit or face a conflict and
abort. Thus, after time d · tT any transaction is aware of all
its conflicting neighbors and is not scheduled together with
them again. However, any transaction always has at least
one neighbor that is executing, i.e. a maximal independent
set of transactions is scheduled and commits. Thus, the to-
tal time is O(d · tT), which is O(log n · tT) since the tree is
of logarithmic height logd n. For SerializeAllHopConflicts
we assume that all leaves have lower priority than their
parents. Furthermore, we make a node first conflicts with
its children. More precisely, assume all transactions start
concurrently and a transaction conflicts with up to d other
transactions. Assume that the root acquires all its resources
within time interval]tT −d, tT]. All children of the root ac-
quire their resources within time interval]tT − 2d, tT − d].
In general, a node at level i of the tree gets its resources
within time]tT − id, tT − (i − 1)d]. Thus when the root
transaction R commits, all its neighboring children N(R)
must have faced a conflict and have got aborted by R. In
general, before a transaction T ∈ N(TP) conflicts with its
parent TP , it aborts all its children N(T) \ TP . Thus, the
leafs are aborted first and the children of the root at last.
Therefore, within time tT all transactions are assumed to

conflict with each other and are executed sequentially, re-
sulting in a running time of n · tT .

For the AbortBackoff policy the expected time span until
all transactions committed is O(d · tT · 2O(

√
logn)) for d-

ary tree conflict graphs of logarithmic height. The proof is
analogous to Proposition 2.

5. PRACTICAL INVESTIGATION

5.1. Contention Management Policies

The policies SerializeFacedConflicts and SerializeAllHop-
Conflicts ignored the overhead of keeping track of con-
flicts among transactions. In practice, it turned out that
logging each conflict causes too much overhead in many
scenarios. That is why, we derived a new serialization tech-
nique called QuickAdapter. It does not come with a priority
calculation scheme. For the implementation we used the
timestamp manager. Using time as priority results in the
same theoretical properties as SerializeAllHopConflicts. In
particular, deadlock- and livelock-freedom, since the old-
est transaction runs without interruption until commit. Ac-
cording to [10] from a theoretical (worst case) perspective
assigning random priorities yields better results. Still, in
practice we found that the choice of the manager is of sec-
ondary importance. Every transaction has a flag which is
set if it is not allowed to (re)start.4 If a transaction gets
aborted it sets its flag and does not restart. A committed
transaction selects one of the flags and unsets it. For the
implementation we chose an array (of flags), which equals
the length of the maximum number of transactions. We in-
vestigated two variants. For the QuickAdapter each thread
maintains a counter and whenever a thread commits it in-
crements the counter and unsets the flag at the position in
the array given by counter modulo array length. In case
contention is very high and most transactions are aborted,
any committing transaction has a high chance to restart a
waiting transaction. But in such a situation it might be bet-
ter to be more restrictive and rather not activate another
transaction on commit. SmartQuickAdapter accounts for
this and looks at the status of two (random) transactions. In
case both are active, it selects a flag and unsets it (if it is
set). Clearly, the higher contention, the more transactions
are aborted and the smaller the chance for a committing
transaction to reactivate an aborted transaction.

For the AbortBackoff manager the priority is determined by
the number of aborts of a transaction. In case two transac-
tions have the same priority, the one that runs on the thread

4If there are few commits, a single transaction having a set flag might
wait for a long time until restart. Therefore one might consider adding a
maximum waiting duration until a transaction restarts or check from time
to time if there are any active transactions. Usually commits are frequent
and, thus, this is not an issue.

(a) LFUCache (b) Counter

(c) ListCounter (d) RandomAccessArray

(e) RBTree (f) SortedList

Figure 1. Benchmarks: For 0% writes most policies behave similar since they introduce almost no overhead. For
60% writes the results lie (as expected) in between 30% and 100%.

with smaller identifier is aborted. For any conflict the trans-
action with smaller priority gets aborted. Before an aborted
transaction can restart it has to wait a period which grows
exponentially (by a factor of 4) with the number of times
the transaction already got aborted. Each transaction starts
with 0 aborts. We also evaluated a scheme Remember-
ingBackoff, where a transaction carries over the number of
aborts minus 1 of the previous transaction (executed by the
thread).

5.2. Experimental Results

The benchmarks were executed on a system with four
Quad-Core Opteron 8350 processors running at a speed of
2 GHz. The DSTM2.1 Java library was used, compiled
with Sun’s Java 1.6 HotSpot JVM. We present experimen-
tal results for the described contention managers on six dif-
ferent benchmarks. Five of them have been used already
in prior work of Scherer at al. [9]. The sixth benchmark,
RandomAccessArray, works on an array with 255 integers.
The write operation chooses a random field i ∈ [0, 254]
and alternately increments or decrements the element and
its eight neighbors j ∈ [i + 1, i + 8]. The read operation
reads those elements. Every benchmark represents the av-
erage throughput of three runs with the same configuration
for a duration of 10 seconds. Except LFUCache all the
benchmarks were tested among different contention levels.
Low contention was achieved through a write to read ratio
of 0% and 30%, middle and high contention with ratios of
60% and 100%. The throughput was measured with 1 up
to a maximum of 16 active threads.

Figure 1 shows the experimental results on the six bench-
marks and several contention management policies (see
[9]). In the plots we only show the QuickAdapter and not
the SmartQuickAdapter scheme. Overall both perform sim-
ilarly. AbortBackoff and RememberingBackoff (and other
variants) all achieve similar throughput and therefore we
only show AbortBackoff in the plots.
Generally, it can be seen that for most benchmarks the
throughput declines with an increasing number of used
threads, i.e. cores. This happens even in the case with-
out writes. That is to say, even without conflicts, i.e. irre-
spective of the used contention management and load adap-
tion policy, performance decreases. DSTM2 is used with
visible readers. For a visible reader system the metadata
of a read object is modified, which generally causes cache
misses and slows down the system with an increasing num-
ber of threads.5 Another reason for the decrease in perfor-
mance when using more cores might be that for practically
all benchmarks only little computation is done but (rela-
tively) a lot of memory is accessed. In such a scenario the

5At the time of writing, the discussion whether visible or invisible
readers are preferable has not come to a definite end.

memory bus becomes a bottleneck and main memory ac-
cesses become slower.

The ListCounter benchmark provides the longest transac-
tions among the six tested benchmarks. Therefore it is very
prone to livelocks. Kindergarten’s throughput drops to zero
if more than one thread is active, same happens for Karma
and Polka if more than 9 threads are running. Both Quick-
Adapter and AbortBackoff (and their variants) achieve con-
sistently good results on all different benchmarks. In the
majority of the cases they outperform the existing policies.
If not, they do not lag behind much. The throughput of
all other managers depends very much on the benchmark.
Each drops off by more than 50% compared to the best
manager on at least one of the benchmarks. This is not
surprising, since any traditional (non-load adapting) con-
tention manager adapts a specific heuristic for calculating
the priority of a transaction, which is only efficient in some
cases and fails for other cases. It is particularly interest-
ing to compare QuickAdapter and TimeStamp, since both
use time as priority. In all but one scenario QuickAdapter
is faster: For the counter benchmark, which enforces se-
quential execution, for QuickAdapter a committing trans-
action A wakes up an old transaction that aborts the new
transaction after A. But it would be better to assign a new
timestamp whenever a transaction is woken up. This seems
to be less of an issue with the TimeStamp manager. It is
not clear how to create a final ranking. Some benchmarks
might be more important than others and some application
scenarios might not be covered by the benchmarks. We
ranked each benchmark based on the number of committed
transactions for 12 threads and 60% writes. Managers are
ranked equally if the throughput differs by less than 5%.
The average rank of QuickAdapter is 1.7, that of Abort-
Backoff is 1.8 and only then follows TimeStamp and Karma
with rank 3.5. Polka reaches an average of 4 and Kinder-
garten was last with 4.2.

6. CONCLUSIONS AND FUTURE WORK

To this day, for transactional memory the standard method
of load adaption led to a level of complexity that is not
well-suited for hardware and it needed central coordina-
tion, limiting scalability sooner or later. Both our propos-
als AbortBackoff and QuickAdapter address these issues.
Though experimental evaluation shows consistently good
results, an optimal contention management strategy has yet
to be found. Practice (and more experimental evaluation)
has to show to what extend gathering and using (detailed)
information for contention management is worth its costs.
Our theoretical analysis gives insights by investigating sev-
eral load adapting strategies and scenarios. Still, the princi-
ples of load adaption (and contention management), e.g. in
general conflict graphs and for different models (e.g. lazy

conflict resolution), have to be (further) developed.

REFERENCES

[1] M. Ansari, C. Kotselidis, M. Lujn, C. Kirkham, and I. Wat-
son. “On the Performance of Contention Managers for Com-
plex Transactional Memory Benchmarks”. In Symp. on Par-
allel and Distributed Computing, 2009.

[2] S. Dolev, D. Hendler, and A. Suissa. “CAR-STM:
scheduling-based collision avoidance and resolution for soft-
ware transactional memory”. In PODC, 2008.

[3] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon.
“Robust Contention Management in Software Transactional
Memory”. In Workshop on Synchronization and Concurrency
in Object-Oriented Languages, 2005.

[4] R. Guerraoui, M. Herlihy, and B. Pochon. “Polymorphic con-
tention management”. DISC, 2005.

[5] M. Herlihy, V. Luchangco, and M. Moir. “A flexible frame-
work for implementing software transactional memory”. SP-
NOTICES: ACM SIGPLAN Notices, 41, 2006.

[6] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. “Soft-
ware transactional memory for dynamic-sized data struc-
tures”. In PODC, 2003.

[7] M. Herlihy and J. Moss. “Transactional Memory: Architec-
tural Support For Lock-free Data Structures”. In Symp. on
Computer Architecture, 1993.

[8] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhan-
dari, and E. Witchel. “MetaTM/TxLinux: transactional mem-
ory for an operating system”. In Symp. on Computer Archi-
tecture, 2007.

[9] W. Scherer and M. Scott. “Advanced contention manage-
ment for dynamic software transactional memory”. In PODC,
2005.

[10] J. Schneider and R. Wattenhofer. “Bounds On Contention
Management Algorithms”. In ISAAC, 2009.

[11] N. Shavit and D. Touitou. “Software transactional memory”.
Distributed Computing, 10, 1997.

[12] R. M. Yoo and H. S. Lee. “Adaptive transaction scheduling
for transactional memory systems”. In SPAA, 2008.

