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Abstract

In this monograph we survey results from a newly emerging line of
research that targets algorithm analysis in the physical interference
model. In the main part of our monograph we focus on wireless schedul-
ing: given a set of communication requests, arbitrarily distributed
in space, how can these requests be scheduled efficiently? We study
the difficulty of this problem and we examine algorithms for wireless
scheduling with provable performance guarantees. Moreover, we present
a few results for related problems and give additional context.



1
Introduction

Despite the omnipresence of wireless networks, their fundamental com-
munication limits are not fully understood: designing and operating
a wireless network is often a matter of trial-and-error, regardless of
whether it is a Wireless LAN in an office building, a GSM phone
network, or a sensor network on a volcano.

We are interested in the fundamental communication limits of wire-
less networks. Given an arbitrary wireless network, and an arbitrary
traffic pattern, we want to utilize the full bandwidth of our network.
One of the most challenging characteristics of wireless networks is the
fact that mutual interference impairs the quality of signals received
and might even prevent the correct reception of messages. Efficient
algorithms that coordinate the transmissions are therefore essential for
the operation of wireless networks. To this end, we want to under-
stand the maximum possible spatial reuse, i.e., which devices can
transmit concurrently, without interfering. Given a set of communi-
cation requests, what is the minimum time needed to schedule all these
requests successfully? How should media access be organized in a given
network? In an existing wireless network, is it sensible to add relays,
and where are they to be placed?
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Evidently, if one hopes for analytic answers to questions like
these, one must first decide for a reasonable wireless transmission
model. In the past, a large fraction of analytic research on wireless
networks has focused on models where the network is represented
by a graph. The wireless devices are mapped to nodes and any two
nodes within communication (or interference) range are connected
by an (annotated) edge. Such graph-based models are particularly
popular among higher-layer protocol designers, hence they are also
known as protocol models. Unfortunately, protocol models are often
too simplistic: consider, for instance, a case of three wireless commu-
nication pairs, every two of which can be transmitting concurrently
without a conflict. In a protocol model, one will conclude that all three
transmissions may transmit concurrently as well, while in reality this
might not be the case since wireless signals accumulate. Instead, it may
be that any two transmissions together generate too much interference,
hindering the third receiver from correctly receiving the signal of its
sender. This many-to-many relationship makes understanding wireless
transmissions difficult; a model where interference accumulates seems
paramount to truly comprehending wireless communication. Similarly,
protocol models oversimplify wireless attenuation. In protocol models
the signal is usually “binary”, as if there was an invisible wall at which
the signal ends abruptly. Not surprisingly, in reality the signal strength
decreases gracefully with distance. Because of these shortcomings,
results for protocol models are often not applicable in reality.

In contrast to the algorithmic (“computer science”) community
which focuses on protocol models, researchers in information, com-
munication, and network theory (“electrical engineering”) are working
with wireless models where interference accumulates and attenuation
is taken into account. A standard model is the physical model; we will
formally introduce it in Section 2. In this model, the energy of a sig-
nal fades with the distance to the power of the path-loss parameter α.
If the signal strength received by a device divided by the strength of
interference caused by concurrent transmitters (plus the noise) is above
some threshold β (signal-to-interference-plus-noise ratio (SINR)), the
receiver can decode the message, otherwise it cannot.
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Unfortunately, most work using the physical model does not provide
algorithms with provable performance guarantees. Usually heuristics
are proposed instead, evaluated by simulation. Analytical work is done
for special cases only, e.g., networks with a grid structure, or random
traffic. However, these special cases do not give much insight into the
complexity of the problem; also, it seems difficult to derive new pro-
tocols from analytical work on special cases. If one is interested in the
capacity of an arbitrary wireless network, and how this capacity can be
achieved, an algorithmic approach seems unavoidable.

In this monograph we present recent results that combine the best of
both worlds: we present algorithms and bounds for arbitrary wireless
networks (not random node distributions), using the physical model
(not the protocol model). We believe that bridging the gap between
protocol designers and communication theorists is a fundamental chal-
lenge of the coming years, a hot topic for the wireless network commu-
nity with implications for both theory and practice. To the best of our
knowledge, research in this emerging area is only a few years old [66].
Nevertheless, the body of work is growing rapidly. Hence we cannot pro-
vide a complete survey; instead we focus on wireless scheduling using
a simple physical model. More precisely, given a set of communica-
tion requests, arbitrarily distributed in space, how can these requests
be scheduled efficiently? This question may be formulated in several
ways, using different parameters. One might want to know the maxi-
mum number of requests that can be scheduled simultaneously. Alter-
natively, one might ask what is the minimum time needed to schedule
all requests. Essentially, the main objective is to achieve efficient spa-
tial reuse, considering wireless interference among nodes transmitting
concurrently. Such results promise to lead to answers to questions such
as “What is the throughput capacity of a specific wireless network?”,
and “How can this capacity be realized?”

This monograph is organized as follows: In Section 2 we formally
define the models and problems of interest; in addition we present a
robustness result that shows that small perturbations in the model do
not fundamentally change the results. The main content is in Sections 3
and 4. In Section 3 we study wireless scheduling without power control,
and in Section 4 with power control. As we will see, most of the
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questions are NP-hard, so we settle for so-called approximation algo-
rithms, algorithms that guarantee that a solution is at most a bounded
factor worse than optimum. We focus on simple (and to some degree
teachable) results, and usually merely mention more elaborate tech-
niques. In Section 5 we will survey a few results beyond scheduling.
Finally, in Section 6 we provide additional context about related areas.

At the time of writing, results are emerging that reconsider problems
and results for protocol models successfully in the physical models.
Indeed, this direction of research is increasingly popular, as first surveys
and overview articles [62] are published. Analogously, we hope that
some of the ground-breaking research on special-case topologies in the
physical model may be generalized and studied in an algorithmic way.



2
Models and Definitions

When studying scheduling in wireless networks, the choice of an
appropriate interference model is crucial. In the past, researchers have
studied a wide range of interference models, ranging from complex
physical models to simple graph-based protocol models.

In this chapter we introduce the main wireless interference model
used to derive the results presented in this survey, namely, the phys-
ical interference model. Subsequently, we define in Section 2.2 three
main problems we address in this monograph: the One-Slot Schedul-
ing Problem, the Weighted One-Slot Scheduling Problem, and the
Multi-slot Scheduling Problem.

The chapter is concluded in Section 2.4, where an analysis of robust-
ness properties of the physical interference model with respect to
parameters, such as signal strength and spatial dispersion, is presented.
This section also contains notation and definitions, important to under-
stand the results presented in Sections 3 and 4.

2.1 Physical Interference Model

In this survey we study the problem of scheduling wireless communica-
tion requests (or simply links) in the physical interference model [38].

318
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We assume that the input to the problem is a set L = {�1, . . . , �n} of
n wireless links, where each link �i represents a communication request
from a sender si to a receiver ri:

�i = (si, ri).

The communication devices are viewed as nodes positioned in a
Euclidean space. The distance between two nodes si, rj is denoted by
dij = d(si, rj), so the length of a link �i is referred to by dii = d(si, ri).
We assume that there are no primary conflicts in the transmission
setup, i.e., each node is either a sender or a receiver and each receiver
is associated with only one sender. Scenarios with this type of con-
flicts can be reformulated by introducing additional nodes at the same
position, i.e., if a receiver is associated with two senders, two links
with co-located receivers can be used, resulting in one sender–receiver
pair for each link. Therefore, we neglect these scenarios for simplicity’s
sake.

Moreover, we assume that each link has a unit-traffic demand, and
model the case of non-unit traffic demand by replicating each link k

times, where k is the demand on the link.
In the physical interference model, the received signal power decays

proportionally to the inverse of the distance between the sender and
the receiver to the power of a so-called path-loss exponent α, which
is a constant, whose exact value depends on external conditions of the
medium (humidity, obstacles, etc.), as well as the exact sender–receiver
distance. The faster the signal strength falls, the smaller the amount of
interference caused. In Ref. [74], measurements of indoor and outdoor
path-loss exponents at various frequencies are reported, ranging from
1.6 to 6. Most work relies on the assumption that α > 2, exploiting the
fact that in this case the interference of far away nodes can be bounded
easily. The propagation attenuation or link gain between sender si and
receiver ri is therefore d−α

ij . If P (si) is the transmitting power level of
a sender si, the received power at the receiver ri is:

Pii = Pri(si) =
P (si)
dα
ii

.
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The power received from si by the receiver rj of a concurrently sched-
uled link �j is referred to as interference and denoted by:

Iij = Irj (si) = Prj (si) =
P (si)
dα
ij

.

Note that we do not want to incorporate any near- or mid-field
effects. To this end we assume that the setting is normalized, in the
sense that the minimum distance between any sender–receiver pair is
one, i.e.:

d(si, rj) ≥ 1, ∀si, rj | �i, �j ∈ L.

In other words, without loss of generality, we assume that the input
instance L is always normalized.

We denote by St = {�1, . . . , �m} the set of concurrently scheduled
links in time slot t. As in Ref. [38], we assume that transmissions are
slotted into synchronized time slots of equal length. In each time slot t,
a node can either transmit or remain silent.

The total interference Iri(St) (sometimes also referred to as I�i
(St),

or simply as Iri or I�i
) experienced by a receiver ri is the sum of the

interference power values created by all nodes in the network trans-
mitting simultaneously in time slot t (except the intending sender si),
that is,

Iri = Iri(St)

=
∑

�j∈St,
�j �=�i

Iri(sj).

Let N denote the ambient noise power level. We define the signal-to-
interference-plus-noise ratio of a link �i, transmitting in time slot t as:

SINR�i
= SINRri(St)

=
Pii

Iri + N

=
P (si)
dα
ii∑

�j∈St,
�j �=�i

P (sj)
dα
ji

+ N
.

Finally, let β ≥ 1 denote a hardware-dependent minimum SINR
threshold required for a successful message reception. A successful
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transmission between a sender si and a receiver ri in time slot t occurs
if and only if:

SINR�i
(St) ≥ β. (2.1)

We say that a schedule S = {S1, . . . ,ST } is feasible, or correct, if the
set of communication requests in each time slot is feasible, i.e., if the
following condition holds:

SINR�i
(St) ≥ β, ∀�i ∈ St, ∀t ∈ {0, . . . ,T − 1}.

The SINR threshold is sometimes referred to as the SIR threshold,
when the ambient noise is neglected, or assumed to be zero. It can
also be referred to as S/N , in case just the ambient noise is taken into
account, i.e., the interference from concurrently scheduled transmis-
sions is assumed to be just noise.

Let us introduce the notion of link length diversity g(L), namely
the number of magnitudes of distances between senders and receivers
in the network.

Definition 2.1. The link length diversity g(L) of a set L = {�i, . . . , �n}
of communication requests is defined as:

g(L) := |{m|∃�i, �j ∈ L : �log(dii/djj)� = m}|. (2.2)

A related measure denotes the link length ratio between the longest
and shortest link.

Definition 2.2. The link length ratio ∆ of a set L = {�i, . . . , �n} of
communication requests is defined as:

∆ :=
maxli∈L dsi,ri

minlj∈L dsj ,rj

. (2.3)

A similar measure denotes the aspect ratio between the longest and
the shortest distance between any two nodes.1

1 The nomenclature between different authors varies. Note, however, that the link length
ration and the aspect ratio can differ arbitrarily for the same scenario, e.g., when all links
are of length 1, yet the maximum distance dmax between two senders is arbitrarily large.
For such scenarios, the link length ratio is 1, the aspect ratio is dmax.
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Definition 2.3. The aspect ratio Λ of a set L = {�i, . . . , �n} of commu-
nication requests is defined as:

Λ :=
maxvi,vj∈V dvi,vj

minvi,vj∈V dvi,vj

, (2.4)

where the set V = {s1,s2, . . . ,sn, r1, r2, . . . , rn} contains all nodes of L.

We can partition the links into link length classes Ck. A link �i

belongs to class Ck if 2k ≤ dii < 2k+1. To obtain the link diversity, we
remove the empty classes and count the number of remaining link sets.
Observe that the inequality g(L) ≤ logΛ holds since there can be at
most logΛ link length classes.

2.1.1 Generalized Physical Model

In practice, the received signal power may deviate from the above theo-
retical bound for various reasons, such as not perfectly omni-directional
antennas, shadowing, reflection, or diffraction caused by obstacles. In
order to account for some of these aspects, Moscibroda et al. [68] define
and study the following generalization of the physical model. In this
model, given a parameter θ, the received signal power (as well as the
interference caused by simultaneously transmitting nodes) can deviate
from the theoretically received power by a factor of at most θ.

Formally, if Pri(si) is the power level received by ri from a signal
transmitted by si, the generalized physical model states that Pri(si) is
in the range

1
θ

· P (si)
dα
ii

≤ Pri(si) ≤ θ · P (si)
dα
ii

. (2.5)

Note that this model leaves open the exact received signal power.
Therefore, algorithms designed to work in this generalized physical
model must be robust enough to cope with arbitrary deviations within
the stated bounds. Clearly, for θ = 1, the generalized physical model is
equivalent to the standard physical interference model.

In wireless communications, the physical model is only considered
a base model. On top of pure distance path-loss, stochastic fading
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modules are added, i.e., Gaussian random variables that model the
wireless reality more accurately. Well-known examples are Rayleigh or
Rician fading, or dispersive fading models. By incorporating stochastic
fading models our simple arguments become much more complicated,
in fact, even the problem statements become significantly more com-
plex. Instead of asking simple (deterministic) scheduling questions, we
would have to tackle probabilistic questions in this case. We believe
that one should study questions regarding probabilistic models as well,
however, the basics are better taught using basic models.

2.2 Problem Definitions

In this section we present formal definitions of three variations of the
scheduling problem that play a central role in this survey.

Note that instead of assigning links to time slots, one could let
them transmit on different channels. The algorithmic problems one has
to solve remain the same.

2.2.1 One-Slot Scheduling Problem

The One-Slot Scheduling Problem can be formulated as follows. The
input to the problem is a set of links L = {�1, . . . , �n}, where each link �i

represents a communication request from a sender si to a receiver ri.
The objective of the One-Slot Scheduling Problem is to maximize the
number of links scheduled concurrently in one time slot, such that all
messages are received successfully. In other words, we attempt to use
one slot to its full capacity.

Formally, a set S = {�1, . . . , �m} ⊆ L is a solution to an instance of
the One-Slot Scheduling Problem if the following conditions hold:

S = argmax
S′⊆L

|S ′|,

SINR�i
(S ′) ≥ β, ∀�i ∈ S ′. (2.6)

2.2.2 Weighted One-Slot Scheduling Problem

The Weighted One-Slot Scheduling Problem is a “weighted version” of
the One-Slot Scheduling Problem. It can be formulated as follows. The
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input to the problem is a set of links L = {�1, . . . , �n}, where each link �i

is assigned a weight w(�i). The weights might represent, for example,
the relative priorities of the communication requests, or the revenue
values associated with different clients. The objective of the problem
is to pick a subset of weighted links, such that the total weight (or
value) is maximized and the SINR level is at least β at every scheduled
receiver.

A set S = {�1, . . . , �m} ⊆ L is a solution to an instance of the
Weighted One-Slot Scheduling Problem if the following conditions hold:

S = argmax
S′⊆L

∑
�i∈S′

w(�i),

SINR�i
(S ′) ≥ β, ∀�i ∈ S ′. (2.7)

2.2.3 Multi-slot Scheduling Problem

As opposed to the one-slot versions of the scheduling problem, where
the objective is to use one time slot to its full capacity, the objective
of the Multi-slot Scheduling Problem is to schedule all links in as few
time slots as possible, guaranteeing that all messages are delivered suc-
cessfully according to the SINR condition (2.1).

More precisely, let L = {�1, . . . , �n} be the input set of communi-
cation requests. A schedule is represented by S = (S1,S2, . . . ,ST (S)),
where T (S) denotes the length of the schedule and St = {�1, . . . , �m}
⊆ L is a subset of links scheduled in time slot t.

A schedule S is a solution to an instance of the Multi-slot Scheduling
Problem if the following conditions hold:

S = argmin
S′=(S′1,S′2,...,S′

T (S′))
T (S ′),

T (S′)⋃
t=1

S ′
t = L,

SINR�i
(S ′

t) ≥ β, ∀�i ∈ S ′
t ⊆ S ′, t ∈ {1, . . . ,T (S ′)}. (2.8)

The Multi-slot Scheduling Problem can also be viewed as a coloring
problem, in which colors, or labels, have to be assigned to links, such
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that any subset of links of the same color can transmit successfully
according to the SINR constraints.

2.2.4 Scheduling Problems with Power Control

All the problems introduced above can be studied in combination with
power control. In this case, a solution to a scheduling problem includes
a power assignment for each sender.

2.3 Approximation Algorithms

Many optimization problems are known to be “NP-hard”, that is, it
is believed that the problems cannot be solved optimally in reason-
able time. For NP-hard problems, the best solutions known today need
exponential time, as one essentially needs to check all possible solutions.
Even for problem instances of moderate size, the fastest computers
available need thousands of years.

There are several ways to deal with such problems. One way is to
simply propose a heuristic which is then tested by simulation. This is
often unsatisfactory, as one cannot be sure that the heuristic will work
for all possible problem instances, or whether one just has been lucky
with the few that were simulated.

So-called approximation algorithms offer an alternative approach
to heuristics. Approximation algorithms find a solution efficiently, no
matter how large the problem instance is. We are usually interested
in algorithms with polynomial time complexity, i.e., if the size of the
problem instance doubles, the execution time of the algorithm may
double, or quadruple, or even increase by a factor of 100, but it will
not increase exponentially.

However, an approximation algorithm cannot guarantee to find
the optimal solution, just a sub-optimal solution. Unlike heuristics,
an approximation algorithm always provides a provable solution qual-
ity. Ideally, the solution is optimal up to a small constant factor (for
instance with at most 1% overhead to the unknown optimal solution).

More formally, an approximation algorithm A achieves an approxi-
mation ratio ρ if for all possible inputs I we have

costA(I) ≤ ρ · costOPT (I),
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where cost is the cost function of the algorithm A and the (unknown)
optimal algorithm OPT, respectively. We also say that the algo-
rithm A provides a ρ-approximation and that the problem at hand
is ρ-approximable.

In the best case ρ = 1 + ε for an arbitrarily small ε; in this case
we call the approximation algorithm a polynomialc-time approxima-
tion scheme (PTAS). Sometimes, ρ is a constant, independent of the
problem size, e.g., ρ = 2. Sometimes the best known approximation
algorithm for a problem only allows a ρ which is dependent on the
input size. If we attempt to minimize the time for scheduling n links,
for example, we might have to settle for ρ = O(logn), i.e., apart from
constant factors hidden in the O() notation, the schedule of our approx-
imation algorithm is only guaranteed to be within a logarithmic factor
of the input size of the optimal solution. Indeed, there exist optimiza-
tion problems that are provably impossible to approximate within any
constant, or larger function of the input size, if P 	= NP .

2.4 Robustness of the Physical Model

The pure geometric quality of interference given in Equation (2.1) is an
idealization of true physical characteristics. It assumes, e.g., perfectly
isotropic radios, no obstructions, and a constant ambient noise level.
That raises the question, why move algorithm analysis from analytically
amenable graph-based models to a more realistic model if the latter
is not that realistic? Fortunately, the fact that schedule lengths are
fairly invariant to signal requirements shows that these concerns are
unnecessary.

In this section we discuss robustness properties of the physical model
with respect to parameters such as signal strength, or interference toler-
ance, and spatial dispersion of links. More specifically, in Section 2.4.1,
we will show that minor discrepancies in signal strength requirements
cause only minor changes in schedule length. Moreover, in Section 2.4.2,
we examine the desirable property of link dispersion, and how any
schedule can be dispersed at a limited cost.

Throughout the rest of this chapter and the next chapter, we make
use of the following definitions.
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Definition 2.4. The relative interference (RI) of link �w on link �v is
the increase caused by �w in the inverse of the SINR at �v, namely

RIv(w) =
Iwv

Pvv
.

For convenience, define RIv(v) = 0. Let ηv be a constant that indicates
the extent to which the ambient noise approaches the required signal
at receiver rv.2

ηv =
β

1 − β N
Pvv

=
1

1
β − N

Pvv

.

The affectance3 of link �v, caused by a set S of links, is the sum of the
relative interferences of the links in S on �v, scaled by ηv, or

a�v(S) = ηv ·
∑
�w∈S

RI v(w). (2.9)

For a single link �w, we use the shorthand a�v(w) = a�v({�w}).

Observation 2.5. The affectance function satisfies the following prop-
erties for a set S of links:

(1) Range: S is SINR-feasible iff, for all �v ∈ S, a�v(S) ≤ 1.
(2) Additivity : a�v(S) = a�v(S1) + a�v(S2), whenever (S1,S2) is

a partition of S.
(3) Distance bound : If P (sv) = P (sw), then a�v(�w) = ηv ·

( dvv
dwv

)α, for any pair �w, �v in S.

Proof. (1) Range ⇒: Assume a�v(S) > 1. Then

a�v(S) = ηv ·
∑

�w∈S Iwv

Pvv
> 1 ⇒

∑
�w∈S

Iwv >
Pvv

ηv
=

Pvv

β
− N.

2 Note that ηv does not have any particular physical meaning and is introduced in order to
simplify other definitions.

3 Affectance is closely related to affectedness, defined in Ref. [30], but treats the effect of
noise more accurately.
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This means that

SINR�v(S) =
Pvv

N +
∑

�w∈S Iwv
<

Pvv

N + Pvv
β − N

= β.

(1) Range ⇐: Assume a�v(S) ≤ 1. Then∑
�w∈S

Iwv ≤ Pvv

β
− N ⇒ SINR�v(S) =

Pvv

N +
∑

�w∈S Iwv
≥ β.

(2) Additivity : Since S1 ∩ S2 = ∅ and S1 ∪ S2 = S, we have
that:

a�v(S) =
ηv

Pvv
·
∑
�w∈S

Iwv

=
ηv

Pvv
·

 ∑

�w∈S1

Iwv +
∑

�w∈S2

Iwv




=
ηv

Pvv
·
∑

�w∈S1

Iwv +
ηv

Pvv
·
∑

�w∈S2

Iwv

= a�v(S1) + a�v(S2).

(3) Distance bound : Since P (sv) = P (sw), we have that:

a�v(�w) = ηv · Iwv

Pvv
= ηv ·

P (sw)
dα
wv

P (sv)
dα
vv

= ηv ·
(

dvv

dwv

)α

· P (sv)
P (sw)

= ηv ·
(

dvv

dwv

)α

.

Notation 2.6. Furthermore, we list some additional useful notations:

• OPT: an SINR-feasible schedule of optimum size
• χ: minimum number of slots in an SINR-feasible schedule
• Sp: a p-signal schedule, where a�v(Sp) ≤ 1/p,∀�v ∈ Sp

• OPTp: a p-signal schedule of optimum size
• χp: minimum number of slots in a p-signal schedule
• S+

�v
(or S−

�v
): set of links in S, which are longer (or shorter)

than �v
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2.4.1 Interference Tolerance

In this section we explore how signal requirements (the value of β),
or equivalently interference tolerance, affects schedule length. It is not
a priori obvious that minor discrepancies cause only minor changes
in schedule length. However by showing that it is so, we can give the
algorithm designer the advantage of being able to compare the algo-
rithms’ output with a stricter optimal schedule. This also has impli-
cations regarding the robustness of the physical model with respect to
perturbations in signal transmissions.

Theorem 2.7([42]). There is a polynomial-time algorithm that takes
a p-signal schedule and refines it into a p′-signal schedule, for p′ > p,
increasing the number of slots by a factor of at most �2p′/p�2.

Proof. Consider a p-signal schedule Sp and a slot St in Sp. We partition
St into a sequence St1,St2, . . . of sets (see Figure 2.1). Order the links in
St in some order, e.g., decreasing order of link length. For each link �v,
assign �v to the first set Sti for which a�v(Sti ∩ S+

lv
) ≤ 1/2p′, i.e., the

accumulated affectance on �v among the previous, longer links in Sti is
at most 1/2p′. Since each link �v originally had affectance at most 1/p,
then by the additivity of affectance, the number of sets used is at most
� 1/p

1/2p′ � = �2p′
p �.

We then repeat the same approach on each of the sets Sti , processing
the links this time in increasing order. The number of sets is again �2p′

p �
for each Sti , or �2p′

p �2 in total. In each final slot (set), the affectance on
a link by shorter links in the same slot is at most 1/2p′. In total, then,
the affectance on each link is at most 2 · 1/2p′ = 1/p′.

Please note that the result only holds in one direction, i.e., we can
generally not decrease the slots by lowering p.

This result however applies to optimal solutions. Let OPT p, χp

be defined as in Section 2.6. It is not a priori clear that a smooth
relationship exists between χp and χ, for p > 1.

Corollary 2.8. [42] χp ≤ �2p/β�2χ.
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Sp = {S1,S2,S3, . . . St, . . . ,Sχp−1,Sχp}, a�v(St) ≤ 1/p,∀�v ∈ St.

St︷ ︸︸ ︷
{St1, . . . ,Sti, . . . ,Stj}, a�v(Sti ∩ S+

lv
) ≤ 1/2p′,

first-fit descr. link length−−−−−−−−−−−−−−−−−−→ ∀�v ∈ Sti .

a�v(St(i−1)) > 1/2p′ ⇒
Sti j < �2p′/p�.︷ ︸︸ ︷

{St11, . . . ,Stil , . . . ,Stik}, a�v(Stil ∩ S−
lv

) ≤ 1/2p′,
first-fit incr. link length−−−−−−−−−−−−−−−−−→ ∀�v ∈ Stil.

a�v(Sti(l−1)) > 1/2p′ ⇒
k < �2p′/p�.

|Sp′ | ≤ |Sp| · j · k ≤ |Sp| · �2p′/p�2.

Fig. 2.1 Illustration of Theorem 2.7: p-signal schedule Sp is transformed into a p′-signal
schedule Sp′ with at most |Sp| · �2p′/p�2 time slots.

This has significant implications. One might question the validity of
studying the pure physical model. As we discussed in Section 2.1.1, the
received signal power may deviate from the theoretical bound assumed
by the “pure” physical model for various reasons. A generalized physical
model, described in Section 2.1.1, was introduced to allow for such
deviations.

Theorem 2.7 implies that scheduling is robust under discrepancies
in the physical model, e.g., the results carry over to the generalized
physical model. This validates the analytic study of the pure physical
model, in spite of its simplifying assumptions.

Corollary 2.9 ([42]). If a scheduling algorithm gives an ρ-
approximation in the physical model, it provides an O(θ2ρ)-
approximation in variations in the physical model with a discrepancy
of up to a factor of θ in signal attenuation or ambient noise levels.

This result can be contrasted with the strong n1−ε-approximation
hardness of scheduling in an abstract (non-geometric) SINR model



2.4 Robustness of the Physical Model 331

that allows for arbitrary distances between nodes [32]. Alternatively,
Theorem 2.7 allows us to analyze algorithms under more relaxed situ-
ations than the optimal solutions that we compare with.

2.4.2 Spatial Dispersion under Uniform Power Assignment

A popular power assignment scheme used in practical systems is the
uniform power assignment [38]. In this scheme, all nodes transmit with
the same power level.

One desirable property of schedules that employ uniform power
assignment is that links in the same slot be spatially well separated,
i.e., it is generally desired that links that transmit concurrently should
be located relatively far from each other, such that interference is not
too high. This however blurs the difference in position between sender
and receiver of a link, since it affects distances only by a small con-
stant. The notion of spatial separation should depend on the length
of the links themselves, i.e., longer (weaker) links require more spatial
separation (i.e., longer distance to concurrent links) than do shorter
(stronger) links. Intuitively, we want to measure nearness as a fraction
of the lengths of the respective links. Given the affectance measure, it
proves to be useful to define it somewhat less restrictively.

Definition 2.10. Link �w is said to be q-near link �v, if dwv < q · η
1/α
v ·

dvv . A set of links is q-dispersed if no (ordered) pairs of links in the
set are q-near. A schedule is q-dispersed if all the slots are formed by
q-dispersed sets.

Observation 2.5, item 3, states that link �w is q-near a link �v iff
a�v(�w) > q−α. This immediately gives the following lemma.4

Lemma 2.11 ([42]). If all nodes transmit with the same power level,
fewer than qα/p senders in a p-signal schedule Sp are q-near to any
given link �v ∈ S.

At a cost of a constant factor, any schedule can be made dispersed.

4 Lemma 2.11 is a strengthening of Lemma 4.2 in Ref. [30].
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Lemma 2.12([42]). Assume all nodes transmit with the same power
level. There is a polynomial-time algorithm that takes an SINR-feasible
schedule and refines it into a q-dispersed schedule, increasing the num-
ber of slots by a factor of at most (q + 2)α.

Proof. Let St be a slot in an SINR-feasible schedule S. We show how
to partition St into sets St1,St2, . . . ,Stj that are q-dispersed, where
j ≤ (q + 2)α + 1 (see Figure 2.2).

Process the links of St in increasing order of length, assigning each
link �v “first-fit” to the first set Sti in which the receiver rv is at least
(qη1/α

v + 2) · dvv away from any other link. Let �w be a link previously
in Sti, and note that �w is shorter than �v. By the selection rule,

dwv ≥ (qη1/α
v + 2) · dvv ≥ qη1/α

v · dvv ,

dvw ≥ dwv − dww − dvv ≥ (qη1/α
v + 1)dvv − dww ≥ qη1/α

v dww .

Since this holds for every pair in the same set, the schedule is
q-dispersed. Suppose Stj is the last set used by the algorithm, and

S = {S1, . . . St, . . . ,ST }, a�v(St) ≤ 1,∀�v ∈ St.

St︷ ︸︸ ︷
{St1, . . . ,Sti, . . . ,Stj}, d(sw, rv) ≥ (qη1/α

v + 2)dvv ,

first-fit incr. link length−−−−−−−−−−−−−−−−−→ ∀�w ∈ Sti ∩ S−
lw

⇒
d(sv, rw) ≥ qη

1/α
v dww ,

∀�w ∈ Sti ∩ S−
lw

⇒
Sti is q-dispersed.

d(sw, rv) < (q + 2)η1/α
v dvv ,

�w ∈ St(i−1) ⇒
j < (q + 2)α.

Fig. 2.2 Illustration of Lemma 2.12: SINR-feasible schedule S is transformed into a
q-dispersed schedule with at most |S| · (q + 2)α time slots.
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let �v be a link in it. Then, each Sti, for i = 1,2, . . . , j − 1, contains a
link whose sender is closer than (qη1/α

v + 2) · dvv ≤ (q + 2)η1/α
v dvv to

rv, i.e., is (q + 2)-near to �v. By Lemma 2.11, j − 1 < (q + 2)α.

Corollary 2.13. [42] Assume all nodes transmit with the same power
level. Let χq denote the minimum number of slots in a q-dispersed
schedule. χq ≤ (q + 2)α · χ.

Intuitively, there is a correlation between low affectance and high
dispersion in schedules. The following result makes this connection
clearer. The converse is, however, not true, since interference of many
far-away links can accumulate.

Lemma 2.14. [42] A p-signal schedule that employs uniform power
assignment is also p1/α-dispersed.

Proof. Let �v and �w be an ordered pair of links in a slot St in a p-signal
schedule. By definition, a�v(�w) ≤ a�v(St) ≤ 1/p. By Observation 2.5,
item 3, dwv ≥ p1/αη

1/α
v · dvv . Hence, the lemma follows.

2.5 SINR Reception Diagrams

The SINR diagram of a set of sender nodes partitions the plane into
regions or reception zones. A region contains the set of locations where
the signal of a certain transmitter can be received successfully. Avin
et al. [3]. investigate the shape of the reception zones. They show that
the reception zones of all senders are convex for a uniform scheme but
not necessarily for non-uniform power assignments. In addition, they
prove that the reception zones are fat, i.e., the ratio between the radius
of the smallest ball completely containing the zone and the radius of the
largest ball completely contained in the zone is bounded by a constant.
The study of SINR diagrams helps to understand the properties of the
physical model better and may lead to more sophisticated algorithms
exploiting the characteristics of wireless networks.
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2.6 Outlook

In this section we presented properties of schedules in the physical
model, which serve as tools for the algorithm designer. Note that
the interference tolerance properties, presented in Section 2.4.1, apply
equally to scheduling links of constant or fixed power levels (Section 3),
as well as variable power levels (Section 4). The spatial dispersion
properties, presented in Section 2.4.2, apply for scenarios that employ
uniform power assignment, and are going to be used in the analysis
presented in Section 3.



3
Scheduling Without Power Control

This section studies the problem of scheduling links in the physical
model under the assumption that all nodes transmit with the same
power level, i.e., there is no power control. This kind of power assign-
ment is employed in many practical systems, and is sometimes referred
to as uniform power assignment [38]. It turns out that even in this
simplified setting, the problem presents many challenges. We start
the chapter with a discussion on the problem’s complexity in Sec-
tion 3.1, where we present a proof that the problem is NP-hard in
the physical model, even in a geometry-restricted setting. The rest of
the chapter is dedicated to approximation algorithms for the problem.
In Section 3.2 we present the first and rather naive approach to the
problem. In Section 3.3 we present the most recent results in the area,
which prove that the One-Slot Scheduling Problem can be approxi-
mated to within a constant factor and the Multi-slot Scheduling Prob-
lem can be approximated to within an O(logn) factor.

3.1 Complexity in the Physical Model

Many complexity results in wireless networks are derived in a general
SINR model, where the gain between two transmissions is defined in an

335
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arbitrary way, i.e., without considering the geometry of the problem.
We refer to such a model as “abstract” signal-to-interference-plus-noise-
ratio (or short, SINRA) model. In the SINRA model, the path-loss
between nodes is not constrained by their Euclidean coordinates, but
can be set arbitrarily (i.e., triangular inequality must not be preserved
when defining the path-loss). We illustrate how a typical hardness proof
in the SINRA model works in Section 3.1.1.

The majority of the results analyzed in this monograph are derived
in the geometric version of the physical model. In this model, nodes
live in space, and the gain (or signal attenuation) between two nodes
is determined by the distance between the two nodes.

The physical model makes some simplifying assumptions, such as
perfectly isotropic radios, no obstructions, or a constant ambient noise
level. On the other hand, SINRA is not all that realistic either, as
it allows arbitrary values in the gain matrix among the participating
nodes of a wireless network. In reality, if a node u is close to a node v,
which in turn is close to a node w, then u and w will also be close. So the
entries in the gain matrix will be constrained by the other entries. Thus,
the physical model is too optimistic, whereas SINRA is too pessimistic.
Hence, a real network is positioned somewhere between the SINRA

model and the physical model, i.e., the propagation of the wireless
signal is neither as well-behaved as in the geometric physical model,
nor is it as unpredictable as in the general model.

When studying algorithms or protocols, upper bounds should be
derived for the pessimistic model, as an algorithm for a strictly1

more pessimistic model will also work for reality. However, also the
converse is true: if one is interested in lower bounds (impossibility
results or capacity constraints), one must use the optimistic model.
A strictly more optimistic model guarantees that results are applicable
in practice.

In Section 3.1.2, we prove that the Multi-slot Scheduling Problem is
NP-hard in the physical model. Since this model is weaker than reality,

1 Note that models are rarely strictly harder than reality; SINRA is a typical example, as
SINRA does not include several difficulties of reality, e.g., short-term fading.
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this implies that one cannot compute an optimal schedule of wireless
requests in practice, unless P = NP.

3.1.1 Complexity of the Multi-slot Scheduling
Problem in SINRA

In this section we show that it is NP-hard to approximate the Multi-slot
Scheduling Problem in the SINRA model to within a factor of n1−ε, for
any constant ε > 0.

Theorem 3.1([30]). There is no n1−ε factor approximation algorithm
for the Multi-slot Scheduling Problem in the SINRA model, for any
constant ε > 0, assuming P 	= NP.

Proof. We will prove the result by presenting a gap-preserving reduc-
tion from the graph coloring problem. In Ref. [89] it was shown that it
is NP-hard to approximate the graph coloring problem to within n1−ε

for all ε > 0.
Consider an instance πC of the graph coloring problem defined for an

undirected graph G = (V,E) on n vertices. We construct (in polynomial
time) an instance πS of scheduling, such that:

OPT (πC) ≤ k ⇒ OPT (πS) ≤ k, (3.1)

OPT (πC) > n1−εk ⇒ OPT (πS) > n1−εk. (3.2)

For each v ∈ V , we add a link lv = (rv,sv). The physical model
parameters are set to β = 1,N = 0, and the n × n path-loss matrix
A is defined as follows:

• (v,w) ∈ E ⇒ Awv = Avw = 1,
• (v,w) /∈ E ⇒ Awv = Avw = n,
• v = w ⇒ Awv = Avw = 1.

To see that Equation (3.1) holds, assume that we can color πC

with k or less colors. We claim that links associated to nodes with the
same color (let’s call each such subset V (ci),1 ≤ i ≤ k) can be scheduled
concurrently, giving a schedule of length k (or less). Since nodes colored
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with the same color are not adjacent, the SINR at each link lv can be
lower bounded by

SINRlv(V (ci)) =
P
1∑

w∈V (ci),
w �=v

P
n

≥ n

n − 1
> 1

= β, ∀lv, v ∈ V (ci), i ∈ {1, . . . ,k}.

To see that Equation (3.2) holds, assume we cannot color πC with
≤ n1−εk colors. We have to show that πS cannot be scheduled in n1−εk

time slots or less. Assume that we could, and consider a schedule of size
n1−εk. Since any coloring of this size must have a violation (an edge
to a node x of the same color) at at least one node v ∈ V . If s is the
color of v, i.e., v ∈ V (cs), the SINR at the link lv associated with this
node is:

SINRlv(V (cs)) ≤
P
1

P
1 +

∑
w∈V (cs),
w �=v,w �=x

P
n

< 1

= β, lv | v,x ∈ V (cs), s ∈ {1, . . . ,k}.

This shows that any schedule of size n1−εk or less will have at least one
violated node, given the necessary contradiction.

3.1.2 Complexity of the Multi-slot Scheduling Problem in
the Physical Model

Proving a problem to be NP-hard implies that there exists no poly-
nomial time algorithm for determining an optimal schedule, unless
P = NP . It is widely believed that an NP-hard computational problem
is not tractable efficiently.

We proceed by first showing that the decision version of the Multi-
slot Scheduling Problem under uniform power assignment scheme is
NP-hard by providing a polynomial time reduction from the Partition
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Problem, an NP-complete special case of the well-known Subset Sum
problem [27]. If the solution to an instance of the Multi-slot Scheduling
Problem implies a solution to any instance of the Partition Problem,
Multi-slot Scheduling Problem must be at least as hard as Partition.

Theorem 3.2([32]). The Multi-slot Scheduling Problem is NP-hard.

Proof. We show that the Partition Problem is reducible to the Multi-
slot Scheduling Problem in polynomial time. The Partition Problem
(proved to be NP-complete by Karp in his seminal work [48]) can be
formulated as follows: given a set I of integers, is it possible to divide
this set into two subsets I1 and I2, such that the sums of the numbers
in each subset are equal? The subsets I1 and I2 must form a partition
in the sense that they are disjoint and they cover I.

Partition Problem: Find I1,I2 ⊂ I = {i1, . . . , in} s.t.:

I1 ∩ I2 = ∅,

I1 ∪ I2 = I, and∑
ij∈I1

ij =
∑

ij∈I2

ij =
1
2

∑
ij∈I

ij .

The proof proceeds as follows. First, we define a many-to-one reduc-
tion from any instance of the Partition Problem to a geometric instance
of the Multi-slot Scheduling Problem. Then, we argue that the instance
of the Multi-slot Scheduling Problem cannot be scheduled in T ≤ 1 time
slots, but can be scheduled in 1 < T ≤ 2 time slots if and only if the
instance of the Partition Problem is solved.

Let us look at a set I = {i1, . . . , in} of integers, where the elements
of I add up to σ,

n∑
j=1

ij = σ.

Without loss of generality, we can assume all elements to be dis-
tinct and positive.2 We construct the following Multi-slot Scheduling

2 Note that the assumption that the integers in the Partition instance are distinct is not
essential for the reduction to work, and we make it merely for the sake of simplicity.
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Fig. 3.1 Reduction from Partition: link ln+1 (or ln+2) can be scheduled if and only if the
interference caused by simultaneously scheduled links sj , j ∈ {1 · · ·n} is less or equal to σ/2.

Problem instance with n + 2 links L = {l1, . . . , ln+2} (see Figure 3.1).
We refer to the sender node belonging to lj as sj and the receiver
node rj . We assign each of these nodes a position (X,Y) in the plane.
For each integer ij in I we set the x-axis coordinate of sj to (P/ij)1/α,

pos(sj) =

((
P

ij

) 1
α

,0

)
∀1 ≤ j ≤ n.

Next, we designate for every ri,1 ≤ i ≤ n its position to be at dis-
tance dmin to its sender si, where

dmin = P
1
α ·

(
1

(imax−1)1/α − 1
i
1/α
max

)
(
1 + (nβ)

1
α

) 3, (3.3)

and imax is the maximal value of the integers in set I. Thus

pos(ri) = pos(si) + (dmin,0).

3 Note that this implies that some sender–receiver distances are less than one and the
received power Pri = P/dα

min can be larger than the transmitting power P . As has been
stated in Section 2.1, to overcome this issue, we assume that the problem instance is
normalized such that the minimum distance between any sender–receiver pair is at least
one. The power level P is normalized accordingly, such that it is high enough for the
longest link in the input set to transmit successfully in the presence of ambient noise. For
the sake of simplicity, we do not change the notation to reflect this normalization. Power
P therefore denotes an already normalized constant. Note that the exact value of P does
not affect the reduction, since P is still uniform (fixed and equal for all nodes) and can be
determined for any instance of Partition.
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Finally, we place rn+1 and rn+2 at the center (0,0) and their senders
sn+1,sn+2 perpendicular to the x-axis, at distance (2P/βσ)1/α, i.e.,

pos(rn+1) = pos(rn+2) = (0,0),

pos(sn+1) =

(
0,

(
2P

β · σ

) 1
α

)
,

pos(sn+2) =

(
0,−

(
2P

β · σ

) 1
α

)
.

Having defined the geometric instance of the Multi-slot Scheduling
Problem for any instance of the Partition Problem, we proceed by show-
ing that in order to find a schedule of length 1 < T ≤ 2, a solution to
the Partition Problem is required. Clearly, it is not possible to schedule
all links in one slot, since the receivers rn+1 and rn+2 are at the same
position and we assume β ≥ 1.

In order to transmit successfully, the SINR constraint at the
intended receiver has to be satisfied. In the following lemma we prove
that the receivers r1, . . . , rn are close enough to their respective senders
to guarantee successful transmission, regardless of the number of other
links scheduled simultaneously.

Lemma 3.3 ([32]). Let Li = {lj | 1 ≤ j ≤ n + 1 and i 	= j}. It holds
for all i ≤ n that the SINR exceeds β when the link li is scheduled
concurrently with the set Li,

SINRri(Li) =
P
dα
ii∑

lj∈Li

P
dα
ji

> β.

Proof. We do not consider ln+2, since the interference at rn+1 and rn+2

is the same and they can never be scheduled simultaneously. Hence the
result carries over to ln+2.

Since the positions of the sender nodes s1, . . . ,sn depend on the
values of i1, . . . , in, we can determine the minimum distance between
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two sender nodes sj ,sk.

d(sj ,sk) = |d(sj , rn+1) − d(sk, rn+1)|

=

∣∣∣∣∣
(

P

ij

) 1
α

−
(

P

ik

) 1
α

∣∣∣∣∣
≥ P

1
α

(
1

(imax − 1)1/α
− 1

i
1/α
max

)
. (3.4)

Thus, one can deduce that the sender sj closest to ri, i 	= j is located
at least at distance d(sj ,si) − dmin from ri (dmin is defined in Equa-
tion (3.3)). All the other sender nodes (including sn+1) are farther away.
This suffices to show a lower bound for SINRri(Li).

SINRri(Li) >

1
dα
min
n

(d(sj ,si)−dmin)α

≥ 1
n

((1 + (nβ)
1
α ) − 1)α

= β. (3.5)

Having proved that successful transmission is guaranteed for links
l1, . . . ln, no matter how many other links are scheduled concurrently,
we now return to the proof of Lemma 3.2.

We claim that there exists a solution to the Partition Problem if
and only if there exists a 2-slot schedule for L. For the first part of the
claim, assume we know two subsets I1,I2 ⊂ I, whose elements sum up
to σ/2. To construct a 2-slot schedule, ∀ij ∈ I1, we assign the link lj to
the first time slot, along with ln+1, and assign the remaining links to the
second time slot. Due to Lemma 3.3 we can focus our analysis on the
receivers rn+1 and rn+2. The situation is the same for both receivers,
so it suffices to examine rn+1. The signal power rn+1 receives from its
sender node sn+1 is:

Prn+1(sn+1) =
P((

2P
βσ

) 1
α

)α =
βσ

2
.



3.1 Complexity in the Physical Model 343

The interference rn+1 experiences from each sender sj is:

Irn+1(sj) =
P((

P
ij

) 1
α

)α = ij ,

which results in total interference of

Irn+1 =
∑

ij∈I1

ij =
σ

2
.

This allows to lower bound the SINR at rn+1:

SINRrn+1 ≥ Prn+1(sn+1)
Irn+1

=
βσ/2
σ/2

= β,

which, in combination with Lemma 3.3, proves that our schedule guar-
antees successful transmission for all links.

For the second part of the claim, we need to show that if no solution
to the Partition Problem exists, we cannot find a 2-slot schedule for L.
No solution to the Partition Problem implies that for every partition
of I into two subsets, the sum of one set is greater than σ/2. Assume
we could still find a schedule with only two slots. Since the receivers
rn+1 and rn+2 are at the same position, they have to be assigned to
different slots to permit a successful transmission. Because we have to
split L \ {ln+1, ln+2} into two sets and the received power from sj , j =
1, . . . ,n at (0,0) is ij , we end up with a total interference at (0,0) greater
than σ/2 for one slot, which prevents the correct reception of the signal
from sn+1 or sn+2.

It can be shown that the decision version of the Weighted One-
Slot Scheduling Problem with uniform power assignment scheme is also
NP-hard in the physical model. The proof is similar in spirit to the one
presented above, and the reduction is done from the Knapsack Problem.
Please refer to Ref. [32] for more details.

3.1.3 Outlook

In this section we have established that the Multi-slot Scheduling
Problem (and its weighted version) is NP-hard in the physical model. In
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order to prove that the problem at hand is also NP-complete, we have
to prove that it is in the complexity class NP. For some operations on
integers it is not yet clear whether they can be computed efficiently by
a Turing machine. E.g., it is not known how a sum of square roots of
integers can be compared quickly to an integer [69]. Since the physical
model requires the computation of roots of integers, we do not know
whether scheduling and related problems are in NP. If we assume the
Real RAM (Random Access Machine) model (often used in computa-
tional geometry), all the necessary computations can be implemented
efficiently.

In the rest of this chapter, we will turn our attention to the design of
efficient approximation algorithms. In Sections 3.2 and 3.3, we propose
scheduling algorithms that compute feasible solutions in the physical
model in polynomial time with worst-case approximation guarantees
for arbitrary network topologies.

3.2 Diversity Scheduling

Solving problems in the physical model is difficult, as is documented
by the vast amount of literature with heuristics on this subject [6, 10,
11, 12, 26, 34, 37, 45, 63, 64, 65, 66, 68, 77, 83].

In this section we present an algorithm for the Multi-slot Scheduling
Problem. This algorithm represents an initial effort to solve this prob-
lem in the physical model, and an algorithm with improved approxi-
mation guarantee is going to be presented in Section 3.3.

Before describing the algorithm, let us recall the notion of link length
diversity g(L), defined in Section 2.1, and denoting the number of
nonempty length classes of the set of links to be scheduled. Note that,
in realistic scenarios, the link length diversity can usually be regarded
as a constant. In theory, however, it can be as large as n, the number
of links in the network.

The algorithm presented in this section consists of two steps: first,
the problem instance is partitioned into disjoint link length classes;
then, a feasible schedule is constructed for each length class using a
greedy strategy.
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3.2.1 Algorithm with Approximation Factor O(g(L)) for
the Multi-slot Scheduling Problem

The algorithm presented in this section is inspired by the heuristic
proposed by Moscibroda et al. [66], which schedules a strongly con-
nected set of links in the physical model using linear power assignment.
Although similar in spirit, the algorithm in Ref. [66] is not designed to
schedule an arbitrary set of links and does not provide an approxima-
tion guarantee for the obtained solution.

Algorithm 1 Approximation Algorithm for the Multi-slot Scheduling
Problem [32]

1: input: Set of links L = {l1, . . . , ln};
2: output: Schedule S = {S1, . . . ,ST };
3: Let G = {G0, . . . ,G�log (maxdii)	} such that Gk is the set of links li

of length 2k ≤ dii < 2k+1;
4: Set µ according to (3.6);
5: t := 0;
6: for all Gk 	= ∅ do
7: Partition the plane into squares of width µ · 2k;
8: 4-color the squares such that no two adjacent squares have the

same color;
9: for j = 1 to 4 do

10: repeat
11: for all squares Ak

j of width µ · 2k and color j do
12: Pick one not yet scheduled link li ∈ Gk with receiver ri in

Ak
j ; (if there is any such li left unscheduled)

13: Lk
j := Lk

j ∪ li; (schedule li in time-slot t)
14: end for
15: t := t + 1;
16: St := Lk

j ;
17: until all links with receivers in any square Ak

j have been sched-
uled

18: end for
19: end for
20: return S;



346 Scheduling Without Power Control

The algorithm (for a description in pseudo-code see Algorithm 3.2.1)
starts by partitioning the input set of links L into �log(maxdii)� (where
maxdii is the length of the longest link li ∈ L) possibly empty length
classes. Each length class Gk is scheduled separately. First, the plane
is partitioned into square grid cells of side µ · 2k, where µ is defined as
follows:

µ = 4
(

8β · (α − 1)
(α − 2)

) 1
α

, (3.6)

and then the grid cells are colored regularly with four colors
(see Figure 3.2). Links whose receivers belong to different squares
of the same color are scheduled simultaneously. Note that the
inner repeat loop (lines 10–17) constructs a schedule of length ∆k

j =
maxAk

j ∈Gk
(|Ak

j |), which is the maximum number of links in length class
Gk, whose receivers are in the same grid cell of color j. Given that there
are four colors and g(L) nonempty length classes, all links are scheduled
in 4∆g(L) time slots, where ∆ = maxAk

j ∈{G0,...,G�log (maxdii)�} (|Ak
j |).4

We show now that the schedule obtained by Algorithm 3.2.1 is
correct, by proving in Theorem 3.4 that all links can be scheduled
successfully in their respective time slot.

Fig. 3.2 In line 11 of Algorithm 1, the algorithm picks all squares colored with color j.
The example shows an inner loop iteration for length class Gk and j = 3. The algorithm
schedules one unscheduled link from each selected square (if there exists one).

4 Here we overload the term Ak
j to denote the set of receivers ri | li ∈ Gk, located inside the

grid cell Ak
j ; and the term Gk to denote the grid comprising cells of width µ · 2k.
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Theorem 3.4([32]). Consider an arbitrary set of links L to be sched-
uled. For every time slot t, the set St of links output by Algorithm 3.2.1
is scheduled successfully, i.e., the SINR at every intended receiver is
larger than β.

Proof. We demonstrate that all transmissions scheduled in a time slot t

are received successfully by the intended receivers, i.e., their SINR is
sufficiently high.

Without loss of generality, let us examine links in a length class Gk.
Every link li ∈ Gk satisfies dii < 2k+1, thus the perceived power at ri

from si is at least

Pri(si) ≥ P

2α(k+1) . (3.7)

Since Algorithm 3.2.1 schedules at most one link in each cell with
the same color concurrently, the closest eight senders sj scheduled in
the same time slot must be at least at distance d(ri,sj) ≥ µ2k − 2k+1 =
2k(µ − 2) to ri (see Figure 3.2). Consequently, the sum of their inter-
ference experienced by ri is less than

8∑
j=1

Pri(sj) ≤ 8P

(2k(µ − 2))α
.

In the next step, we consider the (at most) 16 senders sj at distance
3µ2k − 2k+1 ≤ d(ri,sj) ≤ 5µ2k − 2k+1. They contribute a total inter-
ference of

25∑
j=9

Pri(sj) ≤ 16P

(2k(3µ − 2))α
.

We continue aggregating the interference from nodes sj at distance
range

(2l − 1)µ2k − 2k+1 ≤ d(ri,sj) < (2l + 1)µ2k − 2k+1,



348 Scheduling Without Power Control

∀l = 1,2, . . .. Since at most 8l links are picked in each interval, the
interference caused by them is at most

d(ri,sj)<
(2l+1)µ2k−2k+1∑

d(ri,sj)≥
(2l−1)µ2k−2k+1

Pri(sj) ≤ 8P · l

(2k((2l − 1)µ − 2))α
.

Thus, the total interference at a scheduled receiver ri can be upper
bounded by

Iri ≤
∞∑
l=1

8P · l

(2k((2l − 1)µ − 2))α

≤ 8P

2kα

∞∑
l=1

l

(1
2(2l − 1)µ)α

(3.8)

≤ 8P

2(k−1)αµα

∞∑
l=1

l

(2l − l)α

≤ 8P

2(k−1)αµα

∞∑
l=1

1
lα−1

≤ 8P

2(k−1)αµα

(α − 1)
(α − 2)

, (3.9)

where Equation (3.8) follows because x − 2 > x/2, ∀x > 4 and µ > 4,
given that β ≥ 1 and α > 2; and Equation (3.9) follows from a bound
on Riemann’s zeta function. Using Equations (3.7), (3.9), and plugging
in the value of µ, defined in Equation (3.6), the SINR at receiver ri can
be lower bounded by

SINRri =
Pri(si)

Iri

>
P

2α(k+1)

8P
2(k−1)αµα

(α−1)
(α−2)

=
µα

4α · 8 · (α−1)
(α−2)

= β,
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Now we turn our attention to the efficiency of Algorithm 3.2.1. In
particular, in Theorem 3.5 we bound its approximation ratio.

Theorem 3.5 ([32]). The approximation ratio of Algorithm 3.2.1 is
O(g(L)), where g(L) is the length diversity of the input, defined in
Definition 2.1.

Proof. The proof relies on the choice of a so-called critical grid cell5

Ak
max = argmax

Ak
j ∈{G0,...,G�log(maxdii )�}

|Ak
j |, (3.10)

i.e., we choose the cell with the highest density ∆ = |Ak
max| over all

g(L) generated grids (see Figure 3.3). Note that ∆ is the number of
links li whose receiver is located in cell Ak

max and whose length class
is Gk, i.e., 2k ≤ dii < 2k+1. We proceed by showing that an optimum
algorithm OPT can schedule all ∆ in at least TOPT ≥ �∆/q� time slots,
where q is a constant dependent on parameters α and β (µ is defined
in Equation (3.6)):

q =
(2(

√
2µ + 1))α

β
. (3.11)

Assume, by contradiction, that OPT schedules all links in less
than TOPT time slots. Therefore, there must exist a time slot t′,

Fig. 3.3 Lower Bound: an optimum algorithm could schedule at most q links with receivers
in Ak

max in length class Gk in a single time slot.

5 Here we overload the term Ak
j to denote the set of receivers ri | li ∈ Gk, located inside the

grid cell Ak
j ; and the term Gk to denote the grid comprising cells of width µ · 2k.
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1 ≤ t′ ≤ TOPT , such that more than q links in Ak
max are scheduled simul-

taneously. We pick one of the scheduled links li, ri ∈ Ak
max in time slot t′

and calculate the resulting SINR level at ri:

SINRri∈Ak
max

≤
P
dα
ii

P ·∑q
j=0 d(sj , ri)−α

<
P

2kα

P · q · (2
√

2µ2k + 2k+1)−α
(3.12)

= β, (3.13)

where Equation (3.12) follows from the fact that dii ≥ 2k, djj < 2k+1

and d(ri, rj) ≤ 2
√

2µ2k; and Equation (3.13) follows from Defini-
tion ((3.11)) of q.

Hence, to schedule all links in the critical square Ak
max, OPT needs

time

TOPT ≥
⌈

∆
q

⌉
. (3.14)

On the other hand, Algorithm 3.2.1 schedules all links in L in time

TALG 3.2.1 ≤ 4 · ∆ · g(L). (3.15)

The approximation ratio follows from Equations (3.14) and (3.15):

TALG 3.2.1

TOPT
≤ 4q · g(L)

= O(g(L)). (3.16)

Algorithm 3.2.1 can be adapted to solve the Weighted One-Slot
Scheduling Problem with the same asymptotic approximation ratio.
Please refer to Ref. [32] for more details.

3.2.2 Outlook

The approximation ratio of the algorithm discussed in this section is
O(g(L)). Although this is the first result to provide any approximation
guarantee for the Multi-slot Scheduling Problem in the physical model,
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it leaves a lot of space for improvement, since this guarantee can become
extremely bad (Ω(n)), depending on the topology of the network. In
other words, it is not better than the guarantees offered by the most
naive solutions to the problem.

In the next section we are going to present an improved scheduling
algorithm, whose approximation guarantee no longer depends on the
diversity g(L) or any other topological characteristic of the network.

3.3 Approximative Scheduling

In this section we will discuss an algorithm that provides a solution to
the One-Slot Scheduling Problem with constant approximation guaran-
tee. When applied repeatedly, it provides an O(logn) approximation for
the Multi-slot Scheduling Problem. As opposed to the algorithm pre-
sented in Section 3.2, the approximation guarantee of this algorithm is
independent of the topology of the network.

3.3.1 Scheduling Algorithm with Constant Approximation
Factor for the One-Slot Scheduling Problem

The one-slot scheduling algorithm (for a description in pseudo-code see
Algorithm 2) schedules links in non-decreasing order of their length,
say l1, . . . , ln. For each link lv, it checks whether it is too much affected
by previously scheduled links (those in the output one-slot schedule S)
and, if not, adds it to the solution S. “Too much affected” is defined by
a threshold τ−α, where τ = 2 + c, and c is a constant defined in Equa-
tion (3.18). All the links that do not satisfy the affectance condition are
not added to the solution. We will show that this simple algorithm pro-
duces a constant approximation to the One-Slot Scheduling Problem.

We start the analysis by showing that the algorithm obtains an
SINR-feasible schedule.

3.3.1.1 Correctness

In this section we prove that the solution S output by Algorithm 2
is SINR-feasible, i.e., all links assigned to the same time-slot can be
scheduled concurrently without collisions.
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Algorithm 2 One-Slot Scheduling Algorithm [42]
1: input: Set of links L = {l1, . . . , ln};
2: output: One-slot schedule S;
3: Set c according to Equation (3.18); τ := 2 + c;
4: Sort the links in L in non-decreasing order of length;
5: for v = 1 to n do
6: if alv(S) ≤ τ−α then
7: S := S ∪ {lv};
8: end if
9: end for

10: return S;

Lemma 3.6 ([42]). Algorithm 2 produces a c-dispersed solution (see
Definition 2.10 of a dispered set), where c is defined in Equation (3.18).

Proof. Let lw be a link in the set S output by Algorithm 2. Let S−
w

(S+
w ) be the set of links in S that are shorter (longer) than lw. Consider

first a link lu ∈ S−
w . Since lw was added by the algorithm after adding

lu, alw(u) ≤ τ−α, which implies by Observation 2.5, item 3, that

duw ≥ τη1/α
w dww > (τ − 2)η1/α

w dww = c · η1/α
w dww.

Consider next a link lv ∈ S+
w . Since lv was added after lw, it holds

that alv(w) ≤ τ−α. So by Observation 2.5, dwv ≥ τ · η
1/α
v dvv . Note that

ηv ≥ ηw whenever dvv ≥ dww . Then, using the triangular inequality,

dvw = d(sv, rw) ≥ dwv − dvv − dww

≥ (τη1/α
v − 2)dvv

≥ (τ − 2)η1/α
w dww

= c · η1/α
w dww .

Since this holds for every ordered pair in S, we have that S is
c-dispersed.

Lemma 3.7 ([30, 42]). Let lv be a link in an δ-dispersed set S (see
Definition 2.10 of a dispered set), δ ≥ 2. Let S+

vδ be the set of links in
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S that are at least as long as lv. Then,

alv(S+
vδ) <

(
α − 1
α − 2

253
)

δ−αηv. (3.17)

Proof. Our first observation is that disks Dw of radius δ · η
1/α
w · dww ≥

δ · dvv around each receiver rw ∈ S+
vδ do not contain any sender sz 	= sw.

Using this fact and the triangular inequality, we can lower bound the
distance between any two senders sw,sz ∈ S+

vδ as d(sw,sz) ≥ d(rw,sz) −
dww ≥ δ · dww − dww = dww (δ − 1) ≥ dvv (δ − 1). Therefore, disks Dw

of radius dvv (δ − 1)/2 around senders in S+
vδ do not intersect.

Next, we partition the sender set in S+
vδ into concentric rings Ringk

of width δ · dvv around the receiver rv. Each ring Ringk contains
all senders sw ∈ S+

vδ, for which k(δ · dvv ) ≤ dwv ≤ (k + 1)(δ · dvv ). We
know that the first ring Ring0 does not contain any sender. Con-
sider all senders sw ∈ Ringk for some integer k > 0. All disks of radius
dvv (δ − 1)/2 around each sw must be located entirely in an extended
ring Ringk of area:

A(Ringk) = [(dvv (k + 1)δ + dvv (δ − 1)/2)2

−(dvvkδ − dvv (δ − 1)/2)2]π

= (2k + 1)d2
vvδ(2δ − 1)π.

Since disks Dw of area A(Dw) ≥ (dvv(δ − 1)/2)2π around senders
in S+

vδ do not intersect, and the minimum distance between rv and
sw ∈ Ringk,k > 0 is k(δ · dvv), we can use an area argument to bound
the number of senders inside each ring. The total interference coming
from ring Ringk,k ≥ 1 is then bounded by

Ilv(Ringk) ≤
∑

sw∈Ringk

Ilv(sw)

≤ A(Ringk)
A(Dw)

· P

(kδdvv )α

≤ (2k + 1)
kα

· 4P

(δdvv )α

δ(2δ − 1)
(δ − 1)2

≤ 1
k(α−1) · P

dα
vv

253
δα

,
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where the last inequality holds since k ≥ 1 ⇒ 2k + 1 ≤ 3k and δ ≥ 2 ⇒
δ − 1 ≥ δ/2. Summing up the interferences over all rings yields:

Ilv(S+
vδ) <

∞∑
k=1

Ilv(Ringk)

≤
∞∑

k=1

1
kα−1 · P

dα
vv

253
δα

<
α − 1
α − 2

· P

dα
vv

253
δα

=
(

α − 1
α − 2

253
)

δ−αPvv ,

where the last inequality holds since α > 2. This results in affectance

alv(S+
vδ) = ηv ·

∑
lz∈S+

vδ

RI lv(lz)

= ηv · Ilv(S+
vδ)

Pvv

< ηv ·
(

α − 1
α − 2

253
)

δ−α.

Theorem 3.8([42]). Algorithm 2 produces an SINR-feasible solution.

Proof. Let lw be a link in the set S output by Algorithm 2. Let S−
w

(S+
w ) be the set of links in S that are shorter (longer) than lw. The links

in S−
w were processed before lw, so by the if-condition in the algorithm,

alw(S−
w ) ≤ τ−α. By Lemma 3.6, S is c-dispersed, so by Lemma 3.7 and

the definitions of τ and dispersion,

alw(S+
w ) < ηv

(
α − 1
α − 2

253
)

1
(cη1/α)α

=
1
cα

(
α − 1
α − 2

253
)
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≤ 1
2
, where

c = max

(
2,

(
α − 1
α − 2

263
) 1

α

)
. (3.18)

We have shown that the affectance of each link in S is at most (τ−α +
1/2) < 1, which means that SINRlv ≥ β for every scheduled link lv ∈ S.
This concludes the proof of the lemma.

3.3.1.2 Approximation Ratio

We start the performance analysis of Algorithm 2 with two definitions
and a combinatorial lemma, to which we refer as the blue-dominant
centers lemma. Informally, if we are given two sets of points, let’s call
them red and blue points, we say that a blue point is blue-dominant
if it is “shadowed”, or “protected”, by other blue points from the red
points in all directions. We call the set of blue points that “protect”
the blue-dominant point from the red points a guarding set.

Definition 3.9. Let R and B be two disjoint sets of points in a metric
space (V,d). Let’s call them red and blue points, respectively. For q a
positive integer, a point b ∈ B is q-blue-dominant if every ball Bδ(b)
around b, comprising points w such that d(w,b) ≤ δ, contains q ∈ Z

+

times more blue points than red points. Formally,

∀δ ∈ R+
0 : |Bδ(b) ∩ B| > q · |Bδ(b) ∩ R|.

Definition 3.10. Let R and B be defined as above. Let r ∈ R be a
red point and G(r) ⊆ B be a set of blue points. We say that G(r) is
guarding r if for all b∗ ∈ B \ G(r), we have that Bd(b∗,r)(b∗) ∩ G(r) 	= ∅.
Furthermore, we say that Gq(r) is q-guarding r if for all b∗ ∈ B \ Gq(r),
we have that Bd(b∗,r)(b∗) ∩ Gq(r) ≥ q.

Lemma 3.11. ([30] Blue-dominant centers lemma) Let R and B
be two disjoint sets of red and blue points in the two-dimensional
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Euclidean space, and q be a positive integer. If |B| > 6q|R| then there
exists at least one q-blue-dominant point in B.

Proof. Process the points in R in an arbitrary order while maintaining
a subset B′ of B as follows (initially, B′ = B). For r ∈ R construct a
q-guarding set Gq(r) ⊆ B′ (guarding r relative to the current B′) and
remove Gq(r) from B′.

We claim that it is possible to construct a guarding set Gq(r) of
size at most 6q. The procedure to construct Gq(r) is as follows (see
Figure 3.4). Consider a red point r. Draw six sectors of 60◦ originating
at r. For each of these six sectors secj , include the closest q blue points
bj ∈ secj in Gq(r) (if secj has less than q blue points from B′, pick all
the blue points in this sector). Now Gq(r) has size at most 6q, and we
claim that it is guarding r. Suppose it is not. Then there is a point
b∗ ∈ B′ \ Gq(r) with Bd(b∗,r)(r) ∩ Gq(r) < q. Suppose b∗ is located in
secj and we selected q blue points bj from secj into Gq(r). This means
that d(b∗, bj) > d(b∗, r) for some bj ∈ secj , which implies that the sector
angle is larger than 60◦. (Note that if Gq(r) contains less than q blue
points bj from sector secj , then b∗ would have been picked to guard r

in that sector, also establishing a contradiction.)
After going through all points in R, the set B′ is still nonempty by

the assumption on the relative sizes of R and B. We claim that every

Fig. 3.4 Constructing a q-guarding set Gq(r), q = 1 of size at most 6 · q = 6 for the red point
r (Gq(r) = {b1, . . . , b6}).
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point b∗ ∈ B′ is now q-blue-dominant. This holds since (1) all Gq(r)’s
are pairwise disjoint and (2) every ball Bδ(b∗), b∗ ∈ B′, that contains
a red point r, contains also q blue points. Hence, for every blue node
b∗ ∈ B′, every ball Bδ(b∗) contains q times more blue points than red
points (“more”, since the center b∗ is also blue).

In the following lemma the algorithm’s solution is compared with
the stricter optimal solution OPTp. The lemma applies dispersion
robustness properties of the physical model, discussed in Section 2.4.2,
and the result of Lemma 3.11.

Lemma 3.12([42]). Let OPT p be a p-signal (one-slot) optimal sched-
ule (see Definition 2.6 for OPTp), where p = τα, τ = 2 + c and c is
defined in Equation (3.18). Let S be the set of links scheduled by Algo-
rithm 2. Then, |OPTp| ≤ ρ|S|, where ρ = 6(q/τ)α and q = 2 + τ .

Proof. Let OPT ′
p = OPTp \ S and S ′ = S \ OPT p. Let B = {sv|�v ∈

OPT ′
p} and R = {sw|�w ∈ S ′} be the sets of senders in OPT ′

p and S ′;
we call them blue and red points, respectively. Suppose the claim is
false. By Lemma 3.11, there is a (q/τ)α-blue-dominant point (sender)
s∗
b in B. We shall argue that the link l∗b = (s∗

b , r
∗
b ) would have been

picked up by Algorithm 2, which is a contradiction.
Consider any red point sr ∈ R. Let G∗(sr) be the set of points

(senders) in sr’s (q/τ)α-guarding set that are closer to s∗
b than s∗

b

is to sr. They are all within radius d(s∗
b ,sr) from s∗

b . By the blue-
dominant center property, |G∗(sr)| ≥ (q/τ)α. By Lemma 2.14, since
OPT ′

p is a p-signal set and p = τα, OPT ′
p is then τ -dispersed. Using this

fact and Lemma 2.11, we know that d(sr, r
∗
b ) ≥ q · (η∗

b )
1/α · d(s∗

b , r
∗
b ) ≥

q · d(s∗
b , r

∗
b ). By the triangular inequality, it then follows that

d(s∗
b , r

∗
b ) ≤ d(sr, r

∗
b )

q

≤ d(sr,s
∗
b) + d(s∗

b , r
∗
b )

q
⇒
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d(s∗
b , r

∗
b ) − d(s∗

b , r
∗
b )

q
≤ d(s∗

b ,sr)
q

⇒

d(s∗
b , r

∗
b ) ≤ d(s∗

b ,sr)
(q − 1)

.

Which results in

d(sr, r
∗
b ) ≥ d(s∗

b ,sr) − d(s∗
b , r

∗
b )

≥ d(s∗
b ,sr) · (q − 2)

(q − 1)
.

Moreover, for each sb ∈ G∗(sr),

d(sb, r
∗
b ) ≤ d(s∗

b ,sb) + d(s∗
b , r

∗
b )

≤ d(s∗
b ,sr) + d(s∗

b , r
∗
b )

≤ d(s∗
b ,sr) · q

(q − 1)
.

The affectance of the red sender sr on blue receiver r∗
b is then

bounded by

ar∗
b
(sr) = η∗

b · d(s∗
b , r

∗
b )

α

d(sr, r∗
b )

α

≤ η∗
b ·
(

q − 1
q − 2

)α

· d(s∗
b , r

∗
b )

α

d(s∗
b ,sr)α

.

In comparison, the combined affectance of the blue senders sb ∈
G∗(sr) on r∗

b is at least

ar∗
b
(G∗(sr)) = η∗

b ·
∑

sb∈G∗(sr)

d(s∗
b , r

∗
b )

α

d(sb, r
∗
b )

α

≥ η∗
b ·
( q

τ

)α ·
(

q − 1
q

)α

· d(s∗
b , r

∗
b )

α

d(s∗
b ,sr)α

≥
(

q − 2
τ

)α

· ar∗
b
(sr)

= ar∗
b
(sr).

Since this holds for any sr ∈ R, the total interference that r∗
b receives

from blue senders (those in OPT ′
p) is at least as high as the interference
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it would receive from the red senders (those in S ′):

ar∗
b
(S) = ar∗

b
(S ′) + ar∗

b
(S ∩ OPT p)

< ar∗
b
(OPT ′

p) + ar∗
b
(S ∩ OPT p)

= ar∗
b
(OPT p)

≤ τ−α.

Since link l∗b is in OPT p, receiver r∗
b is affected by at most 1/p = τ−α

by senders in OPT p. Since the affectedness of r∗
b by the red senders is

less than the affectance caused by blue senders, and therefore less than
τ−α, link l∗b would have been picked up by Algorithm 2 for the slot i0,
which establishes the contradiction.

The following result follows from Lemma 3.12 in combination with
the correctness result in Theorem 3.8 and the robustness Corollary 2.9.

Theorem 3.13. Algorithm 2 approximates the One-Slot Scheduling
Problem within a constant factor.

3.3.2 O(logn)-Approximation Algorithm for the Multi-slot
Scheduling Problem

In this section we show that, if Algorithm 2 is applied repeatedly, it pro-
vides an O(logn) approximation for the Multi-slot Scheduling Problem.

Theorem 3.14. If Algorithm 2 is applied repeatedly to schedule all
links, the resulting schedule is an O(logn) approximation for the Multi-
slot Scheduling Problem.

Proof. Suppose the instance is schedulable in t slots, and we find in
each iteration an ρ-approximation to the One-Slot Scheduling Prob-
lem. Then, this ρ-approximate set is of size at least n/(tρ), where n

is the current number of links. In other words, the size of the remain-
ing instance is at most n(1 − 1/(tρ)). After s iterations, the size is at
most n(1 − 1/(tρ))s ≤ ne−s/(tρ). Plugging in s = tρ logn, we are down
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to a single link. This gives an approximation ratio of s/t = ρ logn =
O(logn).

3.3.3 Handling Different Transmission Powers

We can treat the case when links transmit with different powers in two
different ways. Let Pmax (Pmin) be the maximum (minimum) power
used by a link, respectively. By introducing a factor of Pmin/Pmax

into the affectance threshold τ−α, Algorithm 2 still produces a feasible
schedule, that is longer by a factor of at most Pmax/Pmin.

Alternatively, we can partition the instance into “power regimes”,
where each regime consists of links whose powers are equal up to a
factor of 2. We schedule each power regime separately, obtaining an
approximation factor of at most logPmax/Pmin, or at most the number
of different power values.

Kesselheim and Vöcking [54] propose a distributed algorithm for
multi-slot scheduling with fixed power assignments. The algorithm
achieves a O(log2 n)-approximation ratio. Each sender transmits its
message with a certain probability and stops as soon as it obtained
an acknowledgment message. The power assignments have to satisfy
a monotonicity requirement and the transmission power for sending
acknowledgments needs to be adjustable. For the special case of the
uniform power assignment the last requirement can be dropped.

3.4 Outlook

In this chapter we studied the problem of scheduling wireless links when
the uniform power assignment is used, i.e., all nodes transmit with
the same power level. As pointed out in Section 3.3.3, the asymptotic
bounds on the performance of the algorithms presented in Sections 3.2
and 3.3 hold also in a scenario where nodes have different, but fixed
power levels, as long as the ratio Pmax/Pmin is bounded by a constant,
or if there is a constant number of power levels.

We showed in Section 3.1 that the Multi-slot Scheduling Prob-
lem is NP-hard in the physical interference model, and presented a
simple algorithm to solve the problem with a guaranteed approximation
ratio in Section 3.2. The optimality guarantee of this first algorithm,
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however, is dependent on the topology of the network, and unfortu-
nately can get as bad as Ω(n) in some special cases. In Section 3.3 we
presented considerably improved an algorithm, whose approximation
ratio no longer depends on the topology of the network.

Some problems, however, still remain open in this context, e.g.,
whether there exists a polynomial-time approximation scheme (PTAS)
for any of the scheduling problems, i.e., an algorithm that takes an
instance of the problem and a parameter ε > 0 and, in polynomial time,
produces a solution that is within a factor ε of the optimum.

In the next chapter, we will address the scheduling problems with
power control, i.e., a scenario where nodes can adjust their power levels
to achieve better throughput.



4
Scheduling With Power Control

So far we have considered network instances where all devices emit
signals of the same power level. However, there exist devices with hard-
ware that can adjust the transmission power. While this increases the
complexity of the devices, the throughput can be higher if the power
levels of simultaneously transmitting devices differ. In this chapter, we
examine the benefit of power control as well as its limitations.

We examine oblivious power assignments, where the power only
depends on the distance a signal has to cover, in Section 4.3. While these
assignments are useful for the design of distributed algorithms, they
exhibit the shortcoming that they can lead to a performance loss in the
order of the size of the network. In Section 4.4 we study more general
power assignment strategies and give bounds on their performance.

4.1 The Power of Power Control

We start with illustrative examples from Ref. [67]. In the first example
two sender receiver pairs (s1, r1) and (s2, r2) are arranged on a line such
that both pairs transmit in the same direction and their transmission
lines do not cross. This setup is shown in Figure 4.1. The question

362
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Fig. 4.1 Example with four nodes on a line with ambient noise of 0.01 µW and a recep-
tion threshold β = 3. When s1 sends with P (s1) = 1 dBm and s2 with P (s2) = −8 dBm,

we obtain signal-to-noise and interference ratios of 1.26 mW/13

0.01 µW+(0.16 nW/13) ≈ 8.12 at r1 and
0.16 mW/13

0.01 µW+(1.26 mW/33) ≈ 3.32 at r2. That is, the SINR threshold is exceeded for both pairs,
thus node r1 can perfectly decode s1’s message, and at the same time, r2 successfully
receives s2’s message. There is no collision.

Fig. 4.2 Example with two nested links, where one link’s sender and receiver are in the
transmission line of another communication link. When s1 sends with P (s1) = 1 dBm and

s2 with P (s2) = −15 dBm, we get an SINR of 1.26 mW/73

0.01 µW+(31.6 µW/33) ≈ 3.11 at r1 and
31.6 µW/13

0.01 µW+(1.26 mW/53) ≈ 3.13 at r2. That is, the SINR threshold is exceeded for both pairs,
thus node r1 can perfectly decode s1’s message, and at the same time, r2 successfully
receives s2’s message. There is no collision.

is whether it is necessary to schedule the two messages in succession
or if they can be sent in the same time slot without colliding at any
of the two receivers. Clearly, if both senders emit signals of the same
power, trying to send the two messages in parallel will fail because
both senders s1 and s2 are at the same distance from r1. If the powers
can be adjusted, however, both messages can easily be transmitted
simultaneously, thereby doubling the achieved throughput.

By rearranging the two sender–receiver pairs (s1, r1) and (s2, r2) we
obtain a setting where one pair is placed in the transmission line of the
other (nested links). This setup is shown in Figure 4.2. As before, the
question is whether it is really necessary to schedule the two messages in
succession or if they can be sent in the same time slot without colliding
at any of the two receivers. Clearly, any graph-based approach trying
to send the two messages in parallel will fail because, intuitively, the
medium between s2 and r2 can only be used once per time slot.

In the physical model, however, both messages can easily be trans-
mitted simultaneously, thereby doubling the achieved throughput.
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Fig. 4.3 This figure shows the change of the SINR depending on the receiver location. The
sender s1 located at position 0 and sender s2 at position 4. s1 sends with an output power
of 1 dBm while s2 sends with −15 dBm. The path-loss exponent α is equal to 3. The dotted
line represents the reception level β. This illustrates that the signal of the first sender can
be decoded between 0 and 2.8 as well as at 6.9 and further away from 0. The signal of the
second sender can be received successfully between 3.3 and 4.9.

To visualize this result, Figure 4.3 depicts how the SINR along the
line on which the four nodes are placed changes. It is clearly visible that
Ps2 dominates Ps1 in the proximity of r2, but diminishes faster than Ps1

when approaching r2. Note that for a successful parallel transmission,
it is crucial that the two senders do not utilize the same output power.

The example of two nested links can be extended by adding more
links enclosing the two present links illustrated in Example 4.4 and
Figure 4.4. If they are not too close together, a power assignment exists
that allows the simultaneous transmission of all links. With uniform
power, every link has to be scheduled separately. In other words, power
control can increase the capacity from one to n, depending on the
locations of the links.

The first work quantifying how much power control can improve the
capacity of wireless networks describes is due to Moscibroda et al. [66].
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The authors show that uniform and linear (see Section 4.3.2) power
assignments can be at least Ω(n/ log4 n) times worse than optimal.
Before examining various classes of power assignments, we discuss in
the next section how we can find the best power assignment for a given
set of communication requests.

4.2 Feasibility

Remember that in the physical model the propagation attenuation (or
link gain) between a sender node si and a receiver node rj in the
Euclidean plane is modeled as g(si, rj) = d(si, rj)−α. Whether or not
a set of links can be scheduled in the same time slot depends on the
link gain between all sender–receiver pairs. Note that the link gain
matrix

Z =
[
g(sj , ri)
g(si, ri)

]
i,j

=
[

d(si, ri)α

d(sj , ri)α

]
i,j

is a matrix consisting of positive values only. Zander [86] showed that
this property can be exploited to compute the maximum achievable
SIR∗ for wireless networks efficiently.1 Finding a power assignment
yielding the maximal SIR level can essentially be reduced to solving
an Eigenvalue problem for the link gain matrix Z. Due to results by
Perron, Frobenius, and Wielandt [25] on the theory of non-negative
matrices we can deduce that for positive matrices:

(1) there is exactly one real eigenvalue λ∗ for which all elements
of the corresponding eigenvector have the same sign; and

(2) the minimum real λ such that the inequality

λP ≥ ZP

holds for P ≥ 0 is λ = λ∗.

This implies that the maximum achievable SIR∗ is given by

SIR∗ =
1

λ∗ − 1
.

1 Zander does not take noise into account, thus his results are valid in the Signal-to-
Interference-Ratio (SIR) model mentioned in Section 2. See Refs. [10, 71] for the treatment
of ambient noise level and varying SINR ratio requirements among the nodes.
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Furthermore, the corresponding eigenvector P∗ constitutes a power
vector reaching this maximum for all links, i.e., they all have the same
SIR level.

Theorem 4.1([86]). In the absence of noise, a set of links can be suc-
cessfully scheduled in one time slot if and only if the largest eigenvalue
of the link gain matrix is less than 1/β + 1.

This result can be used to determine whether a set of links can be
scheduled in one time slot, i.e., whether the set is feasible and what
the highest achievable SIR level is. Since solving a Eigenproblem takes
time in O(n3), this time complexity carries over for Theorem 4.1.

Inevitably there is noise in every real system. Nonetheless, this result
is still useful since it provides a efficient method to determine if a set of
links can NOT be scheduled concurrently. The converse however does
not hold in the physical model. However, it is possible to extend this
approach to take noise into account. Borbash and Ephremides [10] and
Pillai et al. [71] demonstrate how the best possible power assignment
can be computed when the ambient noise level and the required SINR
ratio vary among the nodes.

4.2.1 Note on Bounded Resources

The power assignment computed by solving this eigenvalue problem
might require that transmission power levels differ by a factor expo-
nential in n. In reality however, every device has limited capabilities
to adjust its transmission power, typically between −10 dBm and
10 dBm [79]. Furthermore, if we look at some of the smallest and
largest energy generators known to mankind, the power a cell of the
human body produces/consumes is in the order of 1 pW, whereas
the hydroelectric power plant at the Assuan dam produces around
127 MW, thus the number of magnitudes of possible power levels for
wireless devices is clearly a small constant far below 100. The area
where the nodes are distributed is typically constrained as well. Avin
et al. quantify in Ref. [5] the worst-case performance loss caused by
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applying a uniform power assignment, compared to an optimal power
assignment. They show that the performance gain of power control is
at most in O(log Pmax

Pmin
) and O(log dmax

dmin
).

4.3 Oblivious Power Assignment

The previous sections have demonstrated that: (a) power control can
increase the capacity of a network enormously, even by a factor of n

in worst-case scenarios and (b) we can compute the best possible
signal-to-noise and interference ratio and the corresponding power
assignment efficiently. However, in a typical network the nodes do not
know how many other nodes intend to transmit at the same time nor
their locations. They have to choose a signal strength independently.
Clearly, the uniform power assignment is the easiest choice, however it
cannot tap the full potential of the wireless channel. In order to still
exploit the capacity gain power control offers compared to uniform
power, power assignments that are only based on the length of the
links have been proposed. Such oblivious power assignments [22] do
not need information on the location of senders and receivers nor on
potential concurrent transmissions. Oblivious power assignments lead
to simple distributed algorithms that decide whether to send or not
in a randomized manner. However, the drawback of these algorithms
is the fact that every one of them can lead to an arbitrarily bad
performance, as shown in Section 4.3.1.

On the positive side, Halldórsson [40] showed that any constant
approximation scheduling algorithm for the Multi-slot Scheduling
Problem adopting an oblivious power assignment gives an O(g(L))
approximation of Multi-slot Scheduling with power control. O(g(L)) is
the link diversity, the number of different length classes of L, as defined
in Definition 2.1. This result is due to the fact that it is not possible
to achieve a schedule length more than a constant factor shorter when
scheduling links of lengths differing by a factor of less than 2 with power
control. In other words, if the links are roughly of the same length, one
may as well use uniform transmission power and apply any schedul-
ing algorithm with a constant approximation ratio. E.g., one could use
Algorithm 2.
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Theorem 4.2 ([40]). If the link lengths differ by at most a factor
of two, then there exists an O(1)-approximation algorithm for the
Multi-slot Scheduling Problem with power control using any oblivious
transmission power assignment.

To handle links of variable lengths, we can group them into O(g(L))
classes, based on their length and schedule each class separately
(Theorems 3.4 and 3.5 in Ref. [40]).

Theorem 4.3 ([40]). The Multi-slot Scheduling Problem with power
control is O(g(L))-approximable with any oblivious transmission power
assignment.

Thanks to a reduction of a scheduling instance to a Unit Disk Graph
(UDG) in Ref. [40], algorithms for coloring of UDGs can be applied and
their complexities carry over. As a consequence, the online scheduling
problem as well as the distributed scheduling problem with power con-
trol are O(g(L))-approximable.

A widely used example [6, 83] of an oblivious power assignment
strategy is the energy metric or linear power assignment, where the
transmission power of a link with length d is proportional to the energy
loss, i.e., in the order of dα. Another assignment strategy that caught
much attention recently is the square root or mean power assignment,
where the transmission power is set to

√
d. These assignment strategies

are studied in detail in Sections 4.3.2 and 4.3.3. With the square root
assignment, one can prove that there is an algorithm that constructs
schedules that are a factor of O(log logΛlogn) longer than an optimal
algorithm with an arbitrary power assignment [40]. Depending on the
given set of links L, this can be faster or much slower than the bound
O(g(L)).

4.3.1 Oblivious Lower Bound

Fanghänel et al. [22] were the first to use the term oblivious power
assignment to include all power assignment schemes that set the trans-
mission power for a link based on a function of the distance between
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the nodes of the link. More precisely, an oblivious power assignment
requires a function f : R>0 → R>0 such that for every link li = (si, ri),
P (si) = f(d(si, ri)).

Unfortunately, the resulting schedules can be arbitrarily bad
compared to the optimal schedule with an arbitrary power assignment.
In fact, Moscibroda et al. [66] show that for uniform and linear power
assignments there exists an instance with n communication requests
requiring Ω(n) time slots even though a different power assignment
schedules the requests in O(log4 n) time slots. This construction has
been extended by Fanghänel et al. [22] for a Ω(n) lower bound for all
oblivious power assignments. In other words, oblivious assignments
cannot yield approximation ratios better than Ω(n) for the schedul-
ing problem, which corresponds to the worst possible performance
guarantee.

Before we study this problem for arbitrary oblivious power assign-
ment functions, let us briefly examine a one-dimensional problem
instance from [65]. For this instance, we can easily verify that the most
popular oblivious power assignment approaches, uniform and linear
assignments do lead to bad schedules.

The first problem instance consists of n nested links of exponentially
growing length as illustrated in Figure 4.4.

Example 4.4 (Exponential Nesting). All the sender and receiver
nodes are situated on a straight line with the following distance to 0:
sender node si = −xi−1, receiver node ri = xi−1,∀0 < i ≤ n. Hence the
length of the ith link is d(si, ri) = 2xi−1. See Figure 4.4.

Fig. 4.4 A set of communication requests of exponentially increasing length. For this
instance, uniform and linear power assignments yield a schedule of length n whereas one
time slots suffice under the square root assignment.
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Proposition 4.1. Uniform and linear power assignments schedule
nested links separately, even though they can be transmitted simul-
taneously if the constant x is set to 22+2/αβ2/α.

Proof. In a feasible set of links under a uniform power assignment, the
ball with radius d(si, ri) around receiver node ri cannot contain any
other sender sj , j 	= i. In the nested scenario the longer link of any
pair of links suffers from interference that is greater than the received
power and can thus not decode its message correctly. This is the reason
why any algorithm scheduling the nested link set with uniform power
needs n slots.

Let us now determine the interference caused by sender sj at the
receiver ri, where i < j under the linear power assignment.

Iri(sj) =
P (si)

d(si, r1)α
=
(

2xj−1

xi−1 + xj−1

)α

> 1.

Since the received power of sender si at ri is exactly 1, the ratio
Pri (si)
Iri (sj)

is less than 1 for any link lj , where j > i. As a consequence,
we have to schedule every link li in a time slot without any concurrent
transmissions.

It remains to prove that a constant number of time slots suffice to
schedule n nested links. To this end, we apply the square root assign-
ment, where link li is assigned a power level of P (si) :=

√
d(si, ri)α =

(2xi−1)α/2. Hence the received power at ri is:

Pri(si) =
(2xi−1)α/2

(2xi−1)α
= (2xi−1)−α/2.

The interference caused by sender sj at receiver ri amounts to

Iri(sj) =
P (sj)

d(sj , ri)α
=

(2xj−1)α/2

(xj−1 + xi−1)α
.
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For a given link li, the set of shorter links L−
j = {lj |j < i} is responsible

for interference

Iri(L
−
j ) =

i−1∑
j=1

Iri(si−j)

=
i−1∑
j=1

(2xj−1)α/2

(xj−1 + xi−1)α

< 2α/2
i−1∑
j=1

x−α/2(i−j−1)

= 2α/2x−(i−1)α/2
∞∑

j=1

x−jα/2

≤ 2α/2+1x−(i−1)α/2−α/2.

The last inequality holds since
∑∞

j=1 cj = c/(1 − c) < 2c ∀|c| < 1/2. For
the set of longer links L+

j = {lj |j > i}, similar arguments imply that

Iri(L
+
j ) =

n∑
j=1

Iri(si+j)

<

∞∑
j=1

2α/2x−(i+j−1)α/2

≤ 2α/2+1x−(i−1)α/2−α/2.

Hence, the SINR condition is satisfied for all links li:

SINRri(L) =
Pri(si)

Iri(L
−
j ) + Iri(L

+
j )

>
(2xi−1)−α/2

2α/2+2x−(i−1)α/2−α/2

=
xα/2

2α/2+2 ≥ β.

This example is useful to quickly test, whether a given algorithm
is able to schedule “difficult” instances well. A more general family of
instances shows that all oblivious power assignment functions lead to
long schedules.
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Theorem 4.5 ([22]). Let f : R>0 → R>0 be any oblivious power
assignment function. There exists a family of instances on a line that
requires Ω(n) time slots for the Multi-slot Scheduling Problem when
transmitting with power levels defined by f , whereas an optimal power
control schedule has constant length.

Proof. We prove that given an oblivious power assignment function f ,
we can place n sender–receiver pairs in a way that only a constant
number of pairs can be scheduled concurrently when using this power
assignment. With a different power assignment, all senders can transmit
simultaneously.

We distinguish three cases, depending on the asymptotic behavior
of f .

(a) f is asymptotically unbounded: for every c > 0 and every
x0 > 0 there exists a value x > x0 with f(x) > c.

(b) f is asymptotically bounded from above, but does not con-
verge to 0: There is a value b ∈ (0, c] such that for all x0 > 0
there exists a value x > x0 with b/2 ≤ f(x) ≤ b.

(c) f converges to 0: limx→∞ = 0.

For the cases (b) and (c), we can use Example 4.4 and generalize
Proposition 4.1. This is possible due to the fact that f is almost uniform
in these cases. Hence a schedule assigning a power level of f(2xi−1)
to the sender si uses Ω(n) time slots, even though all links can be
transmitted concurrently.

For case (a), the example from Ref. [66] is generalized as follows.
The nodes are positioned on the line, such that all pairs transmit to
the right and no nestings or crossings occur, an example is depicted
in Figure 4.5. We define an arrangement of the nodes by the length

Fig. 4.5 Lower bound instance for oblivious assignment. The distances between the nodes
depend on f .
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µi = ri − si of link li and the distance νi between receiver node ri−1

and sender node si. We set the first sender node at position 0.
Formally, this kind of instance can be defined by s1, r1,s2,

r2, . . . ,sn, rn ∈ R and ν1,µ1,ν2,µ2, . . . ,νn,µn such that

si =
{

0 if i = 1
ri−1 + νi otherwise

,

and

ri =
{

1 if i = 1
ri = si + µi otherwise

.

We set ν1 := 0, µ1 := 1, τ := (2β + 1)2/α and we define the distances
νi and µi between the nodes recursively: Given µ1, . . . ,µi−1 and νi, we
choose νi and µi such that

νi := τ(νi−1 + µi−1), (4.1)

µi ≥ νi ∧ f(µi) ≥ να
i max

j<i

(
f(µj)
µα

j

)
. (4.2)

Since f is asymptotically unbounded, it is always possible to find
µi satisfying Equation (4.2). As a consequence of Equations (4.1) and
(4.2) it holds that νi > τµi−1 ≥ τνi−1 and hence

νi > τ i−jνj ∀ 0 ≤ j ≤ i. (4.3)

Thanks to this construction νi grows exponentially. This fact guar-
antees that the receiver of a link lk is exposed to high interference by
links with higher indices. Let L′ ⊂ L be a set of links that can be trans-
mitted simultaneously and let k be the lowest index among the links
in L′. Due to Equation (4.1) it holds for i ∈ L′\lk that

d(si, rk) =
i−1∑

j=k+1

µj +
i∑

j=k+1

νj

(4.1)
≤ 2

i∑
j=k

νj



374 Scheduling With Power Control

(4.3)
≤ 2

i∑
j=k

τ−(i−j)νi

≤ 2νi

∞∑
j=0

τ−j

=
2νi

1 − τ
. (4.4)

The last transformation holds since
∑∞

j=0 cj = 1/(1 − c). Combin-
ing Equations (4.2) and (4.4) we obtain the following bound for inter-
ference caused at rk by the set L′.

Irk
(L′) =

∑
i∈L′\{lk}

P (si)
d(si, rk)α

(4.4)
≥

∑
i∈L′\{lk}

f(µi)(
2νi
1−τ

)α

(4.2)
≥

∑
i∈L′\{lk}

να
i f(µk)(1 − τ)α

µα
k (2νi)α

=
(|L′| − 1)f(µk)(1 − τ)α

µα
k2α

. (4.5)

Since the set L′ is feasible by definition, the SINR condition for lk
is satisfied

SINRrk
(L′) =

Prk
(sk)

Irk
(L′)

(4.5)
>

2α

(|L′| − 1)(1 − τ)α
≥ β.

As a consequence |L′| ≤ 2α

(1−τ)αβ + 1. This implies that at least Ω(n)
time slots are necessary when applying the power assignment P (si) =
f(d(si, ri)).

However, the power assignment P (si) = τ iα/2 allows us to sched-
ule L in one time slot. The interference at rj caused by the link set
L−

j = {li|li ∈ L,i < j} with lower indices form a geometric series. The
same holds for the links with higher indices L+

j = {li|li ∈ L,i > j}. Note
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that for i > j d(si, rj) > νi ≥ τ i−jµj . Hence

Irj (L
−
j ) =

j−1∑
i=1

P (si)
d(si, rj)α

<

j−1∑
i=1

τ iα/2

µα
j

<
τ jα/2

µα
j (τα/2 − 1)

,

and

Irj (L
+
j ) =

∞∑
i=j+1

P (si)
d(si, rj)α

<

j−1∑
i=1

τ iα/2

τα(i−j)µα
j

<
τ jα/2

µα
j (τα/2 − 1)

.

This yields a signal to noise ratio of

SINRrj (L) =
Prj (sj)

Irj (L
−
j ) + Irj (L

+
j )

>

τjα/2

µα
j

2 τjα/2

µα
j (τα/2−1)

= β.

This means that all links can transmit simultaneously and hence the
scheduling complexity of this instance is constant.

In Ref. [22] a related problem called bidirectional scheduling is
examined as well. To solve this problem, a schedule and a power
assignment that allows senders and receivers to change their roles
has to be found. The proof presented above can be adapted to the
bidirectional scheduling problem for bounded, linear, and superlinear
functions f . For sublinear functions, however, such an adaptation is
not possible. In fact, there exists a sublinear function, namely the
square-root function of the path-loss f(x) :=

√
xα, (cf. Section 4.3.3),

which allows to minimize the number of time slots up to a logarithmic
factor for multi-slot scheduling bidirectional communication.

4.3.2 Linear Power Assignment

A popular power assignment strategy uses an energy metric and sets
the transmission power of the sender of link li to a level proportional
to d(si, ri)α, i.e., linear in the fading of the signal. As a consequence,
the received signal strength at the receiver nodes is in the same order
of magnitude for all links. This power assignment function has been
studied from various angles, e.g., in Refs. [6, 12, 23, 66, 83].
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In Ref. [23], Fanghänel et al. present non-trivial lower bounds for
the Multi-slot Scheduling Problem with power control for transmis-
sion requests in arbitrary positions. More precisely, they define an
interference measure I (we denote it by Υ in this monograph to avoid
confusion with the definition of interference) and prove that under
linear power assignments in the order of Υ time slots are necessary for
the successful transmission of n links. Furthermore, they show that
this can be generalized to arbitrary power assignments by losing a
factor of g(L) logn. When restricted to the two-dimensional Euclidean
space and α > 2, Υ/g(L) time slots are necessary. Apart from these
lower bounds, Fanghänel et al. propose two randomized algorithms
that lead to a schedule using O(Υlogn) and O(Υ + log2 n) time slots
with a linear power assignment. Using ILP relaxation and randomized
rounding techniques, they show how these results can be extended to
multihop scheduling and routing. Subsequently we study their lower
bound results.

Consider the situation for a given receiver node ri under the linear
power assignment. The power assigned to its respective sender si is
P (si) = d(si, ri)α, hence the received power from si at ri is Pri(si) =
d(si,ri)α

d(si,ri)α = 1. Consequently, the interference Iri(sj) = d(sj ,rj)α

d(sj ,ri)α caused by
concurrent senders sj cannot amount to more 1/β. If a sender sj is too
close to ri, i.e., if d(sj , ri) < d(sj , rj), then the SINR condition for ri,

SINRri(sj) =
Pri(si)
Iri(sj)

=
d(sj , ri)α

d(sj , rj)α
> β

cannot be satisfied. In this case, the two links are to be scheduled in
separate time slots. In other words, min(1,

d(sj ,rj)α

d(sj ,ri)α ) = 1, and an addi-
tional time slot is needed. Of all links in L that are either far away or
very short, we can tolerate a subset L′ satisfying

∑
lj∈L′

d(sj ,rj)α

d(sj ,ri)α < 1/β.
From the perspective of the receiver node, this leads to the following
definition of an interference measure.

Definition 4.6 (Measure of Interference [23]). Let L be a set of
communication links, where li = (si, ri) ∈ L. For a sender or receiver
node v, the interference at v caused by L under a linear power
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assignment is bounded by

Υv(L) =
∑
lj∈L

min
(

1,
d(sj , rj)α

d(sj ,v)α

)
.

Using this we define the measure of interference induced by the request
set L:

Υ = Υ(L) = max
li∈L

(max(Υri(L),Υsi(L))).

Observe that this definition measures the interference at both sender
and receiver nodes, even though only receiver node suffers from con-
current transmissions. Nonetheless, the subsequent theorems show that
this measure captures the scheduling complexity, i.e., it can be applied
to derive lower bounds on the schedule length.

Before stating the theorems let us state three key facts.

Proposition 4.2

(1) Υ is upper bounded by the number of links,
Υv(L) =

∑
lj∈L min(1,

d(sj ,rj)α

d(sj ,v)α ) ≤∑lj∈L 1 ≤ |L|.
(2) In a feasible schedule, Υ is constant at the receivers in

every time slot. Otherwise the SINR condition would be
violated as β is a constant. More formally, consider a schedule
of length T , where Lk is the set of links scheduled in slot k,
1 ≤ k ≤ T . For all receiver nodes ri of the requests in Lk, it
must hold that Υri(Lk) < 1/β due to the SINR condition.

(3) Υ is subadditive, i.e., for two request sets L and L′ the
inequality Υ(L ∪ L′) < Υ(L) + Υ(L′) is satisfied.

As a consequence, proving a lower bound for the schedule length
of T ∈ Ω(Υf(n)) for some function f reduces to the following task:
Show that the interference Υ of the requests in one time slot of an
optimal schedule is bounded by O(f(N)). Thanks to the first fact of
Observation 4.2, it suffices to prove for all sender nodes in Lk that
Υsi(Lk) ∈ O(f(n)) for all k ∈ 1, . . . ,T . This property is used in the fol-
lowing proofs.
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Theorem 4.7([23]). Let T be the minimum schedule length for a set
of requests L in a linear power assignment. Then we have

T = Ω(Υ(L)).

Proof. Assume we are given an optimal schedule of length T , where
Lk is the set of links scheduled in slot k, 1 ≤ k ≤ T . Let us consider
the time slot k with the highest value Υ(Lk). As mentioned above,
it suffices to consider the interference at the senders and prove that
Υsi(Lk) ∈ O(1) for all k.

In order to bound Υsi(Lk), we need bounds with respect to a
receiver close to si, since the SINR condition only affects receivers.
Let rc be the sender closest to si. We now draw a ball around si with
radius d(si, rc)/2 to separate the senders of the links in Lk into two
sets S′ and S′′. The set S′ contains the senders sj close to si, i.e.,
d(sj ,si) < d(si, rc)/2, the set S′′ the remaining senders of Lk. Let us
now bound Υsi(S

′) and Υsi(S
′′).

Due to the triangle inequality we can conclude that for all sj ∈ S′

d(sj , rc) ≤ d(sj ,si) + d(si, rc) ≤ 3
2
d(si, rc). (4.6)

Moreover, we have (see Figure 4.6(a) for an illustration)

d(si, rc) ≤ d(si, rj) since rc is the closest receiver
≤ d(si,sj) + d(sj , rj) triangle inequality
≤ 1

2d(si, rc) + d(sj , rj) definition of S′

This implies

d(si, rc) ≤ 2d(sj , rj). (4.7)

Combining Equations (4.6) and (4.7) yields

d(sj , rj) ≥ 1
3
d(sj , rc)

We use Equation (4.3.2) to bound Υsi(S
′) with the number of

senders in S′.

|S′| =
∑

sj∈S′

d(sj , rj)α

d(sj , rj)α
≤
∑

sj∈S′

d(sj , rj)α

1
3α d(sj , rc)α

≤ 3α

β
,
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(a) (b)

Fig. 4.6 Illustration of scenarios where the sender closest to si is (a) in distance less than
1/2d(si, rc), (b) in distance greater than 1/2d(si, rc).

where the last inequality holds due to the SINR condition for rc stating
that Irc(S′) < 1/β.

For sj ∈ S′′ we proceed in a similar way (see Figure 4.6(b) for an
illustration).

d(sj , rc) ≤ d(sj ,si) + d(si, rc) triangle inequality

≤ d(sj ,si) + 2d(sj ,si) definition of S′′

= 3d(sj ,si).

This leads to

Υsi(S
′′) =

∑
sj∈S′′

d(sj , rj)α

d(sj ,si)α
≤
∑

sj∈S′′

d(sj , rj)α

1
3α d(sj , rc)α

≤ 3α

β
,

where the last inequality holds due to the SINR condition for rc

(Irc(S′′) < 1/β).
Hence we can conclude that

Υsi(Lk) ≤ 1 + Υsi(S
′) + Υsi(S

′′) ≤ 1 +
2 · 3α

β
∈ O(1).

Thus we have proved that Υ captures the scheduling complexity
under linear power assignments. This result can be generalized for arbi-
trary power assignments. To this end, we need the following lemma.

Lemma 4.8 ([23]). Consider a ball B�(v) of radius � around a center
node v. Let L be a feasible set of links of minimum length d, d ≤ �,
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where all senders are inside this ball B�(v). Then,

|L| ≤ 1
β

(
4�

d

)α

+ 1.

Proof. Let P be a feasible power assignment and let li = (si, ri) be a
request with minimal power P (si). Since the SINR condition is satisfied
for the link li it must hold that

Iri(L\{li}) ≤ 1
β

P (si)
d(si, ri)α

.

Because the senders of L are insider the ball B�(v) it holds that

Iri(L \ {li}) ≥ (|L| − 1)
P (si)

(2d + 2�)α
.

Therefore,

(|L| − 1) ≤ 1
β

P (si)
d(si, ri)α

(2dmin + 2�)α

P (si)
≤ 1

β

(
4�

d

)α

.

Theorem 4.9([23]). Let T be the minimum schedule length for a set
of requests L with node locations in any metric space using an arbitrary
power assignment. Then we have

T = Ω
(

Υ(L)
g(L) logn

)
.

Proof. (Sketch) We proceed in a similar way to the proof with lin-
ear power assignments. Given an optimal schedule of length T , the
requests of time slot t are divided into g(L) classes depending on the
link length. Class Ct,k, contains the requests li of time slot t with a
length 2k−1dmin ≤ d(si, ri) < 2kdmin. Using the subadditivity of Υ, it
remains to prove that Υ(Ct,k) ∈ O(logn) for all t,k.

Now we apply Lemma 4.8 for growing balls around the node v with
the highest Υv(Ct,k): if the number of senders in the ith ball is 2i, then
the smallest possible radius of the ball is �i ≥ (2i−1 − 1)1/α 2k−1

4 . Using
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this knowledge, we can determine that the interference caused by a
ring of inner radius �i and outer radius �i+1 is constant. Since there
are O(logn) such rings, this implies that Υv(Ct,k) is upper bounded by
O(logn).

In the Euclidean space and for α > 2, Υ measures the complexity
even more closely than in the general case.

Theorem 4.10 [23] Let the instance be located in the Euclidean plane
and let α > 2. Then we have

T = Ω
(

Υ(L)
g(L)

)
,

where T denotes the optimal schedule length using any power assign-
ment.

Proof. As in the proof for Theorem 4.3.2, we divide the requests into
g(L) classes Ct,k containing the links of length 2k−1dmin ≤ d(si, ri) <

2kdmin scheduled in time slot t. Let v be the node with the highest
interference Υv(Ct,k). We now have to show that Υ(Ct,k) ∈ O(1) for all
t,k. Let v be the node with the highest interference Υv(Ct,k).

To this end, we partition the plane into an infinite sequence of con-
centric rings with center v. The inner radius of the ith ring is i2k−1

and its width 2k−1. This ring can be covered by i circles of radius 2k−1.
Thanks to Lemma 4.8 we know that each of these circles can contain at
most 4α

β senders. Thus the interference the senders in the ith ring cause
at node v is at most C

iα−1 , for some constant C. Summing up over all i

proves that Υv(Ct,k) ∈ O(1) due to the fact that
∑∞

i=1 i1−α ≤ α−1
α−2 .

These bounds imply that an optimal linear power assignment sched-
ule is an O(g(L) logn)-approximation of the best possible arbitrary
power assignment. For the Euclidean space and α > 2, the approxi-
mation ratio is in O(g(L)).2 Moreover, the bounds can be applied to

2 Observe that this is included in Halldórsson’s result that any oblivious power assignment
strategy yields an O(g(L))-approximation [40].
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Algorithm 3 Simple Randomized Linear Power Algorithm [23]
1: while packet has not been successfully transmitted do
2: Try transmitting with probability 1/(2( 1

β − N)Υ)
3: end while

construct a simple randomized algorithm for the Multi-slot Schedul-
ing Problem with power control, that produces a schedule of length
O(Υlogn) w.h.p. (see Ref. [23] for a proof). It can be implemented in
a distributed way if the nodes know Υ.

Clearly, a main disadvantage of this algorithm is that it does not
take the fact that there is less competition for transmission the more
time has passed into account. A more sophisticated algorithm increases
the probability of transmission over time. Fanghänel et al. [23] propose
another algorithm that assigns random delays to all packets and adapts
the transmission probability to the current Υ, induced by the request
not scheduled yet. This algorithm yields a schedule of length O(Υ +
log2 n) w.h.p.

This algorithm can be generalized to multihop settings. With linear
programming routing problems can be covered as well, see Ref. [23].

In practice, both these algorithms suffer from a significant draw-
back: they are not applicable for distributed environments, because

Algorithm 4 Adaptive Randomized Linear Power Algorithm [23]
1: while Υcurr ≥ logn do
2: J := Υcurr

3: while Υcurr ≥ J/2 do
4: if packet has not been successfully transmitted then
5: Assign delay d between 1 and 16e(1/β − N)J independently

uniformly at random
6: Try transmitting after waiting d time slots
7: end if
8: end while
9: end while

10: Execute Algorithm 4.3.2
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assessing the interference of an instance without global knowledge or
communication is impossible.

Summarizing this section we have seen that instance-based inter-
ference measure proposed in Ref. [23] is similar to the affectedness
and affectance defined for uniform power scheduling in Refs. [30, 40]. It
coincides with the order of the number of time slots necessary for trans-
mission if a linear power assignment is applied. These ideas, moreover,
the authors show how a lower bound for general power assignments can
be derived (no non-trivial lower bounds have been known for this case
before). Unfortunately, this lower bound is weak for instances with a
large link length diversity.

4.3.3 Square Root Assignment

Besides the uniform and the linear power assignment, another oblivious
power assignment function has recently received considerable attention.
The square root assignment, which sets the power of the sender of a link
li = (si, ri) to P (si) :=

√
d(si, ri)α is the geometric mean between the

uniform and linear power assignment and has been used in Refs. [22]
and [40]. Its advantage over the uniform and linear power assignment
is most obvious when examining a one-dimensional setting with nested
links depicted in Figure 4.4.

More generally, there exists an algorithm using the square root
assignment that achieves an O(log logΛlogn)-approximation for the
Multi-slot Scheduling Problem with power control [40].

Theorem 4.11 ([40]). The power control scheduling problem is
O(log(n) log(log(∆)))-approximable with the square root power
assignment.

Proof. (Sketch) Remember that with any oblivious power assignment
we can compute a constant approximation of the optimal schedule if
the lengths of the links differ by a factor of at most 2 (Theorem 4.2).
Under the square root assignment, links of widely different lengths can
be scheduled together easily as well. Informally, a feasible set containing
links of lengths that differ by factor of less than 2 or greater than n2α,
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can be scheduled with O(log(log(∆))maxi Ti) time slots, where Ti is the
number of time slots necessary to schedule the links in one length class.
Thus, the algorithm first partitions L into lengths classes Ck, such that
Ck contains the requests li with a length 2k−1dmin ≤ d(si, ri) < 2kdmin.
Next, it defines sets Si, consisting of classes of varied lengths:

Si :=
⋃
j

Ci+j· 2
α

logn, ∀ i <
2
α

logn.

For each of these sets Si, a separate schedule is produced, yielding an
approximation ratio of O(log(n) log(log(∆))).

For a detailed description and analysis we refer the reader to
Ref. [40]. Note that depending on the given set of links L, this can
be faster or much slower than the bound O(g(L)) stated in The-
orem 4.3. Very recently, Halldórsson and Mitra have presented an
O(log(n) + log(log(∆)))-approximation algorithm for the single-slot
scheduling problem in general metrics in Ref. [41] using mean power.
This implies an O(log2(n) + log(n) log(log(∆)))-approximation for the
multi-slot scheduling problem in general metrics.

In practical scenarios, nodes constantly swap sender and receiver
roles, since they have to acknowledge the reception of messages. Thus,
it does not suffice to guarantee unidirectional transmissions. Fanghänel
et al. [22] introduce the bidirectional scheduling problem, where
a link is scheduled successfully if the role of the sender and receiver
of a link can be interchanged and the SINR condition is still met
for every link scheduled concurrently. Due to the stronger separation
required for bidirectional transmissions, the linear lower bound for
unidirectional scheduling does not hold and the authors suggest a ran-
domized algorithm using the square root assignment. They show that
this algorithm yields an O(log4.5+α n) approximation. Shortly there-
after, Halldórsson [40] proved that even an O(logn)-approximation
is possible under the square root assignment using a different proof
technique based on independent set properties of a graph defined
by a scheduling problem instance for fading metrics. In the mean
time, Halldórsson and Mitra have presented an O(1)-approximation
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algorithm for the single-slot scheduling problem in general metrics in
Ref. [41]. This implies an O(logn)-approximation for the Multi-slot
Scheduling Problem in general metrics.

4.4 Arbitrary Power Assignment

In the previous section we investigated oblivious power assignments,
where the transmission power of the sender of a communication request
only depends on the distance to the receiver. We have seen that even
in simple scenarios this strategy fails and leads to unnecessarily long
schedules for the Multi-slot Scheduling Problem with power control.
Moreover the performance of the algorithms depends on the maximal
ratio between the length of two links.

In this section, we study approaches that assign power levels to
the senders taking the whole set of communication requests into
consideration. More precisely, the power assigned to the senders may
depend on the number of other requests and their distribution in the
Euclidean plane.

From Section 4.2 we know that we can efficiently determine for a
given set of links, what the best power assignment for concurrent trans-
mission is. However, in many cases, it is not possible to schedule all
requests in one slot, even with an optimal power assignment, because
the maximum achievable SINR might be below the threshold β neces-
sary for a correct decoding.

As a consequence some links have to be postponed to later time
slots. In Section 3.1 we have seen that scheduling with uniform power is
NP-complete. Although everybody believes that adding power control
does not simplify the problem, to the best of our knowledge no NP-
hardness proof is known for the scheduling problem in the physical
model with power control. All hardness proofs we are aware of have
restrictions, e.g., Refs. [17] and [51] assume a bound on the maximum
power and Ref. [52]’s proof is based on general metrics.

Nevertheless, a number of algorithms and heuristics have been pro-
posed to solve this problem. Among them are the recursive link removal
algorithms that we will examine as a next step. First, we study the
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measure disturbance (introduced in Ref. [65]), which captures the diffi-
culty of a given scheduling task. This enables us to compare algorithms
based on their ability to solve “easy” and “difficult” instances.3

4.4.1 Disturbance

Since we study arbitrary, possibly worst-case network and request
settings, we introduce a formal measure that comprises the intrinsic
difficulty of scheduling a given set of communication requests.

For a given set of communication requests L and some constant
ρ ≥ 1, the ρ-disturbance is defined as the maximal number of senders
(receivers) that are in close physical proximity (depending on the
parameter ρ) of any sender (receiver). Consider disks Si and Ri of
radius di/ρ around sender si and receiver ri, respectively. Formally, the
ρ-disturbance of a link li is the larger of either the number of senders in
Si or the number of receivers in Ri (see Figure 4.7 for an illustration).
The ρ-disturbance of L is then the maximum ρ-disturbance of any link
li ∈ L.

Definition 4.12 ([65]). Given a set of requests L, the ρ-disturbance,
denoted as χρ of L is defined as:

χρ := max
li∈L

χρ(li),

where the disturbance χρ(li) for request li is the maximum of
|{rj | d(rj , ri) ≤ di/ρ}| and |{sj | d(sj ,si) ≤ di/ρ}|.

The disturbance of a set of requests indeed captures the fundamen-
tal difficulty of the Multi-slot Scheduling Problem with power control
for these requests. Solving problem instances with low disturbance effi-
ciently is very important in practice since in realistic networks one
always tries to prevent situations with many receivers clustered in the
same area.

3 A related measure called Iin has been introduced and studied in Ref. [68]. For constant
Iin the scheduling algorithm presented in Ref. [68] achieves a scheduling complexity of
O(log2 n). The algorithm proposed in Ref. [65] constructs schedules of length O(log2 n)
for scenarios with constant disturbance.
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Fig. 4.7 Illustrating example for the disturbance of a communication request li. For ρ = 3
the disturbance in this case is χ3(li) = 4.

Intuitively, the disturbance of a set of requests in a network
characterizes the difficulty of scheduling these requests in a wireless
communication environment. Therefore, an efficient scheduling algo-
rithm should be capable of generating short schedules in settings with
low disturbance. Unfortunately, all previously known scheduling algo-
rithms may require a linear number of time slots in order to schedule
a set of requests even if their ρ-disturbance is as low as 1.

4.4.2 Link Removal Algorithms

In contrast to the intuitive scheduling algorithms with oblivious power
assignments, link removal algorithms for the Multi-slot Scheduling
Problem with power control are much more sophisticated. The heuris-
tics known in the literature are all based on a generic link removal
algorithm.

The idea of these algorithms is to postpone the transmission of a
link lk from the set of the links if some condition CON holds, until
the minimal SINR level for successful reception is met. Then the opti-
mal power vector is assigned and the procedure is repeated with the
remaining links.

We examine the four algorithms SRA, SMIRA, WCRP, and LISRA,
which follow the execution of the generic algorithm and differ only in
the condition CON.
SRA (Stepwise Removal Algorithm), devised by Zander [86], itera-
tively removes the link with the largest row or column sum of Z,
since these sums provide a bound on the maximal eigenvalue, until
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Algorithm 5 Generic Link Removal Algorithm
1: Time slot t := 1;
2: while there are links to schedule do
3: Compute SINR∗ and P∗ from Z;
4: while SINR∗ ≤ β do
5: Remove links lk for which CON is satisfied;
6: Compute SINR∗ and P∗ from new Z;
7: end while
8: Schedule the links of Z in time slot t and assign P∗;
9: Time slot t := t + 1;

10: Compute new Z for unscheduled links;
11: end while

the required SINR level is met.

CON : max


∑

j

Zkj ,
∑

j

Zjk


 is maximimal for k.

SMIRA (Stepwise Maximum Interference Removal Algorithm), by Lee
et al. [60], excludes links which cause or receive the most interfer-
ence when power is assigned optimally, taking the normalized link gain
matrix Z and the corresponding optimal power vector into account.

CON : max


∑

j �=k

PjZkj ,Pk

∑
j �=k

Zjk


 is maximimal for k.

Lee et al. suggest versions of this algorithm considering only
maxk(

∑
j �=k PjZkj ) or maxk(Pk

∑
j �=k Zjk ) in the condition and demon-

strate with simulations, that they perform worse than SMIRA. Our
analysis can be adapted easily to these cases with the same complexity
result.
WCRP is a (distributed) algorithm presented in Ref. [82]. When
adapted to our model, it first computes for each row i the value MIMSR
(maximum interference to minimum signal ratio), defined by

MIMSR(i) = max
{

βG(i, j)
G(i, i)

|j 	= i ∧ j not scheduled
}

,
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and removes links with MIMSR above a threshold ζ. We present here a
simplified and centralized version, which produces schedules of at most
the same length as the original algorithm.

CON : MIMSR(k) > ζ.

LISRA (Limited Information Stepwise Removal Algorithm), described
in Ref. [87], postpones the transmission of the links with the lowest
SINR when all senders transmit with equal power, to increase the
probability for the remaining links to reach the SINR threshold.4 To
generate schedules with LISRA we replace Step 5 of the generic with

5a: set P = 1 and compute SINR for remaining link set S;
5b: remove links γk for which mini SINRi(S) = SINRk(S);

CON : SINRk(S) is minimal for k.

These algorithms have all been tested in situations with nodes dis-
tributed uniformly at random. No worst-case analysis has been done
and the authors do not give any guarantees on their behavior. To prove
this point we construct an example where the schedules these algo-
rithms produce are extremely long.

Consider Example 4.4 of n nested communication requests. This
scenario is depicted in Figure 4.4. It has been used in Section 4.3 to show
that the uniform and the linear power assignment strategy can lead to
arbitrarily bad performance. All sender and receiver nodes are situated
on a straight line and the distance between sender and receiver nodes
is increasing exponentially. We set x = 2, α = 3, the noise level N = 0
and the minimum SINR necessary for successful transmission to β = 2.
For this situation all the algorithms described above perform poorly,
namely they schedule each link individually and require Ω(n) time slots,
even though a constant number of time slots is proven to be sufficient in
Section 4.3. Because the 3-disturbance of the above scenario is χ3 = 1,

4 In its original version, step 3 contains the execution of an iterative distributed algorithm
based on locally available information. The number of rounds is fixed beforehand, hence
the quality of the results depends on the convergence speed of the algorithm. As we are
most interested in the maximal length of the schedules LISRA produces, we replace the
algorithm in step 3 by a (centralized) eigenvalue decomposition.
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our example demonstrates that these algorithms exhibit severe worst-
case problems even in networks with low disturbance.

Theorem 4.13 ([65]). SRA, LISRA, SMIRA, and WCRP produce a
schedule of length Ω(n) for Example 4.4 in which the 3-disturbance
χ3 is 1.

Proof. Starting with SRA, we prove the claim for each algorithm indi-
vidually.
SRA: As we cannot schedule all links in the same slot, we compute
the column and row sums of Z to decide which links we postpone to
subsequent time slots. The sum for row i is:

Ri =
n∑

j=1

z(i, j) =
n∑

j=1

(
2i+1

2j + 2i

)α

,

which is maximal when i = n. Analogously the sum for column i is:

Ci =
n∑

j=1

z(j, i) =
n∑

j=1

(
2j+1

2j + 2i

)α

.

This sum reaches its maximum when i = 1, since i only appears in the
denominator. Hence we have to determine max{Rn,C1}.

The summands of C1 grow with j whereas the summands of Rn

decrease. As a consequence we can simplify the analysis by comparing
2n+1

2n−j+1+2n with 2j+1

2j+2 .

2n+1

2n−j+1 + 2n
=

2j

1 + 2j−1 =
2j+1

2 + 2j
∀0 < j ≤ n.

Hence we know that the largest row sum is equal to the largest
column row, which causes either the shortest or the longest link to be
removed from the set of links to schedule in the next time slot. Without
loss of generality we assume that we postpone the transmission of the
shortest link.

Without the first link we have to deal with almost the same sit-
uation, the only difference is the fact that the sums start with j = 2
instead of 1. Again we remove the shortest link. This game continues
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until only one link is left, since two links next to each other cannot be
scheduled simultaneously.

Lemma 4.14([65]). Two links li and li+1 cannot be scheduled simul-
taneously.

Proof. Let li = (−2i,2i),Lj = (−2j ,2j). We compute

Z =




1
(

2i+1

2j + 2i

)α

(
2j+1

2j + 2i

)α

1




and set j = i + 1. Now the larger eigenvalue is:

λ∗ = 1/2
(

z1,1 + z2,2 +
√

4z1,2z2,1 + (z1,1 − z2,2)2
)

= 1/2
(

1 + 1 +
(√

4 · 2i+j+2/(2i + 2j)2
)α)

j=i+1= 1 +

( √
22i+3

2i + 2i+1

)α

= 1 +

(√
8

3

)α

> 1.83.

Consequently SINR∗ = 1
λ∗−1 < 1.19, implying that the links li and li+1

cannot be transmitted simultaneously.

We can derive from the above, that SRA schedules all links individually,
i.e., the length of the schedule is Ω(n).

SMIRA: The transmission of link li is postponed if either the interfer-
ence received and the interference caused by link li is above a certain
threshold. As the receiving node of link 1 suffers from the highest level
of interference we remove it. This situation occurs again in the next
time slot, hence each link is scheduled individually, leading to a com-
plexity of Ω(n).

WCRP: We compute the MIMSR value for each link i.

MIMSR(i) = max
j

β · G(i, j)
L · G(i, i)

= β · max
i

(
2i+1

2i + 2j

)α

.
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As MIMSR(i) cannot exceed β2α, we define ζ = 10. Hence all links
apart from the three shortest links are removed. Let us assume for
simplicity that those can be scheduled in one slot. If we repeat this
step, again the three shortest links remain and we can conclude that
this method produces a schedule of length �n/3� ∈ Ω(n).

LISRA: The same holds for LISRA, although with a slightly different
reasoning. LISRA iteratively removes the link which achieves the lowest
SINR with equal power distribution until β is reached. In our example,
the link to be postponed will always be the longest link. As we have
seen above, two neighboring links cannot be scheduled in the same time
slot, hence LISRA also needs Ω(n) slots.

All four algorithms produce a schedule of length Ω(n) for this exam-
ple. However, as we have seen in Section 4.3.3, it is possible to schedule
all links in one time slot if x > 22+2/αβ2/α. Since x := 24 satisfies this
condition, we can schedule every fourth link starting with the shortest
link in one time slot. By repeating the same with the remaining links,
we can construct a schedule of length 4. Thus, we have shown that link
removal algorithms cannot guarantee short schedules, even when the
disturbance is low. In the next section, we examine an algorithm that
bases scheduling decision on the geometry of the instance at hand.

4.4.3 Low-Disturbance Scheduling Algorithm

In this section, we present the scheduling algorithm Low-Disturbance
Scheduling (LDS ) algorithm proposed in [65]. It gives provable perfor-
mance guarantees for the Multi-slot Scheduling Problem with power
control even in worst-case networks. In particular, given a network and
a set of communication requests, LDS algorithm computes a sched-
ule whose length is within a polylogarithmic factor of the network’s
disturbance.

Description

The algorithm consists of three parts: a pre-processing step, the main
scheduling-loop, and a test-subroutine that determines whether a link
is to be scheduled in a given time slot.
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The purpose of the pre-processing phase is to assign two values
τ(i) and γ(i) to every request li. The value γ(i) is an integer value
between 1 and �log(3nβ) + ρ logα�. The idea is that only requests with
the same γ(i) values are considered for scheduling in the same iteration
of the main scheduling-loop (Lines 2 and 3 of the main scheduling-
loop). The second assigned value, τ(i), further partitions the requests.
In particular, it holds that the length of all requests that have the same
γ(i) and τ(i) differ by at most a factor of 2. On the other hand, one can
show that if two requests li and lj satisfy τ(i) < τ(j), then the length of
li, di, is at least by a factor 1

2(3nβρα)τ(j)−τ(i) longer than dj . Generally
speaking, the assignment of τ(i) ensures that the smaller the value τ(i)
assigned to a requests li, the longer the corresponding communication
link, and vice versa.

In summary, the pre-processing phase partitions the set of requests
in such a way that two requests li and lj that are assigned the same
γ(i) have either almost equal length (if, τ(i) = τ(j)) or very different
length. This partition will turn out to be crucial in the actual scheduling
process, which takes part in the subsequent main scheduling-loop.

Each for-loop iteration of the main scheduling-loop schedules the
set of requests having the same γ(i) values, denoted by Fk. As long as
not all requests of Fk have been successfully scheduled, the algorithm
considers the remaining requests in Fk in decreasing order of their
length di. Specifically, the algorithm checks for each request whether
it can safely be scheduled alongside the longer links that have already
been selected. If a request is chosen to be scheduled in time slot t, it is
added to Lt, otherwise it remains in Fk.

The decision whether a request li is selected for scheduling or not
takes place in the allowed(li,Lt) subroutine. For each (longer) request
lj ∈ Lt that has already been chosen to be scheduled in time slot t, the
subroutine checks three conditions. Only if none of them is violated, li is
added to Lt. Notice, however, that the selection-criteria are significantly
more complex than the “reuse-distance” argument that has been used
in other work (e.g., Ref. [19]). In particular, the second criterion states
that li is scheduled only if for all longer requests lj ∈ Lt, it holds that di ·
(3nβρα)

τ(i)−τ(j)+1
α > d(si, rj) if τ(i) > τ(j). That is, the distance that

must be maintained between the sender si of li and the receiver of rj
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of some lj ∈ Lt depends on the relative values of τ(i) and τ(j) assigned
in the pre-processing phase.

The links in Lt are assigned a power level proportional to the
ambient noise N , the length of the link to the power of α and factor
exponential in τ(i) in Line 10.

The definition of the three selection-criteria guarantees that all
simultaneously transmitted requests in a single time slot are received
successfully by the intended receivers. Additionally, the subsequent
analysis section shows that all requests can be scheduled efficiently
even in worst-case networks.

This algorithm provably schedules every set of requests efficiently
even in worst-case networks provided that the ρ-disturbance of the
requests is small. As we have demonstrated above, this distinguishes
the LDS algorithm from scheduling algorithms with oblivious power
assignments and link removal algorithms, that may perform badly even
if the disturbance is small.

Theorem 4.15 ([65]). The number of time slots required by Algo-
rithm 6 to successfully schedule all requests li ∈ L is at most
O(χρρ

2 logn · (logn + ρ)).

Algorithm 6 The LDS Algorithm for requests L [65]
Pre-processing phase:

1: τcur := 1; γcur := 1; last := d1;
2: Consider all requests li ∈ L in decreasing order of di:
3: for for each li ∈ L do
4: if last/di ≥ 2 then
5: if γcur < �log(3nβ) + ρ logα� then
6: γcur := γcur + 1;
7: else
8: γcur := 1; τcur := τcur + 1;
9: end if

10: last := di;
11: end if
12: γ(i) := γcur; τ(i) := τcur;
13: end for
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Main scheduling-loop:
1: t := 1; ν := 4N ;
2: for k = 1 to �log(3nβ) + ρ logα� do
3: Let Fk be the set of all requests li with γ(i) = k.
4: while not all requests in Fk have been scheduled do
5: Lt := ∅;
6: Consider all li ∈ Fk in decreasing order of di:
7: if allowed(li,Lt) then
8: Lt := Lt ∪ {li}; Fk := Fk \ {li}
9: end if

10: Schedule all li ∈ Et in time slot t, assigning si

a transmission power of Pi := ν · dα
i · (3nβρα)τ(i);

11: t := t + 1;
12: end while
13: end for

allowed(li,Lt)

1: Define constant µ such that µ := 4 α

√
120β(α−1)

α−2 ;
2: for lj ∈ Lt do
3: δij := τ(i) − τ(j);
4: if τ(i) = τ(j) and µ · di > d(si,sj)

or τ(i) > τ(j) and di · (3nβρα)
δij+1

α > d(si, rj)
or τ(i) > τ(j) and dj/ρ > d(sj , ri) then

5: return false
6: end if
7: end for
8: return true

Proof. (Sketch, see Ref. [65] for details). The interference of concur-
rent senders is bounded for links of the same length and for links of
different length. This is achieved by determining the maximum num-
ber of senders and there power level in a sequence in concentric rings
around receiver nodes. This guarantees correctness in the sense that in
every time slot all messages are actually received successfully. It now
remains to show that the schedule is short and includes all requests. For
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this reason, the number of time slots required to schedule all requests
that have the same γ(i) value is bounded. Thus, an upper bound on
the amount of time used for one iteration of the for-loop in the main
scheduling-loop is reached. Then the delay caused by the reuse criteria
in the subroutine allowed(li,Lt) is determined, which completes the
proof.

Let us now examine the schedule the LDS algorithm creates for
the instance of Example 4.4 with n nested communication requests.
Recall that we used this example to illustrate the inefficiency of previous
algorithms with x = 2,α = 3,N = 0 and the minimum SINR necessary
for successful transmission set to β = 2. The 3-disturbance χ3 of this
setting is 1. Consequently, we obtain a schedule of length O(log2 n) by
plugging in the value ρ = 3 into the bound of Theorem 4.15. Notice
that this is exponentially shorter than the schedules generated by any
uniform or linear power assignment algorithm as well as any of the
known link removal heuristics.

Corollary 4.16([65]). For ρ = 3, the LDS scheduling algorithm pro-
duces a schedule of length O(log2n) for Example 4.4 with x = 2, α = 3,
N = 0 and the minimum SINR necessary for successful transmission
set to β = 2.

The LDS algorithm thus significantly outperforms link removal
scheduling strategies in worst-case scenarios. By employing a different
power assignment scheme and reuse distance criterion, this algorithm
achieves a provably efficient performance in any network and request
setting that features low disturbance. Nonetheless, an oblivious power
assignment with constant scheduling complexity exists for this scenario,
as we have seen earlier. This assignment has of course the drawback,
that it can lead to arbitrarily bad performance in other scenarios, as
illustrated in Theorem 4.5. While the LDS algorithm thus remedies
some of the drawbacks of previous approaches, it is completely cen-
tralized and hence suitable to be employed in static networks with
known traffic patterns only. Whether a distributed algorithm working
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in a manner similar to this algorithm exists, is an open question. Ide-
ally, such a distributed worst-case efficient scheduling algorithm could
lead to improved MAC-layer solutions, as combined power control and
scheduling are crucial to a theoretical understanding of media access
control problems.

4.4.4 Approximation Algorithms

Dinitz [16] and Dinitz and Andrews [17] used game theoretic approaches
to construct distributed algorithms for scheduling with power control.
Their results have been improved upon by Ásgeirsson and Mitra [2]
very recently to a distributed O(log∆)-approximation algorithm for
one-slot scheduling.

Very recently, Kesselheim [53] described the first algorithm with
a non-trivial approximation ratio independent of the length diversity,
the aspect ratio or the link length ratio. For the one-slot scheduling
problem, this algorithm achieves a constant approximation for fading
metrics (see Ref. [40] for a definition, e.g., this includes nodes in the
Euclidean plane with α > 2) and an O(logn)-approximation for arbi-
trary metrics. The centralized algorithm uses a greedy strategy similar
to the algorithm for uniform power treated in Section 3.3. The links are
processed one after each other, sorted by their length. If the current
link satisfies some feasibility criterion together with the links chosen
already, it is added to set to schedule, otherwise it is discarded. In the
uniform case, the affectance of the current link set is considered. In
Ref. [53], the current link li is accepted if

∑
lj∈S

d(sj , rj)α

d(sj , ri)α
+

d(sj , rj)α

d(si, rj)α
≤ 1

2 · 3α(4β + 2)
,

where S is the set of links selected already. The transmission power
assigned is proportional to the minimum transmission power needed
for successful simultaneous transmissions with longer links.

By applying this algorithm recursively, we obtain an O(logn)-
approximation algorithm for the Multi-slot Scheduling Problem in
fading metrics and an O(log2 n)-approximation for arbitrary metrics.
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The algorithm can be extended to solve other problems like the
weighted one-slot scheduling problem, the k-channel scheduling prob-
lem, and multihop scheduling. The approximation ratios are O(logn),
O(

√
k logn), O(log2 n) for fading metrics and O(log2 n), O(

√
k log2 n),

O(log3 n) for arbitrary metrics.

4.4.5 Exact Algorithms

So far, all algorithms presented in this chapter computed a schedule and
power assignment efficiently, i.e., in polynomial time with regard to the
input size. Even though the analysis of some of the discussed algorithms
gives a provable guarantee on the approximation ratio, the resulting
schedules are not optimal. Hua and Lau [46] propose algorithms that
compute a minimal length schedule. However, these algorithms require
exponential time and space.

4.5 Outlook

In this chapter, we have seen that power control can increase the
number of concurrent transmissions. In some settings, n senders can
transmit simultaneously when adjusting their transmission power level,
whereas with uniform power every single transmission needs its own
time slot. Solving an Eigenvalue problem yields the optimal power
assignment for a given set of links, i.e., one can determine efficiently,
whether a set of links can be scheduled in one time slot.

We have considered oblivious power assignments, where the trans-
mission power only depends on the link length. For these assignments,
we gave lower and upper bounds on their performance compared
to arbitrary power assignments. The greatest advantage of such an
assignment is the fact that it can be used to construct truly distributed
algorithms, since the power level is not based on global knowledge
such as the number of links to be scheduled, the position of other
senders, etc. The opposite approach is adopted for link removal, the
LDS algorithm and most approximation algorithms. They take all
communication requests, i.e., the positions of all sender and receiver
nodes, into account for the construction of a short schedule and power
assignment. Their most obvious drawback is the fact that they can
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only be used in static scenarios, where the overhead of computing a
centralized solution is acceptable. In addition, the resulting schedule
is not necessarily optimal. Thus, the quest for efficient scheduling and
power control algorithm is not finished yet. Moreover, a non-trivial
lower bound, where despite power control more than a constant
number of slots are necessary, is yet to be found. I.e., to the best of our
knowledge no instance has been constructed where even with power
control the scheduling complexity exceeds a constant.

From a more practical perspective, it can be argued that the network
topologies and request sequences found in real-world applications may
not have an explicit worst-case structure. We hope, however, that the
theoretical insights gained from the worst-case analysis will ultimately
lead to an increase in bandwidth and capacity beyond heuristics in
real networks. Further investigation in this direction will lead to useful
results in areas such as wireless mesh networks, sensor networks, or
even cellular networks.



5
Related Problems

The focus of this survey is scheduling a set of communication requests in
the physical interference model. In this chapter, we discuss a few results
of other problems in this interference model. We believe that many of
the papers written for protocol models should be reconsidered in the
physical model. Similarly, many of the results that hold on special-case
topologies in the physical model may be re-considered and generalized
in an algorithmic way.

5.1 Topology Control and Connectivity

In order to save energy and thus extend the lifetime of a network,
topology control is applied. The nodes of a network coordinate their
transmission power yielding a network topology with desirable proper-
ties. Thus the main goal is to reduce the number of active links and
yet guarantee a connected network. In addition to connectivity, other
properties such as low node degrees, sparseness, or planarity might be
required.

Using results from percolation theory, Gupta and Kumar [37] inves-
tigate the critical power level that is necessary for a randomly deployed

400
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wireless network to become connected under the assumption that all
nodes transmit at the same power level. Ever since, much research effort
has been directed toward studying asymptotic connectivity require-
ments in randomly distributed wireless networks, e.g., [18, 84]. What
these papers do not consider, however, is the complexity of actually
scheduling the communication links that form the connected network.

Moscibroda et al. [66] study the problem of scheduling a strongly
connected set of links given n nodes and their positions in the plane.
They propose a power control and scheduling algorithm that can suc-
cessfully schedule such a set is in O(log4 n) time slots. This result holds
for arbitrary worst-case networks. The power level assigned to senders
of short links is higher than actually required to reach the receiver. Yet
the transmission power still increases monotonically with the length
of the links. Such a sophisticated power assignment strategy is neces-
sary, because uniform and linear power assignments lead to schedules
of length n in worst-case networks. However, these lower bounds are
based on networks in which some communication links are exponen-
tially longer than others. Moscibroda et al. improve on this work in
Ref. [68] by proving that the minimum number of time slots to sched-
ule an arbitrary topology is proportional to the squared logarithm of
the number of network nodes times a previously defined static interfer-
ence measure. Moreover, they demonstrate that topologies that require
bidirectional (symmetric) links may lead to significantly higher bounds
on the number of time slots necessary. The main result of Ref. [64]
(see Section 5.3) implies that the scheduling complexity of connectivity
is in O(log2 n). Recently, Kowalski and Rokicki [55] devised an algo-
rithm that uses O(logn) colors only. They achieve this with a general
reduction between a different interference model and by applying an
algorithm proposed in Ref. [24]. The Ω(logn) lower bound for Min-
imum Interference Sink Trees [24] can be adapted to the scheduling
complexity of connectivity. This implies that the O(logn) approxima-
tion in Ref. [55] is asymptotically optimal.

Even though the number of time slots necessary to guarantee con-
nectivity under uniform power can be in the order of the number of
nodes, some devices are simply not able to change their transmission
power. Avin et al. examined the complexity of connectivity of a uniform
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power network in Ref. [4]. More precisely, they analyze grid networks
and nodes distributed uniformly at random.

While Refs. [4, 66, 68] strive to minimize the schedule length for the
topology of a given set of nodes, a complimentary approach is adopted
in Ref. [26]. Gao et al. focus on constructing a topology and a power
assignment that maximizes the network capacity. They apply a recur-
sive algorithm that converges to an optimal point for their objective
function. They validate the algorithm with simulations and show that
it outperforms existing topology control algorithms.

5.2 Online Algorithms

In addition to static scheduling problems, a dynamic version where
communication request arrive dispersed over time has been studied
as well. In Ref. [40] an O(log∆)-competitive algorithm is proposed.
Erlebach and Grant [20] extend this result for multicast requests. A
multicast request is a set of links with a common sender. One transmis-
sion suffices for such a request if the received signal strength exceeds
the required SINR threshold at all receivers. Moreover, they give a
lower bound of Ω(log∆) for the competitive ratio of every determin-
istic online algorithm with arbitrary power assignments. This bound
even holds for the unicast case. For an extended scenario with commu-
nication request in the Euclidean space of dimension d and a duration
in [1,Γ] a lower bound for the competitive ratio of Ω(Γ∆d/2) and a
near-optimal upper bound of Ω(Γ∆d/2+ε), for any constant ε > 0 is pre-
sented in Ref. [21] for deterministic algorithms. The authors also devise
a randomized O(logΓlog∆)-competitive algorithm and show how to
generalize their ideas to k channels.

5.3 Data Gathering

Much research for wireless networks addresses wireless sensor nodes,
devices capable of sensing physical phenomena equipped with a radio
communication system. The most important task in a wireless sensor
network is to collect the sensed data in a fast and energy-efficient
way. Hence the data has to be gathered at an information sink by
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transmitting messages in a (possibly multihop) way toward the sink.
The performance of sensor networks is thus characterized by the rate
at which information can be aggregated to the sink.

If all the sensors are within communication range of the sink, they
can sequentially transmit their data to the sink. Since there is no inter-
ference, the rate scales in O(1/n), where n is the number of nodes. Sur-
prisingly, assuming the protocol model, there exist node distributions
where transmitting sequentially is indeed the best one can do, hence in
the protocol model the best possible rate is O(1/n) [66].

In randomly deployed networks, i.e., scenarios of nodes distributed
uniformly at random, a rate of O(1/ logn) is possible [58] in the protocol
model. When the function to be computed on the data exhibits certain
properties, this result can be improved, e.g., so-called type-threshold
functions can be computed at a rate of O(1/ log logn) using the block-
coding technique. Moscibroda [64] studies the scaling laws of the achiev-
able rate in arbitrarily deployed sensor networks. He proves that a
rate of Ω(1/ log2 n) is achievable, even in worst-case scenarios. This has
been improved recently by Kowalski and Rokicki [55] to Ω(1/ logn) (see
Section 5.1).

5.4 Distributed Protocols

To the best of our knowledge, there is not much work on distributed
algorithms in the physical interference model.

In Ref. [75] a distributed algorithm for establishing a dominating set
in the physical model is presented. The proposed protocol is random-
ized, makes extensive use of physical carrier sensing, and converges to a
dominating set within a logarithmic number of communication rounds,
w.h.p., achieving a dominating set with O(1) approximation bound.

In Ref. [59] an algorithm is proposed to emulate a Unit Disk Graph
(UDG)-like structure in the physical model and a network where nodes
are distributed uniformly at random on the plane. It is shown that
it is possible to emulate a UDG with radius 1/

√
n lnn, that satisfies

the SINR constraints, over any set of n wireless nodes uniformly dis-
tributed in the unit square, with an O(ln3 n) time and power stretch
factor.
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In Ref. [31], two distributed algorithms for the problem of local
broadcasting are proposed. One is a very simple Aloha-like algorithm
that is based on the assumption that each node knows the number of its
neighbors; the other is more involved and makes no assumptions about
topology knowledge. It is shown that, if the transmission probabilities
of nodes are carefully set, the global nature of interference in the phys-
ical interference model can be separated into“close-in” and “far-away”
regions, which allows the analysis to proceed similarly to analysis in
graph-based models, such as the protocol model.

5.5 Cross-Layer Protocols

In Ref. [12] the joint cross-layer problem of scheduling, power control
and routing is studied. The authors apply random delays to solve the
scheduling problem, linear power assignment to solve the power-control
problem, and linear programming rounding to solve the routing part of
the problem. Let SOPT (pmin,(1 − ε)pmax) denote the optimal latency
of minimum length possible for power levels chosen from the range
[pmin,(1 − ε)pmax], for any given parameter ε > 0. For Λ the aspect
ratio as in Definition 2.3, an algorithm with approximation guarantee
of O(log2 n log3 Λ · SOPT (pmin,(1 − ε)pmax)/ log logn)) is devised. This
work has been further generalized in Refs. [23, 53], where improved
upper and lower bounds for the cross-layer problem are presented.

5.6 Network Coding

Network coding is a technique that extends the traditional definition
of routing by allowing routers to not just forward copies of received
messages, but to mix the bits from different packets before forwarding
them. The topic has received a lot of attention in the research commu-
nity, starting with the pioneering work of Ahlswede et al. [1], where the
authors prove that full capacity (i.e., the maximum flow or minimum
cut between a source and a receiver) can be achieved in a graph where
one source multicasts information to other nodes in a multihop fashion
and any node in the network is allowed to encode all its received data
before passing it on.
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Network coding in the physical layer, or analog network coding, is
similar in spirit to digital network coding. However, it operates on the
raw analog signal, instead of first decoding and then mixing packets in a
bitwise manner. Some techniques, such as cochannel signal separation,
explore differences in the characteristics of interfered signals, such as
the signal’s strength, to decode several signals simultaneously [43, 44].
Other analog coding techniques exploit the fact that, in a wireless net-
work, often a receiver has prior knowledge about some packets intended
to other nodes, by having overheard or forwarded them earlier. This
situation has been extensively studied in the context of 2-way relay
channel [50, 57, 72, 73].

In Ref. [88] an algorithm for separating two physical-layer signals
using higher level information is proposed. The approach is not directly
implementable in practice, though, because of several assumptions that
the authors make, e.g., they assume that the interfering signals are syn-
chronized at the symbol boundaries and that both signals have under-
gone the same attenuation when arriving at the router. These problems
are overcome in Ref. [49], where analog network coding is made more
practical. The authors propose a communication scheme, where pairs of
nodes that wish to exchange packets through a relay node are encour-
aged to transmit simultaneously. The relay node, without decoding the
collided signal, amplifies and forwards it. The signal resulting from a
collision is the sum of the two colliding signals after incurring atten-
uation and phase and time shifts. Since the receiver often knows the
content of the packet that interfered with the packet it wants, it can
cancel the signal corresponding to that known packet after correcting
for channel distortion, and the receiver is left with the signal of the
packet it wants, which it decodes using standard methods. Thus the
destination nodes can extract the packet intended for them by filtering
out their own contribution from the mixed signal.

In Ref. [33] the combined problem of analog network coding and
link scheduling in the physical interference model is studied. Two def-
initions of analog network coding are introduced: one definition that
uses cochannel signal separation to decode several messages simulta-
neously, and another definition that is based on the “amplify and for-
ward” approach of Katti et al. [49]. The authors show that, in spite
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of the ability to decode several signals simultaneously, the scheduling
problem remains NP-complete in both models, and propose algorithms
to schedule an arbitrary set of links using cochannel signal separation.

5.7 Capacity of Random Networks

Throughput capacity of randomly deployed wireless networks has been
studied intensely using an information theoretic approach. In their sem-
inal work [38], Gupta and Kumar provide upper and lower bounds on
the capacity of networks with two kinds of topology: one where nodes
are distributed uniformly at random in a disk of unit area, and one
where nodes are “optimally” distributed on a regular grid lattice. In
the former case, the authors show that if each node is capable of trans-
mitting W bits per second, the per node capacity of the network with
n nodes is Θ(W/

√
n logn). In the “optimum” topology and traffic pat-

tern, the capacity is Θ(W/
√

n). These results hold in both the protocol
and the physical interference models and hold a rather pessimistic char-
acter, since they essentially state that large networks cannot achieve
high throughput.

Using similar techniques, the capacity of random networks has been
further analyzed in many different contexts, such as networks with an
overlaid infrastructure [56], multichannel networks [8, 9], MIMO [13],
multi-user cooperation [70], use of relays [28], multicast [61], data
gathering [58], and cognitive networks [81]. A thorough overview of
interference models and capacity results from an information theoretic
perspective can be found in Refs. [39] and [85].
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Alternative Interference Models

In this final section, we study alternative interference models.
Section 6.1 discusses graph-based connectivity and interference mod-
els. In Section 6.2, we discuss a few other physical models in which it
might also be interesting to design and analyze algorithms.

6.1 Graph-Based Models

As already mentioned in the introduction, a popular way to model
wireless networks are graphs. A graph model usually consists of a con-
nectivity graph and possibly also of an interference graph. In both
graphs, the set of vertices represents the devices, and a successful
transmission occurs when the sender–receiver pair is connected in
the connectivity graph and no other concurrently scheduled sender–
receiver pair inflicts a conflict in the interference graph. As a conse-
quence, graph-based scheduling algorithms usually employ some sort
of matching or coloring strategy.

There is a vast and rich body of literature on graph-based models,
and we are going to mention just a few of them here. For an overview
of graph-based models used to design algorithms for wireless networks
we refer to Ref. [76].

407
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Coloring a general graph is not only an NP-Complete problem, but
is also hard to approximate to within factor of n1−ε, for any constant
ε > 0 [89]. Wireless networks, however, can usually be better modeled
by more restricted classes of graphs, such as geometric graphs. Geo-
metric graphs are graphs whose vertices are placed in a metric space
(usually in a two-dimensional Euclidean plane), and two vertices are
connected if and only if the distance between them is less than or equal
to some radius r, for some r > 0. When r = 1, the geometric graph is
commonly called a Unit Disk Graph (UDG) (see Figure 6.1). When
the radius is different for each node and two vertices u and v are con-
nected if and only if the distance between them is less than or equal
to the minimum of the two radii, then the graph is called a disk graph.
Intuitively, disk graphs are intersection graphs of (possibly equal sized)
circles in the plane and have been extensively used to model broadcast
networks.

In Ref. [14] it was proved that a series of closely related problems to
wireless scheduling, such as coloring in graphs, independent set, dom-
ination, independent domination, and connected domination, are also
NP-complete in UDGs. Interestingly enough, finding cliques when a
geometric representation (circles in the plane) of a UDG is provided,
was shown to be polynomial in time.

Although the general graph model is too pessimistic, as the con-
nectivity of most networks is not arbitrary but obeys certain geometric
constraints, the UDG model (or other disk models) is too optimistic.
In reality, radios are not omnidirectional, and the presence of obsta-
cles often impacts connectivity. In heterogeneous environments, such

Fig. 6.1 Unit disk graph: node u is adjacent to node v(dvu ≤ 1), but not to node w(dvw > 1).
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as inner-city or in-building networks, a node might not be able to com-
municate to nodes which are close by, but located in a room across
the wall. Nevertheless nodes within the same room are typically highly
connected. This scenario suggests that in highly obstructed regions,
the number of neighbors which are not adjacent is small. An interest-
ing model to represent this kind of scenario is the so-called bounded
independence graph, or BIG. In this model, if Υd(v) denotes the set
of independent (or pairwise non-adjacent) nodes which are at most d

hops away from node v in the connectivity graph G, G is said to have
bounded independence iff ∀v ∈ G, |Υd(v)| = O(poly(d)), where poly(d)
is a function polynomial in d, i.e., poly(d) = dO(1). Note that the UDG
model is a special case of the BIG model.

One commonly used graph-based interference model is the protocol
model [38]. In this model, a transmission by a node si is successfully
received by a node ri iff the intended receiver ri is sufficiently apart from
the sender sj of any other simultaneous transmission, i.e., d(sj , ri) ≥
(1 + ρ)d(si, ri),∀sj 	= si. The constant ρ > 0 models situations, where
a guarding region is specified by the protocol to prevent a neighboring
node from transmitting (on the same channel) at the same time. This
model implicitly assumes that senders use power control to adjust their
signals. There are, therefore, two radii: a transmission range RT and an
interference range RI . A node can successfully transmit to a receiver
node in its transmission range only if the receiver is not within the
interference range of any other concurrently transmitting node (see
Figure 6.2).

Another group of graph-based interference models are the so-called
k-hop interference models. In these models, no two links within k hops
can successfully transmit at the same time. These models are even
less realistic that the protocol model, since they overlook some crucial
interference terms. For example, a (k + 1)-neighbor can be close to the
receiver (see Figure 6.3).

The inefficiency of graph-based scheduling protocols in the phys-
ical interference model has been shown both through simulations
[7, 35, 36], and through experiments (on mica2 sensor nodes running
with TinyOS) [67]. In fact, in Ref. [67], Moscibroda et al. show that any
protocol which obeys the laws of graph-based models can be broken by
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Fig. 6.2 Protocol interference model: there are two radii: transmission range RT and inter-
ference range RI . In this example, node ri is not able to receive a transmission from node
si if node sj concurrently transmits to node rj — even though ri is not adjacent to sj .

Fig. 6.3 Example where k-hop interference fails: nodes v1 and vk+2 are separated by a path
of k + 1 hops, but are close (distance 1 + ε).

a protocol explicitly defined for the physical model. There have been
some efforts to model the properties of the physical model using SINR-
derived conflict graphs, e.g., [11, 47, 78], however, the obtained bounds
are usually too loose, or are only valid in restricted network topologies.

6.2 Other Physical Models

In this monograph, we have used the physical model. In wireless com-
munication research, this is only one of many available fading channel
models.

In many digital wireless communication standards, e.g., Wireless
LAN 802.11 or UMTS, a higher signal-to-noise ratio can be used to
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employ an advanced digital modulation to allow for higher data rates.
As such, the 802.11 g standard can for instance achieve up to 54 Mbit/s
if conditions are perfect, and will slow down if base station and client
hardly hear each other. As a rule of thumb, the achievable bit rate will
be about logarithmic in the signal-to-(interference-plus)-noise ratio.
This is a natural extension to the model and work presented in this
monograph.

One may also extend the physical model by modeling obstructions
more accurately. This leads to physical ray tracing models where the
architecture of the situation is represented in the system. As in graph-
ical ray tracing, physical ray tracing systems will compute shadowing,
reflection, scattering, or diffraction of wireless signals by walls or other
physical objects. Clearly, one could imagine studying for instance wire-
less scheduling in these physical ray tracing models.

Finally, there are various statistical wireless channel models, such
as Rayleigh or Rician fading models. These fading models assume that
the magnitude of a signal will vary randomly, according to a stochas-
tic process. In Rayleigh fading, for instance, the magnitude of a signal
varies as a radial component of the sum of two uncorrelated Gaussian
random variables. In wireless scheduling, one may hope to oppor-
tunistically use long-term fading components, i.e., to transmit when
conditions are good.

More generally, network information theory considers a set of
senders and receivers, and a channel transition matrix describing the
effects of interference and noise in the network [15]. Network informa-
tion theory wants to determine how much information can be trans-
mitted; in general, apart from special cases, this is an open problem.

For more information on wireless channels, we refer to text books on
wireless communication fundamentals, e.g., [80]. For cross-layer aspects
of modeling wireless networks, such as the interaction of the physical
layer with the network and the transport layers, we refer to the survey
by Georgiadis et al. [29].



7
Conclusions

In this monograph we presented several selected results on algorithmic
wireless scheduling in the physical model — and beyond. This line
of research is still young, at the time of writing there are more open
than solved problems. In Section 3 we presented wireless scheduling
without power control, a subject that is reasonably well understood.
Nevertheless, there is a multitude of open problems, for instance
whether polynomial time approximation schemes (PTAS) are possible.
The problem of scheduling with power control, analyzed in Section 4,
is even a bit less understood, although very recently there was a
breakthrough result [53] featuring an algorithm with an approxi-
mation ratio independent of the network topology. If we go beyond
scheduling (Section 5), one can easily list hundreds of important open
problems. One can study scheduling in wireless multi-hop networks,
or combine it with routing, to understand the capacity of arbitrary
wireless networks. One can study specific traffic, such as broadcast
or convergecast. Virtually any problem ever studied in the context of
wireless networks gets a new flavor in this context. There is no doubt
that some of earlier knowledge may be transferable, especially when
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dealing with higher-layer problems. But as the example of wireless
scheduling shows, in lower layers of the network stack, techniques may
be quite different. Finally, as sketched in Section 6, one may look into
more general interference models. Hopefully, this line of research leads
eventually to new, more efficient protocols.
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[40] M. Halldórsson, “Wireless scheduling with power control,” in Proceedings of
the Annual European Symposium on Algorithms (ESA), pp. 368–380, 2009.
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